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Abstract

This paper introduces an extended bivariate autoregressive condi-
tional duration (ACD) framework for modelling the arrival process of
buy and sell orders in a limit order book. The model contains two
dynamic components to capture the observed clustering of durations
and limit order types: a duration process combined with a new logistic
“order-type” process, both depending on a common natural filtration.
It can be manifested that the state of the order book as well as the
success and the speed of the matching process have a significant in-
fluence on the bid/ask quotes, and thus, affect the traders´ decisions
when and on which side of the market to trade.

Key Words: Ultra high frequency transaction data, limit order
book, market microstructure, ACDmodel, dynamic logit model, bivari-
ate point process.

JEL Classifications: C14, C22, C32, C41.

1 Introduction

There is a large theoretical and empirical literature on the microstructure
of financial markets, boosted by the increased availability of ultra high fre-
quency transaction data. These time stamped data are characterized by one
main feature: the irregularity of time intervals between two observations. As
the time variable is considered as stochastic, the study of financial econo-
metric models requires an alternative method to ordinary (fixed-) time series
analysis. Based on the influential work by Engle and Russell (1998) and
Engle (2000) who successfully modelled this specific time structure, many
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studies have concentrated on the further improvement of autoregressive con-
ditional models, especially duration (ACD) and intensity (ACI) processes, in
order to describe the order book activities more accurately. Since the dura-
tion between transactions and the timing of a transaction itself heavily affect
the traders´ ordering decisions, they become important variables explaining
the development of intraday returns in financial markets. As illustrated in
Engle (2000) and Engle and Lunde (2003), the stochastic properties of the
trade arrival process and, in particular, their durations are a decisive reason
for volatility. But only examining the trade and its impact on prices and
returns is not enough: recent studies demonstrated the importance of the
quote´s timing and information content. It is often neglected that financial
electronical markets are designed for a rapid matching of buyers and sellers
of assets. Therefore, the statistical analysis of the dynamic market process
must incorporate the distribution of waiting times and the arrival frequency
of incoming orders. Whereas transaction data only mirror the state of the
order book at the intersection of the supply and demand side, quotes allow
us a deeper insight into the market participants´ prior intentions to trade.

A few recent studies explore electronic order books, taking a closer look
at the timing and the content of the quotes. Hall, Hautsch and MacCulloh
(2003), for example, run a probit regression to extract the factors driving
the traders´ bid and ask decisions. Modelling the joint intensity of the buy
and sell arrival process, they show in their empirical results that the state of
the order book has a significant influence on the bid and ask intensity. Al-
though their intensity approach is convenient for multivariate specifications
and time varying covariates, it is far less intuitive and forecasts are computa-
tionally burdensome (see also Russell (1999), Bowsher (2002), Bauwens and
Hautsch (2003)). In contrast, Engle and Lunde (2003) use two time scales
in their analysis. They treat the arrival of trades and succeeding quotes as
a bivariate, dependent point process. The arrival of each event type is influ-
enced by the past history of both processes and other market information.
Due to the combination of trade and quote data, a complicated situation
arises. This makes the specification of the dependence between duration
pairs very difficult and clearly shows that the common ACD model has its
limits: the weakness of this kind of models is that they are not suitable for
multivariate specifications, because one must condition on the information
available at the beginning of each duration. In contrast to an intensity pro-
cess, it is difficult (in a multivariate duration process) to take into account
new information during the actually lasting waiting time.

This paper solves this problem by introducing an extended ACD model
considering all points of both the trade and quote processes without any
distinction between bid-, ask- and trade durations, as shown in figure 1.
Since transactions are always initiated by either an ask or a bid limit order
(in the continuous trading phase), it is sufficient only to record the arrival
times of all incoming orders and their type. A simple Generalized Gamma-
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Figure 1: All event points

ACD(2,1) model was used to capture the empirically often observed duration
clusters. Additionally, to restore the respective type of a limit order and its
contents, an innovative “dynamic logistic process” is affixed to the ACD
model. A further advantage of this model is that it does not only allow
the prediction of the next order type given the past history, but also easily
solves the “zero-duration” problem that often occurs, when, for example, a
high demand cannot be satisfied by one single supplier and, therefore, must
be divided into n transactions, all executed at one point of time, as shown in
figure 2. In univariate models, the “zero-duration” problem is often eluded
by aggregating n transactions or, worse, eliminating n− 1 transactions.

Figure 2: Aggregated transactions

Contrary to Engle and Lunde (2003), where two duration process are
modeled jointly, the model suggested in this paper is much easier to handle:
there is (a) one duration process that captures the whole time structure and
(b) an “order-type” process containing the remaining information of the or-
der book. Technically speaking, it is like Pohlmeier and Liesenfeld´s Integer
Count Hurdle model (2003) or Engle and Russell´s Autoregressive Condi-
tional Multinomial model (2002), both decomposing the general transaction
price process into binary processes indicating the size and the direction of
price changes and a count process for the size of the price change conditioned
on the direction of the price change.

The main objective of this paper is to investigate the arrival process of
bid and ask limits and to discover what determines the traders’ decisions
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when and on which side of the market to trade. To achieve this aim, the
author jointly models the dynamics of the duration process of all time-
stamped event arrivals in the order book as well as its influences on the
stochastics of the order type process. As Engle and Lunde found out, quotes
and trades tend to cluster in time in both a deterministic and stochastic
way. In comparison to other approaches, this bivariate model is easier to
compute and to estimate due to its linear AR structure interlocked twice in
the specification.

The outline of this article is as follows: In section 2 the model is intro-
duced and described. Section 3 shows the smoothing technique and discusses
the ML estimation procedure. In section 4 the data and the empirical res-
ults will be presented, especially with respect to the economic implications.
Section 5 concludes.

2 The Extended ACD-Model

As high frequency data arrive in irregular time intervals, researchers are
concerned not only with the variable of genuine interest (i.e. price, quote,
volume), but also with the arrival time of each event. Generally, transaction
data can be described by two types of random variables. The first one is
the time T of the transaction and the other one is the observation Z (called
marks) linked with T . Consider the arrival times

t0, t1, t2, ...

with ti ∈ R≥0∀i, as random variables distributed in time by a point process.
Here (ti)i∈N is the sequence of arrival times of an incoming order, not neces-
sarily a transaction. (When and why an order initiates the execution of one
or more transactions will be discussed later.) It is convenient to introduce a
counting function N(t) which simply indicates the number of event arrivals
that have occurred at or prior to time t. This will be a monoton-increasing
step function with unit increments at each arrival time. Obviously, N(t) is
a simple jump process with N (t0) = 0. Further, define the filtration

F0 ⊆ F1 ⊆ ... ⊆ Fi−1 ⊆ Fi = σ (t0, t1, ..., ti)

with F0 = {∅,Ω}. Thus Fi is the σ-field generated by all time random
variables observed till ti. The instantaneous probability of an event at t is
called the intensity of the process. In time dependent processes this intensity
is obtained by conditioning on past information. Define the conditional
intensity of a process as

λ
¡
t|N (t) , t1, t2, ..., tN (t)

¢
= lim

∆t→0
P
¡
N (t+∆t) |N (t) , t1, t2, ..., tN(t)

¢
∆t

.
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This function provides a complete description of the point process´ full dy-
namics and is similar to the hazard rate, which is often used in survival
analysis and technometrics (see, for example, Cox and Oakes (1984) or Lan-
caster (1990)). Now let

Xi = ti − ti−1

with t0 = 0, where Xi is the i-th duration between the i-th and (i − 1)-th
incoming order. The crucial assumption for ACD models is that the depend-
ence structure can be summarized by one function, namely the conditional
expected duration Ψi, adapted to the filtration Fi−1. Therefore let

E (Xi|Fi−1) ≡ Ψ (Xi|Xi−1, ...,X1; θ1)

= Ψi

= ω + α1Xi−1 + ...+ αpXi−p + β1Ψi−1 + ...+ βqΨi−q

= ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k.

where the parameters ω,α1, ..., αp, β1, ..., βq are all included in θ1. It is clear
that the probabilistic structure of the conditional duration Ψi is similar to
that of a GARCH process and, hence, this class of models are also called
“autoregressive conditional”, characterized by the lag length of the past
durations (ACD(p,q)). Such as in an Accelerated Failure Time model it is
now assumed that

Xi = Ψi · εi
with

εi
i.i.d.∼ f (εi|Fi−1; θ1) = f (εi; θ1) .

The main property here is that the errors εi = Xi
Ψi
are independent and

identically distributed random variables with the probability density func-
tion f (.), which must be specified. While Engle (2000) preferred an Expo-
nential or a Weibull distribution, other authors favoured more flexible al-
ternatives like the Burr- or F-distribution (Fernandes and Grammig (2000),
Hautsch (2002)). Of course, this density must have a non-negative support.
In this paper a generalized gamma distribution

fGGamma (εi;θ1) = fGGamma

µ
Xi

Ψi
;θ1

¶

=
γ

Xi · Γ (λ)

Xi

Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γλ

· exp
−

Xi

Ψi
·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ
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is used, where λ is the shape parameter and γ the scope parameter of the
density function (both included in θ1). Further assume that εi are inde-
pendent of Xi. Since the durations and expected durations are positive, the
multiplicative disturbance naturally will have positive probability only for
positive values and it must have a mean of unity

E (εi) = 1

V ar (εi) = σ2ε.

This assumption requires all temporal dependence of the durations to be
captured entirely by the mean function. This hypothesis is testable in prac-
tice by using the standardized durations. Usually different duration models
for transaction data are developed via the dependence of the conditional ex-
pectation on the past durations. Hence, several new types of ACD models
can be created by varying the the functional form g (.) of the conditional
mean equation:

Xi = g (Ψi) · εi
= g (E (Xi|Xi−1, ...,X1; θ1)) · εi

Bauwens and Giot (2001), for example, introduced the Log-ACD with two
possible modifications. Certainly, alternative nonlinear dependence struc-
tures are also possible (Fernandes and Grammig (2000), Bauwens (2000)).

The simple ACD model as the most common approach accommodates
duration clustering through the time dependency of durations and represents
in its simplest form a time series model of time, making it relatively easy to
understand. It is a dynamic point process model in which the conditional
expectation is written as a linear function of past durations. But often there
are additional observations Zi = (Z1,i, ..., Zm,i) associated with the arrival
times t. For financial transaction data, a plethora of information is linked
with the time stamps (including price, volume, bid and ask quotes, depth,
etc.). In this case, the new point process (ti,Zi)i∈N will become “marked”.
Depending on the economic question at hand, either the arrival time, or the
marks, or both may be of interest. Since the marks associated with the i-th
arrival time are not included in Fi, define a more comprehensive filtration
F∗i representing a σ-field that contains all past arrival times and marks till
ti

Fi ⊂ F∗i = σ (t0, t1, ..., ti;Z0,Z1, ...,Zi) ∀i.
The ACD model is modified by including the marks Zi in the mean equation
in order to model the time structure more accurately. However, it turns out
that the linear specification

Ψi = ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k +
rX

l=1

mX
w=1

τwZw,i−l
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is insufficient, as the order types will be included in the vector of marks.
To analyze the cluster structure of order types, one needs a (non-linear)
function Λ (.) that is able to describe the type of the incoming limit orders
at first. Therefore, denote

Yi = i-th order type signaling the market side of the trader

=

½
0
1

if order = ask-limit
if order = bid-limit

.

Obviously (ti, Yi)i∈N is also a marked point process. Since Yi is a dummy
variable representing the market side at ti, one has to model its binary
marks by their respective probabilities. (Besides, it is numerically difficult
to differentiate between one “zero” observation and a longer zero-string,
which means that the cluster structure would get lost if one uses a count
model.) Assume that the probability of a bid-order conditional on Zi−1is
given by the following logit model

P (Yi = 1|Zi−1) ≡ Λ (Zi−1τ )

=
exp (Zi−1τ )

1 + exp (Zi−1τ)

with

Zi−1τ =
mX

w=1

τwZw,i−1

= τ1Z1,i−1 + τ2Z2,i−1 + ...+ τmZm,i−1.

Here, Λ (.) is the distribution function of the standard logistic distribution,
often used in panel data and microeconometrics. Moreover, from the prob-
ability of an ask order

P (Yi = 0|Zi−1) = 1− Λ (Zi−1τ )
=

1

1 + exp (Zi−1τ)

one may derive (see Johnson, Kotz and Balakrishnan (1995))

P (Yi = yi|Zi−1) = P (Yi = 1|Zi−1) · P (Yi = 0|Zi−1)
= Λ (Zi−1τ ) · [1−Λ (Zi−1τ )]
= fLogistic (Zi−1τ )

which is very important for the model´s joint density later on. The stat-
istical problem is to estimate the probability of an order type dynamically,
which requires (a) to specify the stochastic process of their arrival times,
(b) to estimate all parameters recursively and then (c) to compute the like-
lihood function. To reconstruct the original structure of the order book
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more accurately, as shown in figure 2, it is recommended to generate cer-
tain indicators measuring the temporal distance and the state of the order
queue. Therefore, first introduce a new integer variable Ci summarizing the
number of asks (bids) at time ti since the last bid (ask). It is obvious that

Ci is a right-continuous counting process N
³
tTypei

´
, cumulating the number

of clustering orders of the same type on each market side until ti

CBid
i = N

³
tBidi

´
=

½
0
CBid
i−1 + 1

if last order is ask-initiated
if last order is bid-initiated

CAsk
i = N

³
tAski

´
=

½
0
CAsk
i−1 + 1

if last order is bid-initiated
if last order is ask-initiated

In case of an order type alteration, this counting variable will be reset to zero
for the corresponding side (although there could be more unmatched orders
since the last transaction). As a proxy for the buyers´ and sellers´ trading
intensity, its aim is to measure the length of the actually queueing bid and
ask limits in the order book. To display the temporal distance between the
order types, one can introduce two new interesting duration variables

DurAski = (cumulated) waiting time since the last ask order

=

½
Xi

DurAski−1 +Xi

if last order is also ask-initiated
if last order is bid-initiated

DurBid
i = (cumulated) waiting time since the last bid order

=

½
Xi

DurBidi−1 +Xi

if last order is also bid-initiated
if last order is ask-initiated

.

Certainly, one could include additional regressors into the logit model (the
real length or the cumulated volume of the bid/ask order queue, the volume
of trades or the bid—ask spread, etc).

To model the order-type clusters, the order type probability is condi-
tioned on the natural filtration F∗i in a recursive manner, similar to the
idea of GARCH and ACD. To emphasize the analogy of this “autoregress-
ive conditional logit” model with the common ACD(p,q) , denote a general
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ACL(u,v) model as

P
¡
Yi = 1|F∗i−1

¢ ≡ Λ (Yi|Yi−1, ..., Y1,Zi−1, ...,Z1; θ2)
= Λi

= Λ

 uX
j=1

α0jYi−j +
vX

k=1

β0kΛi−k +
rX

l=1

mX
w=1

τwZw,i−l


=

1 + exp
−

 uX
j=1

α0jYi−j +
vX

k=1

β0kΛi−k +
rX

l=1

mX
w=1

τwZw,i−l

−1 .
Of course, one may add further covariates to improve the model´s fit or
use other suitable distribution functions. In this paper the following simple
ACL(1,1) specification is considered

P
¡
Yi = 1|F∗i−1

¢
= P

¡
Yi = 1|F∗i−1;θ2

¢
≡ Λi

= Λ
¡
α01Yi−1 + β01Λi−1 +Z

∗
i−1τ

¢
with

Z∗i−1τ = τ1C
Ask
i−1 + τ2C

Bid
i−1 + τ3DurAski−1 + τ4DurBidi−1

and the parameter vector θ2 =
¡
α01, β

0
1, τ1, τ2, τ3, τ4

¢
. It should be stressed

that Λi is a time varying probability of the order type.
The ACL model and the ACD model are intertwined as follows

Xi = Ψ∗i · εi
=

³
Ψi + δ1Λ

Bid
i−1 + δ2Λ

Ask
i−1
´
· εi

=

ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k + δ1Λ
Bid
i−1 + δ2Λ

Ask
i−1

 · εi
and therefore

E
¡
Xi|F∗i−1

¢ ≡ Ψ (Xi|Xi−1, ...,X1;Λi−1, ...,Λ1;θ1,θ2)
= Ψ∗i

= ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k + δ1Λ
Bid
i−1 + δ2Λ

Ask
i−1

= ω +

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k + δ1Λi−1 + δ2 (1−Λi−1)

= (ω + δ2)| {z }
ω0

+

pX
j=1

αjXi−j +
qX

k=1

βkΨi−k + (δ1 − δ2)| {z }
δ

Λi−1
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with

Λi =

1 + exp
−

 uX
j=1

α0jYi−j +
vX

k=1

β 0kΛi−k +
rX
l=1

mX
w=1

τwZw,i−l

−1 .
And of course, one can consider other nonlinear functional forms of the
mean equationΨ∗i . To keep the computational burden acceptable, this paper
concentrates on a GGamma-ACD(2,1) combined with an ACL(1,1). This
bivariate model in its simplest form already contains a parameter vector θ
of 13 elements

Ψ∗i = ω0 + α1Xi−1 + α2Xi−2 + βΨ∗i−1 + δΛi−1 (1)

and

Λi = Λ(α01Yi−1 + β01Λi−1 + τ1C
Ask
i−1

+τ2C
Bid
i−1 + τ3DurAski−1 + τ4DurBidi−1). (2)

In this new bivariate model, the main dependence structure is captured by
(1) and (2), each containing and influencing the information for the other
process, both adapted to the filtration F∗i . The joint distribution is specified
as

FXi,Yi (xi, yi) = FXi|Yi=yi,F∗i−1 (x) · FYi=yi|F∗i−1(y)
that leads to the following interesting mixed density function

fXi,Yi (xi, yi) = fXi|Yi=yi,F∗i−1 (x) · fYi=yi|F∗i−1(y)
= fXi|Yi=yi,F∗i−1 (x) · ([Λi] · [1− Λi])
= fXi|Yi=yi,F∗i−1 (x)| {z }

fGGamma

· P ¡Yi = y|F∗i−1
¢| {z }

fLogistic

.

3 Estimation and Inference

It is well-known that financial markets pass through hectic periods of in-
creased activity as well as calm slowdowns, reflecting different degrees of
liquidity of the asset. Former studies have found a persisting diurnal pat-
tern of trading activities over the course of a trading day, as shown in figure
3, due to the institutional characteristics of organized financial markets (like
predetermined opening and closing hours or intraday auctions). As the rate
of information arrival will also vary over the trading day, one has to pay
regard to this regular daily seasonality. Therefore, smoothing techniques
are required to get deseasonalized observations. In this paper a nonlinear
kernel regression with a bandwidth hT of 10 minutes was performed. It
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was assumed that the diurnal seasonal component can be computed by the
Nadaraya-Watson estimator. Let X̃i denote the observed duration, then

Xi :=
X̃i

m (ti)
,

with

m (ti) = E
³
X̃i|ti

´
=

Pn
i=1 x̃i ·K

³
t−ti
hT

´
Pn

i=1K
³
t−ti
hT

´
and K (.) = Gaussian kernel function, is the deseasonalized duration.

Figure 3: Diurnal pattern

To estimate the bivariate model, one must maximize the two likelihood
functions jointly. To ensure the stationarity of the process, one must take
care of the very restrictive constraints for the ACD part, in general

ω > 0

αj, βk, δ ≥ 0 ∀j, k
pX

j=1

αj +

qX
k=1

βk + δ < 1

or, in this study

ω0 > 0

α1, α2, β, δ, α
0, β0 ≥ 0

α1 + α2 + β + δ < 1.
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The likelihood of the Generalized Gamma-ACD part is

LACD = L (x1, ..., xn;θ1)

=
nY
i=1

fGGamma

¡
xi|F∗i−1;θ1

¢

=
nY
i=1

γ

xi · Γ (λ)

 xi
Ψ∗i

·
Γ
³
λ+ 1

γ

´
Γ (λ)

γλ

· exp
−

 xi
Ψ∗i

·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ
from which one can derive the log-likelihood

LACD = lnL (x1, ..., xn;θ1)

=
nX
i=1

ln
¡
fGGamma

¡
xi|F∗i−1;θ1

¢¢
=

nX
i=1

ln

µ
γ

xi · Γ (λ)
¶
+ γλ · ln

 xi
Ψ∗i

·
Γ
³
λ+ 1

γ

´
Γ (λ)

−
 xi
Ψ∗i

·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ

where λ and γ are the specific parameters of the density function (both
included in θ1) and

Ψ∗i = ω0 +
pX

j=1

αjXi−j +
qX

k=1

βkΨi−k + δΛi−1.

Further, the likelihood-funktion of the dynamic logit model is

LACL = L (y1, ..., yn;θ2)

=
nY
i=1

fLogistic
¡
yi|F∗i−1; θ2

¢
=

nY
i=1

[Λi]
yi · [1− Λi](1−yi)

or in the logarithmic form

LACL = lnL (y1, ..., yn;θ2)

=
nX
i=1

ln
¡
fLogistic

¡
yi|F∗i−1;θ2

¢¢
=

nX
i=1

yi · ln [Λi] + (1− yi) · ln [1− Λi]

with

Λi =

1 + exp
−

 uX
j=1

α0jYi−j +
vX

k=1

β 0kΛi−k +
rX
l=1

mX
w=1

τwZw,i−l

−1 .
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In general, the likelihood function of the bivariate model is

LBIV = L ((x1, y1) , ..., (xn, yn) ;θ1,θ2)

=
nY
i=1

fGGamma

¡
xi|F∗i−1;θ1

¢ · fLogistic ¡yi|F∗i−1;θ2¢ .
Taking the logarithm, one gets

LBIV = lnL ((x1, y1) , ..., (xn, yn) ; θ1,θ2)

=
nX
i=1

ln
¡
fLogistic

¡
yi|F∗i−1;θ2

¢¢
| {z }

LACL

+

nX
i=1

ln
¡
fGGamma

¡
xi|F∗i−1;θ1

¢¢
| {z }

LACD

.

Referring to the ACD(2, 1) ×ACD(1, 1) model presented in section 3, the
functions to be maximized jointly are

LACL =
nX
i=1

yi · ln
"

1

1 + exp
¡− ¡α01Yi−1 + β01Λi−1 + Z∗i−1τ

¢¢#| {z }
=Λi

+(1− yi) · ln
"

1

1 + exp
¡
α01Yi−1 + β01Λi−1 +Z∗i−1τ

¢#| {z }
=1−Λi

and

LACD =
nX
i=1

ln

µ
γ

xi · Γ (λ)
¶
+γλ·ln

 xi
Ψ∗i

·
Γ
³
λ+ 1

γ

´
Γ (λ)

−
 xi
Ψ∗i

·
Γ
³
λ+ 1

γ

´
Γ (λ)

γ

with
Ψ∗i = ω0 + α1Xi−1 + α2Xi−2 + βΨ∗i−1 + δΛi−1

and
Z∗i−1τ=τ1C

Ask
i−1 + τ2C

Bid
i−1 + τ3DurAski−1 + τ4DurBid

i−1 .

4 Dataset and Empirical Results

The dataset is extracted from the order book of the German XETRA system
for the Deutsche Telekom stocks. The sample includes 143514 observations
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from 31st July until 1st September 2000, in total 25 trading days in 5 weeks.
The daily trading hours were from 9 a.m. to 8 p.m., interrupted by (at
least) two intraday auctions at 1.p.m and 5 p.m. (each lasting at most 120
seconds), as visible in figure 3. The Xetra dataset allows the reconstruction
of all quotes and resulting trades, for it contains detailed information on
time stamped transaction data. They not only indicate whether the trade
is buy or sell initiated but also give almost complete information about the
volume of the bid and ask orders. The particular time stamp of bid/ask-
orders is also available. (A quote consists of four numbers, a bid and an ask
price, and a bid and an ask quantity, called the quoted depth.) The CML-
procedure of the Aptech software GAUSS 5.0 was used for joint estimation
of the model (1) and (2).

An understanding of the time varying speed of transactions is important
in practice in order to determine when to enter the trading platform to
exhaust the temporarily existing consumer/producer surplus in the market.
This is possible due to different pricing strategies of asymmetrically informed
traders. According to the market microstructure theory, uninformed mar-
ket participants deduce information in the market from the trading process.
Thus, the trading process (not ordering) itself serves as a source of informa-
tion, and necessarily traders take part to update their knowledge. Knowing
the news means reducing the risk. So interesting economic questions for
traders are: When will the next event happen? What value should we ex-
pect for the mark at the next arrival time? The more information there is
in the market the faster they have to react. Estimating the bivariate model
proposed above, the ACD part (1) shows the following results:

E
¡
Xi|F∗i−1

¢ ≡ Ψ∗i
= ω0 + α1Xi−1 + α2Xi−2 + βΨ∗i−1 + δΛi−1

with

θACD
ω0 0.0061139728
α1 0.1479250780
α2 −0.0782757184
β 0.9219252455
δ 0.0084253949

Empirically, we can clearly see the time dependent (“inter-order”) duration
cluster, which means that there is a noticeable pattern in order book data:
long durations tend to be followed by long durations and short durations
tend to be followed by short durations, discernible in figure 4. But the ACD
part of the model only describes the temporal distances between events,
without distinguishing between different kinds of events.
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Figure 4: Estimated durations

We must have in mind that only different activities of different market
participants make trade possible (one sells, one buys) and are the major
source of volatilities. The next aim is to investigate the market side from
which we observe activities. New questions would be: When will the next
event happen and ’where’? How long should we expect to wait for a particu-
lar type of event to occur? What value should we expect for the mark influ-
enced by which market side? As Engle and Lunde (2003) found out, quotes
and trades tend to cluster in time in both a deterministic and stochastic
way. In this paper, the results of the ACL part (2) of the model show that

P
¡
Yi = 1|F∗i−1

¢
= Λ(α01Yi−1 + β01Λi−1

+τ1C
Ask
i−1 + τ2C

Bid
i−1 + τ3DurAski−1 + τ4DurBidi−1)

with

θACL
α01 0.1763916229
β02 0.4681478040
τ1 0.0242570517
τ2 −0.0333822391
τ3 0.0070851030
τ4 0.0104013503

The probability of a bid order will become larger, if the last order type was
a bid , α0 > 0. Further, the bid order probability will be the larger, (a) the
larger the preceding bid order probability, β 0 > 0, (b) the longer the ask
queue, τ1 > 0, (c) the shorter the bid queue, τ2 < 0, and (d) the longer ago
the last bid/ask order.

According to the theoretical findings, the total volume in the particular
queues characterizes the demand and supply side. The traded quantities
on the particular sides of the market are strong proxies for the existence of
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information at the current time. Usually the difference between the transac-
tion price and the current midquote characterizes the depth associated with
the last transaction. The higher this difference is, the more volume is ab-
sorbed from the particular queue (order type cluster) which should decrease
the probability of the occurrence of a trade of the same type in the next
instant (no cluster). All estimates and their standard errors are reported in
the following table:

sample size = 143514.000 E (εi) = 1.0002528782
likelihood = -237600.5829912351

parameter coefficient std. error t-value
θACD = θ1

ω0 0.0061139728 0.0005902272 10.3586765997
α1 0.1479250780 0.0041761731 35.4212036369
α2 −0.0782757184 0.0054561849 −14.3462364020
β 0.9219252455 0.0026782565 344.2259029341
δ0 0.0084253949 0.0004938009 96.4060767646

fGGamma

γ 0.6003136836 0.0062269278 54.4953617999
λ 2.1312924787 0.0391096124 17.0623309274

θACL = θ2
α01 0.1763916229 0.0119725800 14.7329666874
β02 0.4681478040 0.0068992552 67.8548324923
τ1 0.0242570517 0.0008502534 28.5292034568
τ2 −0.0333822391 0.0011153979 −29.9285464747
τ3 0.0070851030 0.0003137292 22.5834984107
τ4 0.0104013503 0.0002278614 45.6477016957

5 Conclusion

This paper develops a bivariate modelling framework for analyzing the ar-
rival process of ask and bid orders in an electronic order book market. The
econometric approach consists of two parts: In the first step, a simple lo-
git model is run in order to analyze the determinants of the order type´s
transition conditioned on the past durations and the last state of the order
book. In the second step, in order to recover the whole temporal structure
of all time stamped events, the common ACD model is extended by affixing
the dynamic logit model and additional covariates. The main idea is to base
both conditional functions on two components jointly, one to model duration
clusters, one to describe the order type with a time dependent probability
function revealing the information flow and trading activity of the market.
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Using detailed transaction data from the German XETRA system, a
few new counting variables are generated as further time varying covariates
reflecting the state of the order book. The empirical results show that char-
acteristics associated with previous orders and durations as well as the last
state of the order book have a significant impact on the traders´ decisions
when to trade and on which side of the market. Obviously, traders pay
strong attention to the order arrival process and the corresponding queues
of the order book. The inclusion of the dynamic logit component substan-
tially improves the fit of the original ACD model, providing deeper insights
into the joint market dynamics.
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