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Abstract

In this paper we study a local version of the Minority Game where agents are placed
on the nodes of a directed graph. Agents care about being in the minority of the
group of agents they are currently linked to and employ myopic best-reply rules to
choose their next-period state. We show that, in this benchmark case, the smaller
the size of local networks, the larger long-run population-average payoffs. We then
explore the collective behavior of the system when agents can: (i) assign weights
to each link they hold and modify them over time in response to payoff signals;
(ii) delete badly-performing links (i.e. opponents) and replace them with randomly
chosen ones. Simulations suggest that, when agents are allowed to weight links
but cannot delete/replace them, the system self-organizes into networked clusters
which attain very high payoff values. These clustered configurations are not stable
and can be easily disrupted, generating huge subsequent payoff drops. If however
agents can (and are sufficiently willing to) discard badly performing connections, the
system quickly converges to stable states where all agents get the highest payoff,
independently of the size of the networks initially in place.

Keywords: Minority Games, Local Interactions, Endogenous Networks, Adaptive
Agents.

JEL Classification: C72, C73.

1 Introduction

In the last years, both physicists and economists have become increasingly interested in

investigating the collective properties of dispersed dynamical systems composed of many

boundedly-rational agents who directly interact over time (Kirman, 1997).

A well-known instance of such a system is the Minority Game (MG), firstly introduced

as a model of inductive rationality in the famous “El-Farol Bar Problem” by W. Brian

Arthur (Arthur, 1994) and then explored in details by Challet and Zhang (1997).
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In a nutshell, the standard formulation of the MG envisages a population of N (odd)

players who have to repeatedly choose a binary state (−1 or +1). In each time period

t = 1, 2, ..., the state chosen by the minority wins. Agents who are in the minority get a

point, the others get zero. Agents are only allowed to observe the last m ≥ 1 winning sides

(i.e. history is the only common information). To choose their next-period state, players

use one of their k ≥ 2 strategies, each strategy being a lookup table assigning an output (i.e.

the state to be chosen in the next period) to any of the 2m possible states configurations.

Agents always select their best-performing strategy to make their choice. The performance

of any given strategy evolves through time. Agents are initially endowed with a random

repertoire of strategies, drawn at random from the pool of all 22m
conceivable ones. If an

agent is successful in a given time period, it assigns a point to all strategies that would

have predicted the winning state (no matter if they were actually used or not) and zero

otherwise.

The standard MG has become a paradigm for studying systems where adaptive agents

compete for scarce resources and has been recently employed to study the dynamics of

stock markets and market-entry games1. From a theoretical perspective, the standard MG

model has been extensively studied both numerically and analytically (Challet and Zhang,

1998) and a huge number of contributions have been exploring a large spectrum of possible

extensions2. In particular, a recent stream of research has investigated the consequences of

relaxing two key assumptions of the basic framework, namely global interactions (i.e. each

agent cares about being in the minority of the whole population) and common information

(i.e. all players have access to the same information, i.e. the globally winning side).

The underlying idea is that each agent playing the MG could instead have access only to

a local source of information, e.g. the state played in the past by those agents which are the

“closest ones” in some underlying socio-economic space3. For example, Paczuski, Bassler,

and Cooral (2000) model a MG where agents are placed in a Kauffman NK-network

(Kauffman, 1993). Agent can only observe the state of the agents they are currently

linked with and hold only one strategy. The latter maps the past state of one’s neighbors

into the state to be chosen in the next period. Similarly, Kalinowski, Schulz, and Briese

(2000) and Slanina (2000) place their agents over one-dimensional, regular, boundary-less

lattices (i.e. circles) and allow them to observe the states held in the recent past by their

nearest-neighbors. Notice, however, that in these models agents interact locally but play

1See inter alia Challet, Marsili, and Zhang (2000), Marsili and Challet (2001), Bottazzi, Devetag, and
Dosi (2003) and Ochs (1990, 1995).

2See the Minority Game’s Web Page (http://www.unifr.ch/econophysics/minority) in the Econophysics
Forum Internet Site for an exhaustive annotated bibliography.

3For a similar perspective in the context of “spatial evolutionary games”, cf. the survey in Fagiolo
(1998).
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globally the MG: players are indeed rewarded only if they choose the globally winning side.

Conversely, Moelbert and De Los Rios (2001) study a local MG where the population is

spatially distributed over a regular lattice with nearest-neighbor interactions. Agents only

observe time t − 1 states played by their neighbors and care about being in the minority

of their local group.

Although the study of “local” versions of the standard setup has been shedding some

light on the ways in which heterogeneous information affects collective MG dynamics, very

little attention has been paid to the role played by network structures and local interac-

tions in shaping long-run aggregate outcomes. For example, the existing literature has

extensively addressed the study of MGs played over very regular network structures (e.g.

homogeneous lattices), without exploring the consequences of assuming more asymmetric

structures (e.g. generic graphs with directed links). Furthermore, local MGs have almost

exclusively focused on “frozen” or “static” interaction structures. This means that agents

always interact with the same opponents and do not have the faculty to endogenously

modify the structure of their network4.

In this paper, we begin instead to explore in more details the role played by networks

(and the evolution thereof) in local MGs.

We consider a population of N agents living in a discrete-time economy. Each agent is

initially connected through unilateral links (directed edges) to a fraction of other players,

whose last-period states is the only information they are allowed to observe. Agents are

rewarded with one point if they are successful, i.e. if they play as the (strict) minority of

their local group does (and zero otherwise).

In any time period, only a fraction of agents are allowed to consider whether to change

their state. Agents decide their next-period state by evaluating the state of their local

network.

We implement two network evaluation setups. In the first one, we assume non-weighted

links : each opponent always counts as one, no matter what it did in the past. Therefore,

agents simply choose the state played by the (strict) minority of their peers. In the second

setup, we introduce weighted links. Each agent separately evaluates every link (i.e. every

opponent) and assigns to it a weight that increases only if the linked agent has allowed the

evaluating agent to take the winning decision in the past. State decisions will then depend

upon a comparison between the sum of weights associated to agents playing +1 and −1 in

the local group. We call this second setup a “weighted” minority game (WMG).

As far as network dynamics is concerned, we simulate the behavior of the system in

4As we argue at more length elsewhere (Fagiolo, 2004; Fagiolo, Marengo, and Valente, 2004), allowing
for endogenous network formation might crucially help in better understanding the properties of collective
dynamics in spatial games.
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two scenarios. The first scenario assumes frozen networks. The network initially in place

cannot be modified and only their weights might possibly evolve. In the second scenario

(endogenous networks), agents can decide whether to remove a badly performing link, i.e.

a link whose weight becomes lower than a given threshold. Since agents do not have a

good knowledge of the region of the economy outside their local network, we assume that

the new opponent is chosen at random from the remaining set of agents.

We explore system behavior when the initial density of the network changes in alter-

native network evaluation setups and network dynamics scenarios. Preliminary simulation

exercises show that, in the non-weighted local MG with frozen networks, the smaller the

density of the network, the larger average payoffs. If however we assume a WMG with

frozen networks, the population tends to build a network of small clusters composed of

highly coordinated agents choosing the same state. Agents of one cluster keep assigning

more and more importance to agents of other clusters. These global configurations are not

in general robust and can be easily disrupted by subsequent network reassessments. Fluc-

tuating patterns for average payoffs are likely to emerge. Finally, we study what happens

when agents play the WMG over endogenous networks. In this case, the population splits

in two subgroups playing opposite states. Agents in a group are prevalently linked with

agents of the other group. Average payoffs converge to one. Thus, the population learns to

“globally win” the WMG by selecting the most convenient set of opponents in the game.

The rest of the paper is organized as follows. Section 2 formally describes the model.

In Section 3 we present preliminary simulation results. Finally, Section 4 concludes and

discusses future developments.

2 The Model

We study a population of boundedly-rational agents i ∈ I = {1, ..., N} playing a minority

game in discrete time periods t = 0, 1, 2, .... Each agent i is characterized by its binary

state st
i ∈ {−1, +1} in the game and by the set V t

i ⊆ I − {i} of other agents is currently

linked to (which we call interaction group). Interaction groups govern the way in which

agents gather information in the model: at the beginning of each period [t, t+1), any agent

i can only observe the state of the agents it is currently connected with, i.e. {st−1
j , j ∈ V t

i }.
We denote by ijt the directed edge linking agent i to j at time t. Since links are directed,

the fact that j ∈ V t
i does not necessarily imply that i ∈ V t

j . The collection {V t
i , i ∈ I} thus

induces at every t a directed graph over I. The set of directed edges (links) held by the

agents may be interpreted as their “window over the world”. Contrary to what happens

in the standard MG, agents cannot observe the whole system (i.e. cannot get information
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about the globally winning side) and must adapt to a small, local, set of signals5.

In each period, agents get a positive (unit) payoff if they play the same as the minority

of their interaction group V t
i does. More formally:

πt
i = πt

i(s | nt−1
i (s), nt−1

i (−s)) =

{
1,

0,

if nt−1
i (s) < nt−1

i (−s)

otherwise
, (1)

where s{−1, +1} and nt−1
i (s) = #{j ∈ V t−1

i : st−1
j = s} is the number of agents playing s

in V t−1
i .

We assume that, in each time period, any agent is allowed to revise its current state

with a probability θ ∈ (0, 1] and that agents earn the payoff (1) even if they must stay put

(or if they do not actually change) their current state.

We consider two alternative setups as to how updating agents evaluate the information

coming from their local network and use that information in deciding their next-period

state.

In the first setup, every linked agent (i.e. every edge ijt−1) always counts as one,

independently of the past behavior of the opponent j. Therefore, agent i chooses its (new)

action using a standard, deterministic, best-reply rule6:

st
i =

{
+1,

−1,

if nt−1
i (+1) < nt−1

i (−1)

if nt−1
i (+1) > nt−1

i (−1)
. (2)

In the second setup, we implement a weighted version of the MG (WMG). We suppose

that each agent attaches an indicator of importance (weight) ηt
ij to each link ijt it maintains.

Weights are updated over time. In each period, each link is assigned a score et
ij equal to 1

or 0, depending on whether the “suggestion” coming from j was correct (i.e. if it indicated

the state played by the minority of the linked agents) or not. More formally:

et
ij =





1,

1,

0,

0,

if

if

if

if

πt
i = 1

πt
i = 0

πt
i = 0

πt
i = 1

and

and

and

and

st−1
i 6= st−1

j

st−1
i = st−1

j

st−1
i 6= st−1

j

st−1
i = st−1

j

. (3)

5We did not assume undirected edges (i.e. undirected graphs) because of two considerations. First,
there is no obvious reason why if i observes j, the opposite should hold as well. Second, if bilateral links
are assumed, both the payoff structure and link removal rules (see below) should be supplemented by some
additional coalition-level rule that might overly complicate (and possibly bias) our analysis.

6We have implemented different tie-breaking rules (TBR) for the case nt−1
i (−1) = nt−1

i (+1). However,
our results are not dramatically altered if one assumes stochastic TBRs (e.g. agents choose at random
when a tie occurs) or state-dependent ones (e.g. agents stick/switch to their current choice). Therefore,
we have decided to avoid any tie-breaking complications simply by assuming that all interaction groups
always contain an odd number of players (see below).
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Agents then use the score to update the weight of each link as follows7:

ηt
ij = αηt−1

ij + (1− α)et
ij. (4)

Notice that by applying the weight updating rule in (4), agents trade-off their memory

about the “past contributions” from agent j with its “current contribution” (et
ij). The

parameter α tunes the memory effect. If α ' 0, weights track very closely current scores

(no memory), whereas, if α ' 1, memory becomes very important. The ηt
ij series are

smoother and are quite robust to new scores. See Figure 1 for an example of weight series

generated by applying rule (4) to the same series of et
ij for alternative values of α.
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Figure 1: An example of the dynamics of individual weights. Equation ( 4) is applied over
the same time-series of scores et

ij for three values of the memory parameter α =0.6, 0.8,
0.9.

Given current weights ηt
ij attached to agents j ∈ V t−1

i , agent i will then choose its state

by employing a weighted-minority rule as follows:

st
i =





+1, if
∑

j∈V t−1
i (−1)

ηt
ij <

∑

j∈V t−1
i (+1)

ηt
ij

−1, if
∑

j∈V t−1
i (−1)

ηt
ij >

∑

j∈V t−1
i (+1)

ηt
ij

, (5)

where we denote by V t−1
i (s) = {j ∈ V t−1

i : st−1
j = s} and s ∈ {−1, +1}. In other words,

7See Weisbuch, Kirman, and Herreiner (2000) and Kirman and Vriend (2001) for a similar approach.
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agents now use a weighted best-reply rule, where opponents do not all count as one and

their relative importance is given by their performance in the past8.

Weights provide an indication of how useful a link has been in the past in helping to

take the correct decision, no matter if the player actually did choose a new state or was

forced to stick to its current one. In a sense, ηt
ij is a measure of the trust that i develops

through experience in evaluating the information coming from j.

Notice that if an agent turns out to hold very similar weights, the latter will not be

very useful as the opponents are all conveying both wrong and right messages. Conversely,

an agent having very different values for its ηt
ij finds some linked agents consistently useful

(and others consistently wrong). In other terms, an agent with very differentiated ηt
ij

can be interpreted as an agent with “strong opinions”, while an agent attaching very

similar weights to its opponents is an “uncertain” decision maker. Therefore, the dispersion

(Herfindahl) index

H t
i =

∑
j∈V t−1

i

(
ηt

ij

)2

|V t−1
i | (6)

provides some information about “opinion convergence” for agent i: the larger H t
i , the

wider the dispersion of weights ηt
ij.

Finally, let us describe how network evolve through time. At time t = 0, each agent

is endowed with the same (odd) number of links L0
i = L0 = bδNc, where δ ∈ (0, 1) is a

proxy for the “density” of the initial network and L0 ∈ {1, 3, 5, ..., N − 1} (i.e. each agent

is randomly linked L0 other agents)9.

We experiment with two alternative scenarios as far as network dynamics is concerned.

In the first one, frozen networks are assumed. Links cannot change in the entire process

and, under the WMG setup, weights only can be updated. This allows one to disentangle

the roles played by coordination, local interactions, and, possibly, weight updating in

shaping collective behavior.

In the second setup, we study an endogenous networks system. After state updating,

any agent is allowed with some small probability β > 0 to discard badly-performing links10.

More formally, we introduce a threshold µ ∈ (0, 1) and we suppose that agent i deletes all

links such that:

ηt
ij < µ

∑
h∈V t−1

i
ηt

ih

|V t−1
i | = µηt

i. (7)

In line with the local nature of information diffusion in our economy, we assume that

8Notice that, if α = 0, the weighted rule (5) reduces to (2).
9We assume here N even. Notice that this choice allows us to avoid tie breaks (see also above).

10If β = 0 the frozen networks setup is recovered.
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agents replace any discarded link with a new one (randomly chosen from the set of all

currently unconnected agents) and that any new link is initially assigned a weight equal to

the average of the weights of all undiscarded links. Notice that all agents always keep L0

open at any t.

3 Simulation Results

In this Section, we present some preliminary simulation Montecarlo exercises and we discuss

the most important properties displayed by the collective behavior of the system.

We begin with a benchmark parametrization11 where: (i) the frequency of state up-

dating is θ = 0.20; (ii) the population size is N = 100. Our main goal is to explore how

networks influence collective dynamics. Therefore, we start by studying what happens

to the distribution of individual payoffs and to the interaction structure (i.e. links and

weights) when the “density” of the initial network (δ or equivalently L0) changes in each

of the following three setups:

1. Agents play a non-weighted MG and networks are frozen.

2. Agents play a weighted MG and networks are frozen.

3. Agents play a weighted MG and networks are endogenous.

In all our exercises, we average our observations over M = 10 independent Montecarlo

simulations in order to wash away across-simulation variability. Moreover, we observe

the system dynamics until the economy has reached a sufficiently stable behavior, which

typically happens for 2000 ≤ T ≤ 400012.

3.1 Non-Weighted Minority Games over Frozen Networks

In the first set of simulations, we study a system where agents play a non-weighted MG over

exogenously fixed networks. This means that the initial interaction structure {V 0
i , i ∈ I}

is not allowed to change. Agents always observe the same local network (i.e. their “ob-

servation window”) and are rewarded only if they play as the minority of their opponents.

Furthermore, each opponent always count as one, irrespective of its past behavior (i.e.

weights are always equal to one for each link).

11A thorough Montecarlo analysis exploring the robustness of our results to the parameters kept fixed
in our preliminary simulation is the next point in our agenda, see also Section 4.

12Our results are fairly robust to alternative (larger) Montecarlo sample sizes (M), population sizes (N)
and time horizons (T ).
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In such a setting, an interesting question concerns whether collective coordination can

be affected by the size of the observation window held by the agents. In Figure 2 we plot

the evolution over time of population-average payoffs

πt =
1

N

N∑
i=1

πt
i (8)

as the number of links which we endow each agent with (L0) changes.
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Figure 2: Montecarlo mean of population-average payoffs when agents play a non-weighted
MG over frozen networks and the initial number of links changes (L0=5, 25, 55). Monte-
carlo mean performed over M = 10 runs. Setup: N = 100, α = 0.99, θ = 0.20.

Populations with a smaller number of links provide, on average, higher payoff levels.

A better coordination is then achieved by playing with a smaller number of opponents.

In fact, if agents are only able to observe the world through a smaller window, it is more

likely that these windows do not overlap (that is, i ∈ V 0
j but j /∈ V 0

i ). This allows agents

to better coordinate and the system to reach a quite good average performance.

Notice also that the high instability often displayed in standard MG (e.g. frustration)

is avoided13. Our results suggests that local interactions can in part surrogate individual

memory: a stable collective behavior characterized by a better-than-average coordination

can be reached even if players cannot observe the last global winning sides and cannot

learn in the strategy space (cf. also Bottazzi, Devetag, and Dosi (2003)).

13For similar findings in the context of nearest-neighbors interactions on lattices, cf. Burgos, Ceva, and
Perazzo (2003), Kalinowski, Schulz, and Briese (2000) and Moelbert and De Los Rios (2001).
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3.2 Weighted Minority Games over Frozen Networks

Let us turn now to the case where networks are still frozen but agents can weight the

importance of the links they maintain. Notice that in this setup agents cannot discard

poorly performing links and add other ones, but they can attach different beliefs as to

whether the information coming to a particular opponent will be useful in deciding their

next-period state.

Each opponent j in a given V 0
i will then contribute to the decision at time t in proportion

to its link-weight ηt
ij. In what follows, we suppose that the importance of memory in weights

dynamics is very high (i.e. α = 0.99). This means that the score et
ij currently earned by

the opponent j has a small impact in changing the assessments of agent i about its beliefs

about j.

When agents are allowed to “select which details to observe from their window”, the

collective behavior of the system sensibly changes as compared to the non-weighted case.

Indeed, populations holding a large number of links are now able to focus on smaller subsets

of trusted connections. The latter are the ones that in the past have guaranteed high scores

(see eq. 3). As a consequence, the population tends to break down into groups of agents

sharing the same state, which, however maintain very weak (if no) connections among

them. Agents belonging to, say, a +1 group will instead build connections with players

belonging to a −1 group.
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Figure 3: Time-series of individual Herfindahl index H t
i , i = 1, ..., N , when agents play

a weighted MG over frozen networks. Values of H t
i refer to a benchmark run. Setup:

N = 100, α = 0.99, θ = 0.20, L0 = 55.
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Figure 4: Time-series of population average payoffs when agents play a weighted MG over
frozen networks. Payoff values refer to the same benchmark run of Figure 3. Setup:
N = 100, α = 0.99, θ = 0.20, L0 = 55.

This clustering process entails a high degree of coordination among agents: it is there-

fore very difficult to achieve and very sensible to small fluctuations. To see this, we report

in Figure 3 all Herfindahl individual indices H t
i (see eq. 6) for a typical simulation run.

Notice that all dispersion indices increase when a feasible coordination pattern is under

formation. However, after such a clustered network has been built, any small change in

the global state-weight configuration is able to disrupt the coordination pattern that has

just emerged14. Population-average payoff accordingly increases during the construction of

the clustered network and then falls after the latter has been destroyed, see Figure 4. The

initial wave (with Herfindahl indices all increasing) is due to a larger and larger number

of agents strengthening their links to agents belonging to an opposite-state cluster. While

more and more agents joint the cluster, the network falls apart. This causes a huge drop

in Herfindahl values.

Interestingly enough, populations with an initially low number of links get now lower

average payoffs than their connected counterparts (see Figure 5). This is because weight

assessment over a small number of agents does not provide a big enough pool from which

selecting a robust subset of opponents behaving consistently over time.

Note, however, that all three populations reach now (on average) higher payoff levels

than in the previous case. This suggests that allowing for some endogeneity in network for-

14This dynamic pattern closely resembles that of open-ended economies self-organizing “on the edge of
chaos” and displaying punctuated equilibria, cf. Lindgren (1991).
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Figure 5: Montecarlo mean of population-average payoffs when agents play a weighted MG
over frozen networks and the initial number of links changes (L0=5, 25, 55). Montecarlo
mean performed over M = 10 runs. Setup: N = 100, α = 0.99, θ = 0.20.

mation (e.g. a payoff-dependent weight dynamics) implies a better collective performance.

To further explore this intuition, we move now to the endogenous networks setup.

3.3 Weighted Minority Games over Endogenous Networks

Let us now suppose that agents play a WMG and can endogenously delete badly-performing

links. We set the cutoff value to µ = 0.50 and the network updating frequency to β = 0.10.

This means that an agent holding a link ijt such that ηt
ij < 1

2
ηt

i will delete it and replace

it by another ij′t, where j′ is drawn at random from the pool of all currently non-linked

players.

In this setup, the coordination process becomes quite efficient and very rapid. Agents

typically split into two (almost) equally-sized groups: players in the first one persistently

choose the state +1, those in the other one always select the state −1. Agents in one group

maintain a large majority of links with agents in the other group. This allows them to

effortlessly get a positive reward and rapidly converge to an overall system configuration

characterized by average payoffs πt very close (if not equal) to one.

Therefore, despite the local nature of interaction patterns, the population is able to

“globally win” the MG by endogenously selecting the right set of opponents.

What is more, convergence to a stable interaction pattern allowing for an efficient

collective behavior does not generally depend on the initial degree of connectivity. Figure
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6 shows the population-average Herfindahl index:

H
t
=

1

N

N∑
i=1

H t
i , (9)

for three populations characterized by L0 = 5, 25, 55. The two initially highly connected

populations (i.e. L0 = 25, 55) quickly converge to a steady-state with very high values15.

Average payoffs πt for these two populations quickly converge to 1.

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500

Time

A
ve

ra
g

e
 H

e
rf

in
d

a
h

l

L°=5

L°=25

L°=55

Figure 6: Montecarlo mean of population average Herfindahl index H
t
when agents play a

weighted MG over endogenous networks and the initial number of links changes (L0=5, 25,
55). The cutoff value for all three populations is µ = 0.50. Montecarlo means performed
over M = 10 runs. Setup: N = 100, α = 0.99, θ = 0.20, β = 0.10.

Incidentally, notice that the average dispersion index follows a s-shaped pattern, i.e. the

signature of diffusion processes (Dosi, 1991). Indeed, when the two groups start forming,

an agent which is not yet part of any group can simply join one of them by selecting a

linked agents in the other group, similarly to what happens in an epidemic process.

Only the L0 = 5 population fails to stabilize. The H t
i values are rather low, as well as

the population-average of weights. This prevents the worst performing links to fall below

the deletion threshold. Therefore, agents cannot effectively employ network adaptation to

15Notice that H
t → 1 when L0 = 55, while H

t
stabilizes around values very close to one when L0 = 25.

Note that the H
t
value for the L0 = 55 population settles to a stable level which is strictly below 1.0. This

happens because agents in any of the two groups must necessarily keep 5 links open to agents playing their
same state (i.e. in their own group). The weights for these links will always be very small (and decreasing
in time), implying a smaller-than-one average dispersion index.
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Figure 7: Continuation of the simulation runs presented in Figure 6 after the cutoff value
for the L0 = 5 population has been increased to µ = 0.80 at t = 1550. Montecarlo mean
of population average Herfindahl index performed over M = 10 runs. Setup: N = 100,
α = 0.99, θ = 0.20, β = 0.10.

reach coordination.

However, if the cutoff value increases, agents find it easier to get rid of badly-performing

links. To see whether this is sufficient to trigger convergence to the efficient state, we raised

on-the-fly (around t = 1550) the cutoff values of agents belonging to the L0 = 5 population

to µ = 0.80. Figure 7 shows the continuation of the simulation presented in Figure 6: also

the initially weakly-connected population is now able to converge to the efficient stable

state.

4 Concluding Remarks

In this paper, we have studied a local version of the MG where agents initially hold directed

edges connecting them with other players in the population. Agents can only observe the

state chosen by their opponents in the last-period and care about being in the minority

of their own interaction group. To choose their next-period state, agents employ simple,

best-reply, rules.

We have explored two network evaluation setups. In the first one, links are non-weighted

and agents simply count the number of their opponents in either state to decide which side

to take in the next period. In the second one, links (that is, opponents) are attached a

weight. A weight path-dependently evolves through time: its value increases only if the
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information provided by the linked agent has been helpful in the past.

We started from a scenario where networks are frozen (i.e. links cannot be deleted/added)

and we then moved to a system where endogenous networks are assumed (i.e. agents can

discard badly-performing links and replace them with other ones chosen at random).

Our results indicate that the very possibility of locally playing the MG and endogenously

acting over the network structure might strongly affect the efficiency of collective behavior.

For example, even when agents cannot path-dependently discriminate among connections

and must stick to an exogenously given network, efficiency can be increased if agents hold

small, local, interaction groups. In a sense, individual memory can be surrogated by the

information locally gathered by the players in a myopic way.

Furthermore, simulations show that the efficiency of the system can be greatly enhanced

by allowing players to act upon the structure of the network. Indeed, our results suggest

that populations playing a WMG over frozen networks are able to self-organize and build

transient clustered networks which attain high payoff levels. These self-organized con-

figurations are very sensible to subsequent network reassessments: their disruption may

generate abrupt fluctuations in average payoffs.

Such huge fluctuations, as well as sub-optimal payoff levels, may be however avoided if

agents are able to delete badly performing links and replace them with random ones. In

that case, the population is able to “globally win” the WMG and consistently reach a stable

state where all agents get a positive payoff. Provided that agents are sufficiently willing

to discard links, this conclusion holds independently on the initial number of connections

assigned to each player.

These quite promising results should be more carefully scrutinized vis-à-vis an extensive

Montecarlo analysis over the entire parameter space. For instance, preliminary exercises

generate no clear indications about whether efficiency is affected by the frequency of state

updating (θ). Nevertheless, a more thorough exploration of how the long-run properties of

the system jointly depend on (δ, θ/β, α, µ) seems to be needed.

Finally, the relationships between network structure and collective behavior should be

studied more deeply. For example, it might be interesting to assess how the fine properties

of the network structure initially in place affect the coupled network-state dynamics in the

system (as well as the properties of the emergent network structure). More generally, the

robustness of our results might be tested against alternative network formation processes

allowing e.g. the size of interaction groups to endogenously change as well.
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