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Abstract

This paper studies how to compare different microscopic simulation
(MS) models and how to compare a MS model with the real world. The
parameters of interest are classified and characterized, and various econo-
metric methods are applied to make the comparison. We illustrate the
methodology by comparing various specifications of the MS model devel-
oped by Levy, Levy, and Solomon (2000) and by comparing this MS model
with the real world.

1 Introduction

In financial markets, the observable behavior and phenomena are the conse-
quences of aggregated individual movements at the macro level, but the deter-
minants lie at the micro level. In general, it is very difficult to describe the
individual behavior (decision making under risk and uncertainty), and the im-
plied aggregated phenomena explicitly: economics, including financial markets,
is a complex system. It is very difficult, if not impossible, to find analytical solu-
tions for such systems. In order to get some insight into it, a possible approach
is to do Microscopic Simulation (MS). The idea is to study complex systems
by representing each of the microscopic elements individually (on a computer)
and by simulating the behavior of the entire system, keeping track of all of the
individual elements and their interactions over time. Throughout the simula-
tion, the macroscopic variables that are of interest can be recorded, and their
dynamics can be investigated.

The growing literature of MS in finance has resulted in various competing mi-
croscopic simulation models to explain observed phenomena in real-life financial
markets. The works of Arthur et al. (1997), Chiarella and He (2002),LeBaron
(2000), Levy et al. (2000), Lux (1998), among others, provide good examples
of various MS models. So far, research has mainly focused on investigating
whether a model shares some important characteristics of the actual financial
markets, the stylized facts, such as short-term momentum, excess volatility,
heavy trading volume, a positive correlation between volume and contempora-
neous absolute returns, endogenous market crashes, etc. The typical way to do
this is by running a ’representative realization’ of the MS model, the recorded
variables, such as stock returns, which can be analyzed by the standard financial
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econometric techniques as described in Cochrane (2001). Although much work
has already been done along these lines (see, for instance, Levy et al., 2000,
and Lux, 2000), to our knowledge, the systematic procedures to investigate the
difference between two MS models, and to judge whether a MS model is realistic
or not have not yet been developed.

The aim of this paper is to develop and apply econometric techniques to
compare different microscopic simulation models, and, more importantly, to
compare the MS model generated data with real life data. When comparing
different models, important factors that drive MS economies can be detected
and investigated. The statistical tools to compare different MS models can
also easily be used to check the robustness of the outcomes of a MS model
with respect to its initial conditions and parameter settings. In this way we
might gain a better understanding of the underlying mechanism of MS models.
When comparing an MS model with real life data, factors might be identified,
which have to be adapted or integrated to create more realistic models, whose
implications are comparable to the empirical findings in the financial markets.
Confronting a MS model with real life data is not only a way to check the
”realism” of the model, which will enhance our knowledge of financial markets,
but it is also an essential step from a practical point of view. For example,
when MS models are used to evaluate the impacts of government policies, or to
forecast, we need to link the MS models with real life data.

Given a MS model and a set of model parameters, various outcomes, such
as prices, returns, volatility, etc. of the MS economy can be generated. When
comparing two different models, we first need to identify which outcomes are
of interest and are to be used to describe the behavior of the MS economy.
Next, we should specify the characteristics of the variables that we want to
compare. For example, in the empirical finance literature, stock returns have
been studied intensively. Besides simple descriptive statistics, many studies
focus on, for example, the predictability of stock returns, excess volatility, and
volatility clustering, etc.. So, the outcomes one might have in mind would be
the time series behavior of the stock returns in the MS economy. To compare
two MS economies, simple descriptive statistics, such as the mean and median,
can be compared, but also the time series properties, such as autocorrelations.
These statistics can be compared jointly, resulting in a test for a particular set
of characteristics.

In principle, the characteristics of the MS economy can be retrieved with an
arbitrary level of precision. Because we can run the MS model independently
many times, the distribution functions of these characteristics can be obtained.
The only uncertainty here is which of the states of nature has been realized in
the simulations. Another type of uncertainty, the sampling uncertainty, arises
when we are concerned with the question of how well a particular MS model fits
real life data. The test procedures should take into account the sampling error
in real life data which, for example, can be resolved by econometric methods. To
compare on the basis of single parameters, such as the mean return or the level
of first order autocorrelation, estimation uncertainty from the real life data can
usually be quantified using analytical results, for example, the autocorrelation
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coefficient is obtained from a linear regression model with well known properties.
Ideally, we should first estimate or calibrate the model on the basis of available
data and then test whether the resulting model describes the actual data suffi-
ciently well. Here, we will not estimate the model, but instead, we investigate
the properties of simulated data and develop a comparison methodology.

The remainder of the paper is organized as follows. We give an econometric
characterization of simulated data in Section 2. Section 3 is devoted to how to
compare two different MS economies and Section 4 focuses on comparing MS
economy with the real world. We illustrate how to apply the methods that are
developed in the previous sections in Section 5 and we conclude in Section 6.

2 Econometric background

In this section, we start with a discussion of some properties of simulated data,
then we characterize the simulated data from an econometric point of view.

2.1 Properties of simulated data

A MS model consists of inputs, a designed mechanism of the system, and out-
puts. Inputs include parameters, initial conditions, and also noise; the designed
mechanism describes the functioning of the system, and how the dynamics evolve
over time; the outputs are the observations of variables of interest. For instance,
in a MS model of the stock market, Levy, Levy and Solomon (see Levy et al.,
2000) set up a MS model (the LLS model from now on) in which the microscopic
elements are individual investors. These investors make their decision accord-
ing to standard utility maximization and they interact via buying and selling
stocks and bonds within a temporary equilibrium mechanism. The investors
decide upon the proportion of their wealth that they will invest in assets as
a function of price. The price in each period is generated by equalizing that
period’s aggregated demand and supply. With this new temporary equilibrium
price, the investors’ expectations for asset returns will be updated, and price
dynamics arise. In such a way, macrovariables, such as stock prices, stock re-
turns, the distribution of total wealth among subgroups of investors, etc., can
be recorded and, subsequently, studied.

We assume that the observable outcomes of interest, the state of a MS econ-
omy at time t, can be represented by a vector xt ∈ R

K for some K. This state
changes over time according to a (possibly) noisy law of motion, which depends
on the designed mechanism, represented by a stochastic process {υt}, so

xt = G(xt−1, υt).

The function G is often assumed to be smooth. We might know the form G

explicitly or implicitly, depending on the design of the MS model.
We use N to denote the number of simulation runs of a MS model, and use

T to denote the number of periods of the outcomes that are observed for each
run. Let {xn,t}, t = 1, ..., T , be the observed series of a MS model for the nth
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simulation run, which is one realization of the stochastic process {xt}. In order
to make life easier, we can implement the simulation of the MS model such that
the realizations of υt are independent over simulations. Throughout this paper
we will make therefore the following assumption:

Assumption 1 The outcomes of different simulations of a MS model are sto-

chastically independent1 .

Very often we also impose the assumptions that

Assumption 2 The process {xt} is strictly stationary.

Assumption 3 The process {xt} is ergodic.

These latter assumptions can be made less restrictive by making appropriate

transformations. For instance, in real life, asset returns are more likely to satisfy

these assumptions than asset prices. In MS models reflecting reality to some

extent, the same might be the case, so that then an investigation in terms of

asset returns is to be preferred over asset prices.

Given the outcomes of interest of MS models, we need to specify charac-

teristics that can describe the outcome series properly. The interesting charac-

teristics of the outcome series of a MS model often include simple descriptive

statistics, such as means, medians, and variances at given time points, or mean,

median, and variance of the whole observed periods; or they include the basic

time series characteristics, such as autocorrelation coefficients. For application

in finance, they can also include the statistics that describe the stylized facts

of financial markets, such as fat tails, volatility clustering, excess volatility, and

GARCH effects, etc. Statistically, these characteristics can be described as

functionals of the distribution of the underlying process {xt}.
In principle, all the parameters that we are interested in can be retrieved

with an arbitrary level of precision under Assumption 1. Because by running

the MS model independently many times, the distribution functions that are

related to these parameters can be approximated arbitrarily closely. We notice

the feature that in MS models, the outcome series {xn,t} is observable along both
the dimension N and T . So, the parameters may be retrieved in different ways,

for some of them, the asymptotic distributions can be obtained as N or T goes

to infinity, and for some others, the asymptotic distributions can be obtained

when both N and T go to infinity. Furthermore, if a parameter can be retrieved

in different ways, a natural question that arises is which way is the most efficient

one, either from a statistical point of view, or from a computational point of

view, or both. For instance, when we consider the mean at a given time point

1For the resulting time series {xt}, t = 1, ..., of a single simulation, there are some at-
tempts to distinguish between (noisy) deterministic chaos and randomness of underlying data
generating process. Brock (1986) and Barnett and Serletis (2000) provide examples for such
tests, but they found that the related tests are sensitive to the noise. In general, the theory of
distinguishing noisy deterministic chaos and randomness based upon time series observations
has not been established yet if the distinction is possible at all, see Dechert and Hommes
(2000). Thus, in this paper we will focus more on the stochastic properties of observed series.
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t0, t0 ≤ T , without any other assumptions, besides its existence, it can only be

retrieved when N goes to infinity. When we consider the mean over time, it can

be retrieved as T goes to infinity. Under the assumptions of stationarity and

ergodicity, these two parameters are equal, and can be retrieved when either N ,

T , or both, go to infinity. In order to distinguish these different situations and

to get either statistically or computationally efficient estimators, it is important

to classify the estimators of the parameters of interest first.

2.2 The econometric characterization

First, we introduce some notation. For observations {xn,t}, n = 1, ..., N , t =
1, ..., T , we set

x
τ
n,t=(xn,t, ..., xn,t+τ−1)

For each t ∈ {1, ..., T − τ + 1}, we denote the empirical distribution function

based upon {xτn,t}
N
n=1 by F̂t,N,τ and for each n ∈ {1, ...,N} we denote by F̂n,T,τ

the empirical distribution function based upon {xτn,t}T+τ−1t=1 , i.e.,

F̂t,N,τ (z) =
1

N

N∑
n=1

1(−∞,z](x
τ
n,t),

F̂n,T,τ (z) =
1

T + τ − 1

T+τ−1∑
t=1

1(−∞,z](x
τ
n,t),

where 1(−∞,z](xn,t) is the usual indicator function such that 1(−∞,z](xn,t) = 1
for xn,t ≤ z, and 1(−∞,z](xn,t) = 0 otherwise, where xn,t and z are vectors in
R
τ , and ≤ is defined componentwise. The empirical distribution function based

on all observations will be denoted by F̂N,T,τ , i.e.,

F̂N,T,τ (z) =
1

N (T + τ − 1)

N∑
n=1

T+τ−1∑
t=1

1(−∞,z](x
τ
n,t)

When τ is understood, we simplify

xn,t = x
τ
n,t, F̂t,N = F̂t,N,τ , F̂n,T = F̂n,T,τ , F̂N,T = F̂N,T,τ .

Under assumption 1 we have that the distribution of xn,t does not depend on
n. So, when is τ understood, we write

xt = xn,t = x
τ
n,t,

and we denote by F
xt

the distribution function of xt. Notice that under the
assumption of stationarity the distribution function Fxt does not depend on t,

and then we shall simply write F
x
.

As parameters of interest we investigate θxt ∈ Rk as a function of the dis-
tribution function Fxt , i.e.,

θ
xt

:= ϕt(Fxt)
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given some function ϕt : Dϕ
t
⊆ D(Rτ ) → Rk, where D(Rτ ) is the set of all

non-decreasing right continuous functions z : Rτ → R such that z(−∞) = 0,
z(∞) = 1, equipped with the uniform norm, and Dϕ

t
is a subset of D(Rτ ),

the relevant domains of the function ϕt. In case of stationarity, θxt will be
independent of t if we take ϕt independent of t, and then we write

θ
x
:= ϕ(F

x
).

Typical examples of θ
xt

are means, variances, or covariances. For instance,
when τ = 1, so that xt=xn,t, and we consider θxt = E(xn,t), then the function
ϕt : Dϕ ⊆ D(R)→ R is defined as ϕt(Fxt) =

∫
xn,tdFxt (xn,t), where the subset

Dϕ
t
is such that the mean is well defined. When we consider θxt = V ar(xn,t),

then the function ϕt : Dϕ
t
⊆ D(R) → R is defined as ϕt(Fxt) =

∫
(xn,t −∫

xn,tdFxt (xn,t))
2dF

xt
(xn,1), and Dϕ

t
is such that the second moment exists.

Let us now first consider estimation of θxt for some given t. If we can estimate
F
xt

consistently and obtain its limit distribution, then, under certain conditions
on ϕt, θxt can also be estimated consistently, and its limit distribution can be
derived by using an appropriate version of the delta method.

In principle, F
xt

can be estimated consistently by F̂t,N = F̂t,N,τ as N →∞.
By Donsker’s theorem (for instance, Theorem 19.3, Van der Vaart, 1998), it
follows that √

N(F̂t,N − F
x
)
dist.→ GFxt

,

where GFxt
is a Gaussian process in D(Rτ ) specified by

E(GFxt
(t)) = 0, t ∈Rτ

E(GFxt
(ti)GFxt

(tj)) = F
xt
(ti ∧ tj)− F

xt
(ti)Fxt(tj), (1)

where ti, tj ∈ Rτ , and ti ∧ tj denotes the componentwise minimum of ti and
tj .

Now, we assume (see Section 20.2, Van der Vaart, 1998)

Assumption 4 The function ϕt : Dϕ
t
⊆ D(Rτ ) → R

k is defined on a subset

Dϕ
t
of D(Rτ ) that contains Fxt and is Hadamard differentiable at Fxt , where its

derivative at F
xt
, which is denoted by ϕ′Fxt

, ϕ′Fxt
: D(Rτ )→ R

k, is a continuous

linear map.

Given this assumption, consider as an estimator of θxt = ϕ(Fxt) its sample
analogue

θ̂xt := ϕt(F̂t,N ).

Then it follows from the functional Delta method (see, for example, Theorem
20.8, Van der Vaart, 1998) that under Assumption 4

√
N(ϕt(F̂t,N )− ϕ(F

xt
)) = ϕ′Fxt

(
√
N(F̂t,N − F

xt
)) + oP (1).

Because ϕ′Fxt
is continuous, this means, as a consequence of Riesz’ represen-

tation Theorem (see, for example, result IV.6.3, Dunford and Schwartz, 1957),
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that there exists a function ζt : R
τ → R

k, such that

ϕ′Fxt
(
√
N(F̂t,N − Fxt)) =

∫
ζt (z)d

(√
N(F̂t,N − Fxt)

)
(z)

=
√
N

1

N

∑
n

(ζt(xn,t)−E (ζt (xn,t))) (2)

dist.→ N (0, V ar{ζt(xn,t)}) . (3)

Next, we study the stationarity case (assumption 2) where we have Fx =
Fxt , and where we choose ϕt time-independent, so that θx = θxt . As possible
estimators, we then have

θ̂
t

x
:= θ̂xt = ϕ(F̂t,N )

for t = 1, ..., T − τ +1. In addition, it then makes sense to consider as estimator,
for instance, the time average (indicated by the superscript Ti)

θ̂
Ti

x
:=

1

T − τ + 1

T−τ+1∑
t=1

θ̂
t

x
.

(Of course, other choices are possible as well; we consider this one for illustrative
purposes.) Using

√
N(θ̂

t

x
− θx) =

√
N

1

N

∑
n

(ζ(xn,t)−Eζ (xn,t)) + oP (1)

with ζ now also time-independent, and denoting Γi as the ith order autocovari-
ance of the series {ζ(xn,t)−Eζ (xn,t)}Nn=1, we get

√
N(θ̂

Ti

x
− θx)

dist.→ N

(
0,

Γ0
Tτ

+ 2

Tτ−1∑
i=1

Tτ − i

T 2
τ

Γi

)
,

with Tτ = T − τ + 1, as N →∞.
Furthermore, in case of both Assumptions 2 and 3, the distribution function

F
x
= F

xt
can also be estimated by F̂n,T , and the parameter θ

x
= ϕ(F

x
) can

then be estimated by θ̂
n

x
:= ϕ(F̂n,T ), n = 1, ..., N . By the Riesz Representation

Theorem, we have

√
T (θ̂

n

x
− θx) = ϕ′Fx(

√
T (F̂n,T − Fx)) + oP (1)

=

∫
ζd
√
T (F̂n,T − Fx) + oP (1)

=
√
T
1

T

∑
t

(ζ(xn,t)−Eζ (xn,t)) + oP (1). (4)

Because ζ is a measurable function, under Assumption 2, 3, the process ζ(xn,t)
is also strictly stationary and ergodic (see, for instance,Pagan and Ullah, 1999,
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p371), we can use the CLT to derive the asymptotic normality. Next, we define

as estimator of θ
x
the average of θ̂

n

x
over n, i.e.,2

θ̂
Si

x
:=

1

N

N∑
n=1

θ̂
n

x
,

where the superscript Si indicates that this estimator is an average over inde-

pendent simulations. Notice the difference between θ̂
Ti

x
and θ̂

Si

x
: the estimator

θ̂
Ti

x
is a time average of Tτ estimators, each of these estimators is estimated

from independent observations of independent simulations. The estimator θ̂
Si

x
is

an average over N simulations, where each of the estimators is estimated from
observations of one realization of the MS model. We have under assumptions 1,

2, 3, and 4, that the parameter θ
x
can be estimated consistently by θ̂

Ti

x
, with

√
N(θ̂

Ti

x
− θx)

dist.→ N

(
0,

Γ0
Tτ

+ 2

Tτ−1∑
i=1

Tτ − i

T 2
τ

Γi

)
,

as N →∞, and for the estimator θ̂
Si

x
, we have

√
T (θ̂

Si

x
− θ

x
)
dist.→ N

(
0,

1

N

(
Γ0 + 2

∞∑
i=1

Γi

))
,

as T →∞. When both N and T tend to infinity, we get

√
NT (θ̂

Ti

x
− θ

x
)
dist.→ N

(
0,Γ0 + 2

∞∑
i=1

Γi

)
√
NT (θ̂

Si

x
− θx)

dist.→ N

(
0,Γ0 + 2

∞∑
i=1

Γi

)
Moreover, when both N and T tend to infinity, we can construct as estimator

θ̂
Si,T i

x
= ϕ

(
F̂N,T

)
.

In this case we find

√
NT (θ̂

Si,T i

x
− θx) = ϕ′Fx

(√
NT

(
F̂N,T − Fn,T

))
+ 0p (1)

=
√
NT

1

NT

∑∑
(ζ (xn,t)−E (ζ (xn,t))) + 0p (1)

so that
√
NT (θ̂

Si,T i

x
− θx)

dist.→ N

(
0,Γ0 + 2

∞∑
i=1

Γi

)
.

2Again, other choices are possible as well; we consider this one for illustrative purposes.
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We see that the three estimators, θ̂
Si

x
, θ̂

Ti

x
, θ̂

Si,T i

x
, although generally differ-

ent as long as ϕ is nonlinear as function of F , asymptoticaly are (first order)
equivalent to each other.

For a specific parameter, the function ζ need to be determined specifically.
A special case arises when we consider parameters that take the form θx =
ψ(
∫
gdF

x
), where ψ and g satisfy

Assumption 5 The function g : Rτ → R
l is squared integrable, and the trans-

formation ψ : Rl → R
k is continuously differentiable.

Under Assumption 5, it can be readily checked that

ζ = ψ′ ◦ g.
Now we turn to discuss some examples.

Example 1 The mean E(xt)

The mean µ = E(xt) can be rewritten as µ =
∫
xtdFxt := ϕ(Fxt), the func-

tion ϕ is defined as ϕ : Dϕ ⊆ D(R)→ R, where Dϕ = {F ∈ D(R),
∫
zdF (z) <

∞}. We know that when T is fixed, and N tends to infinity, the mean µ can be
estimated by the estimators

µ̂t :=
1

N

N∑
n=1

xn,t, t ∈ {1, 2, ..., T},

and

µ̂Ti :=
1

τ

τ∑
t=1

µ̂t, τ ∈ {1, 2, ..., T},

we know that

√
N(µ̂Ti − µ)→ N

(
0,

1

τ
γ
0
+ 2

τ−1∑
i=1

τ − i

τ2
γi

)
,

for τ ∈ {1, 2, ..., T}, as N → ∞. When N is fixed and T tends to infinity, we
define the estimators that based upon observations of the nth simulation as

µ̂n :=
1

T

∑
t

xn,t, n ∈ {1, 2, ..., N} ,

and

µ̂Si :=
1

N

N∑
n=1

µ̂n,

We then have

√
T (µ̂Si − µ)→ N

(
0,

1

N

(
γ
0
+ 2

∞∑
i=1

γi

))
, (5)
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as N →∞.
It is easy to see that when both T and N tend to infinity, we have

√
TN(µ̂Si − µ)→ N

(
0, γ

0
+ 2

∞∑
i=1

γi

)
.

We note that µ̂Ti and µ̂Si are the same estimators of mean.
We summarize the limit distribution of above estimators in the following

table

Table 1: The limit distribution of the estimators of mean
N →∞, T <∞ √

N(µ̂Ti − µ)→ N(0, 1
τ
γ
0
+ 2
∑τ−1

i=1
τ−i
τ2

γi)

N <∞, T →∞ √
T (µ̂Si − µ)→ N(0, 1

N
(γ0 + 2

∑
∞

i=1 γi))

N →∞, T →∞ √
TN(µ̂Si − µ)→ N (0, γ

0
+ 2
∑
∞

i=1 γi)

These results can be used to investigate how to do the simulations. This will
be discussed in Section 2.3.

Example 2 The AR coefficients

Define γj as jth order autocovariance of {xt}, then the jth order autocorre-
lation coefficient is βj = γj/γ0. For x = (x0, xj), the parameter autocorrelation
coefficient βj = γj/γ0 = cov(x0, xj)/var(x0) takes the form θ

x
= ψ(

∫
gdF

x
),

and the functions ψ and g satisfy the Assumption 5. In fact, we can define
g : R2 → R

2,

g(x0, xj)= ((x0−
∫ ∫

x0dF(x0,xj))(xj−
∫ ∫

xjdF(x0,xj)), (x0−
∫ ∫

x0dF(x0,xj))
2)

and ψ : R2 → R, ψ(z1, z2) = z1/z2.
We notice that when T is fixed and N tends to infinity. If T ≥ j, we define

γ̂t0, γ̂
t
j as the sample analogue of γt0 = var{xt}, γtj = cov(xt, xt+j}. Then for

each t, we can define estimators of βj as

β̂
t

j :=
γ̂tj

γ̂t0
,

and

β̂
Ti

j :=
1

T − j

T−j∑
t=1

β̂
t

j .

We know from the previous analysis that when N goes to infinity,

√
N(β̂

Ti

j − βj)→ N (0, V1) ,
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where

V1 = lim
N→∞

V ar

{
1

T − j

T−j∑
t=1

β̂
t

j

}
,

for the detailed expression of V1, see the Appendix.
Similarly, we can also study the parameter βj in case that N is fixed and T

tends to infinity. Under assumption 2 and E{εtxt−j} = 0, βj can be estimated

by the OLS estimator β̂
n

j from

xt = αj + βjxt−j + εt.

Asymptotically we have,

√
T (β̂

n

j − βj)→ N(0,Q−1SQ−1),

where

Q = p lim
T→∞

1

T

T∑
t=j+1

x2t−j = Ex2t ,

and S is the asymptotic covariance of the scaled sample mean 1√
T

∑T
t=j+1 xt−jεt,

S = lim
T→∞

V ar
1√
T

T−1∑
i=0

xt−j−iεt−i

= E{x2t−jε2t }+ 2
∞∑
i=1

E{xt−jxt−j−iεtεt−i}.

We define

β̂
Si

j :=
1

N

N∑
n=1

β̂
n

j ,

then we get √
T (β̂

Si

j − βj)→ N(0,
1

N
Q−1SQ−1) (6)

as T →∞.
When both N and T go to infinity, we know from (2) that

√
TN(β̂

Si

j − βj)→ N(0, Q−1SQ−1).

It can be prove that when both N and T go to infinity, the estimator β̂
Ti

j and

β̂
Si

j have the same asymptotic variance, see the appendix for a proof.
We summarize the limit distribution of the above estimators in the following

table
Up to now, we assumed that τ is fixed, 1 ≤ τ ≤ T <∞, and x =(x1, ..., xτ ).

When τ = T = ∞, we have x =(x1, x2, ...), and the parameter θ
x
depends on

11



Table 2: The limit distribution of the estimators of AR coefficients

N →∞, T <∞ √
N(β̂

Ti

j − βj)→ N (0, V1)

N <∞, T →∞ √
T (β̂

Si

j − βj)→ N(0, 1
N
Q−1SQ−1)

N →∞, T →∞ √
TN(β̂

Si

j − βj)→ N(0, Q−1SQ−1)

the distribution function of the process {xt} over the whole time axis. For in-
stance, the parameter θx might be the integrated order d in the ARFIMA(p, d, q)
process,. In this case, it does not make sense if we only require N → ∞, be-
cause the parameter always depends on F

x
. Very often, under distributional

assumptions, the probability density function can be written as a function of
the parameters, such as d, and the observations. Accordingly, under smooth-
ness condition for the probability density function, the parameter of interest
can still be expressed as θx = ϕ(Fx), although we may not be able to write
the function ϕ explicitly. For instance, the parameter θ

x
may be the maximizer

of the log-likelihood function, and estimation can be performed via maximum
likelihood. Under conditions, such as those in Theorem 5.39 of Van der Vaart

(1998), the asymptotic normality of the maximum likelihood estimator θ̂
n

x
of

θx for each simulation n can be derived, and the corresponding results for the

estimator θ̃
Si

x
, which is the average of θ̂

n

x
over independent simulations, comes

out straightforwardly. So we have, under assumptions of Theorem 5.39 of Van
der Vaart (1998), √

T (θ̂
n

x
− θ

x
)
dist.→ N

(
0, I−1θx

)
,

as T →∞, where Iθx is the Fisher information matrix, and moreover

√
TN(θ̂

Si

x
− θ

x
)→ N

(
0, I−1θx

)
as T →∞, and N →∞.

Example 3 The ARFIMA processes

Granger (1980) and Hosking (1981) introduced the ARFIMA(p, d, q) process

Φ(L)(1− L)dxt = Θ(L)εt,

where d ∈ (−1
2 ,

1
2 ]; L is the lag operator, and the fractional difference operator

(1− L)d is defined by

(1− L)d :=
∞∑
j=0

(
d
j

)
(−1)jLj ;

Lj is the composition of j lag operators, Φ(L) and Θ(L) are lag polynomials
with order p and q respectively,

Φ(L) = 1 +A(1)L+A(2)L2 + ...+A(p)Lp

12



and
Θ(L) = 1 +M(1)L+M(2)L2 + ...+M(q)Lq.

A process xt is said to be fractionally integrated, if, after applying the operator
(1 − L)d, it follows an ARMA(p, q) process. Generally, it is assumed that the
roots of Φ(x) are simple, and the roots of Φ(x) and Θ(x) are outside the unit
circle, and εt ∼ IIDN(0, σ2). It is proved in Granger (1980) and Hosking (1981)
that when d ∈ (−1

2
, 1
2
], xt is stationary and ergodic. For 0 < d < 1

2
, the process

has long memory in the sense that its autocovariances are eventually positive
and decay slowly (at a hyperbolic rate). For −1

2
< d < 0, the autocovariances

are eventually negative and decline slowly.
Sowell (1992) derives the MLE estimator for the parameter

θ′ = (d A(1)...A(p) M(1)...M(q) σ2)

of the above ARFIMA(p, d, q) model. The log-likelihood is

L = −T

2
log(2π)− 1

2
log(2π) log |Σ| − 1

2
(x)′Σ−1x,

where {Σ}ij = γ|i−j| and x is the T -dimensional vector of the observations of xt
for simulation n. The parameter d can still be expressed as a function of Fx, i.e.,
d = ϕ(Fx), and we know from the implicit function theorem that the function

ϕ satisfies the regularity conditions, the MLE estimator d̂n is
√
T consistent

and converges to a limiting normal distribution. For the fractional white noise
process, (1− L)dxt = εt, εt ∼ N(0, σ2), it turns out that

√
T (d̂n − d)→ N(0,

6

π2
),

the asymptotic variance of the parameter estimates is independent of the value
of d.

So, for the parameter d̂Si, which is the average of d̂n over N simulations, we
can derive its asymptotic distribution easily.

2.3 Discussion

Based on the econometric characterization of simulated data, we now briefly
discuss the efficiency of the estimators. When N is fixed and T goes to infinity,

the estimator θ̂
Si

x
is always the most efficient one within the class {θ̂n

x
, n =

1, ..., N}. When T is fixed and N goes to infinity, it seems there’s no general

conclusion about the most efficient estimator among the set {θ̂t
x
, t = 1, ..., Tτ}.

In some cases, it is very easy to find the most efficient one, but in some cases,
such as mean and AR coefficients, it need to be analyzed case by case. Now we
consider the example of mean, other kinds of parameters can be considered in
the same way.

Example 1: The mean E(xt) (continued).
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Under Assumption 2, we can find the estimator µ̂Ti that has the smallest
asymptotic variance within the set

{
1

τ

∑τ

t=1 µ̂
t, τ = 1, 2, ..., T

}
, recalling that

µ̂Ti =
1

τ0

τ0∑
t=1

µ̂t,

where τ0 satisfies

τ0 = Argmin
τ=1,...,T

{
1

τ
γ
0
+ 2

τ−1∑
i=1

τ − i

τ2
γi

}
.

We note that

0 ≤ 1

τ

(
γ0 + 2

τ−1∑
i=1

τ − i

τ
γi

)
→

τ→∞
0,

so

0 = inf
τ=1,...,∞

{
1

τ
γ0 + 2

τ−1∑
i=1

τ − i

τ2
γi

}
≤ min

τ=1,...,T−1

{
1

τ
γ0 + 2

τ−1∑
i=1

τ − i

τ2
γi

}
,

we also note that the elements in Arg inf
τ=1,...,∞

{
1

τ
γ0 + 2

∑τ−1
i=1

τ−i
τ2

γi

}
can be finite

or infinite. (For instance, when τ = 2, and γ1 = −γ0, γi ≥ 0 when i ≥ 2, then

2 ∈ Arg inf
τ=1,...,∞

{
1

τ
γ0 + 2

∑τ−1
i=1

τ−i
τ2

γi

}
)

We define M = NT as the total number of periods among N simulations,
when M goes to infinity, this implies that either N goes to infinity, T goes to
infinity, or both go to infinity. In these three situations, we want to know which
approximation is the best one. Notice that, for the estimator µ̂Si, when M is
given, the approximated variance of µ̂Si is the same for T is large or for both
N and T are large, so we only need to consider the estimators µ̂Si and µ̂Ti. Let
M be given, the variances of these estimators can be approximated by

V ar
{
µ̂Ti
}

≈ 1

M

{
γ0 + 2

τ0−1∑
i=1

τ0 − i

τ0
γi

}
,

V ar
{
µ̂Si
}

≈ 1

M

{
γ0 + 2

∞∑
i=1

γi

}
,

when N , and T go to infinity, respectively, at the same rate.
Then we see that if

τ0−1∑
i=1

i

τ0
γi +

∞∑
i=τ0

γi ≥ (≤)0,

then µ̂Ti (µ̂Si) has the smallest variance. As we can see, if γi ≥ (≤)0, for
i = 1, 2, ..., then this condition is easily satisfied. As another example, let’s
consider the MA(1) process

xt = µ+ εt + αεt−1, εt ∼ iid(0, 1)
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then

γ0 = 1 + α2,

γ
1

= α,

γ2 = γ3 = ... = 0

and, therefore,

γ0 + 2
∞∑
i=1

γi = (1 + α)2,

1

τ
γ0 + 2

τ−1∑
i=1

τ − i

τ2
γi =

(1 + α)2

τ
− 2α

τ2
,

It is easy to see that γ
0
/τ + 2

∑τ−1
i=1 (τ − i)γi/τ

2 is a decreasing function with
respect to τ . So when M = NT is fixed, we have an approximation

V ar
{
µ̂Ti
}

≈ (1 + α)2

M
− 2α

MT
,

V ar
{
µ̂Si
}

≈ (1 + α)2

M
.

It is clear that µ̂Ti has a smaller (larger) variance than µ̂Si when α ≥ 0 (α ≤ 0).
While the general conclusion from the theoretical consideration of whether

we should choose T or N be large in the simulations is ambiguous, we know
that when both T and N tend to infinity, different estimators established above
resulted in the same limit distribution. From practical point of view, what we
always do is running a MS model for many time periods for each realization and
then run many independent realizations, this means that we let T go to infinity
at first, and then letN go to infinity. One realization of a model for many periods
is necessary, this is because this represents a scenario of the economy that the
model described, it contains the information about the dynamic evolution of the
MS model. The realization of different scenarios provide more information on
the understanding of the underlying economy. Technically, the parameter θ

x
can

be estimated easily from the traditional time series context for nth realization,
then we simply average these independent estimators, this provides a consistent
estimator for the parameter θ, and it is easy to do statistical inference because
we only use the central limit theorem for the i. i. d. situation.

3 Comparing different MS economies

As we mentioned before, in order to compare two different MS models, we need
to specify the outcomes of interest of MS models at first, and then decide which
characteristics of these outcomes will be compared. Statistically, the charac-
teristics of outcomes of interest can be described by some parameters, so the
problem that we are interested in becomes testing the equality of the parameters
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of two MS models. For the purpose of comparing two different MS economies,
besides Assumption 1, we need to specify which T periods of the outcomes
should be compared. Normally we need to filter out some initial transition pe-
riods, the dynamics that are generated after these periods are representative to
a MS model.

Let {xt} and {yt} be the outcome series of two MS models, the parame-
ters that we are interested in are θx and θy of two MS economies, where
x =(x1, ..., xτ ), y =(y1, ..., yτ ) for 1 ≤ τ ≤ T , or x =(x1, x2...), and y =(y1, y2...).
The null hypothesis and alternative hypothesis are H0 : θx = θy, H1 : θx �= θy.

Various parameters can be compared by applying the results of the previous
section to compare two different MS economies, with the purpose of demon-
stration, we start with a comparison of simple descriptive statistics, such as the
mean, median and variance etc.. Then we compare the autocorrelation patterns
of the outcomes series.

We start with analyzing the comparison on the basis of a finite dimensional
parameter. After we decide which outcomes of MSmodels, such as stock returns,
will be studied, we can compare the equality of k characteristics of two MS
economies summarized in θx, θy ∈ Rk.

We assume that θx = ϕ(Fx). For illustrate purpose, let us consider the

estimators θ̂
Ti

x
and θ̂

Ti

y
, We know from (2) that

√
NT (θ̂

Ti

x
− θx) =

√
NT

1

NT

∑
n,t

(ζ(xn,t)−Eζ(xn,t)) + op(1),

√
NT (θ̂

Ti

y
− θy) =

√
NT

1

NT

∑
n,t

(ζ(yn,t)−Eζ(xn,t)) + op(1).

The null hypothesis is that the k−dimensional vector of characteristics of the
MS economy is the same for both MS models: H0 : θx = θy. This equality can
be tested by using the well known Wald test

W = NT (θ̂
Ti

x
− θ̂

Ti

y
)′Σ̂−1(θ̂

Ti

x
− θ̂

Ti

y
),

where Σ̂ is the sample analogue of the covariance matrix, Σ = V ar(ζ(xn,t) −
ζ(yn,t)), which is the covariance of ζ(xn,t)− ζ(yn,t).

For example, we are interested in studying the dynamics of the stock returns
in an MS economy. For each simulation run of a MS model, the outcome is a
time series of returns. We run each MS model independently N times and we
want to test whether the average return of the two different economies are the
same or not at certain time points: 0 ≤ T1 ≤ ... ≤ Tl ≤ T . More precisely, let
{xn,t}Tt=1 and {yn,t}Tt=1 be the time series of stock returns of two different MS
models, let µ̂tx, µ̂

t
y denote the mean of the returns at time t over N independent

simulation runs for each of the models respectively. So

θ̂x =

 µ̂T1x
...

µ̂Tl

x


 , θ̂y =


 µ̂T1y

...

µ̂Tl

y


 ,
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under the null hypothesis that the averaged return are equal at time points,
t = T1, ..., Tl, we have √

N(θ̂x − θ̂y)
d→ N(0,Σ),

where Σ is the covariance matrix of the differences of the averaged returns which
can be estimated by its sample analogue Σ̂.

We notice that in some cases we might need to design and implement two
simulation models independently, such that the numbers of simulations N1 and
N2 of the two MS models be different. This might be the case when one MS
model need much more computational time than the other one. In this case,
without loss of generality, we assume that N1 ≥ N2, and

√
N1(θ̂x − θ)

d→ N(0,Σ1),√
N2(θ̂y − θ)

d→ N(0,Σ2),

moreover, we assume that lim
N2→∞

N1/N2 = c ≥ 1, then we get

√
N2(θ̂x − θ̂y)

d→ N(0,Σ1/c+Σ2).

For one MS model, we can also use Wald test statistics to detect the variation
of the averaged returns at different time points, for instance, we can test the
null hypothesis: θT1x = θT2x = ... = θTl

x .
Another example of descriptive statistic that is of interest is the median,

which describe the central tendency of a distribution. After the estimation of
the variance matrix Σ, the Wald type test can also be implemented. Also for one
particular MS model, after we estimate the mean and median, as a character
of the MS model itself, the skewness of the distribution of the character can be
tested by testing the equality of them, this can be done based on Hausman test.

4 Comparing MS model with real data

After comparison of two different economies, we focus on the comparison be-
tween model generated data and real life data. For models of financial markets,
one might, for example, compare the return process of a MS economy with the
returns on the S&P 500. We are interested in the problem that whether a MS
can generate dynamics that mimic the real market dynamics. Here we illustrate
how to test whether a MS model can provide a good description on particular
aspects of the actual data.

We denote the parameter of the real world by θR, and we denote its coun-
terpart that comes from MS models as θMS . We want to test H0 : θR = θMS .
Because the estimator of θMS can have a convergence rate of

√
NT , we can

treat the estimator of θMS as if it is the true value, the Wald statistics

W = T (θ̂R − θ̂MS)
′Σ̂−1(θ̂R − θ̂MS), (7)
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can be constructed under the null hypothesis, where Σ̂ is the sample analogue
of the covariance matrix related to the influence function of θ̂R, which can be
obtained in a similar way as in the previous sections.

Alternatively, for the parameters, such as the autocorrelation coefficients
to describe the dynamics in the MS model. First, similar to the situation of
comparing two different MS economies, for the actual data, we estimate the
mean of autocorrelation coefficients and then construct confidence intervals,
then we can see whether the autocorrelation coefficients coming from simulated
data lie in these intervals. Of course, for the MSmodel generated data, according
to the limit distribution of the estimators of θx, the confidence interval for θx
can also be constructed, and then we can compare the confidence intervals that
come from the actual data and simulated data.

Also, due to the asymptotic normality of the estimators of actual data and
simulated data, a Wald test statistics can be constructed.

5 An application

In this section, we illustrate how the proposed econometric tools can be used to
analyze the model by Levy et al. (2000) (LLS model from now on). First, we
introduce the initial conditions parameters, then we turn to compare the LLS
model with an adapted LLS model where a new type of investors is introduced,
and finally, we confront the LLS model with real life data.

5.1 The MS models

We use the LLS model as an illustration. In Appendix B we describe this model
in details. Now we turn to introduce the benchmark economy that we will
simulate and analyze.

In the simulations time periods represent quarters of a year. The other
parameter settings and initial conditions are as follows.

• Number of investors = 1000, with 96% RII investors and 4% EMB in-
vestors. There are two types of EMB investors, with memory span 5 and
15, respectively. Both groups are equally large.

• Number of shares N = 10000.

• Quarterly riskless interest rate r = 1%.

• At time t = 1 each investor is endowed with a total wealth of $1000, which
is composed of 10 shares worth an initial price of $20.94 per share, and
the remainder in cash.

• Required quarterly rate of return on the stock k = 4%.

• The initial dividend is set at $0.5.

• Maximal one-period dividend decrease z1 = −7%.
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• Maximal one-period dividend growth z2 = 10%.

• z̃ is uniformly distributed between z1 and z2; thus, the average dividend
growth rate is g = (z1 + z2)/2 = 1.5%.

• The standard deviation of the random noise affecting the EMB’s decision
making is σ = 0.2.

Our initial conditions and parameter setting are comparable to those made
by LLS. The quarterly interest rate is taken to be 1%, yielding a 4.06% annual
interest rate. The initial price is set as the first period price that the RII investors
expect; the initial quarterly dividend is set at $0.5 which corresponds to an
annual dividend yield of about 4%. The average quarterly dividend growth rate
of 1.5% represents the firm’s growth and yields an annual growth rate of 6.1%,
which is close to the long run average dividend growth rate of the S&P. The risk
aversion parameter is chosen as α = 1.5 because this value conforms with the
estimate of the risk aversion parameter found empirically and experimentally,
as described in Levy et al.(2000).

To understand the dynamics of the LLS economy, we first consider its price
dynamics in Figure ??. For one simulation of the benchmark model, we see
that during the first 100 periods, the RII investors dominate the market, and the
price has a clear upward trend, due to increasing dividends; then, around period
100, a relatively high dividend realizes and, as a consequence, a relatively high
return is generated. This high return leads the EMB investors to increase their
investment proportion in the stock at the next trading period. This increased
demand of the EMB investors is large enough to affect the next period’s price,
and, thus, a second high return is generated. At this point in time, the EMB
investors look at a set of ex post returns with two high returns, and they increase
their investment proportion even further. Because the EMB investors keep
buying aggressively, this positive feedback loop cannot be broken by the RII
investors, even though they realize that the stock price is overvalued relative
to its fundamental price, so they start selling stocks. However, when the price
keeps going up, the EMB investors invest all their wealth in the stock. The
price will stay at a high level, but the returns will become lower. Notice that
when the EMB investors who look back for 5 periods have already “forgotten”
the high return, the EMB investors with memory span of 15 periods are still
investing aggressively in the stock. When they “forget” the high return, they
cut their investments in the stock sharply and this causes a crash. Once the
stock price goes back to its fundamental value, the RII investors start to buy
again and the crash ceases. After a few periods, the cycles transit to shorter
cycles induced by the EMB investors with the short memory span of 5 periods.
The reason is that when a population becomes dominant and dictates the price
dynamics, this population typically starts underperforming. This can be seen
as follows. For the EMB investors, because the investors affect the price with
their actions, they push the price up when buying, and, therefore, buy high.
Similarly, they push the price down when selling, so they sell low.
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The above analysis is based on a single simulation. It makes sense to repeat
the simulations many times, in order to investigate whether the findings based
on a single simulation are robust to different drawings of random numbers,
keeping the parameters and initial conditions the same. In this way we also
may get an impression of the average behavior of the LLS-economy.

5.2 Comparing MS models

In the benchmark model, there are two types of investors, the RII and the EMB
investors. The simulated stock market is a rising market, due to the assumed
dividend growth, with price cycles caused by the trading strategies of the EMB
investors with different memory spans. Because the two subgroups of EMB
investors buy stocks at relatively high prices, and sell at low prices, in the end,
they achieve a poor performance. So, it might be interesting to investigate what
will happen when we introduce a new type of investors, who are, so to speak,
at the opposite side of the market. Similar to Zschischang and Lux (2001), we
consider as deviation from the benchmark model an economy with a new type of
investors, constant portfolio investors, who always invest a constant proportion
of their wealth in the stocks. Zschischang and Lux (2001) investigate the LLS
model where initially all the investors are EMB investors (consisting of three
or more subgroups). The authors found, when the market is invaded by only
a small amount of constant portfolio investors (1%), that, even when these
new investors are endowed with a small initial wealth and hold 1.5% of their
portfolio in the stock, they eventually achieve dominance and asymptotically
gain 100% of the available wealth. As an alternative economy, we consider an
economy where 0.5% of the investors are constant portfolio investors instead
of RII-investors (having the same initial wealth as the other investors). These
constant portfolio investors invest 1.5% of their wealth in the stock. We keep
the other characteristics of the economy the same as the benchmark model.

We performed a Wald test to investigate whether the introduction of the
constant portfolio investors has a significant impact on the economy. The com-
parison results with the benchmark model in terms log return, log price and
proportion of total wealth held by two groups EMB investors are summarized
in table 3. It is clear that none of the comparison statistics is significant, thus the
constant portfolio investors do not cause a significant impact on the economy.

Figure 2 shows the average proportion of total wealth of the constant port-
folio investors across 5000 simulations. As the figure shows, we find that the
wealth of the constant portfolio investors decreases gradually.

Notice that in the Zschischang and Lux-analysis the constant portfolio in-
vestors are the only investors who are at the opposite side of the market in case
of the cycles, so that eventually they are able to gain all wealth. But in the
economy considered here, the RII investors for a large part take over this role
by buying or selling, depending on the price being lower or higher than its fun-
damental value, resulting in a gradually decreasing wealth held by the constant
portfolio investors.

In this table, we also report the results of sensitivity analysis, the resulting
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Table 3: The comparison results with the benchmark model in terms of the
mean

Log Return Log Price Wealth (ms=15) Wealth (ms=15)

101.88 (99) 42085.5(99) 122.20 (99) 125.10 (99)

t=901,902,...,1000 101.68 (99) 43413.2(99) 124.84 (99) 113.73 (99)

77.95 (100) 76.95 (100) 97.29 (100) 79.13 (100)

9.53 (5) 192436.7(5) 383.93 (5) 772.40 (5)

t=500,600,...,1000 2.65 (5) 194884.1(5) 388.87 (5) 757.85 (5)

8.33 (6) 7.44 (6) 3.37 (6) 2.45 (6)

Note: t = 901, 902, ..., 1000 means that the periods under consideration are the last

100 periods (of the 1000 periods), t = 700, 800, 900, 1000 means that only these

four time points are considered. Within the row named ’Log Return’, the first subrow

reports the Wald statistics of the benchmark economy, for instance, 101.88 is the Wald

statistic corresponding to the null hypothesis of equality of the average log return in

periods t = 901, 902, ..., 1000 (with degrees of freedom between brackets), and so

on, the second subrow reports the Wald statistics of the new economy, and the third

subrow reports the results of comparing the new economy with the benchmark model.
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Figure 2: Proportion of total wealth held by constant portfolio investors, aver-
aged over 5000 simulations
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Wald test statistics show that both the benchmark model and the new model
are robust in terms of log-returns, and the wealth hold by EMB-investors, and
for loh-prices, the results are expected because of the obvious increase trend.

5.3 Comparing MS model with real life data

We use quarterly data of S & P 500 from Datastream as representation of the
real life situation, which starts from 1965 to the first quarter of 2003. See table
4 for the sample statistics. We illustrate by comparing AR coefficients and the
coefficients of the ARFIMA(p, d, q) process.

First, for the actual data, we calculate the autocorrelations, construct the
confidence interval by using the Newey-West corrected standard deviation for
each of the autocorrelations, and we report the results in table 5.

Table 4: Sample statistics of reurns of S & P 500
Mean Median Std.Dev. Max Min Skew. Kurt.
0.0194 0.0162 0.0848 0.2923 -0.2548 -0.0575 3.800

Then we estimate the averaged autocorrelations that comes from LLS mod-
els. We can then check if the averaged autocorrelations lie in the intervals of that
of actual data. We calculate the autocorrelation for different lags, j = 1, 2, ..., 60.
Table 6 summarizes the average autocorrelation, the average Newey-West cor-
rected standard deviation, and average t-value for 5000 independent simulations.
Also the number of significant positive and negative t-values, out of the total
5000 t-values calculated, are presented.

It is obvious that at periods 6, 7, 8 and 16, the autocorrelations are signifi-
cantly negative. We also report the results in Figure 3,

We find that the means of the autocorrelation lie entirely in the 95% con-
fidence intervals of that of real life data. It seems that the LLS model fits the
real world very well in terms AR coefficients.

Next, we illustrate comparing methods in terms of the coefficients of the
ARFIMA(p, d, q) process. We estimate the ARFIMA (0, d, 0) model and the
ARFIMA (1, d, 1) model for stock returns. We summarize the results in the
table 7

We see from the table that in both of the ARFIMA (0, d, 0) and ARFIMA
(1, d, 1) model, the parameter d is not significant, there is no evidence of long
memory for the quarterly stock return process. We estimate the ARFIMA
(0, d, 0) model and the ARFIMA (1, d, 1) model for the returns of the benchmark
LLS model, we run 5000 independent simulations, and for each realization we
estimate the two models. The table 8 summarized the averaged results

We know from the table that for the ARFIMA (0, d, 0) model, the estimated
d from the LLS model lies within the 95% confidence interval of estimates of d
from actual data, which is (−0.1506, 0.114). However, for the ARFIMA (1, d, 1)
model, there’s significant difference between the actual data and the data of
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Table 5: Autocorrelation pattern of stock returns of S & P 500
Lag AR coe. Newey-West Std. t-statistics Lower bound Upper bound*

1 0.0117 0.0702 0.1667 -0,1259 0,1493

2 -0.0455 0.0585 -0.7779 -0.1602 0.0692

3 0.0359 0.1017 0.3533 -0.1634 0.2352

4 -0.0578 0.0801 -0.7210 -0.2148 0.0992

5 -0.0021 0.0713 -0.0299 -0.1418 0.1376

6 -0.0056 0.1028 -0.0544 -0.2071 0.1959

7 -0.0954 0.0613 -1.5571 -0.2155 0.0247

8 -0.0132 0.0657 -0.2004 -0.1420 0.1156

9 0.0816 0.0863 0.9456 -0.0875 0.2507

10 0.0562 0.0754 0.7457 -0.0916 0.2040

11 -0.0787 0.0774 -1.0176 -0.2304 0.0730

12 0.0425 0.0730 0.5829 -0.1006 0.1856

13 -0.0671 0.0935 -0.7174 -0.2504 0.1162

14 -0.0176 0.0863 -0.2057 -0.1867 0.1515

15 0.0215 0.0883 0.2441 -0.1516 0.1946

16 0.0549 0.0981 0.5598 -0.1374 0.2472

17 0.2033 0.1345 1.5118 -0.0603 0.4669

18 -0.0081 0.0755 -0.1072 -0.1561 0.1399

19 -0.0738 0.0767 -0.9619 -0.2241 0.0765

20 -0.1346 0.0885 -1.5207 -0.3081 0.0389

21 -0.0827 0.0973 -0.8498 -0.2734 0.1080

22 0.0212 0.0948 0.2234 -0.1646 0.2070

23 -0.0836 0.0706 -1.1833 -0.2220 0.0548

24 -0.1015 0.0647 -1.5687 -0.2283 0.0253

25 -0.0681 0.0919 -0.7404 -0.2482 0.1120

26 0.1436 0.0990 1.4500 -0.0504 0.3376

27 0.0736 0.0901 0.8166 -0.1030 0.2502

28 -0.0545 0.0918 -0.5938 -0.2344 0.1254

29 -0.1372 0.0873 -1.5772 -0.3083 0.0339

30 -0.0506 0.1094 -0.4631 -0.2650 0.1638

* Significant at 95%
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Table 6: Autocorrelation pattern of stock returns of LLS model

Lag AR coe.
Average

NW Std.

Average

t-value

Significant

Posit. t*
Significant

Negat. t*
Confidence intervals

1 0.0026 0.0358 0.1015 768 653 0.0011 0.0041

2 0.0170 0.0300 0.5595 826 138 0.0161 0.0179

3 0.0037 0.0281 0.0806 321 273 0.0029 0.0046

4 -0.0029 0.0295 -0.1629 267 493 -0.0038 -0.0020

5 0.0472 0.0297 1.5924 2468 76 0.0460 0.0484

6 -0.2041 0.0454 -4.7671 0 4964 -0.2053 -0.2029

7 -0.1253 0.0382 -3.4071 1 4552 -0.1266 —0.1240

8 -0.0719 0.0332 -2.2163 2 3545 -0.0729 -0.0709

9 -0.0372 0.0317 -1.1988 22 1724 -0.0383 -0.0362

10 0.0028 0.0324 0.0385 395 361 0.0017 0.0039

11 -0.0407 0.0313 -1.4209 116 2361 -0.0420 -0.0394

12 0.0209 0.0372 0.4383 817 249 0.0195 0.0224

13 0.0341 0.0382 0.7702 1107 109 0.0328 0.0355

14 0.0347 0.0374 0.8231 1151 82 0.0334 0.0360

15 0.0417 0.0384 1.0386 1451 549 0.0404 0.0429

16 -0.1180 0.0486 -2.5671 0 4057 -0.1191 -0.1168

17 -0.0364 0.0380 -0.9819 140 1560 -0.0379 -0.0350

18 -0.0099 0.0353 -0.3352 401 916 -0.0113 -0.0085

19 -0.0002 0.0350 -0.0811 442 607 -0.0015 0.0011

20 0.0038 0.0352 0.0429 439 412 0.0026 0.0050

21 -0.0183 0.0352 -0.5811 120 907 -0.0194 -0.0172

22 0.0351 0.0376 0.8825 1206 61 0.0339 0.0362

23 0.0394 0.0367 1.0243 1428 43 0.0382 0.0406

24 0.0401 0.0380 1.0048 1403 43 0.0389 0.0414

25 0.0373 0.0383 0.9039 1278 75 0.0360 0.0386

26 0.0235 0.0377 0.5437 778 142 0.0223 0.0248

27 0.0279 0.0379 0.6686 905 110 0.0268 0.0292

28 0.0131 0.0373 0.2647 500 246 0.0119 0.0144

29 0.0023 0.0371 -0.0269 310 420 0.0011 0.0035

30 -0.0053 0.0369 -0.2289 212 556 -0.0065 -0.0041

Table 7: Maximum likelihood estimation of ARFIMA(p,d,q) model for S & P
500
ARFIMA(p, d, q) Coefficient Std. Error t-value P-value

(0, d, 0) −0.0183 0.0675 −0.272 0.786

(1, d, 1)
−0.0527
−0.5668
0.6365

0.0813
0.4687
0.4240

−0.648
−1.21
1.5

0.518
0.229
0.135

Note: The estimated coefficients of ARFIMA(1, d, 1) model are listed in the
order: d, AR coefficient, MA coefficient. This is also true for other tables in
this section.
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Figure 3: The confidence intervals for the autocorrelations of S&P 500 and
the averaged autocorrelation of LLS model. (Note: In this table, betta means

the estimated autocorrelation of S&P 500, lbcis and ubcis means its lower and upper

confidence intervals, and ”Mean” is the averaged autocorrelation of LLS model over

5000 simulations.)

Table 8: Maximum likelihood estimation of ARFIMA(p,d,q) model for LLS
model

ARFIMA(p, d, q) Coefficient t-value P-value No. Sig.
(0, d, 0) −0.0272 −0.3699 0.5210 379

(1, d, 1)
−0.7444
0.6983
0.0208

−3.3721
5.7899
−0.3973

0.0339
0.0151
0.5342

4409
4672
250
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LLS model, for the simulated data, the estimated parameter d is significantly
negative, which means that the return process of LLS model has short memory.

Besides the benchmark LLS model, we also run the LLS model for different
situations, for instance, for different initial price, initial dividend, initial wealth,
different risk aversion parameter, etc. We report the estimation results of the
ARFIMA (0, d, 0) model in table 9 and in table 10 we also report the t-test
for the difference of estimated d between the benchmark model and the models
with different initial parameters.

Table 9: Maximum likelihood estimation of ARFIMA(0,d,0) model for LLS
models

d t-value P-value No. Sig.

p(0)
16
26

−0.0286
−0.0282

−0.3868
−0.3844

0.5201
0.5247

386
381

D(0)
0.4
0.6

−0.0272
−0.0247

−0.3666
−0.3376

0.5228
0.5193

370
333

RV
1.45
1.55

−0.0281
−0.0273

−0.3840
−0.3688

0.5172
0.5233

393
372

z1
−0.08
−0.06

0.0077
−0.1806

0.0847
−2.6182

0.6621
0.0848

33
3509

IW
unif.

50%
−0.0239
−0.0279

−0.3267
−0.3787

0.5241
0.5230

346
386

Table 10: The t-test of ARFIMA(0,d,0) model for LLS models
p(0) D(0) RV Z1 IW

16 26 0.4 0.6 1.45 1.55 -0.08 -0.06 Unif. 505
t 1.167 0.840 0.047 1.935 0.760 0.125 26.696 105.53 2.546 0.554

We see from the table 10 that the LLS model is robust with respect to the
initial prices, initial dividend, risk aversion parameter in terms of d. However,
the changes of maximal one-period dividend decrease Z1 has a big impact, this
is because the change of Z1 also changes the whole distribution of the dividend
process. We notice that in the benchmark model each investor is endowed
equally with a total wealth of $1000. If half of the investors is endowed $500 and
the other half endowed with $1500, then, compared to the benchmark model,
the difference in d is not significant. However, the difference in d is significant
when all of the investors initial wealth is drawn from a uniform distribution on
[500, 1500].

We report the estimation results of the ARFIMA (1, d, 1) model in table 11,
and we also report the results of Wald test for the difference in the estimated
parameters between the benchmark model and the models with different initial
parameters in the table 12.
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Table 11: Maximum likelihood estimation of ARFIMA(1,d,1) model for LLS
models

Coefficient t-value P-value No. Sig.

p(0)=16
−0.7417
0.6849
0.0298

−3.3707
5.6697
−0.2950

0.0341
0.0171
0.5350

4368
4630
248

p(0)=26
−0.7400
0.6848
0.0282

−3.3690
5.6989
−0.2504

0.0361
0.0182
0.5383

4377
4619
250

D(0)=0.4
−0.7488
0.6941
0.0292

−3.3982
5.7334
−0.1310

0.0314
0.0155
0.5363

4416
4654
232

D(0)=0.6
−0.7414
0.6887
0.0299

−3.3582
5.7031
−0.2926

0.0361
0.0163
0.5343

4386
4653
255

RV=1.45
−0.7452
0.6846
0.0336

−3.3935
5.6860
−0.1651

0.0325
0.0196
0.5387

4406
4620
231

RV=1.55
−0.7520
0.6936
0.0324

−3.4161
5.7428
−0.1240

0.0309
0.0173
0.5405

4419
4645
218

z1=-0.08
−0.7963
0.7225
0.0785

−3.8913
6.2001
0.0568

0.0092
0.0029
0.4804

4683
4806
223

z1=-0.06
−0.4247
0.2754
−0.0537

−1.7905
2.4540
−0.8731

0.2511
0.2010
0.4030

2158
2774
764

IW=unif.
−0.7483
0.6940
0.0321

−3.4077
5.8031
−0.2320

0.0326
0.0158
0.5328

4429
4674
247

IW=50%
−0.7377
0.6837
0.0277

−3.3562
5.7035
−0.3603

0.0357
0.0197
0.5420

4372
4615
242

Table 12: The Wald test of ARFIMA(1,d,1) model for LLS models
p(0) D(0) RV Z1 IW

16 26 0.4 0.6 1.45 1.55 -0.08 -0.06 Unif. 505
w 8.695 7.757 4.899 7.538 13.68 11.66 573.9 10681.5 9.419 7.513
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We see from table 12 that in terms of the ARFIMA(1, d, 1) model, the ro-
bustness of the LLS model with respect to the initial conditions and parameters
is ambiguous. Compared with the 95% quantile of the χ23 distribution, 7.815,
the most significant impact is still caused by Z1.

6 Conclusion

Microscopic Simulation (MS-)models are a promising way to study financial
markets, since they allow for the possibility to include all kinds of realistic and
complex behavior of interacting economic agents, without having to worry about
analytical tractability. However, in many cases judgements of the outcomes of
MS models seems to be based solely on visual inference.

In this paper we propose to investigate Microscopic Simulation (MS) models
using statistical and econometric techniques. Such techniques can be used to
study the impact of changes in the initial parameter settings and initial con-
ditions on the simulated time series behavior of the relevant quantities. But
also different MS economies can be compared using these techniques, in order
to find out whether particular adaptations are crucial or not. We also present
the methodology to compare real life data with the MS economies. Here it is
important to take into account measurement uncertainty in both the simulation
data and the real life observation. Comparison of ”simple” statistics, such as the
mean or a single autocorrelation coefficient, is rather straightforward. However,
we also show how one can compare ”global” characteristics of an economy by
testing for differences in the spectral density estimate.

A The asymptotic variance of the estimator of

AR coefficients

Here we discuss the case that T is fixed and N goes to infinity.
If T ≥ j, then βj can be estimated consistently by

β̂
t

j =
γ̂j,t

γ̂0,t

as N goes to infinity for each t, where γ̂0,t, γ̂j,t are the sample analogue of
γ0,t = var{xt}, γj,t = cov(xt, xt+j}. For the estimator

β̂
Ti

j =
1

T − j

T−j∑
t=1

β̂j,t,

we can prove that √
N(β̂

Ti

j − βj)→ N (0, V1) ,
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where

V1 = lim
N→∞

V ar

{
1

T − j

T−j∑
t=1

β̂
t

j

}
.

We know that


β1j
β2j

β
T−j
j

 =


cov(x1,xj+!)

V x1
cov(x2,xj+2)

V x2

cov(xT−j,xT )
V xT−j

 = f



Ex1
Ex21
Exj+1
Ex1xj+1

...

...

ExT−j
Ex2T−j
ExT

ExT−jxT


,

where

f

 z1
...

z4(T−j)

 = HT−j,1,

hi,1 =
z4i − z1+4(i−1)z3+4(i−1)

z2+4(i−1) − z21+4(i−1)
, i = 1, ..., T − j

(
∂f

∂z′

)
i,k

=



2z1+4(i−1)(z4i−z1+4(i−1)z3+4(i−1))

(z2+4(i−1)−z
2
1+4(i−1)

)2
− z3+4(i−1)

z2+4(i−1)−z
2
1+4(i−1)

, k = 1+ 4(i− 1)

− z4i−z1+4(i−1)z3+4(i−1)

(z2+4(i−1)−z
2
1+4(i−1)

)2
, k = 2 + 4(i− 1)

− z1+4(i−1)

z2+4(i−1)−z
2
1+4(i−1)

, k = 3 + 4(i− 1)
1

z2+4(i−1)−z
2
1+4(i−1)

, k = 4i

0, others.

Thus

√
N(


β̂
1

j

β̂
2

j

β̂
T−j

j

−


β1j
β2j

β
T−j
j

)→ N(0, V ),

and
V = KV ar {X}K′,

where X = (x1, x
2
1, xj+1, x1xj+1, ..., xT−j , x

2
T−j , xT , xT−jxT )

′, and V ar {X} =
BX(T−j)×(T−j), BX is a block matrix, each block is 4× 4, and

(K)i,k =



2Ex1+4(i−1)cov(x1+4(i−1),xj+1+4(i−1))

(V x1+4(i−1))2
− Exj+1+4(i−1)

V x1+4(i−1)
, k = 1 + 4(i− 1)

− cov(x1+4(i−1),xj+1+4(i−1))

(V x1+4(i−1))2
, k = 2 + 4(i− 1)

−Ex1+4(i−1)

V x1+4(i−1)
, k = 3+ 4(i− 1)

1
V x1+4(i−1)

, k = 4i

0, others

,
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i = 1, ..., T − j, k = 1, ..., 4(T − j). We define

Ki =
(
Ki,1+4(i−1) Ki,2+4(i−1) Ki,3+4(i−1) Ki,4i

)
i = 1, ..., T − j,

then
Vik = Ki (BX)ikK

′

k, i, k = 1, ..., T − j

therefore

V1 =
1

(T − j)2
ι1×(T−j)V ι(T−j)×1.

Under the relationship that

xt = αj + βjxt−j + εt,

we can prove that the asymptotic variance of the estimator β̂
Ti

j is the same as

that of β̂
Si

j when both T and N go to infinity.
We notice that the limits of the average of the diagonal terms of matrix V

corresponds to the first term in the expression of S, E{x2t−jε2t }, and the limits
of the average of the other terms corresponds to E{xt−jxt−j−iεtεt−i} in S. For
simplicity, we assume that E{xt} = 0, then

Vik =
(

0 −γj
γ20

0 1
γ0

)
(BX)ik


0
−γj

γ20

0
1
γ0

 ,

so

Vii = − 1

γ40

(
γ2jCov(xi, x

2
i )− 2γ0γjCov(x

2
i , xixi+j) + γ20V ar(xixi+j)

)
= − 1

γ20
V ar

(
xixi+j − βjx

2
i

)
= − 1

(E{x2t})2
E{x2t−jε2t}, i = 1, ..., T − j,

and

Vik = − 1

γ40

[
γ2jCov(x

2
i , x

2
k)− γ0γjCov(xixi+j , x

2
k)

−γ0γjCov(x2i , xkxk+j) + γ20Cov(xixi+j , xkxk+j)
]

= −1

2

1

γ40

[−V ar (xixi+j − βjx
2
i − xkxk+j + βjx

2
k

)
+V ar

(
xixi+j − βjx

2
i

)
+ V ar

(
xkxk+j − βjx

2
k

)]
= −1

2

1

γ40
[−V ar (xiεi − xkεk) + V ar (xiεi) + V ar (xkεk)]

= − 1

(E{x2t})2
E{xiεixkεk}, i, k = 1, ..., T − j, i �= k.
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thus

(T − j)V1 =
1

(T − j)
ι1×(T−j)V ι(T−j)×1 → Q−1SQ−1

as T →∞, N →∞. This proves that

√
NT (β̂

Ti

j − βj)→ N
(
0, Q−1SQ−1

)
.

B The Levy-Levy-Solomon Model

In the model by Levy et al. (2000), LLS economy from now on, there are two
assets: a stock and a bond. The bond is assumed to be a riskless asset, while
the stock is a risky asset. The stock serves as a proxy for the market portfolio,
for example, the Standard & Poor’s index. The bond is exogenous with infinite
supply, so the investors can buy from it as much as they wish at a given rate of
return, r. The stock is in finite supply. There are N outstanding shares of the
stock. The return on the stock is composed of two parts:

(i) Capital gain. If an investor holds a stock, any rise (fall) in the price of
the stock contributes to an increase (decrease) in the investor’s wealth.

(ii) Dividend Payments. The company earns income and distributes divi-
dends. It is assumed that the firm pays a dividend of Dt per share at time t.
The dividend is a stochastic variable that follows a multiplicative random walk,
that is, D̃t = Dt−1(1 + z̃), where z̃ is a random variable3 with some probabil-
ity density function f(z) with support [z1, z2]. For simplicity, z̃ is distributed
uniformly in the range [z1, z2]. The overall rate of gross return on the stock in

period t, denoted by R̃t, is now given by

R̃t =
P̃t + D̃t

Pt−1
(8)

where P̃t is the stock price at time t.
The investors are expected utility maximizers, characterized by the utility

index U(W ) = W 1−α/1 − α, which reflects their personal preference. The in-
vestors will be divided into two groups, the first group will be referred to as the
rational informed investors (RII), and the second group will be referred to as
the efficient market believers (EMB). RII investors evaluate the “fundamental
value” of the stock as the discounted stream of all future dividends. They be-
lieve that the stock price may deviate from the fundamental value in the short
run, but if it does, it will eventually converge to the fundamental value. The
EMB investors believe in market efficiency. They believe that the stock price
accurately reflects the stock’s fundamental value at every point in time. There-
fore, their investment decision is reduced to optimal diversification between the
stock and the bond. This diversification decision requires the ex ante return
distribution for the stocks, but as the ex ante distribution is not available, the
EMB investors assume that the process generating the returns is fairly stable,

3We will use˜to denote a random variable to distinguish it from its realization.
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and they employ the ex post distribution of stock returns in order to estimate
the ex ante return distribution.

The RII investors
In the LLS model, it is assumed that the RII investor believes that the

convergence of the price to the fundamental value will occur in the next period.
Furthermore, RII investors estimate the next period fundamental value of stock
price P f

t+1 by

P f
t+1 =

Et+1[D̃t+2]

k − g
(9)

according to Gordon’s dividend stream model. Here k is the discount factor,
and g is the expected growth rate of the dividend, i.e., g = E(z̃) =

∫ z2
z1

f(z)zdz,

which is known to the investors. The expectation at time t+1 of D̃t+2 depends
on the realized dividend observed at t + 1, Dt+1, but at time t, Dt is known,

not Dt+1. However, the RII investors know the distribution of D̃t+1: D̃t+1 =
Dt(1 + z̃). Consequently, RII investors believe that Pt+1 is a random variable
given by

P̃t+1 = P̃ f
t+1 =

Dt(1 + z̃)(1 + g)

k − g
(10)

The RII investors’ investment decision is based on the rate of return of the
stocks, R̃t+1, that is implied by the price process above. For every hypothetical
price, Ph, RII investor i believes that if she invests a proportion x

i
h of her wealth

in the stock at time t, then at time t+ 1 her wealth will be

W̃ i
t+1 = W i

h[(1− xih)(1 + r) + xihR̃t+1] (11)

where W i
h is the wealth of investor i at time t. This wealth level depends on

the hypothetical price of the stock, Ph, since

W i
h = W i

t−1 +N i
t−1Dt−1 + (W i

t−1 −N i
t−1Pt−1)r +N i

t−1(Ph − Pt−1). (12)

Here N i
t−1 is the number of shares held by investor i at time t− 1.

For every hypothetical price, Ph, the investor’s decision is now to find the
proportion of her wealth to invest in stocks, denoted by xih, which maximizes

her expected utility E
{
U(W̃ i

t+1)
}
:

E
{
U(W̃ i

t+1)
}

= E
{
U
(
W i

h[(1− xih)(1 + r) + xihR̃t+1]
)}

=

∫ z2

z1

1

1− α

(
W i

h[(1− xih)(1 + r) + xihR̃t+1]
)1−α

f(z)dz.

A solution for this optimization problem can be found by solving the first order
conditions, see Appendix 1.

With investor wealth and the optimal share of this wealth that is invested
in stocks, the number of shares demanded by RII investor i is

N i
h(Ph) =

xih(Ph)W
i
h(Ph)

Ph
(13)
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The EMB investors
EMB investor i uses the most recent mi returns on the stock to estimate the

ex ante distribution. Although the investor might realize that all past returns
matter, he has only a limited memory, so only the last mi returns are taken
into account. At time t, each of these past returns on the stock Rj, j = t, t −
1, ..., t−mi+1 is given an equal probability 1/mi to reoccur in the next period
(t+ 1). Therefore, the expected utility of EMB investor i is given by

E
{
U(W i

t+1)
}
=

1

mi

mi∑
j=1

1

1− α
[(1− xih)W

i
h(1+ r) + xihW

i
h(1+Rt−j)]

1−α. (14)

The EMB investor maximizes this expected utility yielding the optimal pro-
portion of wealth, x∗ih , that will be invested in the stock. This determines his
demand for the stock.

However, many empirical studies suggest that the behavior of investors is
driven not only by rational expected utility maximization but by a multitude
of other factors as well. To model the effects of all these factors causing the
investor to deviate from the optimal portfolio, a normally distributed random
variable is added to the optimal investment proportion. To be more specific,
LLS assume that

xi = x∗i + ε̃i

where ε̃i is a random variable drawn from a normal distribution with mean zero
and standard deviation σ. For simplicity, noise is only added to the portfolio
share of stocks for the EMB investors.

With the total supply of shares N fixed, the equilibrium stock price at time
t+1, Pt+1, can be determined. It is the hypothetical price, Ph, that equates the
aggregate demand for stocks of the RII and EMB investors with total supply.
This price can be recorded, so as the other market characteristics of interest,
such as the investor’s wealth levels. The new price leads to updated expectations
and a new equilibrium arises in the next period, and so on.
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