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Abstract

Applications of GARCH methods are now quite widespread in macroe-
conomic and financial time series. New formulations have been devel-
oped in order to address the statistical regularity observed in these
time series such as assymetric nature and strong persistence of vari-
ances. This paper develops a ARMA-GARCH model with Markov
switching conditional variances to simulataneously address the above
two conditions. A Bayesian algorithm is developed for the estimation
purpose and applied to two datasets.

1 Introduction

Analysis of economic time series started receiving special attention with Box
and Jenkins’ (1976) initial attempt to characterize the regularity in economic
data. Due to its initial success in accounting for important economic time
series, Box and Jenkins’ methods became extremely popular. The basis for
such modelling approach was the Wold representation: any covariance sta-
tionary time series can be expressed as a moving average function of present
and past innovations. This moving average function can always be approx-
imated by a low order autoregressive process, sometimes with some moving
average components. However it did not take too long for econometricians to
realize the shortcomings of Box and Jenkins’ methods, particularly with the
observation that many economic time series show considerable non-linearity,
which it did not have the tools to handle. Initially, the focus of most macro-
econometric and financial time series modeling centered on the conditional
first moments, with any temporal dependencies in the higher order moments
treated as nuisance. The realization that economic decisions in the data gen-
erating process involve considerable non-linear behavior re-oriented the focus
of macroeconomic and financial time series studies.
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One of the widely successful approaches in this direction is the Au-
toregressive Conditional Heteroskedastic (ARCH) model, suggested by En-
gle(1982), and its various developments and extensions such as the Gen-
eralized ARCH(GARCH) model of Bollerslev(1986) and the Exponential
GARCH (EGARCH) model of Nelson (1991). The key insight offered by
the ARCH model is the distinction between the conditional and the uncon-
ditional second order moments. While the unconditional covariance matrix
for the variables of interest may be time invariant, the conditional variances
and covariances often depend non-trivially on the past states of the world.
Understanding the exact nature of this temporal dependence is crucial for
many issues in macroeconomics and finance, such as irreversible investments,
derivative pricing, the term structure of interest rates, and general dynamic
asset pricing relationships.

A large amount of theoretical and empirical research has been done on
these models during the last two decades and they have provided an im-
proved description of financial markets’ volatility. A usual result of ARCH
models is the highly persistent behavior of shocks to conditional variance.
This persistence, however, is not consistent with the result of recent papers
that analyze the volatility after the stock crash of 1987, as Schwert (1990)
and Engle and Mustaffa (1992) argue. On the other hand, some suggest a
case for an integrated process. Lamoreux and Lastrapes (1990) argue that
the near integrated behavior of the conditional variance might be due to the
presence of structural breaks, which are not accounted for by standard ARCH
models. In the same article, the authors point out that models with switch-
ing parameter values, like the Markov switching model of Hamilton (1989),
may provide more appropriate modeling of volatility. Hamilton’s Markov
Switching model can be viewed as an extension of Goldfeld and Quandt’s
(1973) model of the important case of structural changes in the parameters
of an autoregressive process. In his simple two state processes, Hamilton as-
sumes the existence of an unobserved variable, St, which describes the state
the process is in. He postulates a Markov Chain for the evolution of the
unobserved variable given by a pair of transition probabilities.

Apart from Hamilton’s original work on business cycles, many papers use
Hamilton’s model on stock market returns and other financial time series.
Schwert (1989) considers a model in which returns may have either a high
or a low variance, switches between these return distributions determined
by a two state Markov process. Turner, Startz, and Nelson (1989) consider
a Markov switching model in which either the mean, the variance, or both
may differ between two regimes. Hamilton and Susmel (1993) propose a
model with sudden discrete changes in the process which governs volatility.
They found that a Markov switching process provides a better statistical fit
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to the data than ARCH models without switching. Many economic series
show evidences of changes in regime. Even if they are rare, during these
events the volatility of the series changes substantially. ARCH models focus
on the dynamics of the process itself and fails to account for the switching
in the dynamics. It underestimates theconditional variance at the time of
the change from a normal volatility state to a high volatility state and over
estimates the conditional variance when the economy goes back to normal
state.

The reason for the renewed vigor in understanding the nature of the vari-
ance of the time series process is that in most cases the variance portrays
the risk associated with a financial time series. The recent surge of literature
in the field of financial instruments emphasizes the variance process for en-
gineering the risk and return associated with any financial asset. To a great
extent the early wave of papers on analyzing financial instruments took a
considerably simpler view of the variance structure without recognizing the
extent to which the subtleties of the non-linear structures (like GARCH,
state dependence, threshold models) might affect the actual outcome of the
pricing process of a risky asset.

In the next section we discuss the particular aspects of GARCH modelling
that this paper intends to address. We also mention the context of developing
a Bayesian estimaiton technique for the same. Section 3 elaborates on the
formulation of the model. Section 4 elaborates on the Bayesian procedure.
Section 5 concludes with an application of the algorithm on a simulated
dataset and a dataset of the Bombay Stock Exchange Index.

2 GARCH, and Bayesian Algorithms

Due to rapid acceptance in various economic application there has been a
surge of literature trying to improve on the basic GARCH model to charac-
terize the nature of volatility that is observed. In the following we discuss two
main trends which are close to the plan of this essay. The first deals with the
assumption, implicit in the GARCH model, that the conditional volatility of
the asset is affected symmetrically by positive and negative innovations. For
various financnial and macroeconomic time series it is unlikely that positive
and negative shocks have the same impact on volatility. In finance theory
this asymmetry is sometimes ascribed to a leverage effect and sometimes to
a risk premium effect. By the former theory, as the price of stock falls, its
debt-equity ratio rises, increasing the volatility of returns to equity holders.
By the latter theory, news of increasing volatility reduces the demand for
a stock because of risk aversion. The early attempts in this area were by
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Sentana’s (1995) quadratic ARCH and Bera and Higgins’ (1992) non-linear
ARCH models.

The second stream of developments concern the failure to account for all
the non linearity that are observed in economic and financial time series, par-
ticularly those due to non stationarity. In many high-frequency time-series
applications, the conditional variance estimated using a GARCH(p, q) pro-
cess exhibits a strong persistence. This provides an empirical motivation for
the Integrated GARCH model. In these types of models, the autoregressive
polynomial of the squared error has a unit root and so the shocks are per-
sistent for future forecasts. Lamoureux and Lastrapes (1990) argue that the
persistence in GARCH models might be due to mis-specifications of the vari-
ance equation. By introducing dummy variables for deterministic shifts in
the unconditional variances, they discover that the duration of the volatility
shocks is substantially reduced. A similar point is raised by Diebold (1986),
who conjectures that the apparent existence of a unit root as in the IGARCH
class of models may be the result of shifts in regimes, which affect the level
of the unconditional variances. This has led to a review of the discussion of
non-linearity in these type of models. One of the most important research in
this direction is introducing Hamilton’s Markov switching model to account
for the specific type of non-linearity in conditional heteroskedasticity model.
The switching process is introduced in various ways by various authors. The
simplest way to introduce a switching process to the constant term in the con-
ditional variance equation (Cai(1994)). Hamilton and Susmel(1994) consider
introducing the Switching parameter to the coefficients of the conditional
variance term while Hansen(1994) considers switching the Student t degrees
of freedom parameter where the degree of freedom parameter is allowed to
vary over time as a probit type function. Authors like Hamilton and Susmel
(1994), Bollen, Gray and Whaley (1996), Susmel (1999), Dueker (1997), and
others have found encouraging results in equity price and interest rate data.

Bayesian estimation methods for time series processes are by now quite
popular. In various macroeconomic and financial time series it has found
major success. A detailed discussion of such methods can be found in Tsu-
rumi(00) and refernces there in. In most time series formulations, alternative
methods of Maximum Likelihood gives rise to complex likelihood functions
either with too many parameters or a computationally intractable form, or
both. Besides available maximization algorithms may reach optimality slowly
or not at all. On the other hand Bayesian estimation techinques are based
on Markov Chain Monte Carlo (MCMC) principle. The main idea behind
the Monte Carlo principle is that anything we want to know about a random
variable x can be learned by sampling many times from f(x), the probability
density function of x. First discussed by Metropolis and Ulam(49), these
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techniques have gained wide acceptance in recent years with availibility of
advanced computational power. The idea behind the Markov Chain principle
is the fact that high dimensional joint densities are completely characterized
by lower dimensional conditional densities. To learn about f(x, y) the idea
is to learn about x conditional on what we know about y, g(x|y) and then
to learn about y conditional on what we know about x, g(y|x). Iterate these
two steps till we have enough information. This in fact is the Bayesian idea
about the Bayesian estimation.

Any model that can be estimated by maximum likelihood method can
be estimated using Bayesian methods. But Bayesian simulation lets us work
with models and data set thought to be difficult otherwise. Particularly there
are major successes in areas like hierarchical models, data set with missing
values, item response models, heavy tailed distributions, mixture models,
models with dynamics in the latent variable, among others.

3 The Model

In this section, we consider an extension of the ARMA-GARCH model in
which the conditional variance term has a regime switching term, St which
follows a Markov Switching process. A number of papers in the areas of finan-
cial macroeconomics discuss why regime switching could be possible. Cec-
chetti, Lam and Mark(1990) consider a Lucas asset-pricing model in which
the economy’s endowment switches between high economic growth and low
economic growth. They show that such switching in fundamentals accounts
for a number of features of stock market returns, such as leptokurtosis and
mean reversion. Blanchard and Watson’s (1982) model of stochastic bubbles
also points in that direction. In each period, a bubble may either survive or
collapse; in such a world, returns could be drawn from one of two distribu-
tions - surviving bubbles or collapsing bubbles.

There are a number of papers which attempted extending the ideas of
Hamilton’s Markov Switching model to examine the variance structure of
stock market returns.The most important aspect of having a regime switch-
ing process in influencing the dynamics is the fact that a movement in either
direction (up or down) at any point of time might have different implication
depending on the regime the process is in. Thus, a certain increase in volatil-
ity in a collapsing bubble will have completely different implication, had it
been a surviving bubble. The GARCH models are successful in allowing a
change of variance over time, but seem to overlook the special characteristic
of such changing variance, depending on regimes, that is so typical of stock
market returns and other financial time series. A markov regime switch-
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ing model provides a more flexible structure than the basic GARCH model.
Schwert(1989), Turner, Startz and Nelson (1989) and Hamilton and Susmel
(1993), all use certain variations of introducing a Markov Switching element
in the mean or the variance structure of the returns.

This paper attempts to develop a Bayesian estimation procedure for such
a process. Besides there is one way in which this model differs from the gen-
eral class of regime switching GARCH models. In most models, the variance
structure switched regimes according to the state of volatility. In this model
the variance structure switch regimes based on the state of the process and
not the variance. This is to highlight the essential differences that variance
might have in determining the dynamics of the process, during phases of
upward and downward trend in the time series.

Another important aspect of the Bayesian techniques that is used in this
model is the fact that it is based on a hybrid model involving both Metropol-
isHastings and Gibbs technique. The main reason which prompted the in-
troduction of the Gibbs sampling is the estimation of the state variables.
The state variables are as long as the data series. At every iteration, under
a Metropolis Hastings algorithm it will require that we generate the whole
vector of state variables one at a time. The multi-move Gibbs sampling on
the other hand hastens the process.

The following describes the basic structure of the model:

yt = γxt + ut

ut =
p∑

j=1

φjut−j + εt +
q∑

j=1

θjεt−j, εt|It−1 ∼ N(0, σ2
t )

σ2
t = µ0 + µ1St +

r∑
j=1

αjε
2
t−j +

s∑
j=1

βjσ
2
t−j (1)

where yt is the dependent variable; xt is the independent variable;γ is the
regression coefficient; σ2

t is the conditional variance ofε; St is the state dummy
variable taking integer values in [0,1]; α and β are the coefficient of the
GARCH process.

We will closely follow Nakatsuma(2000) who constructs the posterior den-
sity functions of the model:

p(δ|Y,X) =
l(Y |X, δ)p(δ)∫
l(Y |X, δ)p(δ)dδ

(2)

where δ is the set of all the parameters of the model, l(Y |X, δ) is the likelihood
function, and p(δ) is the prior.

6



Likelihood function

Likelihood function for the above model:

l(Y |X, δ) =
n∏

t=1

1√
2πσ2

t

exp
[
− ε̂2t

2σ2
t

]
(3)

where,

ε̂t =
{
ε0 t = 0
yt − xtγ −

∑p
j=1 φj(yt−j − xt−jγ)−

∑q
j=1 θj ε̂t−j t = 1, . . . , n

(4)

and we assume y0 = ε0, yt = 0 for t < 0 and xt = 0 for t ≤ 0. Pre-sample
error ε0 is treated as a parameter.

Prior

We use the following prior:

p(ε0, γ, φ, θ, µ0, µ1, α, β) = N(µε0 ,Σε0)×N(µγ,Σγ)

×N(µφ,Σφ)×N(µθ,Σθ)

×N(µϕ,Σα)×N(µβ,Σβ) (5)

where ϕ = {µ0, µ1, α}.

4 MCMC procedure

To apply the Monte Carlo method, we need to generate samples {δ1, . . . δm}
from the posterior distribution. Since we cannot generate them directly, we
use the MH algorithm. In the MH algorithm, we generate a valueδ̂ from the
proposal distribution g(δ) and accept the proposal value with probability:

λ(δ, δ̂) = min
{
1,
p(δ̂|Y,X)/g(δ̂)

p(δ|Y,X)/g(δ)

}
(6)

To construct a MCMC procedure for the model, Nakatsuma divides the
parameters into two groups. Let δ1 = (ε0, γ, φ, θ) be the first group and
δ2 = (µ0, µ1, α, β) be the second group.For each group of parameters he uses
different proposal distributions, which are discussed below.
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4.1 Proposal for δ1

The proposal distribution for the first group δ1 is based on the original model:

yt = xtγ +
p∑

j=1

φj(yt−j − xt−jγ) + εt +
q∑

j=1

θjεt−j εt ∼ N(0, σ2
t ) (7)

under the assumption that the conditional variances {σ2
t }n

t=1 are fixed and
known. Using the above equation Nakatsuma generates δ1 from their pro-
posal distributions by the MCMC procedure by Chib and Greenberg(1994)
with some modifications.

4.1.1 ε0 : Pre-sample error

Given the pre-sample error ε0, the model can be rewritten as:

yt = xtγ +
p∑

j=1

φj(yt−j − xt−jγ) + εt +
q∑

j=1

θjεt−j + (φt + θt)ε0 (8)

This follows closely Chib and Greenberg (1994) estimation of ARMA(p,q)
error process. The likelihood function for the model is rewritten as

f(Y |X,Σ, δ1, δ2) =
n∏

t=1

1√
2πσ2

t

exp
[
− (y†t − x†tε0)

2

2σ2
t

]
(9)

Where

y†t = yt − xtγ −
p∑

j=1

φj(yt−j − xt−jγ)−
q∑

j=1

θjy
†
t−j (10)

x†t = (φt + θt)−
q∑

j=1

θjx
†
t−j (11)

εt = y†t − x†tε0 (12)

We have the following proposal distribution of ε0:

ε0|Y,X,Σ, ∼ N(µ̂ε0 , σ̂ε0) (13)

where, µ̂ε0 = Σ̂ε0(
n∑

t=1

x2
εt
/σ2

t + µε0/σ
2
ε0

) (14)

Σ̂ε0 = (
n∑

t=1

xεtyεt/σ
2
t + σ−2

ε0
)−1 (15)
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4.1.2 γ : Regression coefficient

The likelihood function of the model is rewritten as:

f(Y |X,Σ, δ1, δ2) =
n∏

t=1

1√
2πσ2

t

exp
[
− (y∗t − x∗tγ)

2

2σ2
t

]
(16)

where,

y∗t = yt −
p∑

j=1

φjyt−j −
p∑

j=1

θjy
∗
t−j (17)

x∗t = xt −
p∑

j=1

φjxt−j −
p∑

j=1

θjx
∗
t−j (18)

Denoting Yγ = [y∗1, . . . , y
∗
n]′ and Xγ = [x∗1, . . . , x

∗
n]′, we use the following

proposal distribution of γ:

γ|Y,X,Σ, δ−γ ∼ N(µ̂γ, Σ̂γ) (19)

where, µ̂γ = Σ̂γ(X
′
γΣ

−1Yγ + Σ−1
γ µγ)

Σ̂γ = (X ′
γΣ

−1Xγ + Σ−1
γ )−1

4.1.3 φ : AR coefficient

The likelihood function of the model can also be written as:

f(Y |X,Σ, δ1, δ2) =
n∏

t=1

1√
2πσ2

t

exp
[
− (ỹt − x̃tφ)2

2σ2
t

]
(20)

where,

ỹt = yt − xtγ −
p∑

j=1

θj ỹt−j (21)

x̃t = [ỹt−1, . . . , ỹt−p] (22)

Denoting Yφ = [ỹ1, . . . , ỹn]′ andXφ = [x̃′1, . . . , x̃
′
n]′, we use the following pro-

posal distribution of φ:

φ|Y,X,Σ, δ−φ ∼ N(µ̂φ, Σ̂φ) (23)

where, µ̂φ = Σ̂φ(X
′
φΣ

−1Yφ + Σ−1
φ µφ)

Σ̂φ = (X ′
φΣ

−1Xφ + Σ−1
φ )−1
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4.1.4 θ : MA coefficient

One important innovation in Nakatsuma’s algorithm is the estimation of the
moving average term which in this case is a non-linear function of the error.
Chib and Greenberg (1994) proposed in their estimation of a simple moving
average term to linearize εt by the first-order Taylor series expansion

εt(θ) ≈ εt(θ
∗) + ψt(θ − θ∗) (24)

where εt(θ
∗) = y∗t (θ

∗)− x∗t (θ
∗) andψ = [ψ1t, . . . , ψqt] is the first order deriva-

tive ofεt(θ) evaluated at θ∗ given by the following recursion:

ψit = −εt−i(θ
∗)−

q∑
j=1

θ∗jψit−j (i = 1, . . . , q) (25)

The choice of θ∗ is crucial to obtain a suitable approximation. Chib and
Greenberg (1994) chose the non-linear least squares estimate of θ given the
other parameters of θ∗

θ∗ = argmin
n∑

t=1

{εt(θ)}2 (26)

However, the error term in the ARMA-GARCH model is heteroskedastic
while Chib and Greenberg applied their approximation to the homoskedas-
tic error ARMA model.Thus instead of the above, Nakatsuma proposes the
following weighted non-linear least square estimate of θ

θ∗ = argmin
n∑

t=1

{εt(θ)}2/σ2
t (27)

to approximate the likelihood function of the model. The approximated
likelihood function of the model can also be written as:

f(Y |X,Σ, δ1, δ2) =
n∏

t=1

1√
2πσ2

t

exp
[
− {εt(θ∗) + ψt(θ − θ∗)2}2

2σ2
t

]
(28)

Denoting Yθ = [ψ1θ
∗−ε1(θ∗), . . . , ψnθ

∗−εn(θ∗)]′ and Xθ = [ψ′
1, . . . , ψ

′
n]′, using

the approximated distribution we use the following proposal distribution of
θ:

θ|Y,X,Σ, δ−θ ∼ N(µ̂θ, Σ̂θ) (29)

where, µ̂θ = Σ̂θ(X
′
θΣ

−1Yθ + Σ−1
θ µθ)

Σ̂θ = (X ′
θΣ

−1Xθ + Σ−1
θ )−1
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4.2 Proposal for δ2

The proposal distribution for the second group δ2 are based on an approxi-
mated GARCH model:

ε2t = µ0 + µ1St +
l∑

j=1

(αj + βj)ε
2
t−j + wt −

s∑
j=1

βjwt−j + αtw0 (30)

wt ∼ N(0, 2σ4
t )

Given {ε2t}n
t=1 and conditional variances {σ2

t }n
t=1 it is possible to generate δ2

from their proposal distributions by the MCMC procedure similar to Chib
and Greenberg’s method. However, before obtaining the ARCH and the
GARCH coefficients, the next important step would be to obtain the state
variables in the variance expression.

The Markov Switching Process

At this point, we need to discuss the Bayesian estimation procedure for the
Markov Switching states. Let St be a stochastic variable taking the values
0 or 1. Furthermore, we assume St evolves according to a Markov Chain,
independent of past observations of yt i.e.,

P [St = j|St−1 = i, St−2 = i′, ....., yt−1] = P [St = j|St−1 = i] = pij (31)

The pij’s will be elements of a (2 × 2) transition matrix of states P which
collects probability of going to state j at time t given being at state i at time
t− 1.

P =

[
p00 p10

p01 p11

]
(32)

The columns should sum to unity. So that we can write P as

P =

[
q 1− p

1− q p

]
(33)

Assuming we have complete information about the vector of parameters
{µ0, µ1} and the transition probabilities pij, we collect them into a setθ. If we
have a sequence of observation on yt for t ∈ {0, T} we now want to calculate
the likelihood of these observations as a function of the parameter vector θ
and the sequence of the state probabilities P [St = 0|yt; θ, P (St−1 = 1)] for
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t = 0, . . . T . For this we first denote P (St = 0|yt, . . . , y0), P (St = 1|yt, . . . , y0)
by P (St|yt) and let P (St+1, St|yt) denote the (4× 1) vector

[ P (St+1 = 0, St = 0|yt, . . . , y0)
P (St+1 = 1, St = 0|yt, . . . , y0)
P (St+1 = 0, St = 1|yt, . . . , y0)
P (St+1 = 1, St = 1|yt, . . . , y0)

]
(34)

For this purpose, we construct a filter that takes as input

P (St−1|yt−1) (35)

and produces as output

P (St|yt) and f(yt|yt−1, . . . , y0) (36)

We construct this filter in five steps. The technique follows closely Hamil-
ton’s(1994) description.

4.2.1 Step 1 : Calculate P (St, St−1|yt−1)

This is done by using the rule P (A ∩B) = P (B|A)P (A). So in this case

P (St = i, St−1 = j|yt−1) = P (St = i|St−1 = j, yt−1)P (St−1 = j|yt−1) (37)

Element by element multiplication of P (St, St−1|yt−1) = P. ∗ P (St−1|yt−1)
produces a (2× 2) matrix.[

P (St = 0, St−1 = 0) P (St = 1, St−1 = 0)
P (St = 0, St−1 = 1) P (St = 1, St−1 = 1)

]
(38)

4.2.2 Step 2: Joint density

We now calculate the joint density f(yt, St, St−1) for the four possible com-
bination of St and St−1

f(yt, St = i, St−1 = j|yt−1) = f(yt|St = i, St−1 = j, yt−1)

×P (St = i, St−1 = j|yt−1) (39)

To obtain that, we create a (2× 2) matrix of the expected values ofyt forthe
state sequences.

Mt =

[
µ0 µ0 + µ1

µ0 µ0 + µ1

]
(40)

Then
1√

2πσ2
exp[− 1

2σ2
(Mt − yt)

2] (41)

produces the (2× 2) matrix of f(yt|St, St−1, yt−1)
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4.2.3 Step 3 : Calculating density f(yt|yt−1)

This is obtained be summing all elements of f(yt, St = i, St−1 = j|yt−1)

4.2.4 Step 4 : Calculate P (St, St−1|yt)

For this we use the Bayes law

P (St = i, St−1 = j|yt) =
f(yt, St = i, St−1 = j|yt−1)

f(yt|yt−1)
(42)

This is obtained by dividing the matrix from Step 2 by the scalar from Step
3.

4.2.5 Step 5 : Output : P (St|yt)

This is obtained be summing P (St, St−1|yt) over all St−1. By repeating this
from t = 1 to T we get a sequence of state probabilities and a sequence of
likelihoods f(yt|yt−1, . . . , y0).

4.2.6 Smoothed Probabilities

Above we have calculated the probabilities P (St|yt). However we may be
interested to find out P (St|yT ) which is supposed to give better inference
about the states. To obtain the “smoothed” state probabilities Hamilton
uses the following lemma

P (St = j|St+1 = i, yT ) = P (St = j|St+1 = i, yt) (43)

which follows from P (St+1 = j|St = i, yT ) = P (St+1 = j|St = i, yt) which
follows form the assumption of Markov Chain. He also uses another lemma

P (St = j|St+1 = i, yt) =
P (St = j, St+1 = i|yt)

P (St+1 = i|yt)

=
P (St = j|yt)P (St+1 = i|St = j)

P (St+1 = i|yt)

=
P (St = j|yt)pji

P (St+1 = i|yt)
(44)

We start from last-but-one period and use the first lemma:

P (ST−1 = j|ST = i, yT ) = P (ST−1 = j|ST = i, yT−1)P (ST = i|yT ) (45)
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Then we use the second lemma

P (ST−1 = j, ST = i|yT ) =
P (ST−1 = j|yT−1)pji

P (ST = i|yT−1)
P (ST = i|yT ) (46)

The right hand side of the above equation was calculated in Step 5 above.
Then to get the smoothed probability for T − 1 we just sum over all the ST s.

P (St−1 = j|yT ) =
∑

i

P (ST−1 = j, ST = i|yT ) (47)

Doing this for all states gives a vector of smoothed state probabilities forT−1.
The same can be repeated for T − 2 to period 0.The probability distribution
of St|yt along with the transition probabilities are used to draw the state in
period t, given the state in earlier period, using a binomial distribution.The
multi-move sampling technique requires the whole sequence of state variable
is generated at the same time to be used in the generation of paremeters in
δ2.

4.2.7 Transition Probabilities

For generating transition probabilities, p and q, conditional on S̃T we assume
independent beta distributions for the priors of p and q, we have:
Prior

p ∼ Beta(u11, u10)

q ∼ Beta(u00, u01)

where,

g(p, q) ∝ pu11−1(1− p)u10−1qu00−1(1− q)u01−1 (48)

where uij; i, j = 0, 1, are the hyper-parameters of the priors.The likelihood
function for p and q is given by:

f(p, q|S̃T ) = pn11(1− p)n10qn00(1− q)n01 (49)

where nij refers to the number of transitions from state i to state j, which
can be easily counted for given S̃T . Combining the prior distribution and the
likelihood function, we get the following posterior distribution:

p(p, q|S̃T ) = g(p, q)f(p, q|S̃T )

∝ pu11−1(1− p)u10−1qu00−1(1− q)u01−1pn11(1− p)n10qn00(1− q)n01

= pu11+n11−1(1− p)u10+n10−1qu00+n00−1(1− q)u01+n01−1
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4.3 α : ARCH coefficient

The likelihood function of the approximated GARCH model is rewritten as

f(ε2t |Y,X,Σ, δ1, δ2) =
n∏

t=1

1√
2π(2σ4

t )
exp

[
− (ε̄2t − ζtα)2

2(2σ4
t )

]
(50)

where ε2 = [ε21, . . . , ε
2
n]′ , ε̄2t = ε̃2t −

∑s
j=1 βj ε̃

2
t−j andζt = [ι̃t, ε̃

2
t−1, . . . , ε̃t−r].

Let Yα = [ε̄21, . . . , ε̄
2
n]′ andXα = [ζ ′1, . . . , ζ

′
n]′. We have the following proposald-

istribution of α:

α|Y,X,Σ, δ−α ∼ N(µ̂α, Σ̂α) (51)

where, µ̂α = Σ̂α(X ′
αΛ−1Yα + Σ−1

α µα)

Σ̂α = (X ′
αΛ−1Xα + Σ−1

α )−1

Λ = diag{2σ4
1, . . . , 2σ

4
n}

4.4 β : GARCH coefficient

The likelihood function of the approximated GARCH model is rewritten as

f(ε2|Y,X,Σ, δ1, δ2) =
n∏

t=1

1√
2π(2σ4

t )
exp

[
− {wt(β

∗)− ξt(β − β∗)}2

2(2σ4
t )

]
(52)

where ξt = [ξ1t, ξ2t] is the first-order derivative of σ2
t (β) evaluated at β∗.

Let Yβ = [w1(β
∗)+ξ1β

∗, . . . , wn(β∗)+ξnβ
∗]′and Xβ = [ξ′1, . . . , ξ

′
n]′. Using the

approximated likelihood function, we have the following proposal distribution
of β:

β|Y,X,Σ, δβ ∼ N(µ̂β, Σ̂β) (53)

where, µ̂β = Σ̂β(X ′
βΛ−1Yβ + Σ−1

β µβ)

Σ̂β = (X ′
βΛ−1Xβ + Σ−1

β )−1

Λ = diag{2σ4
1, . . . , 2σ

4
n}

5 Results and Conclusions

We apply the algorithms for a ARMA(1,1) Markov Switching GARCH model
on simulated data and also on a market data set. The market data that is
being considered is one of the most important market index in Indian Stock
market, the Bombay Stock Exchange (BSE) SENSEX, which is composed of
a basket of 30 Indian stocks. The above procedure was implemented on a
simulated Switching GARCH data and the results are as follows:
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Figure 1: Kernel Density for parameters; simulated data
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Figure 2: Kernel Density for parameters; simulated data contd.
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Parameters Original values Estimated values Standard deviation

γ 0.3000 0.2820 0.0383
φ 0.1000 0.1657 0.0462
θ 0.1000 0.1032 0.0419
ω0 0.3000 0.3360 0.0289
ω1 0.1000 0.1141 0.0481
α 0.1000 0.0742 0.0267
β 0.1000 0.0725 0.0567

The model seems to have satisfactory performance with respect to the original
values.The same algorithm is then applied on the BSE sensex data and the
results are asfollows:

Parameters Estimated values Standard deviation

γ -0.1081 0.0696
φ 0.5337 0.0439
θ -0.4286 0.0563
ω0 1.0398 0.1841
ω1 0.5640 0.1793
α 0.1516 0.0210
β 0.6118 0.0750

The statistical significance of the switching parameter makes the point re-
garding the applicability of a Markov switching GARCH model on the market
data.

Conclusion

Time series processes study systems, whose dynamics are strongly depen-
dent on itself or past values of related variables. Considerable information
can however be also gained from the second moments. The GARCH model
advanced the understanding of time series process by incorporating the sec-
ond moments. A Markov Switching GARCH process accomodates further
the aspect of time series dynamics being affected by external unpredictable
processes. Incorporating a Markov Switching process for the conditional
variance of the underlying asset prices will only enhance predictive power.
Literature on derivative pricing generally does not consider these aspects of
the time dynamics, which are so common in observed data. Previously the
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Figure 3: Kernel Density for parameters; BSE Sensex data
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Figure 4: Kernel Density for parameters; BSE Sensex data contd.
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variances were plugged into the Black Scholes option pricing formula (En-
gle, Hong, Kane and Noh(1993)). Recently Duan (89) developed a GARCH
option-pricing model, where he introduced the concept of local risk neutral
valuation with respect to an underlying GARCH asset pricing process. Us-
ing local risk neutral valuation, the Markov Switching GARCH can also be
applied in derivative pricing. Further research in this area requires the clari-
fication of certain aspects of the Bayesian estimation technique. We need to
look into the convergence of the MCMC draws using plots and test statis-
tic such as the fluctuation test discussed in Goldman, Valieva and Tsurumi
(2003). We should also look at identification and the applicability of the filter
that generates the state probabilities for a more precise algorithm for estimat-
ing such processes as discussed in Kaufman and Fruhwirth-Schnatter (2002).
In addition, the performance of this technique in comparison to other spec-
ifications of asymmetric GARCH model should be investigated using Bayes
factor and predictive densities.

References

[1] J. Albert and S. Chib. A Markov model of unconditional variance in
ARCH. Journal of Econometrics, 58, 1993.

[2] R.T. Baillie and T. Bollerslev. Prediction in Dynamic Models with
Time-Dependent Conditional Variances. Journal of Econometrics, 52,
1992.

[3] R. Barnett, G. Kohn and S. Sheather. Bayesian estimation of an au-
toregressive model using Markov Chain Monte Carlo. Journal of Econo-
metrics, 74, 1996.

[4] L. Bauwens and M. Lubrano. Bayesian inference on GARCH models
using Gibbs sampler. Econometrics Journal, 1, 1998.

[5] A.K. Bera and H.L. Higgins. A Survey of ARCH Models: Properties,
Estimation and Testing. Journal of Economic Surveys, 4, 1993.

[6] O.J. Blanchard and M.W. Watson. Bubbles, rational expectations and
financial markets. Lexington Books, 1982.

[7] S. F. Bollen, N. P. B. Gray and Whaley R. E. Regime switching in
foreign exchange rates: Evidence from currency option prices. Journal
of Econometrics, 94, 2000.

21



[8] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics, 31, 1986.

[9] G. Box and G. Jenkins. Time Series Analysis: Forecasting and Control.
Holden-Day, 1976.

[10] J. Cai. Bayes Regression and Autocorrelated Errors: A Gibbs Sample
Approach. Journal of Business and Economic Statistics, 12, 1994.

[11] B. P. Carlin and A.E. Gelfand. Approaches for Empirical Bayes Con-
fidence Intervals. Journal of the American Statistical Association, 85,
1990.

[12] N. G. Carlin, B.P. Polson and D.S. Stoffer. A Monte Carlo Approach to
Nonnormal and Nonlinear State-Space Modeling. Journal of the Amer-
ican Statistical Association, 87, 1992.

[13] C. Carter and R. Kohn. On Gibbs Sampling for State Space Models.
Biometrika, (81), 1994.

[14] P. Cecchetti, S. G. Lam and M. Nelson. Mean Reversion in Equilibrium
Asset Prices. American Economic Review, 80, 1990.

[15] S. Chib and E. Greenberg. Understanding the Metropolis Hastings Al-
gorithm. The American Statistician, 49, 1995.

[16] F. X. Diebold. Modeling the Persistence of Conditional Variances: A
Comment. Econometric Reviews, 5, 1986.

[17] J. C. Duan. The GARCH option Pricing model. Mathematical Finance,
1995.

[18] M. Dueker. Markov Switching in GARCH Processes and Mean- Revert-
ing Stock Market Volatility. Journal of Business and Economic Statis-
tics, 15, 1997.

[19] R. Engle and C. Mustafa. Implied ARCH Models from Option Prices.
Journal of Econometrics, 52, 1992.

[20] R. F. Engle. Autoregressive conditional heteroskedasticity with esti-
mates of the variance of United Kingdom inflation. Econometrica, 50,
1982.

[21] E. F. Fama. The Behaviour of Stock Market Prices. Journal of Business,
38, 1965.

22



[22] J. Geweke. Bayesian Inference in Econometric Models Using Monte
Carlo Integration. Econometrica, 57, 1989.

[23] R. Glosten, L.R. Jagannathan and D.E. Runkle. On the Relation be-
tween Expected Value and the Volatility of the Nominal Excess Return
on Stocks. The Journal of Finance, 48, 1993.

[24] S. Goldfeld and R. Quandt. A Markov Model for Switching Regression.
Journal of Econometrics, 1, 1973.

[25] E. Goldman, E. Valieva and H. Tsurumi. Convergence Tests for Markov
Chain Monte Carlo Draws. Technical report, Rutgers University, 2003.

[26] J Hamilton. A New Approach to the Economic Analysis of Nonstation-
ary Time Series and the Business Cycle. Econometrica, 57, 1989.

[27] J. Hamilton. Time Series Analysis. Princeton University Press, 1994.

[28] J. Hamilton and R. Susmel. Autoregressive Conditional Heteroskedas-
ticity and Changes in Regime. Journal of Econometrics, 64, 1994.

[29] B. E. Hansen. Autoregressive Conditional Density Estimation. Interna-
tional Economic Review, 35, 1994.

[30] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, (57), 1970.

[31] S. L. Heston and S. Nandi. A Closed-Form GARCH Option Pricing
Model. Working Papers, 1997. Federal Reserve Bank of Atlanta.

[32] S. Kaufmann and S. Fruhwirth-Schnatter. Bayesian Analysis of Switch-
ing ARCH Models. Journal of Time Series Analysis, 23, 2002.

[33] C. Kim and C. Nelson. State Space Models with Regime Switching:
Classical and Gibbs Sampling Approaches with Aplications. MIT Press,
Cambridge, 1999.

[34] F. Kleibergen and H.K. van Dijk. Nonstationarity in GARCH Models:
A Bayesian Analysis. Journal of Applied Econometrics, 8, 1993.

[35] C. Lamoreux and W. Lastrapes. Persistence in Variance, Structural
Change and the GARCH Model. Journal of Business and Economic
Statistics, 5, 1990.

[36] B.B. Mandelbrot. New methods in statistical economics. Journal of
Political Economy, 71, 1963.

23



[37] M.N. Metropolis N.; Rosenbluth, A.W.; Rosenbluth and Teller A.H.
Equation of State Calculations by Fast Computer Machines. Journal of
Chemical Physics, 21, 1953.

[38] P. Muller and A. Pole. Monte Carlo Posterior Integration in GARCH
models. Sankhya, 6, 1998.

[39] T. Nakatsuma. A Markov-Chain Sampling Algorithm for GARCH Mod-
els. Studies in Nonlinear Dynamics and Econometrics, 3, 1998.

[40] T. Nakatsuma. Bayesian analyisis of ARMA-GARCH models: A Markov
chain sampling approach. Journal of Econometrics, 95, 2000.

[41] D. B. Nelson. Conditional heteroskedasticity in asset pricing: a new
approach. Econometrica, 59, 1991.

[42] R. Rabemananjara and J. M. Zakoian. Threshold ARCH Models and
Asymmetries in Volatility. Journal of Applied Econometrics, 1, 1993.

[43] C. Ritter and M. Tanner. Facilitating the Gibbs Sampler: The Gibbs
Stopper and the Griddy-Gibbs Sampler. Journal of American Statistical
Association, 87(419), 1992.

[44] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
1999.

[45] G. W. Schwert. Why Does Stock Market Volatility Change Over Time?
Journal of Finance, 44, 1989.

[46] G. W. Schwert. Stock volatility and the crash of ’87. Review of Finanical
Studies, 3, 1990.

[47] E. Sentana. Quadratic ARCH Models. Review of Economic Studies, 62,
1995.

[48] R. Susmel. Switching Volatility in International Equity Markets. Journal
of Econometrics, 1992.

[49] H. Tsurumi. Bayesian Statistical Computations of Nonlinear Financial
Time Series Models: A Survey with Illustrations. Asia-Pacific Financial
Markets, 7, 2000.

[50] R. Turner, C. Startz and C. Nelson. A Markov model of heteroscedas-
ticity, risk, and learning in the stock market. Journal of Financial Eco-
nomics, 25, 1989.

24



[51] S. vanNorden and H. Schaller. Regime Switching in Stock Market Re-
turns. Technical report, Bank of Canada, 1993. Working Papers.

[52] G. Wei and M. Tanner. A Monte Carlo implementation of the EM
algorithm and the poor mans data augmentation algorithms. Journal of
the American Statistical Association, 85, 1990.

25


