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1 Introduction

Advances in computing power have opened the way to the use of intensive computional techniques

to solve and estimate nonlinear panel-data models, specifically those arising from nonlinear panel

data such as Probit and Tobit models. For these models, allowing a flexible specification for the

correlation induced by firm/individual heterogeneity leads to models involving T-variate multiple

integration whose numerical approximation can sometimes be very poor. In these cases when

the value of T is greater then 4 or 5 maximum-likelihood estimation can be cumbersome if not

analytically intractable. Different solutions are offered based variously on integral approximation

through simulation, some form of Generalized Method of Moments (GMM), or Markov Chain

Monte Carlo (MCMC) methods. This paper compares the outcomes of those methods available

in standard econometric packages, providing illustrations between prepackaged algorithms and a

MCMC Gibbs sampler for nonlinear panel data. Using Chib (1992) and Chib and Carlin (1999),

We derive a sampler for Probit/Tobit panel data and provide easy-to-use software for implementing

the Gibbs sampler in panel data with discrete/limited dependent variable. We show that, when

dealing with a large dataset, MCMC methods may replace the procedures provided in standard

econometric packages.

2 The Panel Tobit Model

Panel datasets provide a very rich source of information for empirical economists, providing the

scope to control for individual heterogeneity. While there is a large literature on linear panel

data models, less is known about limited dependent variable models. This is especially true for

computational comparisons among different methods.

Extending the work of Chib (1992) and Contoyannis et al. (2002) this paper is concerned with

the Bayes estimation in the panel Tobit model.

The purpose of the paper is two-fold: first to develop an easy-to-use Bayesian estimation

approach, and second to compare the efficacy of this method with respect to others proposed in

some econometric packages.

We are concerned with a standard Panel data Tobit model:
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y∗it = β′xit + uit i = 1, 2, . . . , N t = 1, 2, . . . , Ti (2.1)

uit = νi + εit (νi ∼ NID(0, σ2
ν)) (εit ∼ NID(0, σε2)) (2.2)

where the observed variables is:

yit =

{
y∗it if y∗it > 0

0 otherwise
(2.3)

In general the common error term uit in equation (2.2) could be freely correlated over time. Here

we consider the error components model which splits the error uit into a time-invariant individual

random effect (RE): νi, and a time-varying idiosyncratic random error: εit.

In this case the assuming independence between the ν’s and the ε’s, dit = 1 for uncensored

observations and dit = 0 for censored observations the likelihood contribution for each individual,

marginalized with respect to the random effect νi is

lit =
∫ ∞

−∞

[
1
σε

φ

(
yit − β′xit − νi

σε

)]dit

·
[
Φ

(−β′xit − νi

σε

)](1−dit)

f(νi, σi)dνi (2.4)

where: φ(·) and Φ(·) are respectively the probability density function (pdf) and the cumulative

distribution function (cdf) of the standard normal distribution, f(νi, σi) is normal density with

mean νi and standard deviation σi.

In general for Ti observations belonging to individual i we have the following likelihood con-

tribution

Li =
∫ ∞

−∞


t=Ti∏
t=1

[
1
σε

φ

(
yit − β′xit − νi

σε

)]dit [
Φ

(−β′xit − νi

σε

)](1−dit)
 f(νi, σi)dνi (2.5)

from this we see that the likelihood function for the whole sample is the product of the contribution

Li over the N individuals, and the log-likelihood is

L =
N∑

i=1

ln(Li) (2.6)

As can be seen, the log likelihood in equation (2.6) does not collapse in a sum, as it would in

the case of a time series or a simple cross-sectional Tobit model. The reason for this is that the
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likelihood function for individual i is an integral of a product instead of just a product and the log

operator cannot be carried through the integral sign.

The situation gets even more complex in presence of serial correlation of the disturbance

for each individual. In this case the lack of independence among the observations prevents the

possibility of factoring out the likelihood contribution of the Ti periods for the i individual and we

end up with a T-dimensional integral that makes classical estimation methods infeasible when the

number of time periods is more than three or four.

3 Classical Maximum Likelihood Estimation

In the earlier section we saw that feasible maximum likelihood estimation for limited dependent

variable panel data is available only for a particularly simple structure of the random disturbance.

We have therefore analyzed the behaviour of the algorithms for the panel Tobit models available

in following two packages: LIMDEP and STATA1.

Econometric literature proposes two kind of models for linear panel data: Fixed vs. Random

Effects models. The former do not impose any correlation restriction between the individual effects

and the other explanatory variables but with nonlinear models MLE is generally known to be biased

(see for example Heckman (1981) and Hsiao (1996) ). The case of random effects model is much

more parsimonious in the number of parameters but it requires some restrictive assumptions on

the distribution of the individual effects. The main assumptions for the applicability of the random

effects model are the following:

1) the idiosyncratic error εit is serially uncorrelated;

2) the individual effects νi are uncorrelated across individual.

3) νi|xi ∼ NID(0, σ2
ν )

The previous assumptions simplify the computation of the likelihood. Indeed only LIMDEP

provides a brute force Maximum Likelihood estimation method for the fixed-effect model (see

Greene (2003)). Both STATA and LIMDEP approach the estimation of the random effects model
1In this analysis we have used LIMDEP 8.0 under Windows and STATA 8.2 under UNIX AIX/RISC6000.
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by taking advantage of the Gauss-Hermite quadrature for the likelihood computation as suggested

in Butler and Moffit (1982) .

LIMDEP provides a built-in tobit command aimed at solving both cross-section and four

different models for unbalanced panel data including the fixed-effects. STATA supplies the built-in

xttobit command which in the current version allows only for the random effects model. For the

numerical applicability of the Maximum Likelihood method, an important role is played by two

elements:

1) the panel size, that is the number of observation for each individuals,

2) the correlation between the total latent error across any two time periods: ρ = σ2
ν

σ2
ε +σ2

ν
.

An high value of panel size combined with an high across time correlation will usually give

place to poor approximation. This qualitative consideration will be reconsidered discussing the

empirical applications.

4 Gibbs sampling

The Gibbs sampler is a Monte Carlo Markov Chain method of sampling probability densities which

are usually analytically intractable.

This method, also called alternating conditional sampling, has made possible the Bayesian ap-

proach to the estimation of nonlinear panel data models providing accurate finite sample estimates.

Gibbs sampling is based on a preliminary splitting up of the parameter vector into s groups,

θ = (θ1, . . . , θs), in our panel Tobit model the parameter vector is already subdivided according to

θ = (β, σε, σν). Now the goal is to obtain draws from the posterior distribution of the parameter

vector conditional on the data.

The sampling is carried out at each iteration alternating among the different conditional dis-

tribution, in our case we have the following procedure:

1) pick arbitrarily initial values for Θ0 = β0, σ0
ε , σ

0
ν (GLS random effects will serve the purpose);

2) draw βk from the distribution π(β|y,x, σk−1
ε , σk−1

ν )

3) draw σk
ε from the distribution π(σε|y,x, βk−1, σk−1

ν )
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4) draw σk
ν from the distribution π(σν |y,x, βk−1, σk−1

ε )

under very general assumptions, after a certain number of iteration, this process will produce

samples from the wished posterior distribution. Therefore point estimates and confidence interval

are computed as averages from the generated sample.

To implement the sampler we need to specify the different conditional pdf’s. For each of

the three groups of parameters we used non informative conjugate priors for simplifying all the

computations. This means we adopted the following distributions:

β ∼ N (β0,Ω0) (4.7)

σ2
ν ∼ IG(η0, γ0) (4.8)

σ2
ε ∼ IG(ν0, δ0) (4.9)

Where all the variables indexed by 0 are the hyperparametes of our distributions, N (µ,Σ) is

the multivariate Normal distribution with mean vector µ and variance-covariance matrix Σ and

IG(ν, δ) is the inverse Gamma distribution with shape ν and scale δ2.

A peculiar feature of nonlinear panel data models such as the Tobit is the presence of un-

observable latent data that would make very complex the previous sampling loop. To this end

following the suggestion of Tanner and Wong (1987), adopted by Chib (1992) in a cross-sectional

context, we enriched the Gibbs sampler by means of the data augmentation strategy. In our set up,

given the assumptions underlying the model, the distribution of the latent variables are truncated

normal. Therefore we can augment our dataset with an estimate for the censored variables. Using

the augmented dataset we brought the problem back into a classic linear panel data model.

The Gibbs sampler previously described has been modified by adding at the beginning a step

for sampling the censored variables. For example in case (2.3) we have to simulate a random sample

from a truncated normal distribution with support (−∞, 0) and pdf given by:

y∗it ∼
N (x′itβ + νi, σ

2
ν + σ2

ε )

1− Φ
(

x′
itβ√

σ2
ν+σ2

ε

) (4.10)

To sample from the truncated normal in (4.10) we used the one-for-one draw technique described in

Hajivassiliou and McFadden (1990) that is much more cost effective than the acceptance-rejection

method.
2The inverse-χ2 with ν degrees of freedom is an inverse Gamma distribution with α = ν/2 and β = 1/2
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At this point we can give a complete picture of the algorithm implemented for estimation of

the random effect Tobit model:

1) run a GLS estimation with the original truncated data to fix the initial values for β0, σ0
ε , σ0

ν ;

2) sample the censored variables from the pdf 4.10 to build the augmented dataset;

3) run a GLS estimation on the panel with the augmented dataset for computing new mean

values for β, σε, σν ;

4) draw βk from the distribution π(β|y,x, σk−1
ε , σk−1

ν ) = N (β,Ω)

5) estimate the individual effects using the residuals from the previous step ;

6) draw σk
ν from the distribution π(σν |y,x, βk−1, σk−1

ε ) = IG (ν0, δ0)

7) draw σk
ε from the distribution π(σε|y,x, βk−1, σk−1

ν ) = IG (η0, γ0)

The sampler has been written using the language and computing framework provided by the Mod-

eleasy+ software (see appendix 7).

5 The empirical application

To illustrate the behaviour of the sampler we used a dataset available from STATA 3. This is an

unbalanced dataset composed by 19151 observations on 4140 individuals taken from the National

Longitudinal Survey on economic and demographic variables.

Using the example provided in the STATA manual, we fit a random-effects Tobit model on the

log of wages against a set comprising the following explanatory variables:

1) union dummy variable equal to 1 if the individual belongs to a workers’ union;

2) age the individual’s age ;

3) grade the years of schooling completed;

4) not smsa dummy variable equal to 1 if the individual doesn’t live in a standard metropolitan

statistical area (smsa);
3The dataset nlswork.dta is downloadable from the URL http://www.stata-press.data/r8
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5) south dummy variable equal to 1 if the individual lives in the south;

6) southXt interacting-term variable indicating how long the individual is living in the south;

7) occ cod categorical variable indicating the occupational code of the individual (larger num-

bers mean a lower rank);

This model has been estimated using the random effect method in LIMDEP and STATA. Even if

both package use the Maximum Likelihood procedure with the Hermite quadrature formulae we

got results that are quite different from the numerical viewpoint.

The results are summarized in the following table:

Table 1: Parameter Estimates for the nls dataset (19151 obseravations and 4140 individuals)

LIMDEP STATA Gibbs Sampler

const β0 .75297 (.02649) .56572 (.03308) .63202 (.02953)

union β1 .15946 (.00533) .15449 (.00698) .14632 (.00684)

age β2 .00785 (.00038) .00871 (.00054) .00788 (.00005)

grade β3 .06653 (.00179) .07803 (.00216) .07332 (.00191)

nots msa β4 -.13871 (.00609) -.12669 (.00898) -.12408 (.00843)

south β5 -.12874 (.00887) -.11686 (.01224) -.11764 (.01133)

southxt β6 .00263 (.00060) .00309 (.00084) .00358 (.00008)

occ code β7 -.01952 (.00078) -.01829 (.00111) -.01749 (.00106)

σε .2542 (.0010) .2483 (.0018) .2378 (.00010)

σν .3341 (.0039) .2911 (.0048) .2582 (.00219)

Notes: Standard errors in parentheses

It is remarkable the similarity between the estimates provided by the Gibbs Sampler and those

given by LIMDEP and STATA. Here it is important to highlight the simplicity of the sampler with

respect to the classical algorithms including quadrature approximations and maximization.

When the error term features any kind of serial correlation Bayesian techniques seem to be the

only feasible techniques.
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6 Monte Carlo Simulation

Starting from the previous results we have decided to establish a sort of a benchmark. We have

generated a dataset according to the following process (see Harris et al (2000)) :

y∗it = β0 + β1x1it + β2x2i + νi + εit νi ∼ NID(0, 1.0) εit ∼ NID(0, 1.0) (6.11)

where the mapping from the latent variable to the observed variable was

yit =

{
y∗it if y∗it > 0

0 otherwise
(6.12)

The values for the three β’s were 0.5, −1 and 1 respectively. These values give about a 50% split

among censored and non-censored variables.

Values of xit follow an auto-regressive process given by

x1it = 0.1 · trend + 0.5 · x1i,t−1 + uit (6.13)

where uit ∼ U(−.5, .5).

The time invariant variable x2i was generated according to

x2i =

{
0 if 0 ≤ x∗2i < 0.5

1 if 0.5 ≤ x∗2i ≤ 1
(6.14)

where the latent variable is generated according to x∗2i ∼ U(0, 1).

The individual specific effects were generated according to νi ∼ NID(0, σ2
ν) where σν was

specified as 1 and 2 to provide two values of correlation over time. For the idiosyncratic random

error term we chose the following εit ∼ NID(0, 1). We carried out the simulation using a panel of

100 and 200 individuals with 3, 6 and 12 time periods.

Examining the results in the following tables one can observe that, for small T ML method

seems to outperform the Gibbs sampler. When T was increased the Gibbs sampler produced esti-

mates with standard errors smaller than those achieved with the Maximum Likelihood. LIMDEP

is the package giving the smaller bias in this experiment, further investigation should be done to

pin down the reason of that.

These results seem to indicate that the MCMC method may be preferred when T is large.
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Table 2: Monte Carlo Parameter Estimates for T= 3

true parameters N = 100 N = 200

σ2
ν 1 2 1 2

β0 = .5 .49251 .50126 .49963 .50492
(.17447) (.40942) (.13044) (.31964)

LIMDEP β1 = −1 -1.00833 -1.00189 -1.0005 -.99568
(.15673) (.21836) (.12094) (.16022)

β2 = 1 1.00614 1.02014 .99512 .99185
(.23524) (.57546) (.17795) (.43363)

β0 = .5 .50665 .58218 .48599 .53866
(.18361) (.43688) (.12084) (.30257)

STATA β1 = −1 -.99535 -.99622 -1.008711 -1.00074
( .17466) (.22397) (.12614) (.15656)

β2 = 1 .98447 .90551 .99246 .972846
(.23816) (.54675) (.16304) (.41163)

β0 = .5 .34488 .25174 .40712 .27154
( .19324) (.3223) ( .12252) (.23569)

Gibbs Sampler β1 = −1 -1.4212 -1.5717 -1.0413 -1.1164
( .17854) (.26103) (.10936) (.1666)

β2 = 1 1.4782 1.3316 1.2843 1.3979
( .25057) (.42141) (.1541) (.29773)

Notes: Average parameter estimates over 1000 Monte Carlo replications with Mean Squared errors in

parentheses
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Table 3: Monte Carlo Parameter Estimates for T= 6

true parameters N = 100 N = 200

σ2
ν 1 2 1 2

β0 = .5 .50077 .60865 .50191 .56321
(.15350) (.45406) (.11994) (.34987)

LIMDEP β1 = −1 -1.00293 -1.0009 -1.00338 -.99789
(.10386) (.12187) (.07276) (.08684)

β2 = 1 1.00381 .95696 1.0005 .98633
(.23508) (.61510) (.16837) (.49703)

β0 = .5 .48925 .73507 .50136 .71314
( .17993) (.51041) (.12651) (.43339)

STATA β1 = −1 -.99317 -.99398 -.98986 -.99998
( .10384) (.12044) (.07018) (.09130)

β2 = 1 1.0046 .76978 .98526 .82756
(.23267) (.65634) (.16087) (.53801)

β0 = .5 .44098 .22519 .46997 .31492
(.16824) (.3081) (.11271) (.21301)

Gibbs Sampler β1 = −1 -1.0914 -1.0801 -.94969 -.94218
(.10101) (.14672) (.07052) (.09632)

β2 = 1 1.2695 1.1548 1.1752 1.2777
(.22202) (.39303) (.14297) (.28197)

Notes: Average parameter estimates over 1000 Monte Carlo replications with Mean Squared errors in

parentheses
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Table 4: Monte Carlo Parameter Estimates for T= 12

true parameters N = 100 N = 200

σ2
ν 1 2 1 2

β0 = .5 .49836 .51373 .50552 .55766
(.18473) (.42772) ( .13403) ( .33558)

LIMDEP β1 = −1 -1.00137 -1.0001 -1.00004 -.99499
(.05735) (.06967) (.0403) (.04589)

β2 = 1 .99662 .88625 .98522 .86962
(.26741) (.55242) (.20670) (.47691)

β0 = .5 .51550 .84474 .50769 .74664
( .21648) (.49741) (.20163) (.47334)

STATA β1 = −1 -.99929 -.99316 -.99649 -.99346
(.051797) (.06029) (.04159) (.04356)

β2 = 1 .97826 .65932 1.02023 .78933
(.27569) (.63651) (.22279) (.58367)

β0 = .5 .50481 .24922 .51361 .37178
( .1593) (.31227) (.10384) (.20215)

Gibbs Sampler β1 = −1 -1.1088 -1.0583 -.99628 -.97195
(.06301) (.092724) ( .04319) (.05606)

β2 = 1 1.1271 1.0106 1.0897 1.1451
( .1995) (.39059) ( .13083) (.26029)

Notes: Average parameter estimates over 1000 Monte Carlo replications with Mean Squared errors in

parentheses

7 Concluding remarks and further research

In the paper we have compared two methods for the estimation of nonlinear panel data. The first

method is the Classical Maximum Likelihood (ML) with quadrature for the computation of the

likelihood function. Both the LIMDEP and STATA canned procedures have been used. Moreover a

Bayesian approach based on the Gibbs sampling has been developed in the Modeleasy+ computing

environment. We have taken advantage of the data augmentation technique proposed in Tanner and

Wong (1987) for simplifying the analytics involved in the computation of the conditional posterior

pdf’s. The three procedures have been applied to a segment of the national longitudinal survey
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on labour statistics. Although the parameters estimates have always the right signs there are

remarkable numerical difference among to two procedures implementing the ML with the same

quadrature formulae. Estimates from the Gibbs sampler are close to the range defined by the two

ML estimates. The Gibbs sampler is much easier than ML from the computational standpoint but

so far computing time is still much bigger.

Finally to validate the methods some Monte Carlo experiments were presented. For a given

level of T, increasing N has produced an increased precision.

The Gibbs sampler seems useful when either the panel size is large or there is an high value of

residual correlation. It should be remarked that when there is a more complex correlation structure

in the disturbance, such as a first order autocorrelation, quadrature formula become cumbersome

and inaccurate making the MCMC methods one simple solution to the estimation problem. A future

line of study should consider the development of code for models with a generalized correlation

structure.
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APPENDIX

Sample of the Modeleasy+ code for the Gibbs sampler

for i=1,ndraw;

type "draw number " i

$ Generate the latent variables from the a truncated normal distribution

$ Initialize xpvx and xpvy matrices

xpvx = matrix(nreg,nreg)

xpvy = matrix(nreg,1)

stdevt = sqrt( sige + sgd )

mi1 = a1d( ux(icensor) * bnew )

leftb = mi1 - 5.*stdevt

sigma2 = sige + sgd

nrtrun1 (ne1,mi1,sigma2,seed,leftb,rightb,vu1)

ytotnew(icensor) = vu1

pdreg( harris: ytotnew c xi1t x2i :RE)

rss = 0 $ Total Residual Sum of squares

for j = 1, nind

irow = ints(vinz(j),vfin(j)) ; nirow = tprd(j)

object(yvi(j)) = matrix(nirow,1:ytotnew(irow) )

object(vci(j)) = inverse(toeplitz(nirow:a1d(nirow-1)+sgd,sigma2))

next j

vctildai = sgd*sige / (sige+sgd*tprd)

sgvctild = sige**(-1)*vctildai

multcall nout XprimeQX xmi vci

xpvx = sumlist (nout)

vcvtilda = inverse(vcvbs + xpvx)

chf = pdfac(vcvtilda)

$ updating the slope coefficients

bnew = mfam(chf*vector(normrand(ints(nreg))))+ vec(coeff)

$ updating the random effect individual variance

yres = ytotnew - afam(ux * bnew)

for j = 1, nind

ycur = yres(ints(vinz(j),vfin(j)))

14



bitildi(j) = sgvctild(j) * sum(ycur)

rss=rss + sumsq(ycur - bitildi(j) )

bitildi(j) = sqrt(vctildai(j))*normrand(nind)+bitildi(j)

next j

rtilda = ( R0 + sumsq(bitildi) )

$ Sample the random effects variance

sgd = 1/ gammarandom((m0+nind)/2,2/(rtilda))

delta = (dl0 + rss)

$ Sample the total variance

sige = 1 / gammarandom( (n0 + nobs)/2,2/delta)

$ Store the different simulated values

if (i .gt. nomit) then

kb = i - nomit

rbeta(kb,) = bnew

rsigma(kb) = sige

rsgind(kb) = sgd

endif

next i
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