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Abstract

We show that given a value function approximation V of a strongly
concave stochastic dynamic programming problem (SDDP), the asso-
ciated policy function approximation is Holder continuous in V.

Using this result, we obtain explicit error bounds for the approxi-
mations of the optimal policy function. The error bounds only depend
on the primitive data of the problem. Neither differentiability of the
return function nor interiority of solutions is required. Furthermore,
similar error bounds are obtained when the maximization in the Bell-
man equation and the computation of the associated policy function
are performed inexactly.

A stopping criterium for computational implementations is found
using these error bounds and the contraction mapping defined from
the SDPP.
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1 Introduction

In stochastic dynamic programming problems (SDPP), Bellman’s Principle
of Optimality allows to define an estimated optimal policy function using a
value function approximation. It also defines a contraction mapping which
provides an efficient algorithm to approximate the value function with high
precision. However, until now, only asymptotic convergence results (without
numerical error bounds) were obtained for the sequence of policy function
estimates found with this algorithm, (Christiano [4], Tauchen [14]). For
example, Stokey and Lucas with Prescott [13]( Theorem 9.9) established
pointwise convergence (and uniform convergence if the domain is compact)
to the optimal policy function under the assumption of strict concavity of
the return function.

In this paper we prove that the policy function estimate obtained from
the Bellman Principle of Optimality is a Hoélder continuous function on the
approximated value function. This Hélder continuity property allows us to
obtain an explicit error bound for the estimated policy function.

There exist other approaches for obtaining good estimates for the optimal
policy function. For example, the Fuler equation grid method (Baxter et al.
[1], Coleman [2, 3]), the parameterized expectations method (Marcet and
Marshall [7]) and projection methods (Judd [5]). Again, only asymptotic
convergence to the optimal policy function was proved for these methods.

Bounds for the distance between the optimal policy function (of the
original problem) and the exact optimal policy function of a discretized
(piecewise linear) version of the problem were obtained by Santos and Vigo-
Aguiar [12]. In Santos [11], Euler equation residuals were used to obtain
error bounds for an approximated policy function. Either an assumption
on the repeated iterations of the approximated policy function (condition
NDIV) or a bound on the second derivative of the return function evaluated
at the optimal policy function was necessary. In both papers, [11] and [12],
existence of interior solutions, twice differentiablity of the return function
and strong concavity of this function with respect to the second variable
were also required.

The error bounds presented in this paper only require boundedness of
the return function and its strong concavity in either the first or the second
variable. Neither differentiability of the return function nor existence of
interior solutions is required to obtain our results.

We also prove the robustness of error bounds formulae by considering
the use of an inexact operator defining the contractive method or inexact
solutions in each maximization process.

Our result has a practical consequence: if the contraction method (de-
fined by the value function iterations) is used to approximate the policy
function then the number of iterations required to attain a given precision



may be computed in advance, using only some primitive data of the problem.

This paper is organized into five sections. Section 2 describes the frame-
work and the hypotheses that we will consider. Section 3 states the Holder
continuity of the policy function approximation and as a consequence, an er-
ror bound for the approximated policy function is provided. Section 4 shows
the robustness of the error bounds under small numerical errors. Conclu-
sions are given in Section 5 and the proofs are in the appendix.

2 The framework

The stochastic dynamic programming problem (SDPP) is defined using the
following elements: the set of values for the endogenous state variables X C
R! (which is a convex Borel set), the set of values for the exogenous shocks
7 C R* (which is a compact set); both are measurable spaces with their
o-algebras denoted by X and Z respectively. The evolution of the stochastic
shocks is given by the transition function @ defined on (7, Z) with the Feller
property. A (measurable) set  C X x X X Z describing the feasibility of
decisions, i.e. if (x,2) € X x Z are the current values of the state variable
and the shock then y € X is feasible for the next period if and only if
(x,y,2) € Q. From this we can define the correspondence I' : X x Z — R! by
[(z,z) ={y € X; (z,y, z) € Q}. The one-period return function /' : @ — R
is such that F(z,y, z) is the current return if y is chosen for the next period
from (x,z). The discount factor is 8 € (0,1). With all these elements, the
SDPP is to find a sequence of contingent plans (Z¢)¢>1 (where for all ¢ > 1,
#¢ : Z' — X is a measurable function) such that it solves the following
maximization:

v(zo,20) = Max Z t B F (24, 7041, 2) Q (20, d2")
t=0 /%

subjecg to (x¢,xe41,2¢) € Qforall £ >0
(z0,20) € X X Z given

Let us recall the definitions of strong concavity (see [8]):

Definition 2.1 Let f(x) be defined on a convex set X CR", and a > 0.
The function f(x) is a-concave if f(z) + (1/2)al|z||? is concave on X,
or, equivalently, if for all x1,29 € X and t € [0,1],

Jltay + (1= Ox) = £ (1) + (1= 1) (w3) + (/211 = D]}as — ]

Definition 2.2 Let U(x,y) be defined on a convex set D C R™ x R", and
a > 0.



The function U(x,y) is ay-concave on D if U(z,y)+a/2 ||z||? is concave
in D, or, equivalently, if for all (z1,y1),(x2,y2) € D and t € [0,1]

Ulter + (1 = t)zo, tyr + (1 —t)y2) > tU(z1,y1) + (1 = )U(x2, v2)
+ (/211 = 1) ]|z1 — 22| ?

The function U(z,y) is ay-concave on D if U(z,y)+a/2 ||y||? is concave
in D, or, equivalently, if for all (z1,y1),(x2,y2) € D and t € [0,1]

Ulter + (1 = t)zo, tyr + (1 —t)y2) > tU(z1,y1) + (1 = )U(x2, v2)
+ (/2)t(1 = ) |lyr — 2|?

An a-concave function is also called a strongly concave function, with
modulus . Analogous expressions are used for a, and o, concave functions.
The following hypotheses will be used in this work.

Hypothesis 1. The correspondence I' is nonempty, compact-valued, con-
tinuous and for all z,2°€ X, z € Z and ¢t € [0, 1] it satisfies:

t(z,2) + (1 —t)I'(z, 2) C Ttz 4+ (1 — t) 2).

Hypothesis 2. The function F' is bounded, continuous and there exists
71 > 0 such that, for each z € Z, (z,y) — F(x,y, ) is (m)z-concave.

As an alternative to Hypotheses 2, we will use

Hypothesis 3. The function F' is bounded, continuous and there exists
n2 > 0 such that, for each z € Z, (z,y) — F(x,y, 2) is (12),-concave.

Hypothesis 1 as well as boundedness and continuity of I’ are quite gen-
eral in models with bounded returns and technologies with non-increasing
returns. A discussion on the hypotheses of strong concavity of the return
function is presented at the end of Section 3.

Under these assumptions, the value function v is well-defined and satisfies
|v]loo < || Floo/(1 — B3). From now on, || - || stands for || - ||o-

3 Holder continuity of the policy function approx-
imation

In this section we prove that the policy function approximation of the SDPP
is Hoélder continuous on the approximated value function. Let T be the
operator on C'(X x Z) (the set of continuous and bounded functions defined
in X x Z with the topology induced by the supremum norm) defined by:

TV(,2)=  Max  F(z,y,2)+ 0 / V(y,2) Q(z, d2).
{yeX;(z,y,2)eQ} Z



It is well known (see Stokey and Lucas with Prescott [13]) that under hy-
potheses 1, boundedness and continuity of F', this operator is a contraction
mapping with modulus 8 and fixed point v (the value function). Let us
consider the following sets:

C(XxZ)={feC(XxZ)/f(,2) is a concave function for each z € Z };
(7,71 (XxZ)={feC(XxZ)/f(-,2) is a n—concave function for each z € 7 };
The following lemma claims that concave functions are mapped by T

into strongly concave functions. It is an extension to the stochastic case of
Montrucchio [8, Prop. 4.1].

Lemma 3.1 Under hypotheses 1 and 2, T : C(X x Z) — 6,71 (X x Z). In
particular v € Cp (X X Z)

To state the main theorems of this section let us introduce the following
notation. For V € Cp, (X x Z) define h(V) : X x Z — X by:

V@)= Argmax  Flaw)+8 [ Vo) Qed). ()
{yeX; (z,y,2)eQ} z

Note that under hypotheses 1 and 2, (V) € C(X x Z). It is clear that
the optimal policy function of the SDPP is g(x, z) = h(v)(z, z).

Theorem 3.2 Suppose that hipotheses 1 and 2 hold. If V,W & 6771 (X x 7)
then:
1(V) = BW)|| < (2/m0)"> |V = W2,

Now we are able to give an error bound for the policy function approx-
imation obtained from a m-concave approximation of the value function.
Note that in this setting, the ezact value function is 7;-concave.

Proposition 3.3 Suppose that hipotheses 1 and 2 hold. If V € (7,71 (X x 7)
then:

1/2
lo — (V)] < (ﬁ) IV — v, @)

The proof of proposition above is straightforward from Theorem 3.2, putting
W = v and using the fact that v — V|| < |TV = V||/(1 — B) (recall that T
is a B-contraction mapping with fixed point v).

Remark If iterations of T are used to approximate the value function (i.e.,
vo = 0 and v,41 = Tv, for n > 0) then the inequality (2) results:

1/2
g — o) < (ﬁumr} o, 3)
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which is similar to the error bound reported in Maldonado and Svaiter [6].

Similar results can be proved using hypothesis 3, instead of hypothesis 2.
Under these hypotheses, h(V) € C(X x Z) for any V € C(X x Z).

Theorem 3.4 Suppose that hipotheses 1 and 3 hold. If V,W € 6(X X 7)
then:
1(V) = B(W)|| < (28/m) " IV = W'/,

Remarks: Note that under hypothesis 3, the functions V' and W do not
need to be strongly concave as in Theorem 3.2. Analogous formulae to (2)
and (3) can be also obtained in this case.

It is important to note that our error bounds can be estimated if the
return function (z,y) — F(z,y, z) is strongly concave in either the first or
the second group of variables. This is an improvement on Santos and Vigo-
Aguiar [12] result, which depends on strong concavity in the second group
of variables. Venditti [15] provided sufficient conditions to obtain strong
concavity of F(-, -, z) in multisector optimal growth models. He also showed
that the conditions to get strong concavity in the second variable are much
more restrictive than the ones to obtain strong concavity in the first variable.

Strong concavity of the return function was also used to prove differ-
entiability of the policy function. Santos [10] used strong concavity in the
second variable whereas Montrucchio [9] used strong concavity in the first
variable to obtain such a differentiability.

4 Robustness of the error bounds

In this section we will show that the error bound formulae given in section 3
are robust by jointly considering errors in computing the T operator and
errors in computing the maximizer in (1).

Suppose that 7" is performed using a numerical method and that f, an
“approximated” operator, is computed.

Hypothesis 4 Let T : C(X x Z) — C(X x Z). Assume that there exists
e > 0 such that for all f € C(X x Z), it holds that: ||[T(f) —T(f)| < e.

Now let (On)n>0 be a sequence generated by the rule
Bpy1 = T(n).

Proposition 4.1 [f the correspondence I' is nonempty, compact-valued,and
continuous, the function F is bounded and continuous, and T satisfies Hy-
pothesis 4, then the sequence (U )n>o0 satisfies

F
fou ol < 75+ (1 + ol )



Remark The application T does not have to satisfy the usual assump-
tions of monotonicity (f < g = Tf < Tg) and discounting (7" (~(f +a) =
Tf+Ba, ac R) (see Santos and Vigo-Aguiar [12]). Since T represents the
“Inexact” operator T these assumptions are hard to check (and may not
hold) when rounding and chopping errors are embedded into the analysis.
Proposition 4.1 also says that if

o (L ool ) < 125

then more than n iterations may not appreciably improve the accuracy of
the value function approximation.

Now suppose that VecC (X x Z) is a value function approximation and
an ineracl maximization is used to compute the policy associated to V.
That is, take a tolerance 7 > 0 and define G(z, z) as those § € I'(z, z) such
that Yy € I'(x, 2)

F(%@Z)Jrﬁ/z V(5. )Q(z d2) zF(ﬂc7y72)+ﬁ/Z V(y, /)Q(z d#')—7. (4)

Observe that G can be a correspondence. In general, practical computation
does not provide the whole set G(xz, z). Instead, the inexact maximization
will provide some § € G(x, z). Even so, we have the following estimation.

Theorem 4.2 Suppose that hypotheses 1, 2 and 4 are satisfied. Let g :
X X Z — X be a selection of G, that is, §(x,2) € G(x,2) for all (x,z).
Then,

4 _ 5 11/2
g—g|| < [— v—V| + —T] .
lo =3 < | = 7 + 5

Remarks:
1) Using that T is a B—contraction mapping and hypothesis 4 it is easy

to see that ||v — V|| < <H‘~/ —TV| —I—e) /(1 = B). Therefore we have the

following error bound for the approximation of the optimal policy function:

N A 1 (i~ ~ 2 \?
o=l < (o |75 (17 = T71+¢)] + 5=

2) If V is found from the n—iterative of 7' (i.e. V = @,) then using
|Tn41 — Onll < ||ont1 — o] + |Jv — vy ||, Proposition 4.1 and inequality above
it results:

o [8( = 17 >> i]“
lo—all < [ (25 + 0 (LEL + ool ) + ]



Therefore if n is such that

L o) < 2554+ 2
o (L paol) < 25+

then more than n iterations may not appreciably improve the accuracy of
the policy function approximation.

Alternatively, we can use hypothesis 3 instead of hypothesis 2, to obtain
a similar error bound in the policy function approximation.

Theorem 4.3 Suppose that hypotheses 1, 3 and 4 are satisfied. Let g :
X x Z — X be a selection of G, that is, §(z,z) € G(x,2) for all (z,z).

Then,
1/2

- 46 ~ 2
lg—=9ll < |—=llv=V||+—=7
T2 2

5 Conclusions

In this paper we proved that policy function approximations obtained us-
ing Bellman’s equation depends Hélder continuously on the value function
approximation. This property allows us to provide an error bound for the
optimal policy function of the stochastic dynamic programming problem.
Such an error bound only depends on the value function approximation,
the norm and the modulus of strong concavity of the return function and
the discount factor. Neither differentiability of the return function nor in-
teriority of the solution are required. This can be useful when the model
involves piece-wise linear taxation/subsidies or short-run Leontief technolo-
gies because in these cases the return function may not be differentiable.
Also interiority of solutions can not be guaranteed if (for example) Inada’s
condition is not considered.

When inexact computations are performed in the calculation of T (mak-
ing a discretization of the state space, for example) or in the maximizer
defined from 7" we also provide an error bound for the approximation of the
value and policy functions. The intuition is quite simple: Perturbations of a
contraction mapping are stable even though a fixed point for the perturbed
mapping may not exist.

If the iterations of the I’ operator are used to solve the SDPP then the
error bounds presented in this paper can be used for evaluating a priori
the number of iterations needed in practical computations. For example,
following the notation of Section 4, let ¢ be the error on the 71" operator
and 7 be the error on the maximization procedure used to compute the
associated policy. If n is such that

17 - s
x?@,ﬁ+uw) o
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then more than n iterations may not appreciably improve the accuracy of
the policy function approximation.

A Appendix

Proof of Lemma 3.1 Let V € a(X x 7Z), r1,79 € X, a € [0,1], 2z =
azxy + (1 — a)zy and for ¢ = 1,2 let y; € I'(z, 2) be such that:

TV (01,9) = Plose2) 6 [ Vo) Q).
z
Then, using hypotheses 1, 2 and Definition 2.2 we have that:

TV (%)

v

F<xa7 ayl + (1 - Oé)y27 Z) + ﬁ/;v<ayl + (1 - Oé)y27 Z/)Q<Zv dZ/)
alF(x1,y1, 2 )—I—(l—oz)F(gcQ,yQ,z)—l—ga(l—a)]xl —962]2—|—
9 [ 10V 2)+ (= )V (o 2] Qe )

= alV(zy,2 ) + (1 — )TV (29, 2) + ga(l — a)|z1 — 29|

v

Since the set of strongly concave functions is a closed set with the topology
induced by the sup norm it follows that the fixed point of 1" is strongly
concave. This proves the second part of the lemma.

To prove Theorem 3.2, we will need the following lemma. Although its
proof is trivial, we will give it for the sake of completeness.

Lemma A.1 Let f : C C R® — R (C is a convex set) be a n-concave
function. If x* = Argmaz,e - f(x) then

f(@) < f@) = Lz —a*?, vz eC.

Proof: Tet x € C and a € (0,1). By definition of z* and Definition 2.1, we
have:

fl@) = flaz® + (1 —a)z) = af(@) + (1 - a)f(z) + Fa(l - a)lz — 2™
= f(z*) > f(z) + Lol — z*|?,
making @ — 1 we obtain the result.

Proof of Theorem 8.2. For V,W & 5771 (X x Z) define:
ov(a,.) = oy 2) 46 [ V002) @),
z

9



and an analogous expression for ¢y The functions ¢y (z, ., z) and ¢w (z, ., 2)
are (np-concave. Then by lemma A.1 we have that:

() . 2) (V) . )P
v (o, h(V)(2, 2).2) 2 oy e, bW ), 2), 2) + 0

Summing up the above inequalities we obtain that:

¢W<x7 h<W)<x7 Z)v Z) = ¢W<x7 h(‘/)(xv Z)v Z)+

(W) (x, 2) = h(V) (2, 2) .

ﬁ{/z [(V=W)(W(V)(z,2),2) + (W = V)(M(W)(z, 2), 7)] Q(z,dZ)} =

B W(W)(z, 2) = h(V) (2, 2)|”
= 2|W = V|| = m|(W)(x, 2) — h(V)(z, 2)?
this inequality holds for all (x,z) € X x Z, so we conclude:

IR(V) = R(W)]| < [%HV - W,

Proof of Theorem 3.4 Under hypothesis 3, the functions ¢y (z,.,z) and
ow (x, ., z) given above are np-concave. Then by lemma A.1 we have that:

¢W<x7 h<W)<x7 Z)v Z) = ¢W<x7 h(‘/)(xv Z)v Z) + %WW)(% Z) - h(‘/)(xv Z)Pv

ov(z, (V) (z, 2),2) > ¢y (z, h(W)(z,2),2) + %]h(W)(x, z) — h(V)(x, 2)|2.
Using the same reasoning as in the proof of Theorem 3.2 we conclude that:
I(V) = R(W)|| < [(26/m) |V — W|J*>.

Proof of Proposition 4.1 By our assumptions, T is a 3-contraction on C'(X x
7) with fixed point v. Using also the definition of the sequence (¥, )n>0, the
triangular inequality and Hypothesis 4 we get

ot = oll = 1) = oll < |T@n) = T (o)l + [T () — 0]l < &+ B30 — .
Hence
n—1 .
1o = ol <6 + 5[50 — v < &/(1 = B) + 5|50 —v]|-
j=0
Proof of Theorem 4.2 Let

o(x,y,2) = Flx,y,2) + ﬁ/Z ‘7(y, Z)Q(z,d7).

10



Then . .

¢<$, §<x7 2)7 Z) 2> ¢<$7 g<x7 2)7 Z) -7
As discussed in the proof of Theorem 3.2, under hypotheses 1 and 2, ¢y (z, -, 2)
is Bm-concave. So, using again lemma A.1 we have:

Ou(x, 9(x, 2),2) > dy(x, g, 2),2) + %]g(x, z) — g(=, z)]Q.

Adding up these inequalities and following the same procedure as in the
proof of Theorem 3.2 we will obtain

4 _ 5 11/2
g—g| < |—|lv—=-V|+—=—r1
lo =31 < | o= VIl + 5

Proof of Theorem 4.8 Analogous to Theorem 4.2, using the fact that
&u(z, -, 2) 18 mg-concave.
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