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Abstract

In this paper, we combine the assumption that the consumption func-
tion is concave with an AK production function.

We show that the set of equilibrium steady-state growth rates is an
interval. Then we note that when they exists, unegalitarian equilibria
are characterized by higher rates of growth than egalitarian ones and,
moreover, higher equilibrium growth rates correspond to higher levels of
inequality. Also we prove that each path converges either to an egalitarian
or to one of unegalitarian equilibria. To what equilibrium a path converges

depends on the initial distribution of wealth.
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1 Introduction

Considerable recent attention has been focussed on the relationship between
inequality and economic growth, in particular, on the dependence of the dy-
namics of growth on distribution of wealth (for a survey, see, e.g., Aghion et
al.(1999)). In this paper, we study this dependence in a framework of an endoge-
nous growth model with the concave consumption function (or, equivalently, the
convex saving function).

The assumption that the consumption function is concave dates back to
Keynes who wrote that "...with the growth in wealth [comes| the diminishing
marginal propensity to consume..." (Keynes, 1936, p.349). Empirical evidence
(see, e.g., Lusardi (1996)) shows that the marginal propensity to consume is
substantially higher for consumers with low wealth or low income than for con-
sumers with high wealth or income.

As was noticed by Stiglitz (1969), in the case of exogenous growth, if the
saving function is convex, the distribution of income and wealth might tend
toward a "two-class" equilibrium but his analysis was not detailed. A more
detailed analysis of the convex saving function was proposed by Schlicht (1975)
who showed that unegalitarian as well as egalitarian equilibria might be locally
stable. In Bourguignon (1981) the welfare implications of the coexistence of
egalitarian and unegalitarian stable equilibria were considered; it was proved
that, when they exist, unegalitarian locally stable equilibria are Pareto superior
to egalitarian ones.

In this paper, we combine the assumption that the consumption function is



concave with an AK production function. Following Frankel (1962) and Romer
(1986) we assume that technological knowledge grows automatically with capi-
tal.

We show that the set of equilibrium steady-state growth rates is an interval.
Then we note that when they exists, unegalitarian equilibria are characterized by
higher rates of growth than egalitarian ones and, moreover, higher equilibrium
growth rates correspond to higher levels of inequality. Also we prove that each
path converges either to an egalitarian or to one of unegalitarian equilibria. To

what equilibrium a path converges depends on the initial distribution of wealth.

2 The Model

Production sector

The production side of the economy is described as follows. Two factors
of production, capital K and effective labour L, are used to produce a single
good according to a neoclassical production function F(K, L). Capital does not
depreciate; the production function gives net output not including the nonde-
preciating capital. We assume Harrod-neutral technological progress: L = AL,
where L is the population and A is the state of technology. Population is con-
stant over time. As for the state of technology, we assume following Frankel
(1962) that it is proportional to the current economy-wide average of physical

capital per worker:
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where k£ > 0 is an exogenously given parameter. It follows that K/L is equal to
k and hence is constant over time. The interest rate is r = Fx (K, L) and the
wage earned by one unit of effective labour is w = Fp, (K, L). Clearly, r» and w
are also constant over time.

Consumers

There is a continuum of families in the economy. They are identical in their
exogenous parameters. Suppose that at some time ¢ the amount of effective
labour of a family is I; > 0 and that the gross savings of this family are Z; > 0.
We assume that each unit of effective labour in the family earns w during the
period. Then the gross wealth of the family at time ¢ + 1 is (1 4+ r)Z; + wl;. It
is divided into consumption C; > 0 of the family and savings Z;1; > 0 of the

family. By definition,
Zig1 = (1 + 1) Zs +wily — Cy (1)

The consumption decision is made by means of a consumption function
¢(-): Ry — R4. which establishes the relationship between the wealth of a
family per unit of effective labour and consumption per unit of effective labour.
By assumption it is twice continuously differentiable, strictly increasing, strictly
concave and satisfies the following condition: 0 < ¢(y) < y. The family’s con-

sumption C} is given by

(1 +T)Zt +’LUlt

Ct = ltC( lt )

It should be noted that the relationship between the wealth of a family



and the consumption of this family changes over time in such a way that if the
family’s wealth grows with the same rate as technological knowledge, the average
propensity to consume does not change. At the same time, if the family’s wealth
grows slowly (faster) than technological knowledge, the average propensity to
consume increases (decreases). Note that we assume that consumption is a
function of wealth but it is not difficult to show that the results will be the
same if consumption is a function of income.

It is convenient to introduce the saving function s(-):

s(y) =y — cly)

Clearly, the saving function s: R, — R, is twice differentiable, strictly in-
creasing, strictly convex and satisfies the following condition: 0 < s(y) < y.

Rewriting (1) we get

(1 + T’)Zt + ’U_)lt

Zt+1 = ltS( I
t

) (2)
We will denote by z: the savings per unit of effective labour: z; = Z;/I;

Let us introduce the economy’s growth rate, n:, by:

L 4n, — Kit1+ F(Kiq1, Ligr) _ Ky _ Litq
! Ki + F(K,, Ly) K, L

where L, is the amount of effective labour in the economy at time t. Rewriting

(2) in intensive form, we get:

(L4 ne)zeer = s((L+ 1)z + w) (3)

Now introduce the function ¢(-): Ry — R;:

o(z)=s((1+7r)z+w)



Clearly, ¢(-) is differentiable, strictly increasing and strictly convex. Moreover,
?(0) =s(w) >0and 0 < ¢(2) < (1+7)z 4+ w.

For the family under consideration we have:
(L+ne)ze1 = B(2¢). (4)

Dynamics of the model

Suppose that at time ¢ = 0 the population is divided into a finite number of
different groups of families in such a way that the savings per unit of effective
labour of the families that belong to the same group are equal. Let there be N
groups and 0 < oz{ < 1 be the fraction of group j € {1, ..., N} in the population.
The amount of effective labour in every group is proportional to the number of
individuals in the group, that is the ratio of amount of effective labour in one
group to another remains constant over time.

Taking this into consideration, we get L] = o L;, where L7 is the amount
of effective labour of group j at time ¢. It is clear that Zjvzl oz{ =1. We
assume that the fraction of each group is constant over time, that is oz{ = a{)
(t=0,1,2,...).

The stock of capital at each time t, Ky, is equal to the gross savings in the
economy:

N
K, = Z zi.
j=1
Dividing both sides of this equation by L; we get

N N

k:ZZ—gE:Zajzj. (5)
i Li =

j=1 j=1



At the end of the period [¢,t + 1], the gross wealth of the economy equals:

Ki + F(Ky, Ly) = Ky + Ko Fie (Ky, Ly) + L Py (Ky, Ly) =
N . .
= (14K +wly = > (1472 +wL]) (6)
j=1
and the wealth of group j is (1 +7)Z/ + wL]. Gross savings of this group at

time ¢ + 1 are given by equation (2) which determines the stock of capital at

time t + 1.

Putting equations (5) and (4) together, we obtain the system of equations,

describing the dynamics of our model. For t =0,1,.. .,

J

o = o j=1...,N
k= Zjvzl ozl (7)
P $(2)) -

2141 kZi\;l‘lid’(Zf) j=1,...,N

In this system zg should be considered as predetermined values of endoge-
neous variables (j = 1,..., N). In our opinion the numbers o also should not
be interpreted as exogeneous parameters, it is better to consider them as pre-
determined values of endogeneous variables. Nevertheless, as we consider o/ as

constant over time we will futher denote o by a; for conveniency. Note that

Zivzl ai¢(zti).

1+nt= L

Without loss of generality, we will futher assume that if N > 1, then

<< <y (8)



3 Steady-state equilibria

As usually, we define a steady-state equilibrium as a state where the level of
savings per unit of effective labour in each group and the rate of growth do not
change over time.

Prior to defining steady-state equilibria formally, several points should be
clarified. Suppose that we are given an equilibrium growth rate n*. Then for
each family savings per unit of effective labour, z, in a steady-state equilibrium

corresponding to this growth rate must satisfy the following equality:
¢(z) = (1+n")z (9)

Since ¢(-) is a strictly convex function, this equation has at most two solutions.
Denote the smaller solution by z; and the larger one by z;. Thus each family can
find itself at one of two possible steady-state positions and the population can
split at most into two groups. Those whose savings per unit of effective labour
are z; will be called spenders and those whose savings per unit of effective labour
are z; — savers.

Let o equal the proportion of savers in the population and 1 — o equal the
proportion of spenders. These proportions are determined endogenously in the

following definition.

Definition 1 An array (n*, 2, 2}, 0*), where c* € [0,1], is called a steady-state
equilibrium if:
1. z; is the smaller solution to (9)

2. z is the larger solution to (9)



3. 0%z +(1—0%)zf =k.

A steady-state equilibrium (n*, z;, 25, 0*) will be called dividing if 2 < 2}
and 0 < ¢* < 1; otherwise it will be called non-dividing. Note that in the
non-dividing equilibrium either 2z = 2} = k or ¢* € {0,1}. Without loss
of generality, we suppose for a non-dividing equilibrium (n*, 2/, z;;,0*) that
=z =k

Let us start our analysis with the study of the function ¢(z)/z. Define

g:= lim ¢(2)/z

2500
Lemma 1 The function ¢(z)/z behaves in one of the following two ways:
either it monotonically decreases on [0; 00)
or there exists zmin € R such that the function ¢(z)/z reaches its mini-
mum at Zmin; ®(2)/z monotonically decreases on [0; zimin] and it monotonically

increases on [Zmin; 00).

Proof.
First note that lim,_ o ¢(2)/z = 400 and g < +00

Now we compute the derivative of ¢(z)/z:

z

To determine the sign of the derivative it is sufficient to determine the sign of
the numerator. Put g(z) = ¢'(2)z — ¢(z). Since ¢'(0) < 400, it is clear that

9(0) = —¢(0) < 0. Moreover

9'(z) = ¢"(2)z > 0.



To conclude the proof it remains to check if there exists z,,:, such that g(z) <0
for z < zmin and g(z) > 0 for z > zp,. If the answer is "yes" this concludes
the proof. If such z,;, does not exist then, clearly, g(z) < 0 for all z > 0 and
®(z)/# is a monotonically decreasing function.

Examples.

1. The simplest example is represented by a linear function: s(y) = hy, 0<
h < 1. In this case

o(z) =h(l1+7)z+ hw

It is clear that
hw
)+ —

is a monotonically decreasing function. Therefore for a linear saving function
and a function close to linear ¢(z)/z monotonically decreases.

2. Let s(y) =y — In(1 +y). Then

pz)=w+(1+r)z—In(1+w+ (1+r)z)

and

9(2) = 2/ (2) — p(z) = — & Yfiﬁﬁtg;’:z) —In(1+w+ (1+47)2)

Here, it is clear that ¢(0) = —w+In(1+w) < 0 and g(z) —,— o0 +00. Therefore,
@(2)/z reaches its minimum at some z,;, < 0.

3. Let s(y) =y — 1 + exp(—y). Clearly, s'(y) > 0 and s”(y) > 0. We have:

d(z)=w+ (1+r)z—1+exp(—w— (1+7)z)

giz)=—exp(—w—(1+r)z2) 1+ (1+7r)z)+1—-w

10



g(0) = —exp(—w) +1 —w < 0.

Thus lim, . g(z) = 1 — w, that is the sign of lim,_, . g(z) depends on w. If

w < 1 then z,,;, exists. Otherwise, that z,,;, does not exist.

Theorem 1 1. If ¢(k)/k > g then there exists only a non-dividing equilibrium
(n*, 2}, 25, 0%). For this equilibrium 2z =z} =k and 1 +n* = ¢(k)/k.

2. If p(k)/k < g then for each n* satisfying g > 1+n* > ¢(k)/k, there exist
zf, 2, o* such that (n*,z}, 2}, 0%) is an equilibrium. If 1 +n* = ¢(k)/k then

this equilibrium is non-dividing; if 1 + n* > ¢(k)/k, then it is dividing.

Proof. The proof follows from the previous proposition.

We illustrate the two opportunities by Fig.1 and Fig.2.

1+n

1+n*

Y

Figure 1: Figure 2:

For 2 and zj it holds

= (10)
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and

2l <k <z (11)

Therefore statement 1 is trivial because there does not exist more than one z
such that equation (10 ) and equation (11) hold together. Statement 2 is trivial
also because for any pair (2], z;) that satisfies (10) we can find o* such that
inequalities (11) are true.

Since it should be noted that the value of z;/z; may be considered as an
index of inequality in the economy, it is readily seen, that the growth rate of
economy is related to inequality in the economy: the higher is the growth rate,

the higher is inequality.

Proposition 1 An equilibrium rate of growth corresponding to any dividing
equilibrium is higher than an equilibrium rate of growth corresponding to any
non-dividing equilibrium.

If the economy is in a dividing equilibrium, then the higher is n*, the higher

is 21 /2] .

Proof. The proof is straightforward.

4 Asymptotics

Now let us procede with the dynamics of the model. Our aim now is to prove
that each path converges to a dividing or non-dividing equilibrium. At first, we
prove this result under the assumption that ¢(z)/z monotonically decreases. In

this case each path converges to a non-dividing equilibrium.

12



Proposition 2 Suppose ¢(z)/z monotonically decreases for z > 0. Then for

any path {2]}]1; o

Proof. Since we assumed (8) it holds
$z0)/ 70 > ¢(25)/ 25 > .. > ¢(=") /2
Therefore for all ¢,
$(z")/ =" = mjinaﬁ(Zf)/Zf <l+4m< mjaxaﬁ(Zf)/Zf =0(21)/2

Using (7), we get 274, < z{',t =0,...,00. Consequently {z}'}?°, is a mono-
tonically decreasing sequence. Thus, it has a limit :
ng —t—oo %
Similarly, z} is a monotonically increasing sequence and
1

1
2y “t—oo &

Consider any i u j, such that for some t, 2! < zf . The system of equations

(7) gives us:

241 = 1+n,
i o(2)
241 = 1+n,

Combining this with the monotonicity of ¢(z)/z we get

2 2
t+1 t

> j+ >

Zt+1 2t

13



Thus the sequence {j—%},‘f’io is monotonically increasing and is bounded by 1.
Hence it converges.

Recall that we have got the convergence of {z{¥}?°,. Combining with the

convergence of {z}/z]}{°, we obtain that 2] converges to some 27 for all j.

Therefore, 1 4 n; converges to some 1 + n*. Taking into account (7), we get:

It follows that ¢Eji) is uniform for all 7. Using the monotonicity of ¢(z)/z, we
get 20 =k, i=1,...,N and hence z} —; . k.

Now we shall study the case where ¢(z)/z reaches its minimum at some
Zmin < 00. The following proposition claims that any path converges either to
a non- dividing or to a dividing equilibrium. In the latter case we state that for
all j the sequence {z 192, converges. Moreover, for all j but N, the sequences

{2]1%°, converge to a common limit, different from the one the sequence {2V},

converges to.

Theorem 2 Any path {zf}évzl 20

either converges to a non-dividing equilibrium: z{ —k,7=1,...,N,

or converges to a dividing equilibrium (n*,z/,z},0") such that c* = ay,
that is:

zp — 2z, 25—z j=1...,N—-1

If ¢(k)/k < g and k # zmin then it is possible to introduce k_ and k. such
that % = %j) = @ and either k_ or ky equals to k with k_ < k.

If ¢(k)/k > g or k = zpin, put k— =kt = k.

14



First let us prove the following simple lemma.

Lemma 2 For any path {z]}22, My
1. z} < k_ implies z§+s <k_ (s=1,2,..))
2. 2} < Zmin implies z{, , < zZmin (s=1,2,...)

3. zi < ky implies ztiJrS < ky (s=1,2,...)

Proof.

1. Let us suppose that for some ¢, 2} < k_. Clearly,

S ajolz) > o(k)

because ¢ is a convex function. Thus

i kd)(z;) ¢(Z§) _
AR ST (3 R

2. Similarly, if for some ¢, 2! < zin, then

¢(21) $(21)

< RSN S0

i k@(%)
= _ <k
TS o) o)

< Zmin

3. By the same argument as in statement 1, if for some ¢, 2! < k., then

L ko) o) L 6
T o) o) k)

<k

Continuing in the same way, we complete the proof of the lemma.

Proof of theorem 2.

Firstly we shall concentrate our attention on elements of sequences {27 }5°,,
that can be found on [0; 2] . Consider i and j such that 2} < z{ < Zmin for

some t. Combining with lemma (2) and (7), we obtain

Zi /7 ()4

Anld =)/




Consequently,
2 2
t4+1
>
241 A

and 2¢/2] —;_0 q¢ < 1. Let us show that ¢ = 1. First let us introduce some
notation:

{as} ~ {bé} <~ |as - bé| —s5—00 0

In this notation {z!} ~ {qzJ}. Since 2}, = ¢(z{)/1 + ny, we get

() ~ 1202
and

{p(az0)} = {go(=])}
Therefore

{¢Eliz§)} N {qﬁz_i)}

and combining this with the monotonicity of ¢(z)/z we obtain
|28 = 2] =500 0

Let us study the behaviour of the sequence {z]}2°, for j such that z/ €
[Zmin; A], t =0,1,..., 00, where A = max;(k/a;). (Clearly, zl < Aforall j =
1,...,N, t=0,1,...) We prove that {2 '}, cannot be such a sequence,

that is there exists 7' such that ZJTV b < 2in. Assume the converse, that is

Zmin < th -1« 2N for all t. By the same argument as before,

—1/_N—-1 _ —
Zt]Yi-ll/Zt 7¢(ZtN 1)/21{\[ '

= <1
N /.N N\ /N
zt+1/zt B(2")/ 2
Consequently,
N-1 N—1 N-1
Pl A o P
N N e N
241 2 20

16



and zN71/2N — g < 1. As above

zN 2N
()~ 2y

Hence

|2 = 2 7 =m0 0

This contradicts to the fact that ¢ < 1.

Summing up, we have proved that there exists at most one j such that
z,{ > Zmin for all ¢ and if such j exists then this j must be equal to N.

Also we have proved that |2/ — z/| — 0 for j = 1,..., N — 1. It remains to
check that there exists j such that the sequence {z]}¢%, has a limit.

Using the previous statement, z,{ < Zmin forall j =1,...N — 1 and some t.

Because of monotonicity of ¢(z)/z on [0; zmin] we have

L )

<
N—-1 1
24 e

Concerning ¢(z}Y)/z} three opportunities are possible:
i1) ¢(zV) /2 < oz 1)/}
i2) 6(2) /2" > ¢(2)/ 2
3) (= 1))z <o)/ < o(2))/ 2
Consider them all.

Let ¢(2)) /2 < ¢(2¥ 1) /2N 1. Therefore

o(z) /2 < 1+mn < ¢(2))] 2

17



Hence z/,, > z} and 2N 1 < 2. These inequalities imply

1
z
Oetin) |y s 2
Zi+1 Zt+1

Suppose that 257" > 27!, Then ¢(z')/z ' > 1+ n; and therefore

(Zt+1 )/Zt+1 > 1+ n¢. Thus,

(Zt+1 )/Zt+1 > ¢(Zt+1)/zt+1

Or else suppose that zf_ﬁl < zN71. Then

(Zt+1 /Zt+1 (Zt+1 )/Zt+1 > ¢(Zt+1 /Zt+1

Thus, in both cases,

(b(zt]il)/zt]\jrl < ¢(Zt+1 /Zt+1

Therefore
2 >N >N, >
This yields that the sequence {2V} converges as s tends to infinity because it is
monotonically decreasing.
Let ¢(2N)/2) > ¢(2})/z}. By the same argument the sequence {z¥}°,
converges.

Let
PN/ <o)/ < o(2)/ A
If

Slap /2y T < o)/ 2 < b))z

18



holds for all ¢ > t then

N-1 N-1
<z <%

and

...>Z,51+1>Ztl

Or else there exist t' > ¢, such that one of two inequalities does not hold. In
this case we can use the results concerning previous cases. This concludes the
proof.

Now we have proved that each path, satisying (7) converges to a steady-state
equilibrium. In the following proposition we give some sufficient conditions for

the stability of some dividing and some non-dividing equilibria.

Proposition 3 Suppose that N > 1 and z.,;, exists.
In this case
1. if k > zmin then any path {zﬁ }jvzl 2 converges to a dividing equilibrium
(n*, 2, z5,0*) such that o* = ay:
2 -z, j=1,..N-1

N *
2t T Zp

2. if o(k)/k > g, then any path {zi}jvzl 2o converges to a non-dividing

equilibrium (n*, z/, z;,0%) such that 1 +n* = ¢(k)/k:
J

2z — k, j=1...N

Proof. The proof is straightforward.

19
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