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Abstract

In this paper we develop a theoretical framework for auctions of the Xe-
tra System, the Electronic Security Trading System operated by Deutsche
Borse on the German stock exchange. We formalize the price and the allo-
cation mechanism of limit orders and investigate the fundamental trading
principles of Xetra. We show that transactions are carried out using a
rationing mechanism such that asset allocations will most likely be of a
non-Walrasian type.



1 Introduction

In the past decades, the amount of worldwide security transactions that were
processed by electronic trading platforms increased significantly. In Germany,
for example, over 90% of security transactions are executed by the Xetra System
operated by Deutsche Borse, cf. Gruppe Deutsche Borse (01.07.2003). Other
well-established European trading platforms are the Pan European stock ex-
change, Euronext, which connects the stock exchanges of Amsterdam, Brussels,
and Paris, the Portuguese stock exchange BVLP (Bolsa de Valores de Lisboa e
Porto), and the London International Financial Futures and Options Exchange
(LIFFE). Many countries including China are currently in the process of estab-
lishing domestic electronic trading platforms.

There are at least four advantages of using electronic trading platforms instead of
traditional markets. First, electronic platforms provide more information during
the process of trading. Second, electronic trading platforms are more transpar-
ent than conventional markets. Security prices are stipulated according to well-
specified rules while market makers in conventional markets have a considerable
influence on the price determination. This ‘black-box’ argument applies in par-
ticular for prices which are negotiated among dealers. Third, transaction costs
of electronic trading platforms are lower than those of conventional floor mar-
kets. Moreover, they usually provide more liquidity as their transaction volume
is usually higher than that of conventional markets.

Despite the popularity of electronic trading systems, little is known about a mi-
croeconomic foundation of investment strategies that are adapted to these mar-
kets, e.g., see Harris (1990) and Huang & Stoll (1991). Electronic security markets
have attracted only relatively little attention in the theory of financial markets.
The classical approach of the literature derives asset prices from intertemporal
equilibrium conditions assuming that asset markets clear and expectations are al-
ways rational (e.g., see Ingersoll (1987), Pliska (1997), or LeRoy & Werner 2001).
B6hm, Deutscher & Wenzelburger (2000) pointed out that this classical approach
involves two implicit conditions: One for the assumption of market clearing in
each trading period and the other for the assumption of rational expectations.
The latter condition may be replaced by introducing the notion of a forecasting
rule along with the concept of a perfect forecasting rule as an operational concept
for rational expectations. Instead of reducing the expectations feedback to a con-
sistency assumption between expectations and realizations, this concept leaves
enough explanatory room for diverse and non-rational as well as rational beliefs
of traders.

The market-clearing condition, however, still remains an unresolved conceptional
problem as it is easy to construct an asset market for which market-clearing
prices do not exist generically, e.g., see Bohm & Chiarella (2000). This theoretical
insight provides the motivation to study the price and transaction mechanisms



of ‘real’ financial markets which handle a great diversity of traders every day. A
prominent example for such markets is an electronic market in which buyers and
sellers interact through a computer system.

One of the well-established electronic markets is operated by the German stock
exchange (Deutsche Borse) in Frankfurt, Germany. Deutsche Borse operates
an electronic trading platform called Xetra. Xetra is an order-driven system in
which agents can trade securities by entering certain order specifications through
a computer interface. A description of this interface along with the trading rules
may be found in a brochure distributed by Gruppe Deutsche Borse (01.07.2003).
In Xetra ask orders to buy and bid orders to sell securities are either traded
continuously or by multi-unit double auctions which take place several times
during a trading day. Despite the clarity of the Xetra’s trading rules, financial
markets literature so far has provided only little understanding of the nature of
price formation in electronic markets and its implication for possible investment
strategies. The price mechanism of electronic stock markets has intuitively been
described in Sharpe, Alexander & Bailey (1999), however without formal rigor.

This paper provides a first formalization of the price and allocation mechanism
of limit orders processed by auctions in Xetra. A primary goal of the present
paper is to provide a microeconomic foundation of investment strategies for Xetra
auctions. An auction in Xetra is composed of three phases: a call phase, a price
determination phase, and an order book balancing phase. During the call phase,
traders may enter ask orders and bid orders into the Xetra System. Orders will
be tagged with a time priority index and collected in an order book. There
is one order book for each security. The call phase has a random end after a
fixed minimum time period. It is followed by the price determination phase in
which the auction price is determined. As soon as the auction price has been
determined, orders are matched and transactions are carried out. If not all of the
orders can be fully executed, the surplus is offered again to traders in the order
book balancing phase. At the end of the auction process, all orders which were
not or only partially executed are forwarded to the next possible trading.



2 Call phase

We describe the auction of a single security by the Xetra System. As mentioned
above, a Xetra auction consists of three phases, a call phase, a price determination
phase and order book balancing phase. During the call phase, Xetra collects all
asks and bids for a security quoted by traders in an order book, labeled with a
time-priority index. Assume that there are I traders, indexed by ¢ € {1,..., [},
who submit bids and J traders indexed by j € {1,...,J} who submit asks.
For simplicity, assume also that each trader submits only one order such that
{1,...,1} is also the index set for bids and {1, ..., J} the index set for asks.

Orders in Xetra will be executed according to price/time priority, such that the
time index attached to an order determines its execution priority in the order
book. To formulate the model, we first focus on a convenient presentation of
individual bids and asks or, in other words, on individual demand and supply
schedules.

2.1 Demand-to-buy schedule (bids)

Each bid i consists of a price-quantity pair (a;, d;), where d; is the amount that
trader ¢ wants to buy and a; is the highest price per unit of security that she
is willing to buy. In other words, a; is the highest possible price at which the
bit (a;, d;) may be executed. A bid may be represented as an individual demand
function as follows. If 1 AP (p) denotes a characteristic function of the compact

interval AP = [0, ;] such that

1 when pe AP,
1,4{3(1?) = D
0 when pe Ry \ A7,

we define the individual demand function that represents a bid (a;,d;), i =
1,...,I by the step function

LRy =Ry, prdilyn(p), (1)

The aggregate demand function is defined as the sum of the individual demand
functions:

I
Op:Ry =Ry, p— Y LP(p). (2)
i=1
After a suitable renumbering we may assume without loss of generality that
ar > ...>as > a; > 0. Then we obtain the following lemma.



Quantity

L7 (p)
a; Price

Figure 1: Individual demand function for bid (a;, d;).
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Figure 2: Aggregate demand function.

Lemma 1. Let a; > ... > as > a; > 0. The aggregate demand function ®p(p)
s mon-increasing and takes the form:

dp(p) = Z aila(p), peERy, (3)

where o = Zi:zﬂ dg, 1 = 0,1,...,1 — 1, ay := 0 and Ay = [0,a4], A; =
(ai,aiﬂ], 1= 1,. . .,[ — 1, A[ = (a1,+oo).

Proof. {Aq,..., A} is by construction a partition of R, . Let 7, € {0,..., 1 —1}

>



be arbitrary but fixed. Then p € A, implies that all bids i = i, + 1,...1
. . . I

are executable. The corresponding aggregate bids volume is a;, = >, . di.

p € A; implies that no bids can be executed because p > a;. The corresponding

aggregate bids volume is a; = 0. This establishes the specific presentation of the

aggregate demand function. Since ag > o > ... > «ay, Pp is non-increasing. [

2.2 Supply-to-sell schedule (asks)

Each ask j consists of a price-quantity pair (b;, s;), where s; is the amount that
trader j wants to sell and b; is the lowest price per unit of the security that she
is willing to sell. In other words b; is the lowest possible price at which the ask
(b;, s;) may be executed. Analogous the bids, any ask may be represented as an
individual supply function as follows. If 1 BS (p) denotes a characteristic function

of the interval Bf = [bj, +00), the individual supply function that represents an
ask (b;,s;), j=1,...,J is given by the step function:

Quantity

L5 (p)

Price

Figure 3: Individual supply function for (b;, s;).

The aggregate supply function is defined as the sum of the individual supply
functions

J
Ps:Ry =Ry, pr ZL}G(P) (5)
j=1
Without loss of generality, let b; > ... > by > by > 0. Then we obtain the
following lemma:
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Figure 4: Aggregate supply function.

Lemma 2. Let by > ... > by > by > 0. The aggregate supply function ®g(p) is
non-decreasing and takes the form:

Ps(p) = Z Bils,(p) (6)

where By := 0, B; := Eizl Sk, forg=1,...,J;
and BO = [O,bl), Bj = [bj,bj+1), fOTj = 1, .. .,J— 1, BJ = [bJ,+OO)

Proof. {By,...,B;} is by construction a partition of R,. p € By implies that
no asks can be executable because p < b;. The corresponding aggregate asks
volume is By = 0. Let j, € {1,...,J} be arbitrary but fixed. Then p € B;,
implies that all bids j = 1,..., j. are executable. The corresponding aggregate
asks volume is §;, = > 7-, s;. This establishes the specific presentation of the
aggregate supply function. Since 55 > ... > 31 > [y, Pg is non-decreasing. [

3 Price determination phase

The call phase stops with a random end and is followed by the price determination
phase during which the auction price and the transaction are determined. In this
phase the order book is closed and no new orders will be accepted. The status
of the order book is then given by a collection of bids (a;,d;), i = 1,...,1 and
asks (b;,s;), 7 =1,...,J including the corresponding time-priority indices which
will be introduced later. In order to describe how he auction price determined

7



in the price determination phase, it is useful to represent the order book by its
associated aggregate demand and aggregate supply functions. An auction price
determined by Xetra has to obey two principles. First, it has to allow for the
highest order volume that can possibly be executed. Second, it has to be such
that the surplus of non-executable orders is minimal. The rules according to
which this auction price is stipulated are found on on page 32 in the brochure by
Gruppe Deutsche Bérse (01.07.2003):

A price which allows for the highest executable order volume and the lowest
surplus is called a candidate price.

Rule 1. The auction price is the candidate price if there is only one candi-
date price.

Rule 2. If there is more than one candidate price, then there are two cases:

Rule 2.1. If the surplus for prices satisfying Rule 1 is on the demand
side, then the auction price is stipulated as the highest candidate price.

Rule 2.2. 1f the surplus for the prices satisfying Rule 1 is on the supply
side, then the auction price is stipulated as the lowest candidate price.

Rule 3. If Rule 1 and Rule 2 can not determine a unique auction price, a
certain reference price P,y designated by Xetra is included as an additional
criterion. There are three cases with the reference price included.

Rule 3.1. The auction price is the highest candidate price if the refer-
ence price is higher than the highest candidate price.

Rule 3.2. The auction price is the lowest candidate price if the refer-
ence price is lower than the lowest candidate price.

Rule 3.3. The auction price is equal to the reference price if the ref-
erence price lies between the highest candidate price and the lowest
candidate price.

Rule 4. 1f Rule 1 to Rule 3 fail, there exists no auction price.

Notice that Rule 1 and Rule 2 do no apply, if there exists an excess supply for one
set of candidate prices and an excess demand for another set of candidate prices
or if there is zero surplus. Rule 4 implies that there could be no executable order
volume in Xetra such that no auction price exists. Only after an auction price
has been determined can the allocation mechanism be formulated. Thus, we first
formalize the price mechanism and then the allocation mechanism. In doing so
we first introduce the concept of an executable order volume and a surplus in
Xetra.



3.1 Executable order volume and surplus

Let p € Ry be some arbitrary price such that aggregate demand ®p(p) may be
unequal to aggregate supply ®s(p). Then only the minimum of ®5(p) and Pg(p)
could possibly be traded. The quantity which can be traded will henceforth be
called executable order volume and is defined by

(I)V . R+ — RJH p = mm{(I)D(p), (I)S<p)} (7)

The function (7) will also be referred as the trading-volume function. The high-
est executable order volume V., is the maximum value of the trading-volume
function and given by

Vinae := max {®y(p) | p € Ry }.

Notice that V.. exists and is finite: the image of the trading-volume function
®y, is a finite set because the images of ®p and &g have finitely many values.
The set of volume-maximizing prices is defined by

Q:={peR, | Pv(p) = Vinas}

In other words, each price p € (2 allows the executable order volume be maximal.
The excess demand function is, as usual, defined by

Pz(p): Ry =R, p— Pp(p) — Ps(p). (8)

The absolute value of the excess demand |®z(p)| is called surplus in Xetra.

3.2 Price mechanism

Since V4. 18 well defined, we may define the best bid price p and the best ask
price p conditional on V., by

= InaX{p S R-{- | (I)D(p) > Vmax}7 (9)
= min {p € Ry | Ps(p) > Vinaz }- (10)

s 3l

Notice that p and p are well defined since A;, ¢ = 1,..., I are right closed and
Bj,jg=1,...,J are left closed intervals. If the best bid price p is greater than
the best ask price p, then we say that the order book is crossed implying that an
executable transactions exist. On the other hand, if p < p, then the order book

is uncrossed and no transactions are executable. We have the following lemma:

Lemma 3. If V4, > 0, then p > p and the order book is crossed.



The proof of Lemma 3 is provided in the appendix. Lemma 3 shows that exe-
cutable order volume can be maximized, if the order book is crossed. The set of
volume-maximizing prices €2 takes the following form:

Proposition 1. If V., > 0, then Q2 = [p,p].

Proof. Since ®g(p) is a non-decreasing function and ®p(p) a non-increasing
function, we have

Ds(p)

v

(I)S<p) Z Vma:v forp Z D,

and
(I)D(p) > (I)D(ﬁ) > Vmaa} forp <

By definition of V,,,4,, this implies

3|

Py (p) = min{®p(p), Ps(p)} > Vinae for p € [p, pl.

Thus we have @y (p) = Vinae for p € [p,p] thus [p,p] C Q.
Now let p € Q be arbitrary. By definition of 2 and ® (p), we have ®5(p) > Viyaw

implying p > p and ®p(p) > Vinee implying p < p. Thus Q C [p,p] and hence
Q=[p,7 O

As can be seen from Proposition 1, there could be more than one volume-
maximizing price, if V.. > 0. Therefore, additional selection criteria have to
be applied, in order to determine a unique auction price from the set of volume-
maximizing prices [p,p]. The following theorem formalizes the determination of
an auction price in Xetra, applying the above cited matching rules.

Theorem 1. IfV,,,, > 0, then
if ®z(p)>0,

PXetra =43P Zf (I)Z(]_)) < 0, (11)
max{p, min{ P..s,p}} otherwise.

3l

Proof. Since V.. > 0, only Rule 1 to Rule 3 need to be considered. By
Proposition 1, the auction price in Xetra must lie in Q = [p, p|, the set of volume
maximizing prices. Using excess demand function, Rule 2.1 states that Pyerra =
p, if ®z(p) for all p € [p,p]. Since ®(p) > 0 implies

Op(p) = ®p(p) > P5(p) > Ps(p), forall p <P,

Rule 2.1 is equivalent to Pxewra = p, if ®2(p) > 0.

On the other hand, Rule 2.2 states that Pxeua = p if ®2z(p) < 0 for all p € [p, p].
By an analogous reasoning, Rule 2.2 is equivalent to Pxeuq = p, if ®z(p) < 0.

10



If the surplus is neither on the demand nor on the supply side, Rule 2 cannot
be satisfied and a reference price P,y comes into play. According to Rule 3, we
have Pxetrq = P if Prey > P (Rule 3.1), Pxetrq = p if p > Pry (Rule 3.2), or
Pxetra = Prey when > P,oy > p (Rule 3.3). This proves the theorem. O

Theorem 1 formalizes the price mechanism in Xetra. Given an order book with
bids (a;,d;)ies and asks (b;, s;);eg, & unique auction price Pxeyq is determined
by Theorem 1. The price mechanism is illustrated in Figure 5. Notice that €2
is reduced to one point, if p = p. In this case there exists only one volume
maximizing price Pyea = p = p which is market clearing such that the surplus
is zero. After determining ﬁXetraa we formulate the allocation mechanism.

Quantity
Ps(p)
—*
Vmaf 77777777777
®p(p)
D D Price

Figure 5: Price mechanism in Xetra.

3.3 Allocation Mechanism

When an order is submitted to the order book, it is labeled with a time tag which
determines the time priority with which it is executed. The time tag attached to
each order determines the ranking of execution in the order book. Given a Xetra
Price, executable orders are executed by time priority.

11



Denote the execution priority of bid i by ¢4(7), and the execution priority of bid
J by ts(j), respectively, where ¢4(i) € {1,...,I} and s(j) € {1,...,J}. The
position in the execution sequence of trader (bld) i then is 14(7), Wthh implies
that there are ¢4(7) — 1 bids which will be executed before i. Analogously, there
are t5(j) — 1 asks which will be executed before j.

The final transaction for each order is highly affected by its position in the execu-
tion sequence since Xetra applies the rule of First Come First Serve (FCFS)
for the order execution.! Given the fixed ranking of the execution sequence, a
bid ¢ will not be executed until all higher ranked bids are executed. The maxi-
mum feasible quantity that trader ¢ can get is therefore the quantity which higher
ranked traders have left over, that is, the positive difference between the highest
executable order volume ®y (Pxeq) and the aggregate executed order volume
before bid 7 is handled. The maximum feasible quantity for trader ¢ is given by

tq(i)—

E’iD(PXetra) = maX{O (I)V PXetra Z L‘-’ —1 PXetra)}7 (]-2)

where L;l(m) denotes the bid in position m. If the individual demand LP(Pxetra)
of trader 7 is less than LZD (Pxetra), then i is fully served and she receives

di if PXetra € [07 ai]7
0 otherwise.

L/ZD<PXetra> = {

If LP(Pxetra) is smaller than LP(Pxetrq) trader i can only be partially executed.
The final transaction is L2 (Pxetrq) and trader i is rationed. Denoting the final
transaction of trader i by X¢, we have

XU Pyoira) = mm{L?(PXetm), ﬁf’(PXetm)}, i=1,....1 (13)

For the supply side, the maximum feasible quantity for any arbitrary trader j is
the positive difference between the executable order volume ®y (Pyesrq) and the
aggregate executed order volume before ask j is handled. The maximum feasible
quantity for trader j is given by

ts(f)—

E‘E‘SV(PXetra) = maX{O (I)V PXetra Z L‘ 5—1 (n) PXetra)} (14)

where «;1(n) denotes the ask in position n. Denoting the final transaction for
trader j by X7, by an analogous reasoning, we have

X;(PXetra> = min{L]S<PX6tra)7Z“]S(PXetra)}7 .] = 17"'7J7 (15)

LFCFS is equivalent to the rule of First In First Out (FIFO).

12



where
S if Pxetra € [bj, +OO)
0 otherwise.

L]S(PXetra) = {

Notice that the aggregate final transaction of bids is equal to aggregate final
transaction of asks, that is,

1 J

ZXZ‘d(PXetra) - ZX;(PXetTa) - (DV(PXetTa) - Vmaa:~

i=1 j=1

Summarizing, the Xetra allocation mechanism for any given Xetra price Pxeirq
is given by

Xgi(PXetra) = min{Lf)(PXetra); Z/@'D<PXetra)}7 1= 17 cey I

i (16)
X;(PXetra> = min{ﬁ/f(PXetra)u L}S(PXetra>}7 .7 = 17 R J.

Also notice that the market-clearing situation is included as a special case in
which for all traders the individual demand L£P(Px.s) happens to be equal to
the final transaction X&(Pxesq) and the individual supply Lf (Pxetra) happens
to be equal to the final transaction X$(Pxetrq), that is:

LiD(PXetra) :XZ'd(PXetra), 1= 1,...,]

g . (17)
Lj (PXetra> :X;<PXetra)7 .]:17>J

3.4 Properties of the Xetra allocation mechanism

The Xetra allocation mechanism has some well-known properties of rationing
mechanisms, found in Benassy (1982) and Bohm (1989).

Voluntary Exchange. The property of voluntary exchange states that no
trader is forced to trade more than he claims. Intuitively, this property holds
in Xetra since traders can never trade a quantity that she did not claim. More
formally, (16) satisfies this property, because for all 7, j,

XZd(PXEtT’a) LiD(PXetra)a
X;(PXetm) < L}q(PXetm)-

IN

13



The Short-side Rule. An allocation mechanism is called ‘efficient’, or fric-
tionless, if no mutually advantageous trade can be carried out from the transac-
tion attained. This implies that traders on the short side of a market will realize
their desired transactions. 2 Combining the property of voluntary exchange and
market efficiency, we obtain the so-called ‘short-side rule’ stating that traders
on the short side will realize all of their effective demand (supply). Formally the
Xetra allocation mechanism (16) satisfies the short-side rule, if

(I)D<PXetra) Z (I)S<PXetra) = X;<PXetra> = LJS<PXetra)7 vjy (18)
(I)D(PXetra) S (DS(PXetTa) = Xz‘d(PXetra) - LiD(PXetra)a \V/Z (19)

By analogy, we only verify condition (18). Clearly, ®p(Pxetra) > Ps(Pxetra)
implies @y (Pxetra) = Ps(Pxetra) and hence

LS(j)_l

q)S<PXetra) - Z LLS;I(TL)(PXetra) Z L]S<PXetra)7 .] = 17 I J.

n=1

Therefore (18) holds.

Anonymity. Loosely speaking, a rationing mechanism is called anonymous, if
any two traders with the same characteristics attain the same final transaction. In
the Xetra case, for any two traders i and i’ with the same time priority and with
the same limit order L (Pxetra) = L7 (Pxetra) attain the same final transaction
X Pxetra) = X3(Pxetra). The same holds true for the supply side. Hence, the
Xetra allocation mechanism satisfies anonymity in that sense.

Notice, however, that the time priority concept of Xetra might by subject to
various influences which are beyond the control of the system in the sense of
queuing theory. In view of stochastic rationing mechanisms (Weinrich 1984),
then anonymity would hold only, if traders with the same orders attain the same
final transactions on average.

Manipulability. An allocation mechanism is called non-manipulable in quan-
tity if the trader, when he is rationed, faces a bound to his transaction which
depends solely on the quoted quantities of the other traders which he can not
manipulate. It is called manipulable in quantity if the trader can, when he is
rationed, increase his final transaction by increasing his quoted quantity. In-
tuitively, non-manipulability implies that the individual quantity quoted by a
trader has no impact on his maximum feasible quantity and vice versa.

2Benassy (1982) states that the ‘short’ side of a market is that side where the aggregate
transaction is smallest. It is thus the demand side if there is excess supply, the supply side if
excess demand exists. The other side is called the ‘long’ side.

14



In Xetra, traders face upper bounds LP(Pxese) and fJ]S (Pxetrq) for their final
transactions, should they be rationed. In the case of excess demand @ p(Pxeyra) >
®5(Pxetra), only traders on the demand side will be rationed. The maximum
feasible quantity of trader 7 is

(3)—1

’E’iD(PXetra) maX{O CI)S PXetra Z ’C’ _l(m) PXetra)}a 1= 17 .- '7]

which is independent of his individual quantity £ (Pyetra)-
Analogously, in the of case excess supply ®s(Pxetra) > Pp(Pxetra), only traders

on the supply are rationed. The maximum feasible quantity of trader j is

Ls]) 1

f"f(PXEtT’a) maX{O (I)D PXetra Z Lo i (n) PXetra)} i7=1...,J

which is independent of her individual quantity Lf(PXetm).

At first sight, this observation seems to imply that the Xetra mechanism is non-
manipulable in the above sense of classical rationing theory. However, since
traders do influence the price by submitted their limit orders, matters are more
complicated then the classical case which prices are assumed to be fixed.

To be continued ...

4 Conclusions

This paper provides a first formalization of the price and allocation mechanism
of limit orders processed by auctions in Xetra. This approach should be seen as a
first step towards a better understanding of electronic systems. It provides a basis
for the development and analysis of trading strategies in view of a more complete
understanding of the properties and the role of electronic markets. A primary goal
of the present paper will be to develop a microeconomic foundation of investment
strategies for electronic trading platforms and to establish a theoretical framework
for the dynamics of prices and allocations generated by these platforms.

To be continued ..

A Appendix

A.1 Proof of Lemma 3

We will now prove Lemma 3. Clearly, V., > 0 must be equal to some «;, or to
some [3;,. Therefore, we have two cases.

15



CASE I: V0. =, > 0.
We show that there exists some j* € {1,...,J} such that

Bix—1 < iy < B (20)

Since Viar = vy, there exists some p, such that ®p(p) < 5(p) and
Py (p) = min {®p(p), Ps(P)} = Pp(P) = @, > 0.

Let 3; = ®s(p). Notice that 7 > 0 since B; = ®5(p) > Pp(p) = iy > 0 = .
Set j* = min{j € {1,...,J} | B; > }. Since Bj+—1 < fj+, we have [« <
a;, < Bj+. This shows (20).

By the definition of ®(p) and ®g(p), there exists A;, = (a;,, a;,11] corresponding
to av, and Bj« = [b;«, bj«41) corresponding to §;+. Since ®p(p) is a non-increasing
function, it follows from (9) that
p=max{p [ Pp(p) = oo} = max{ p | p € Aig} = aig11.
Noticing that ®g(p) is a non-decreasing function and «a;, < §;+ from (20), (10)
implies
p=min{p | ®5(p) = a;,} = min{p | Ps(p) = Fj+} = min{p | p € Bj-} = b;-.

This shows that p and p are well-defined.

We are now left to prove p > p, that is, to prove a;+1 > bj-. Assume on
the contrary, that a;41 < bj-. Since 0 < a;, < Gigy1 < bj«, we have A; =
(@iy, @ig+1) C [0,b;5+) Since ®g(p) € {Bo, Br,- .-, Bj+—1} for p € [0,bj+_1) and ay, >
Bj=—1 > ... > [y, we have @y (p) < oy, for p € [0,b;-_1). Since A;, C [0,b;+), this
contradicts Vie: = .

CASE 1I: V,,,, = Bj, > 0.
We show that there exists some i* € {0,1,...,I — 1} such that

aieg1 < Bjg < e (21)
Since Viaw = Bj,, there exists some p, such that ®g(p) < @p(p) and
Py (p) = min {@p(p), Ps(p)} = s(p) = G, > 0.

Let a; = ®p(p). Notice that i < I since a; = ®p(p) > Ps(p) = Bj, > 0 = ay.

Let i* = max{i € {0,1,...,1 —1} | a5 > Bj, }. We have o y1 < Bj, < s
since ay« < a«11. This shows (21).
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By the definition of ®(p) and ®5(p), there exists B;, = (bj,, bj,+1] corresponding
to B, and A;+ = [a;+, a;+41) corresponding to ;.

Since ®p(p) is a non-increasing function and a1 < G, < oy« from (21), (9)
implies

p=max {p|Pp(p) = fj} = max{p | ®p(p) = ai-} = max{p[p € Ar} = @i s1.
Noticing that ®g(p) is a non-decreasing function, it follows from (10) that

p=min {p | Ps(p) = Bj,} =min{ p | p € Bj,} = bj,.

This shows that p and p are well-defined.

We are now left to prove p > p, that is, to prove a1 > bj,. Assume on the
contrary, that a;41 < bj,. Since a1 < bj, < bj,41 < +00, we have B;, =
(bjo bj0+1] C (@41, +00).

Since ®p(p) € {apy1,..., a1} for p € (@41, +00) and G, > @py1 > ... > ay,
we have @y (p) < @), for p € Bj,. Since Bj, C (a41,+00), this contradicts
Vinaz = Bj,-

The proof of Lemma 3 follows from CASE I and CASFE II. O
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