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Abstract 
 

Much interest has been directed towards decision rules and conditions when firms make 

decisions converging to a non-cooperative Nash equilibrium in repeated oligopoly games. We 

explore the use of a simple decision rule where firms only need to have information about 

their own profits from the two previous periods. The principle of the decision rule is to choose 

a decision within a boundary of the decision that gave the highest profit in the two previous 

periods of th e game. Simulations using the decision rule with different boundaries for both 

sequential and simultaneous decisions in the games are analysed. Furthermore, experiments 

with a Cournot game, where five firms make decisions simultaneously, show that by using the 

rule firms with only information about their own profits make decisions similar to firms who 

also have information about market demand and competitors. In conclusion, the simple 

decision rule can be used to compute optimal decisions and the rule can also be used as a 

benchmark for decisions made in repeated oligopoly games.  
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1. Introduction 

 

 

Much interest has been directed towards decision rules and conditions when firms make 

decisions in repeated oligopoly games. One of the basic concepts when analyzing these 

markets is the non-cooperative equilibrium (Nash, 1951). The main questions are if the non-

cooperative equilibrium gives good description of decisions made on the market and also how 

the decisions are made. An established way to study these questions is  to use laboratory 

experiments with human subjects (Smith, 1994). Normally, the models of Cournot and 

Bertrand, and models of product differentiation are used in the experiments. The results from 

experiments show that firms need to make decisions for a number of periods before their 

decisions come close to equilibrium decisions. The results also show that there need to be 

three or more firms on the same market, for firms to make decisions similar to non-

cooperative equilibrium decisions (Dufwenberg and Gneezy, 2000; Huck, Normann and 

Oechssler, 2004). Furthermore, the dispersion among decisions may vary; Garcia Gallego 

(1998) found for example that the individual decisions of firms with symmetric costs  

converged to the non-cooperative equilibrium, while Rassenti et al (2000) found convergence 

to the equilibrium of the total of the decisions of all firms with asymmetric costs, but wide 

dispersion among the decisions of the firms. The Bertrand-Edgeworth model has a mixed 

strategy equilibrium where decisions were dispersed as they fluctuated over time (Kruse et al 

1994).   

     The information conditions on the market may influence the decisions firms make (Huck 

Normann and Oechssler, 2000). Furthermore, the information conditions determine what 

decision rules the firms can use, as some of the rules may need information about the demand 

on the market, costs or decisions of the other firms or profits of other firms, while other rules 

don’t. The use of a number of different rules have been tested  in experiments: Beating the 

opponents (Bosch-Domenech and Vriend, 2003), best reply (Rassenti et al, 2000; Huck, 

Normann and Oechssler, 1999), fictious play (Rassenti et al, 2000; Huck, 2002), gradient 

method (Kirman, 1995), imitation of other firms (Huck, Normann and Oechssler, 1999 and 

2000), learning direction theory and hill-climbing (Nagel and Vriend, 1999) and least-square 

learning (Garcia Gallego, 1998). The general results from these studies were that these 

decision rules only partly were used.  
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   In this study, we explore the use of a simple decision rule where firms only need to have 

information about their own decisions and profits from the two previous periods. The 

principle of the decision rule is arbitrary choosing decisions within a boundary of the decision 

that gave the highest profit in the two previous periods of the game.  The firms do not even 

need to know what game they are playing (Oechssler and Schipper, 2003). The decision rule 

was inspired from several sources. First, from a stream of research where very little 

information is available for decision making (Kirman, 1995; Nagel and Vriend, 1999; 

Thorlund-Petersen, 1990). Second, from the stochastic optimization literature (Andradóttir, 

1995; Zhigljavsky, 1991). Third, from the fast and frugal paradigm (G igerenzer and 

Goldstein, 1996) where decision makers can perform well with only limited information and 

limited effort when decision making.  

     We will explore two versions of the decision rule, one where firms make decisions 

sequentially and one where the firms make decisions simultaneously. We analyze simulation 

results with different boundaries of adjustments of decisions for both versions of the decision 

rule. Furthermore, we use experiments with a Cournot game to compare decisions made with 

the decisions rule and only private information about profits, to decisions made by firms who 

also have information about market demand and competitors and do not have to use the 

decision rule (Rassenti et al 2000). We find that the simple decision rule where firms make 

decisions sequentially can be used to compute optimal decisions and that the rule where firms 

make decisions simultaneously can be used as  a benchmark for decisions made in repeated 

oligopoly games.  Hence, the decision rule makes decisions converge and approximate the 

non-cooperative equilibrium.   

    The remainder of the paper is structured as follows. In the next section, the decision ru le 

and its use in models  of competitions are described. Then, the simple decision rule is used in 

computer simulations and in experiments. Finally, conclusions are made on the use of the 

decision rule. Instructions for the experiment and description for how random numbers were 

generated are in Appendix. 
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2. The decision rule in models of competition  

 

The idea behind the simple decision rule is that each firm only use information about its own 

decisions and own profits in the two previous periods, to make its next decision. The rule has 

the following steps. 

 

Step 0. Each firm has an initial decision that is its current best decision and receives  

information about its profit. 

Step 1. Each firm makes adjustments of its current best decisions and receives information 

about its profit. 

Step 2. Each firm compares the two profits and selects the decision of the two that gave the 

highest profit as its current best decision. 

Step 3. Steps 1 – 3 continue until a specified number of adjustments of the current best 

decision have been made. 

 

Two of a number of possible versions of the decision rule is explored . The first version is 

sequential decision making, where only one firm makes decision at the time. The firm 

compares its profits before and after it has made its adjustment, while the other firms have 

their decisions unchanged. The firm repeats the decision of the two previous decisions that 

gave the highest profit, the current best decision, and then wait for the other firms to make 

their decisions. The second  version is simultaneous decision making, where all firms make 

their decisions at the same time. The firms compare their profits before and after they have 

made their adjustments, and they select the decisions that give the highest profits as it current 

best decision. Then the firms make adjustments to their current best decisions. It should be 

pointed out that the current best decision serves only as a reference point for the next decision. 

    Next, we specify the decisions rules with mathematical notation. The decisions are denoted 

tix ,  where i  is the number of a firm and t  is the time period. The adjustments of decisions are 

denoted ti ,∆ . The decisions of the other firms is denoted tix ,−  where i−  denotes all firms, but 

not the firms studied. The profit for a firm i  is denoted ),( ,, titii xx −Π  and it depends on the 

decisions of the firm tix ,  and also on the decision of the other firms tix ,− .   
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    The decision rule selects the current best decision for firm i  in period t , tix , , by comparing 

profits of decisions in the two previous periods 2, −tix  and 1, −tix , where 1,2,1, −−− ∆+= tititi xx .    

For sequential decision making with repetition of the current best decision, the decisions are 

determined by:  

 

(1)  




∆+
=

−−

−

1,2,

2,
,

titi

ti
ti x

x
x  

if  ),(),( 2,2,2,1,2, −−−−−−− Π≤∆+Π titiitititii xxxx  

if  ),(),( 2,2,2,1,2, −−−−−−− Π>∆+Π titiitititii xxxx   

 

For simultaneous decision mak ing with current best decisions as reference point for next 

decision, the decisions are determined by: 

 

(2)  




∆+
=

−−

−

1,2,

2,
,

titi

ti
ti x

x
x  

if ),(),( 2,2,1,2,1,2, −−−−−−−−− Π≤∆+∆+Π titiititititii xxxx    

if ),(),( 2,2,1,2,1,2, −−−−−−−−− Π>∆+∆+Π titiititititii xxxx   

 

To prevent random walk, the profit has to be improved by the adjustment  1, −∆ ti , else the 

current best decision will not be changed. Compared to learning direction theory and hill-

climbing, the adjustments of decisions in the simple decision rule can be chosen arbitrarily as 

long as the current best decisions are selected from the decisions that gave the highest profit 

in the previous two periods. 

     We shall study how the simple decision rule can be used in the model of Cournot, two 

models of product differentiation quantity and price, and Bertrand-Edgeworth model (Vives, 

1999). In the model of Cournot, firms make decisions on quantity, q . The demand parameters 

are here denoted a  and b .  The number of firms on the market, N . The decisions of the 

other firms, iq− , is denoted with the mean quantity of the other firms, iq− . The inverse 

demand function is: 

 

(3)  iiii qNbbqaqqp −− −−−= )1(),(      

 

With ic  as variable cost, the profit function is: 

 

(4) ( ) iiiiii qcqqpqq −=Π −− ),(),(   
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The profit function (4) with the inverse demand function (3) can be written as 2
ii TqSq −=Π , 

where ii cqNbaS −−−= −)1(  and bT = . Variable substitution from q  to x , with TSxqi /=  

gives TxxS /)1(2 −=Π .  Collecting S  and T  to A , with TSA /2= , gives in turn 

)1( xAx −=Π .  The profit function )1( xAx −  is a quadratic function, which has its maximum 

value 4/A  at 2/1=x . The best reply of a firm, i.e. the decision that give the maximum profit 

for a firm with respect to the decisions of the other firms, is 2/1=x  inserted in TSxqi /= , 

gives )2/( TSq = . We use function )1( xAx −  to study the simple decision rule for sequential 

decision making. With A, S and T fixed, there is direct relationship between x  and iq , 

STqx i /= . For simplicity, we let x  denote the decision in period 2−t  and let ∆+x  denote 

the adjustment of decision in period 1−t . For decision x  to be adjusted to ∆+x  the 

following conditions apply:  

 

(5)  )1())(1)(( xAxxxA −>∆+−∆+  

(6)  0)21( >−∆−∆ x  

 

A positive adjustment, 0>∆ , give higher profit  when 021 >∆−− x . This can be written as  

2/12/ <∆+x . Correspondingly, a negative adjustment, 0<∆x , give higher profit when 

021 <∆−− x , that is when 2/12/ >∆+x . As sequential decision making is defined , only  

adjustments will be valid if they fulfil this condition. However, with sufficiently many and 

small adjustments ∆ , x  will approach 2/1 .   

     Next, we specify the demand function for a model of product differen tiation on quantity 

(Vives, 1999; Huck, Normann and Oechssler, 2000).  

 

(8) iiii qNbqaqqp −− −−−= )1(),( θ  

 

However, the profit function is the same after variable substitution, i.e. )1( xAx − , as in the 

Cournot model.  The difference compared to Cournot is variable  S , where  

ii cqNaS −−−= −)1(θ  .  
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A model of product differentiation on price is (Garcia Gallego 1998; Huck, Normann and 

Oechssler, 2000). 

 

(9)       iiiii pNpppq −− −+−= )1(),( γβα          

 

The profit function with price as decision variable is: 

 

(10) ( ) ),(),( iiiiii ppqcppp −− −=Π       

 

Profit function (10) with demand function (9) is also quadratic . However, the profit function 

for price includes components of costs, here denoted ic . Using variable substitution with S 

and T, the profit function for price is iii ScTpSp −−=Π 2 .  For the model on product 

differentiation – price ii cpNS −−+= −)1(γα  and β=T . The price can be represented with 

x  which gives the following profit iScxAx −−=Π )1( . This function also has it’s maximum 

value at 2/1=x , but the maximum profit 4/A  is reduced with iSc .   

 

   Finally, we define Bertrand-Edgeworth game as follows for two competing firms, ji,  with 

capacity constraints α≤== kkk 21  (Levitan and Shubik, 1972; Kruse et al, 1994):  

 

 (11) 








−−

−
−

=

ij

i

i

jii

pk

p
p

ppq

βα

βα
βα

)(2/1),(   

ji

ji

ji

pp
pp
pp

>
=
<

     

 

For the Bertrand-Edgeworth model this means cS βα += , 2/)( cS βα +=  or 

jkcS ++= βα  and β=T . Variable substitution gives the same profit function as for 

product differentiation on price.  The optimal decisions depend on k , when cost are zero, i.e. 

0=ic , if  α=k  then 0* =p , if αα << k3/  the prices fluctuate, if 3/0 α≤< k  then 

kp 2* −= α .  
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    The models of Cournot and product differentiation have one unique equilibrium each. In 

the Bertrand-Edgeworth model, the equilibrium depends on capacity constraints and the 

equilibrium could also be mixed equilibrium. For sequential decision making, the effect of an 

adjustment of a decision is evaluated while the other firms on the same market do not make 

any decisions. This decision making coincide with the definition of Nash-equilibrium, where 

the profit of a firm cannot be improved by only adjusting its decision. For simultaneous 

decision making, the adjustment of a decision can not be completely evaluated since the other 

firms may adjust their decision at the same time. This means that the effect of adjustments of 

decisions only can be determined approximately.   

 

 

 

3.  Results 

 

3.1  Computer s imulations 

 

We use computer simulations for the two versions of the simple decision rule in the models of 

competition. First, the results of the Cournot model are presented, then the use of the decision 

rule in two models of product differentiation (on quantity and on price) is discussed, and 

finally the results of the Bertrand-Edgeworth model is presented. 

   In the simulations, adjustments of decisions, ∆ , were generated with random numbers, u , 

uniformly randomized between 0 and 1, i.e. 10 ≤≤ u  (see appendix). The boundary of the 

adjustment of a decision is denoted, D , and the adjustment is determined by 

)2/1(2 −=∆ uD . The boundary of adjustment was held fixed within the same simulation, 

and the boundary was the same fo r all firms on the market.  Simulations were made with both 

versions of the decision rule, sequential and simultaneous, with different boundaries of 

adjustment, where x , was either quantity or price. 

    We use the Cournot model in Rassenti et al (2000) to illustrate simulation results and in the 

next section we use data from their experiments that were played for 75 periods. The 

parameters used in (3) were 540=a  and 1=b , and there were five firms competing on the 

same market with asymmetric  costs 54,42,30,18,6 54321 ===== ccccc . The optimal 

quantities were respectively 61,73,85,97,109 *
5

*
4

*
3

*
2

*
1 ===== qqqqq . Simulations were made 

with the adjustments of quantity decisions. The boundary of adjustment was 30=D . Figure 1 
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shows one single simulation run of sequential decision making where it takes about as many 

as 250 periods for the decisions of the five firms to reach their respectively individual non-

cooperative eq uilibrium levels, *q . The vertical lines in the figure show adjustments of 

decisions.  
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Figure 1. Sequential decision making in the Cournot model, quantity decisions of individual firms. 

 

Figure 2 shows 100 runs of simulations of simultaneous decision making and total quantities 

for one to five firms competing on the same market where all firms had the symmetric cost 

30=c .  The mean total quantities  approximate total non-cooperative quantities, *Q , for 

respectively number of firms on the same market, but there are fluctuations over time. 

Simulations of five firms with symmetric costs give similar total quantity as when costs are 

asymmetric  (Table 3 below shows means and standard deviations).  
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Figure 2. Simultaneous decision making in the Cournot model, total quantity decisions of firms. 

 

In simultaneous decision making, decisions reach non-cooperatives decision much faster than  

in sequential decision making, for five firms 25 periods compared to 250 periods, 

respectively. 

      We use 100 runs of simulations to explore the simple decision rule with different 

boundaries in the models of competition. The start decisions are zero for all simulations 

presented, but we obtained similar result when altering the start decisions. The mean decisions 

are presented after the decisions approximate non-cooperatives decisions, here measured with  

mean decisions in 10 periods [t, t+9] = [t+10,t+19] and mean of 100 decisions [t, t+100].   

    For the Cournot model we use parameters 1=a , 1=b , and symmetric costs 1.=ic . The 

non-cooperative decisions for 1, 2, 3, 4, 5 firms are respectively .450, .300, .225, .180 and 

.150. Three different boundaries were used 10,.05,.01.=D .   
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Table 1. Sequential and simultaneous decision making in the Cournot model.  

 Number of firms 
 1 2 3 4 5 
Non-cooperative  .450 .300 .225 .180 .150 
Boundaries      
    Sequential      
D=.10 .450 .300 .225 .180 .150 
D=.05 .450 .300 .225 .180 .150 
D=.01 .450 .300 .225 .180 .150 
    Simultaneous      
D=.10 .450 .297 .228 .186 .159 
D=.05 .448 .291 .222 .179 .150 
D=.01 .449 .284 .215 .170 .142 

 

Table 1 shows that the mean decisions from sequential decision making do not differ much 

from non-cooperative decisions and the boundaries of adjustments do not matter much. For 

simultaneous decision making, the boundaries of adjustment matter  more. For small 

adjustments the mean decisions are slightly below the non-cooperative decisions and for large 

adjustments the mean decisions are slightly above the non-cooperative decisions.      

    In the models of product differentiation, corresponding results were obtained for 

simulations of the decision rule. However, a main difference was for simultaneous decision 

making in the model of price, where the decisions on price were above the non-cooperative 

prices for all three boundaries of adjustments 10,.05,.01.=D . 

    Figure 3 shows one simulation run each for sequential and simultaneous decision making,  

where two firms are competing in the Bertrand-Edgeworth model with 1=α , 1=β , and 

symmetric costs 0.=ic  and with capacity constraints 5.=k  over 500 periods.  
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Figure 3. Sequential (above) and simultaneous decision making (below) in the Bertrand-Edgeworth model,  

                individual duopoly decision on decisions.  Horizontal lines are at p=.12 and p=.25. 

 
Table 2 shows that the mean decisions of sequential decision making do not differ much from 

non-cooperative decisions. When 3≤k  the decisions are similar, when 4≥k  the decisions 

are within non-cooperative maximum and minimum fluctuations.  The mean decisions of 

simultaneous decisions are generally higher than non-cooperative maximum decisions. When 

4≥k  and adjustment boundary 10.=D , and when 8≥k  and 01,.05.=D  the decision rule 

does not converge to non-cooperative decisions.  

  
Table 2. Sequential and simultaneous decision making in Bertrand-Edgeworth model,  
              optimal maximum, minimum and mean prices from non-equilibrium decisions.  

 Capacity constraint, k, as fraction of demand  α  
 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 
Non-coop - max .80 .60 .40 .30 .25 .20 .15 .10 .05 .00 
Non-coop - min .80 .60 .40 .22 .12 .06 .03 .01 .00 .00 
    Sequential           
D=.10 .80 .60 .40 .27 .21 .15 .11 .07 .04 .02 
D=.05 .80 .60 .40 .28 .22 .17 .12 .08 .03 .01 
D=.01 .80 .60 .40 .29 .24 .19 .14 .09 .05 .04 
    Simultaneous           
D=.10 .87 .68 .53 .39 .35 .33 .34 .35 .36 .37 
D=.05 .80 .60 .43 .29 .23 .18 .14 .12 .13 .15 
D=.01 .79 .60 .42 .29 .24 .19 .15 .15 .15 .17 
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To sum up, the simulations show that sequential decision making with the simple decision 

rule reaches the individual non-cooperative decisions slower, but precise, compared to 

simultaneous decision making which approximates the non-cooperative aggregate decisions 

with substantial dispersion among decisions.  

 

 

3.2  Experiments  

 

Experiments were conducted where human subjects had only information about their own 

decisions and their own profits, and where they were enforced to use of the simple decision 

rule. The purposes of the experiments was to study how human subjects compare to the 

computer simulations using the rule, and also how decisions with the rule compare to human 

subjects not enforced to use the decisions rule and with more information available. The 

comparisons are limited to the Cournot model and the simple decision rule with simultaneous 

decision making.  

    The same parameters as Rassenti et al (2000) were used, hereafter called Rassenti, so 

comparisons could be made between the decisions with the decision rule to  the data from their 

experiment1. In their experiment five firms competed on the same markets over 75 periods. 

The firms had information about the demand function and they received information about the 

individual decisions and the profits of the other firms on the market. The costs were 

asymmetric and private. 

     Two experiment were conducted, here called Experiment A and B, with altogether 40 

participants (20 + 20) using the decision rule  (see Appendix). The participants were instructed 

that they would receive limited information during the experiments, and that they were to use 

a simple dec ision rule. The participants  were informed  that they were to make decisions on 

the number of units of an unspecified product they would sell on a market. They were to 

know that few products for sale would yield a high price, and many products for sale would 

yield a low price. However, they were not to know the demand function, the price, decisions 

or profits of the other firms, nor the number of firms on the market or how many periods they 

would play. Compared to Rassenti, the participants in our experiments were enforced to use 

the decision rule. The experiments were conducted on computers where the decisio n rule was 

                                                             
1 I thank Rassenti et al (2000) for providing data from their experiments. Treatment 75-SHOW 
markets NN1, NN3, NN6, NN18 were used for comparisons. Market NN5 was not used as there were 
negative profits in a number of periods. 
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programmed so the participants had to use it when making their decisions. On computer 

screens, each firm could just see its own decisions and profits for the previous two periods. 

The boundary of adjustment was ( 30=D ). The current best decision, i.e., the decision which 

gave the highest profit out of the two previous decisions, was put in the middle of 61 

decisions. If the current best decision was 31 or higher the firm could choose between 61 

decisions alternatives. If the current best decision was lower that 30 the firm could choose 

between 0 and the current best decision plus 30.    

       In Experiment A, there were four sessions where five firms competing on the same 

market, but they all had to use the decision rule  and they only received information about their 

own decisions and own profits. Experiment B was designed to make comparisons between 

firms making decisions in Rassenti and firms making decisions with decision rule on the 

“same market”.  The decis ions from Rassenti were used, but the decisions of one of the five 

firms were excluded from the total quantity  in the market. Instead, each of the 20 firms in 

experiment B played the part of an excluded firm in Rassenti. The price was determined with 

the total quantity of four of the firms in Rassenti plus the decisions the participants made by 

using the decision rule.  The participants in Experiment B tried to make their best replies to 

the decisions from Rassenti by using the decision rule. The comparison between firms in 

Rassenti and Experiment B is only indirect, as the firms in Rassenti could not take into 

account the decisions of the firm using the decision rule in Experiment B. However, the 

comparison gives some indications of what may happen when firms having much more 

information available compete with firms only using the simple decision.  

     In Rassenti, the participants had 50 seconds to make their decisions. In Experiment A and 

B the participants made decisions in  their own pace, and they used a mean of about 20-25 

seconds. The rewards in Experiment A and B were similar to Rassenti, with a mean earning of 

$14. We will make comparisons between decisions on quantity of: 100 runs of simulation and 

20 firms in each Experiment A, Rassenti and Experiment B in 75 periods.  

     Figure 4 shows that the mean total quantities were above 400 from period 25 to period 75 

in Simulation, Rassenti and Experiment A, while they were below 400 in all periods in 

Experiment B. The mean total quantities increased  fastest to 400 in Rassenti. The total non-

cooperative quantity is 425 for the five firms. About 77% of all decisions in Rassenti followed 

the criteria of the simple decision rule. The mean absolute adjustment for Simulation, 

Experiment A, Rassenti, and Experiment B were in order 18, 12, 24, 9, and the percentages of 

unadjusted decisions between one period and the next were for Experiment A, Rassenti, and 

Experiment B in order for 12%, 26%, 7%.   
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Figure 4. Mean total quantity in 75 periods of 100 runs of S imulation, and of 20 firms for respectively 

Experiment A, Rassenti and Experiment B.    

 

 Table 3. Mean total quantity and coefficient of variance (standard deviation divided by mean total quantity),  

in all 75 periods, the first third, the middle third and the last third of the 75 periods. 

    All periods First third Middle third Last third 

        Q   Qs /  Q  Qs /  Q  Qs /  Q  Qs /  
   Simulation 382    .30 290 .45 422 .13 433 .12 
         
   Experiment A         
1 388    .18 335 .30 417 .04 410 .04 
2 386    .22 377 .28 428 .17 353 .12 
3 399    .17 363 .25 415 .09 420 .12 
4 428    .23 336 .35 460 .07 487 .09 
   Rassenti         
NN1 399    .17 378 .25 411 .15 409 .07 
NN3 445    .24 412 .33 439 .19 483 .15 
NN6 445    .23 416 .26 476 .27 442 .10 
NN18 406    .18 381 .24 406 .12 432 .15 
   Experiment B         
1/NN1 404    .21 334 .33 425 .07 453 .10 
2/NN3 220    .25 165 .26 259 .13 234 .17 
3/NN6 265    .26 203 .35 277 .17 316 .10 
4/NN18 363    .29 257 .44 412 .10 420 .13 

 

Table 3 shows that the mean total quantities varied between markets within Experiment A, 

Rassenti and Experiment B respectively. The quantity decisions were significantly higher in 

Rassenti compared to Experiment in the first third  (t=2.555, df=998, p<.02), however, there 

was no significant difference in quantity decisions in the middle and last third between 
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Rassenti and Experiment A. Table 3 shows that dispersion (measured with the coefficient of 

variance) among decisions decreased from the first to the middle and then to the last third.  

The dispersion among decisions was about the same for Experiment A and Rassenti.   
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Figure 5. Mean absolute distance to best reply and mean absolute distance to non-cooperative quantity for All 

decisions, and for the first third, the middle third and the last third of  75 periods, for 100 runs of Simulation, and 

20 firms each in Experiment A, Rassenti and Experiment B.    

 

Figure 5 shows that mean absolute distance between decision to best reply and to non-

cooperative quantity were about the same for Simulation, Experiment A, Rassenti and 

Experiment B. The main exception is the first third for Simulation where mean absolute 

distance to best reply was 95. There were no significant differences between Rassenti and 

Experiment A for absolute distances to best reply and to non-cooperative decisions. Despite 

decisions in Experiment B were lower than other decisions, the absolute distance to best reply 

and to non-cooperative decisions was not significantly larger in the last third. To sum up, 

decisions in Simulation, Experiment A and B with the simple decision rule were similar to 

Rassenti.   
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4  Conclusions 

 

When decisions are made simultaneously in models of competition with the use of the simple 

rule described and with arbitrary choosing of decisions, aggregate decisions of competing 

firms converge to approximate the non-cooperative equilibrium. Since the decision rule only 

requires private information about profits in two previous periods, and this information 

usually is available, and when the rule may at least implicitly be used to a certain extent by 

firms, aggregate non-cooperative outcomes could be expected. Arbitrary decisions with the 

decision rule can serve as a benchmark for how decisions are made in future experiments.  

     It can be argued that the models of competitions studied here are simple, perhaps too 

simple to represent real markets, and that decision making with the simple decision rule may 

be valid  in only for simple markets. It can also be argued that the simple decision rule 

performs relatively well when costs are asymmetric and when firms can not learn from each 

others decisions. It should however be pointed out that the models of competition used in this 

study are the same models  normally studied. Furthermore, it is not clear that decisions are 

usually are imitated  in these models. Also, imitation may lead to more competitive decisions 

where firms make less profit than when making non-cooperative decisions.  

     Simulation of sequential decision making with the decision rule lead to convergence to 

individual non-cooperative decisions. Although, the decisions rule was only used in these 

relatively simple models of competition, the rule may be useful for determining optimal 

decisions in more complex models. Furthermore, there are a number of alterations, 

refinements and extensions to the decision rule described. For example, a complete proof of 

convergence and studying of mixes between sequential and simultaneous decision making 

would be of interest. The decision parameter for the decision rule is the boundary of 

adjustment, it was held fixed in the simulations and in the experiment, but it can be further 

explored . Also, comparisons between the use of the simple decision rule and the use of the 

decision rules mentioned in the introduction, and other rules, would be of interest.   

    Finally, we can ask the question, would the simple decision rule be good for firms to use 

for their decision making? The answer may depend on the model of competition and what 

boundaries of adjustments to use. Some firms may actually benefit from using the decision 

rule, while other firms may make better decisions by using the available information about the 

market demand and competitors.  
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Appendix 
 
 
 
Instructions for experiment 
 
Welcome to the experiment! This experiment tests if good decisions can be made by using a 
simple decision rule. The rule requires very little information and therefore you will receive 
very little information when you use the rule. 
    You are a firm competing with an unspecified number of other firms who produce and sell 
products on the same market for an unspecified number of time periods. The decisions of the 
other firms affect the profit you make. However, you will not hav e any information about the 
other firms. This is part of the experiment. You will make decisions on quantities your firm 
will sell and you will observe the profits for your two previous decisions. The decisions of 
your two previous decisions which gave most profit will be your current best decision. The 
decision rule puts the current best decision in the middle of 61 possible alternatives for your 
next decision. If your current best decision is less than 30, you will have alternatives from 0 to 
your current best decision plus 30. You will make a number of decisions, but you will not 
exactly know how many. The instructor will tell when the experiment is ended. Your 
objective is to make as much profit as possible during the experiment.  Your reward is 
calculated as a portion of your total earnings ($0 - $20). Good luck! 
 
Step 1. Press “Get info” to update information. 
Step 2. Select any of the 61 decision alternatives. 
Step 3. Press the “Decide’ button. 
Step 4. Wait until you hear “Next period” then go to 1.  
 
 

 
Computer screen from the application, showing 20 as current best decision and decisions alternatives from 0-50. 
 
 
 

Period Quantity Profit Best

Penultimate 20 2000 *
Previous 10 1000

41 42 43 44 45 46 47 48 49 50

31 32 33 34 35 36 37 38 39 40

21 22 23 24 25 26 27 28 29 30

Better
quantity 20
(of penultimate
and previous)

19 18 17 16 15 14 13 12 11 10

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0

Please, make your decision when you are ready

Decide 

Get info 
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Random numbers 
 
The random generator used for the randomization of adjustments of decisions is the 
multiplicative congruential generator (MCG) introduced by Lehmer. A sequence of random 
numbers ,..., 21 UU  is defined by the algorithm: maUU tt mod1−= . The multiplier, a, is 16807 

and m is 1231 − . The seeds, 0U , are the same as described in Law & Kelton (2000, p 429). 
The random numbers tU  generated are then divided by m, to give normalized random 
numbers in the interval 10 ≤≤ u , with more than 10 decimals. The random number generated 
from this seed is in turn used to generate the next random number, and so on. 
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