
1

APPLICATION OF THE KALMAN FILTER FOR ESTIMATING

CONTINUOUS TIME TERM STRUCTURE MODELS:

EVIDENCE FROM THE UK AND GERMANY

Rana Chatterjee *

ABSTRACT

The purpose of this paper is to see how the term structure of interest rates has evolved

in the sterling and euro treasury bond markets over the period 1999-2003. German

bonds have been used as a proxy for euro-denominated bonds. A state-space

representation for the single-factor Cox, Ingersoll and Ross (1985) model is employed

to analyse the intertemporal dynamics of the term structure. Closed form solutions for

the prices of discount bonds are derived such that they are a function of the

unobserved instantaneous spot rate and the model's parameters. Quasi-maximum

likelihood estimates of the model parameters are obtained by using the Kalman filter

to calculate the likelihood function. Results of the empirical analysis show that while

the unobserved instantaneous interest  rate exhibits mean reverting behaviour in both

the UK and Germany,  the mean reversion of the interest rate process has been

relatively slower in the UK.  The volatility component, which shocks the process at

each step in time is also higher in the UK as compared to Germany.
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1 Introduction

Term structure modelling has two distinct, but related dimensions. The first aspect

involves the fitting of a zero-coupon yield curve to a set of cross-sectional bond price

observations on any given trading day. The depiction of this relationship between the

zero-coupon yields or spot interest rates and their term to maturity is known as the

term structure of interest rates. Figure 1 displays  the UK Gilt yield curve which

shows this relationship for the settlement date 28th January 2004 by applying  the term

structure estimation model of Nelson and Siegel (1987). 1
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Figure 1. UK Treasury yield curve on January 28, 2004

                                                          
1 Nelson and Siegel (1987) model is used to estimate spot interest rates  from observable coupon bonds.
Market data on bond prices, coupon rates and yield to maturity have been sourced from Datastream.
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The second dimension, which is the focus of this paper, relates to the specification of

the intertemporal dynamics of the term structure and addresses the issue of how the

term structure of interest rates evolves over time. As interest rates are stochastic

processes, the models developed in this area rely on the reduction of interest rate

uncertainty and attempt to provide parsimonious characterisations of the dynamics of

the term structure. Restrictions are imposed on  inter-temporal interest rate behaviour

by using the no-arbitrage argument. The absence of  arbitrage, would  ensure that

movements of the term structure do not permit conditions to occur under which

market participants may earn risk-free profits. There exist various specifications that

differ with respect to the number of underlying state variables and the type of the

stochastic process. Examples are the models proposed by Vasicek (1997), Cox-

Ingersoll-Ross (1985) and Longstaff and Schwartz (1992). However, most modelling

approaches are based on the concept that although interest rates change randomly over

time, it is possible to divide the change in its value into two parts. The first part is a

non-random, deterministic component, called the drift of the process, and the second

is the random or noise part which entails the volatility component of the process.

The Vasicek (1977) model is a one-factor partial equilibrium model and starts

out with the specification of a time series process for the instantaneous spot interest

rate which is treated as the only factor of uncertainty. The no-arbitrage restriction then

permits the derivation of a bond pricing formula whereby the bond price is a function

of the unobserved instantaneous spot rate and the model's parameters. The approach

was extended to include a second factor of uncertainty. Besides the real rate of

interest, Richard (1978) chose the expected inflation as the second source of



4

uncertainty. Brennan and Schwartz (1979) model the long rate as the second factor

and assume that the short rate is mean reverting to the long rate.

Cox, Ingersoll and Ross (CIR) (1985, CIR hereafter) develop a general

equilibrium asset pricing model that allows the deduction of the term structure of

interest rates. The model is set up as a single-good, continuous time economy with a

single state variable.  Multivariate versions are developed by  Longstaff and Schwartz

(1992) and Chen and Scott (1992). In Longstaff and Schwartz (1992) the two-factors

are the short-term interest rate and the variance of changes in the short-term interest

rate. Duffie and Kan (1996) define a general class of multifactor affine models of the

term structure that allows for the nesting of some of the aforementioned term structure

models such as Vasicek (1978) CIR (1985) and Longstaff and Schwartz (1992).

The literature would suggest that three state variables are adequate to explain

most of the variability in bond yields. For example, Litterman and Scheinkman (1991)

show that this can  be captured by the level, the steepness and the curvature of the

term structure.  This paper focuses on the one-factor CIR model as our empirical

estimation showed that the inclusion of additional factors did not increase the

performance of the model for either country. A plausible explanation for this could be

the limited period of observation. Most studies have concluded that the level is the

most important factor in explaining interest variation over time. In fact, Litterman and

Scheinkman (1991) have demonstrated that three factors notwithstanding, almost 90

percent of the variation in US Treasury rates is attributable to the variation in the first

factor, which is considered to correspond to the level of interest rates. So from an

empirical point of view a one-factor CIR model can be considered acceptable.
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The purpose of this paper is to see how the term structure has evolved in the

sterling and euro treasury bond markets. Euro-denominated bonds are not being

placed by the currency area as a whole, but rather by individual countries. A

significant feature of the euro capital market is, therefore, the absence of Federal

European government debt whose yields would form the natural constituents of euro

term structure relationship. In this paper, German bunds have been used as a proxy for

euro-denominated bonds as they are seen by market participants as the main

component of the euro yield curve.  Although there exists a considerable literature on

empirically  estimating the CIR model, most of the tests have been performed on US

data. To the best of  my knowledge, this is the first study that estimates this model for

the UK and German bond data since the launch of the single currency. By bringing

together the empirical findings for the euro and sterling treasury bond markets I

attempt to compare the dynamics of their  respective  term structures. This

investigation into the intertemporal behaviour of the euro and sterling term structure

could provide evidence on whether there exists any common factors.

The rest of the chapter is organised as follows. Section II provides the

theoretical framework that discusses in detail the one-factor CIR model for the

instantaneous interest rate. Section III provides an overview of the different

estimation methods. In Section IV the state space representation of the CIR model is

formulated and,  in Section V  the  Kalman filter algorithm is employed.  Section VI

presents the data and results. Finally, Section VII concludes.
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II Theoretical Framework

Bond pricing in continuous time

Before proceeding further, we will reiterate some of the key bond pricing

relationships in a continuous-time setting. We define a pure discount bond as a

contract that pays one unit of currency at its maturity date and we denote its value by

the function ( , )P t T . The first argument, t, refers to the current time, while the second

argument, T, represents the pure discount bond's maturity date. It follows that  t< T.

Given the contractual nature of the pure discount bond, ( , ) 1P T T = . In other words,

the pure discount bond has a value of £1 at maturity.

Given the pure discount bond price for any given maturity, the associated spot

rate of interest for that date can be determined. The spot rate, which we denote as

( , )z t T , is the continuously compounded rate of return that generates the observed

prices of the discount bond. The spot rate can then be solved for as follows:

( ) ( , )( , ) 1,T t z t TP t T e − = (1)

( ) ( , )ln( ( , ) ) 0,T t z t TP t T e − =

( ) ( , )ln( ) ln ( , )T t z t Te P t T− = −

ln ( , )( , ) P t Tz t T
T t

= −
−

(2)

As mentioned above, equilibrium models derive a process for the short rate, r,

and then explore what the process for r implies about bond prices. The short rate, r, at
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time t is the rate that applies to an infinitesimally short period of time at time t. It is

also referred to as the instantaneous short rate. Bond prices and other derivative prices

depend on the process followed by r in a risk-neutral world. The instantaneous short

rate cannot be directly observed and is a theoretical construct designed to facilitate the

modelling process. However, the way it is determined in a term structure model is

significant. For instance, r can be a state variable itself or it can be an affine sum of

state variables in the affine framework.

As interest rate processes are stochastic processes, developing an affine term

structure model involves a specification of a stochastic process for the state variables,

or factors, that drive the dynamics of the term structure. In a one-factor term structure

model, the factor is generally taken to be the instantaneous spot rate of interest. It is

possible to divide the change in its value into two parts, the first is a non-random

deterministic component, called the drift of the process, and the second is a diffusion

term or random part, which is the variance of the process. This involves the

assumption that the interest rate process is a Markov process2 and that its dynamics

can be described by the following first-order stochastic differential equation:

( ) ( )dr m r dt s r dw= +

where w  is a standard scalar Wiener process. 3

                                                          
2 A Markov process is a particular type of stochastic process where only the present value of a variable
is relevant for predicting the future. When Markov processes are considered, the variance of changes in
successive time periods are additive.
3 A Wiener process is a particular type of Markov process with a mean change of zero and a variance
rate of  1.0 per year. The drift rate of zero means that the expected value of  w at any future time is
equal to its current value. The variance rate of  1.0 means that the variance of the change in w in a time
interval of length T  equals  T.
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The interpretation of this stochastic differential equation is that the differential change

in the short rate is composed of a drift term , which is non-random, and a diffusion

term, which is random and includes a differential increment of a Wiener process.

The Cox, Ingersoll, and Ross Model

In the CIR model, a representative agent with constant relative risk aversion faces

production opportunities which evolve according to movements in a single state

variable, which is in turn described by a first-order differential equation. This implies

that the instantaneous interest rate is proportional to the state variable (an thus can be

thought of as the state variable itself) and its process is given by:

( ) Pdr k r dt rdwθ σ= − + (3)

By virtue of the square root process interest rates are prevented from becoming

negative.  It also implies that the volatility of the short-term interest increases with an

increase in the level of short-term interest rates. Pdw  is a Wiener process under the P-

measure which is explained below.

With this process for the short rate and the assumptions made concerning preferences,

CIR  show that the time-t yield to maturity on a pure discount bond paying one unit of

the consumption good in (T - t) periods can be written as:

( , ) log ( , )( , ) B t T A t TR t T
T t
−=

−



9

where

( )

( )

2( 1)( , )
( )( 1) 2

T t

T t

eB t T
k e

γ

γγ γ

−

−

−=
+ − +

and

2
( )( ) / 2

2 /
( )

2( , ) [ ]
( )( 1) 2

k T t
k

T t
eA t T

k e

γ
θ σ

γ
γ

γ γ

+ −

−=
+ − +

where 2 22kγ σ= + .

Thus the yield is an affine function of the short rate, and depends upon the long-run

level of the short rate θ, the degree of mean reversion κ, the volatility of the short rate

σ.

Probabilistic Framework

The prices of bonds are critically dependent upon the probabilities of events occurring

in the markets' attitude to risk. This uncertainty in the market is characterized by the

probability space (Ω, ℑ , P) where Ω is the sample space, ℑ  is the set of all events, and

P is the probability measure defined on (Ω, ℑ ). Ω, the state space can be thought of as

the set  of all possible histories of the world up to some maximum time horizon. An

"event" is a subset of Ω which can be given a probability of occurring. ω∈ Ω  could
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be called a sample point. For example, a contingent claim 4 could be defined as a

financial claim that pays its cash flow, or cash-flows, only if some predetermined

state of the world  (ω∈ Ω ) is achieved at some point, or points, in the future. Interest-

rate contingent claims include caps, floors, swaptions, and callable bonds.

Absence of arbitrage and equivalent martingale measures

The no-arbitrage condition and martingale measures are concepts of fundamental

importance in the analysis of contingent claims. A martingale is a zero-drift stochastic

process. 5 A variable, p, which we define as the relative price of one security with

respect to another,  follows a martingale if its process has the form:

dp dwσ=

A martingale has the convenient property that its expected value at any future time is

equal to its value today. The equivalent martingale measure result shows that, when

there are no arbitrage opportunities there exists a pricing kernel (also known as state

price deflators or stochastic discount factors) such that the product of the security

price and this pricing kernel constitutes a martingale. Therefore, we define a pricing

kernel such that the  product of the security price and the pricing kernel follows a

martingale process.

( ) ( , ) [ ( ) ( )]P
tM t P t T E M t P t≡

( )( , ) ( )
( )

P
t

M TP t T E P T
M t

 
=  

 

                                                          
4 A claim whose value depends on the value of another asset.
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where ( )M t  is the state price deflator at time t, given exogenously. If we consider

zero coupon bonds that yield 1 unit of account at time T  this equivalence can be

simplified to

( )( , ) [ ]
( )

P
t

M TP t T E
M t

=

The no-arbitrage assumption poses restrictions on the drift and diffusion terms of the

pricing kernel's stochastic process. If we assume that the bond dynamics are described

by the following first-order stochastic differential equation:

( ) ( ) ( )P pdP t t dt t dWµ σ= +

Then analogously we can write the pricing kernel dynamics as:

( ) ( ) ( ) ( )M MdM t t dt t dW tµ σ= +

By definition, it follows that:

[ ( ) ( )] 0P
tE dM t P t =

If we ignore the time dependency for convenience we have:

[ ( ) ( ) ( )( )] 0P
tE Pd M Md P dM dP+ + =

0M P M PP Mµ µ σ σ+ + =

M P M P

M P M P
µ µ σ σ= − −

                                                                                                                                                                     
5 Hull (2001)
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To assume that the bond is a risk-free bond would be to assume that 0Pσ = .

Moreover, it should earn the risk-free rate of return or the short rate, which would

mean that P rPµ = . This implies that

M r
M
µ = −

Using this relationship, we can show that

/
/

M P

P

P r
M P

σ µ
σ

−= −

The absence of arbitrage would, intuitively, mean that assets which exhibit the same

risk should earn exactly the same (excess) return. Therefore, the return/risk ratio

should be the same for all assets as given by, say, λ. So, by definition

/
/

P

P

P r
P

µλ
σ

−≡

therefore

M

M
σ λ= −

This exercise demonstrates that the no-arbitrage condition restricts the drift coefficient

of the pricing kernel dynamics to be the negative of the short rate, and the diffusion



13

coefficient to be the negative of the market price of risk. This can be stated formally

as:

( ) ( ) ( ) ( )
( )

dM t r t t dW t
M t

λ= − −

Risk-adjusted Processes

Using these risk-adjusted processes, the effect of the market price of risk

corresponding to the short rate on the level of the level of the short can be

incorporated in the model. Therefore, if the zero coupon bond prices follow a

martingale process the CIR process given by equation (3) can be represented as:

( ( ) ) Qdr k r r dt rdwθ λ σ= − − + (4)

where Q
tdw  is a Wiener process under the Q-measure. λ is the market value of risk -

the covariance between changes in the interest rate and the market portfolio.

For the one-factor CIR model, the solution for the nominal price of a pure discount

bond is given by

( , )( , ) ( , ) B t T rP t T A t T e−= (5)

where, after incorporating the market value of risk, λ,
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2
( )( ) / 2

2 /
( )

2( , ) [ ]
( )( 1) 2

k T t
k

T t
eA t T

k e

γ λ
θ σ

γ
γ

γ λ γ

+ + −

−=
+ + − +

(6)

( )

( )

2( 1)( , )
( )( 1) 2

T t

T t

eB t T
k e

γ

γγ λ γ

−

−

−=
+ + − +

(7)

2 2( ) 2kγ λ σ= + + (8)

The continuously compounded yield for discount bonds is given by:

log ( , )( , ) P t TR t T
T t

= −
−

(9)

Using equation (5), this can be rewritten as:

log ( , ) ( , )( , ) A t T B t TR t T
T t

− +=
−

(10)

III Estimating the CIR model

A variety of methods have been developed in the finance literature for the estimation

of  CIR-type models. The two basic approaches may be categorised as the cross

section approach and the time series approach.
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In the cross-section approach, only information on the yields of bonds at different

maturities at a point in time is used in the estimation process. One thereby obtains a

different set of parameters for each time period. The state variable rt, treated as an

additional unknown parameter, is estimated jointly with the structural parameters. A

shortcoming of this approach is that the parameters are not constant over time and to

that extent it contradicts a basic assumption of the underlying economic model. An

example of this approach can be found in Brown and Schaefer (1994).

The time series approach, on the other hand, focuses on the dynamic implications of

the model and ignores the cross-sectional information. This approach is based on

fitting equation (3) to estimate the parameters, using observable data ( e.g. the yield of

one-month Treasury bills or money market rates) as an approximation of the unknown

parameter estimates. An inadequacy of this approach is that it is not possible to obtain

an estimate of the market price of risk, λ, which is necessary for valuation purposes.

Examples of this approach include Chan, Karolyi, Longstaff and Sanders (1992) and

Longstaff and Schwartz (1993).

These shortcomings saw the emergence of a third approach using panel data which

takes the dynamic and cross-sectional information into account simultaneously.

Gibbons and Ramaswamy (1993) highlighted the need for an estimation process

which is based on observed market prices and jointly controls for the assumed factor

dynamics. Pearson and Sun (1994) attempted to accomplish this by formulating a

likelihood function for a two-factor CIR model on the basis of the conditional density

of the underlying factors. The model is estimated by replacing the two factors by two

zero-coupon yields that are observed without error. However, the method does not
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account for the complete cross sectional information since it employs only two points

of the term structure. Moreover, the assumption that the two zero-coupon yields  are

observed without measurement error is open to question.

The affine model posits an exact relation between factors and yields. When using

more maturities than factors, this relation cannot be satisfied by all elements of the

yield vector as it would  give rise to the singularity problem in matrices. Hence, some

structure of measurement errors is necessary. In addition to the mathematical

requirement for having measurement errors is the economic justification for their

inclusion. It is important to note that affine models assume frictionless markets which

is obviously not the case in actual practice. Bid-ask spreads, rounding of prices,

differences in the timing of observing financial variables, and non-synchronous

trading are actual market features that detract from the notion of a frictionless market.

In view of the need for some structure of measurement errors, it is important to make

assumptions about this structure. Several alternatives have been put forward in the

literature.  Chen and Scott (1993) estimate a model with two factors and four

maturities. They assume that two yields are observed without error so that the model

for these two maturities can be inverted directly to obtain the factors. The other yields

are assumed to be measured with a normally distributed measurement error.  It seems

more reasonable however to assume that all yields are hit by some measurement

errors and this assumption is made by Geyer and Pichler (1999). They further assume

that these measurement errors have zero means, an unknown variance and are serially

and cross-sectionally uncorrelated. In effect, they assume a diagonal covariance

matrix for the measurement errors.
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The essence of this discussion is that although yields are observed, these observations

are by assumption imperfect due to market frictions of all kinds. The factors

supposedly present are unobservable and are to be predicted according to their

assumed distribution and the noisy indirect signals that emanate from the resulting

yields. Regardless of the structure of the measurement error chosen, given that we

cannot simply invert the model to find the unknown factors, a more sophisticated

filtering method is needed. The objective is to find a method for filtering out the

desired true signal and the unobserved components from this unwanted noise. This

where the Kalman filter comes in. It is a recursive algorithm that begins with an

educated guess as to the initial values for the state variables.  Parameter values can

then be estimated using maximum likelihood methods. In the context of bond markets

it identifies the unobserved state variables that govern bond price dynamics.

The Kalman filter has been used in a series of papers dealing with the estimation of

exponential affine term structure models. Affine term-structure models are

constructed by assuming that the bond price is a linear function of the underlying state

variables that provide uncertainty in the model. The Kalman filter is a linear

estimation method and  makes use of  this affine relationship between bond prices and

state variables to subsequently estimate the parameter set. The main advantage of this

technique stems from the fact  that it allows the state variables to be unobserved

magnitudes.

The nature of the application of the Kalman filter depends on whether the term

structure model is Gaussian such as the Vasicek model or non-Gaussian such as the
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CIR model. A Gaussian distribution is fully characterised by its first two moments

and the exact likelihood function is obtained as a by-product of the Kalman filter

algorithm. In the Gaussian case examples are due to Lund (1997) and Babbs and

Nowman (1999), who estimate a two-factor generalised Vasicek model.  Both Lund

and Babbs and Nowman observe eight spot rates with  maturities between one and 10

years.  When using non-Gaussian models, however, the exact likelihood function is

not available in closed-form, but a quasi-maximum likelihood estimator can be

constructed from the first and second conditional  moments of the state variables. For

the non-Gaussian CIR model, examples are due to Duan and Simonato (1995) and

again Lund (1997). Duan and Simonato (1995) investigate the general affine case. As

an illustration they fit one and two-factor CIR models to rates  of maturities up to nine

months.

In this paper, a panel-data estimation of the CIR model is presented which draws on

the work of Geyer and Pichler (1998). The approach is based on a state-space

representation of the term structure model where the underlying state variable(s) is

treated as unobservable. This obviates the need to employ proxies for the unobserved

factors. The yields are affine in the underlying state variables and the model explicitly

allows for measurement errors. Quasi-maximum likelihood estimates of the model

parameters are obtained by using an approximate Kalman filter to calculate the

likelihood function.
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IV The state space representation

In this section we demonstrate the reformulation of the model given by equation (4) in

the state space form as explained by Harvey (1989). In this formulation, we define a

measurement equation that relates the observable, or measurable  bond yields to the

unobservable state variables. The unobservable state variables, are in turn, assumed to

follow a Markov process described by the transition equation. Yields on zero-coupon

bonds are the inputs to the estimation process. In principle, we require only one zero-

coupon rate for each factor used in the estimation. So a one-factor model would

require only one zero-coupon bond yield. However, we have chosen eight maturities

that span the yield curve from 2 years to 25 years in order to incorporate information

affecting trading at the short, medium and long ends of the yield curve. This cross-

sectional information is particularly useful in specifying the market price of risk

parameter.

In the CIR model, the measurement equation represents the affine relationship

between zero coupon bond yields and the state variables.  Under the assumption that

measurement errors are additive and normally distributed,   we have

( ) ( )t t tR d Z Xψ ψ ε= + + ,   (0, ( ))t N Hε ψ∼ (11)

where ψ contains the unknown parameters of the model including the  parameters

from the distribution of measurement errors. Therefore, 1,( , , , , )Nk hψ θ σ λ= " . The

error terms tε  are measurement errors to allow for noise in the sampling process of

the data. The variance-covariance matrix of the measurement errors is assumed to
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have the form 1, NH h h= "  along the diagonal. In this estimation, 8  different

maturities are being considered. Therefore, the variance-covariance matrix of the

measurement errors, H, is an 8 x 8 diagonal matrix.

2
1

2
2

2
8

0 0
0 0

00

h
h

H

h

 
 
 =  
 
  

"
"

##$#
…

The values in the diagonal would differ implying that the variance of measurement

errors will depend on the maturities under consideration. This can be justified on the

grounds that trading activity and, therefore, bid-ask spreads are not equally distributed

across maturities. Therefore, the assumption is made that measurement errors in bond

yields are additive and normally distributed.  In the case of a one-factor model,

equation (11) would read as:

0 1t t tR A A X ε= + + (0, ( ))t N Hε ψ∼

where 0
log ( , )A t TA

T t
= −

−
, 1

( , )B t TA
T t

=
−

 .

The stochastic differential equation (4) represents the dynamics of the state variable as

specified in continuous time. As the transition equation captures the discrete dynamics

of the state variable, it corresponds to the discrete time version of equation (4). This

along with a first order autoregression model are used to formulate the transition

equation,
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1( ) ( ) ,t t tX d X uψ φ ψ −= + + 1/ (0, , )t t tu N Q−ℑ ∼ (12)

where

( ) (1 )k t
jd eψ θ − ∆= −  and  k teφ − ∆=

t∆ =  the time interval in the discrete sample (here 1 week)

 and so the discretisation step 1
52t∆ =  for weekly data.

It is important to note that the matrix  tQ  is diagonal and is dependent on the state of

the process. For a three-factor model, the conditional variance of the transition system

would have the following form:

1

2

3

00
0 0
00

it
Q

ξ
ξ
ξ

 
 =  
  

,

where
2 2

22
1(1 ) ( ) ( )

2
j j jk t k t k tj j j

j j i
j j

e e e X t
k k

θ σ σ
ξ − ∆ − ∆ − ∆

−= − + −

for 1,2,3.j =

It is further assumed that the error terms of the measurement ( tε ) and transition

equations ( tu ) are not correlated.
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V The Kalman Filter

Now that we have put the model in equation (4) in state space form, as defined in

equations (11) and (12), we can use the Kalman filter algorithm to obtain information

about tX  from the observed zero coupon yields. Although the construction of the

Kalman filter relies on the normality assumption of the disturbances (both tε  and

tu are Gaussian noise) and initial state vector, it can calculate the likelihood function

by decomposing the prediction error. In the process, it enables the estimation of the

parameters by maximum likelihood methods. This is achieved by calculating

recursively the distribution of tX , conditional on the observations at time t.

We now describe the filter. At time t - 1 we shall have current estimates of the state

variables 1tX − , the variance 1tQ −  of 1tX − , and the parameters 1tψ − . Starting values of

0X  and 0Q  are provided.  There are now three steps involved.

(i) The prediction step in which we find the following:

1t tX − , the forecast of tX  at time t - 1.

1t tQ − , the forecast of tQ  at time t - 1.

      At time t we get a new observation,  tR

(ii) The update step. Using tR , compute estimates of tX  and  tQ
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(iii) The parameter estimation step. Using tX  and tQ , compute an estimate of

tψ  of  ψ .

Prediction Step

A forecast of the unobserved state variable X  at time t is made, based on its value at

time t-1. These forecasts are, in effect, unbiased conditional estimates.

/ 1 1 1
� �( )t t t t tX E X d Xφ− − −= = + (13)

while the forecast of  tQ ,  the variance of the measurement error is,

'
/ 1 1 1 1 1t t t t t tQ Q Qφ φ− − − − −= + (14)

For a one-factor CIR model,

2 2
2 2

1
�(1 ) ( )

2
k t k t k t

t tQ e e e X
k k

θσ σ− ∆ − ∆ − ∆
−= − + −

Update Step

This uses the additional information at time t, i.e. tR  to obtain an updated estimator of

tX . When tR  has been observed, the forecast error tv  is

1
�

t t t tt tv R Z X d−= − −

The variance tF  of  tv
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'
1t t tF ZQ Z H−= +

The new estimates tX  and tQ , in terms of tv  and tF  are

' 1
1 1

�
t t tt t t tX X Q Z F v−

− −= +

' 1
1 1 1t kt t t t t tQ Q Q Z F ZQ−

− − −= −

These are the variance minimising conditionally unbiased estimates of tX  and tQ .

The Log Likelihood Function

The prediction and update steps must be repeated for each discrete time step in the

data sample. For the analysis in this paper, I use weekly observations over a period of

five years. We use the log likelihood function to estimate the parameter values.

Assuming that the prediction errors are normally distributed, the log-likelihood

function is given by,

' 1
1

1

1 1log ( ,..., ; ) log 2 log
2 2 2

T

n t t t t
t

nL R R F v F vψ π −

=
= − − −∑ � (15)

Since the prediction error is Gaussian, equation (15) is the quasi maximum likelihood

estimator to best explain the observed values of tR . Both tF  and tv  depend upon the

parameter set given byψ . Therefore, ψ  is chosen so as to maximise the likelihood

function log L .
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VI Data and Estimation Results

Data description

The data comprises 265 weekly observations of  zero-coupon yields for UK and

German Treasury bonds from January 6 1999 to January 28, 2003. These observations

were sampled every Wednesday to take advantage of high liquidity and avoid

beginning and end of week effects. The data sets have a panel data structure with a

time dimension and a cross-sectional (maturity) dimension. As zero coupon yields are

not observed, cross-sectional data on yield to maturity, time to maturity and coupons

for UK and German Treasury bonds, were sourced from Datastream.  Using this data,

zero-coupon  yields  for  UK and German Treasury bonds were estimated using the

Nelson and Siegel (1987) model. Eight different maturities that would broadly cover

the maturity spectrum of the yield curve are considered; they are 2-, 3-, 5-, 7-, 10-, 15-

, 20- and 25-year bonds. Table 1 provides the summary statistics for the estimated

zero coupon yields.

Table 1 Summary statistics of  zero coupon yields

Maturity Mean Yield Standard Deviation
years GER UK GER UK

2 4.18 4.89 0.8680 0.8603
3 4.36 4.97 0.7898 0.7826
5 4.61 5.00 0.6721 0.6368
7 4.83 4.97 0.5649 0.5245
10 5.05 4.87 0.5136 0.3539
15 5.12 4.73 0.4952 0.2125
20 5.55 4.60 0.3945 0.2237
25 5.56 4.48 0.3868 0.2416
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 Figure 2 depicts the evolution of the UK Treasury yield curve over the period of

observation. Similarly, Figure 3 shows the evolution of the German Treasury yield

curve.

What is immediately discernible from the dynamic behaviour of the UK term

structure is the inversion of the yield curve during a phase that would correspond to

the year 2000. This reflected the market's fears of worsening economic conditions for

the UK, which subsequently eased. In contrast, Germany had positive yield spreads

during the same period.

Figure 2. Evolution of the UK Treasury Yield Curve
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Figure 3. Evolution of the German Treasury Yield Curve

We employ the Kalman filter to estimate the one-factor CIR model using data on the

UK and German term structure of interest rates. The objective is to estimate the

parameters of the processes that are posited to drive interest rate changes.

Parameter Estimation

The standard errors of the parameter vector 1 8( , , , , , , )h hψ κ θ σ λ= " can be computed

by using the result shown by White (1982). He showed that the covariance matrix for

�( )n ψ ψ−  converges to
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1 1
2 2

i j i i i j

L L L LE E E
ψ ψ ψ ψ ψ ψ

− −
       ∂ ∂ ∂ ∂
          ∂ ∂ ∂ ∂ ∂ ∂          

where L  is the log-likelihood function. The standard errors are given by the diagonals

of the above matrix result. Thus for each observation, we determine numerically the

partial derivatives of the likelihood with respect to the twelve parameters

1 8( , , , , , , )h hψ κ θ σ λ= "  evaluated at the maximum likelihood estimate �ψ .

Estimation Results

In keeping with the different dynamics of the term structure observed in the two

markets we chose different starting values. For the UK term structure, the initial

starting values that have been  chosen for the parameters are 0.15κ = , 0.05θ = ,

0.1σ = , 0.1λ = − . Results of the parameter estimation using the Kalman filter are

shown in Table 2. Figures in parenthesis indicate t-values.

Table 2  The Kalman Filter estimates of the one-factor CIR model for
   UK Treasury bond yields

___________________________________________________________

   κ          θ                σ   λ

---------------------------------------------------------------------------------------

0.1443      0.0879   0.0801 -0.1176

(3.45)                   (3.46)               (3.76)              (2.53)

__________________________________________________________



29

We obtain significant parameter estimates for all the parameters at the 5% level  The

significant mean reversion parameter of   0.1443 implies  mean reversion in the

underlying interest rate. The estimate of 0.1443 indicates a mean half life of 4.8 years

which is the expected time for the short rate to return halfway to its long-run average

mean, θ. 6  Half-life gives the slowness of the mean reversion process and a value of

4.8 years would indicate slow mean reversion for interest rates. But this is comparable

to the 4 years obtained by Geyer and Pichler (1999). Accordingly, this process is also

characterised by a low but significant volatility estimate (σ = 0.0801). The market

price of risk (λ = -0.1176) is negative, a necessary condition for positive risk premia.

In  the case of the German term structure, the initial starting values that have been

chosen for the parameters are 0.15κ = , 0.04θ = , 0.05σ = , 0.1λ = − . Results of the

parameter estimation using the Kalman filter are shown in Table 3. Figures in

parenthesis indicate t-values.

Table 3   The Kalman Filter estimates of the one-factor CIR model for
   German Treasury bond yields

___________________________________________________________

   κ          θ                σ   λ

---------------------------------------------------------------------------------------

0.1579           0.0646   0.0556 -0.00095

(20.83)                 (15.1)               (2.37)              (0.12)

__________________________________________________________

                                                          
6 The half life is given by 0.5.kte− = This implies ln(0.5) /t k= −
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We obtain significant parameter estimates for all the parameters except the market

price of risk. This would suggest that the variable has not been priced by the market.

In accordance with the lower level of short-term yields for German Treasury bonds,

the long-term mean parameter is 6.46 per cent as compared to 8.79 per cent for the

UK Treasury. The mean reversion of 0.1579 implies a mean half-life of 4.38 years

and this is somewhat smaller in magnitude as compared  to that obtained for the UK

term structure. However, the volatility parameter given by 0.0556 is significantly

smaller than that obtained for the UK term structure The market price of risk

parameter is estimated with no significant precision and this could be  indicative of its

correlation with the long-term mean parameter.

VII Conclusion

In this paper a single-factor CIR model has been estimated for the UK and German

term structure for the period January, 1999 to January, 2004. Modelling continuous

time term structure models start out with the specification of a time series process for

the instantaneous spot interest. The no-arbitrage condition then permits the derivation

of a bond pricing formula whereby the bond price is a function of the unobserved

instantaneous spot rate and the model's parameters. These parameters are the long-run

mean, the speed of adjustment towards the long-run mean, volatility of the short-term

interest rate and the market price of risk. In this paper the model is estimated for a

single factor using a quasi maximum likelihood approach based on the Kalman filter.

The Kalman filter algorithm uses observable data on bonds to extract values for the
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unobserved state variables. It combines both the cross section and time series

information in the term structure.

The yields on zero-coupon bonds are used as inputs for the estimation process. In this

paper, the empirical analysis is based on weekly observations of UK and German

Treasury zero coupon bonds over the period January 1999 to January 2004. Eight

maturities have been chosen that span the yield curve from 2 years to 25 years and are

expected to incorporate influences on the short, medium and long end of the term

structure. The parameters of the model and their standard errors are estimated.

Results of the empirical analysis show that the unobserved instantaneous interest  rate

exhibits mean reverting behaviour in both the UK and German term structure.

However, the mean reversion of the interest rate process has been relatively slower in

the UK as compared to Germany since the introduction of the euro.  Accordingly, the

volatility component, which shocks the process at each step in time is also higher in

the UK as compared to Germany. The results indicate that the one-factor CIR model

provides a good representation of the UK Gilt-Edged market. But its inability to

meaningfully account for the market price of risk has impinged on its efficacy in

capturing the dynamics of the German term structure.
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