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Abstract

This paper studies a general equilibrium economy in which agents
have the ability to invest in a risky technology. The investment risk
cannot be fully insured with optimal contracts because shocks are
private information. We show that the presence of these risks may
lead to under-accumulation of capital relative to an economy where
idiosyncratic shocks can be fully insured. We also show that, although
the availability of state-contingent (optimal) contracts cannot provide
full insurance, it brings the aggregate stock of capital close to the
complete market level. Institutional reforms that make possible the
use of these contracts have important welfare consequences.
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1 Introduction

A large body of literature that studies the saving behavior in the presence
of uninsurable idiosyncratic risks assumes that these risks are not associated
with investment. As in Bewley (1986), the most common assumption is
that earnings or endowments are subject to shocks that cannot be insured
away. See for example Aiyagari (1994, 1995), Hansen & İmrohoroğlu (1992),
Huggett (1993, 1996), İmrohoroğlu (1989), Ŕıos-Rull (1994). In this class
of models the inability to fully insure the idiosyncratic risk implies that the
equilibrium interest rate is smaller than in the complete market economy,
whether market incompleteness is taken as given or modelled endogenously.
Because the interest rate is equal to the marginal productivity of capital,
the presence of uninsurable risks implies that the stock of capital is larger
than in the complete market economy (over-accumulation). Aiyagari (1995)
shows that in this case a positive capital income tax is desirable in the long-
run. Golosov, Kocherlakota, & Tsyvinski (2003) also show that a positive
capital income tax may improve the allocation when market incompleteness
is endogenous, but the mechanism that justifies the positive tax is different.

Although earnings or labor income uncertainty is an important source
of idiosyncratic risk, investment activities are also subject to uninsurable
risks. For instance, entrepreneurs invest heavily in their own business1 and
managers of corporations hold a large number of the firm’s shares.2 Even the
return from investing in education is highly uncertain and cannot be insured
away. What differentiates investment risks from earnings or endowment risks
is that the agent can avoid them by choosing safer allocations of savings. On
the contrary, earnings or endowment risks in the class of Bewley’s economies
are beyond the control of the agent. The agent can only use the available
markets to (incompletely) insure them.

The goal of this paper is to model explicitly investment risks. We consider
three environments. In the first environment agents can sign optimal state-
contingent contracts. These contracts, however, cannot provide full insurance
because there are agency problems in the form of asymmetric information.
We will refer to this environment as the “Optimal Contract Economy”. In
the second environment agents cannot sign state-contingent contracts. Only
non-contingent contracts (borrowing and lending) are available. We will refer

1See Cagetti & DeNardi (2002), Carroll (2002), Gentry & Hubbard (2000), Hurst &
Lusardi (2002) and Quadrini (1999).

2See Mikkelson, Partch, & Shah (1997) and Himmelberg, Hubbard, & Love (2000).

1



to this environment as the “Bond Economy”. Finally, the third environment
is the “Complete Markets Economy” in which there are no agency problems,
and therefore, full insurance against investment risks is possible.

By comparing these three economies we show that:

1. In the two economies with incomplete markets (the Bond Economy
and the Optimal Contract Economy) the equilibrium risk-free interest
rate is smaller than in the Complete Markets Economy. However, for
certain specifications of the model, the aggregate stock of capital is
smaller than in the Complete Markets Economy, (i.e., there is under-
accumulation).

2. Even with very large agency problems, the availability of optimal con-
tracts brings the aggregate stock of capital and the equilibrium inter-
est rate very close to the corresponding levels in the complete market
economy. Also, the feasibility of optimal contracts increases welfare
significantly.

The first result, that is, the under-accumulation of capital, may change
our conclusion about the desirability of long-term capital taxes. Because
in Aiyagari (1995) the optimality of capital taxes derives from the over-
accumulation of capital, if the model does not generate over-accumulation,
the rationale for the taxation of capital may also vanish. The full investiga-
tion of this conjecture, however, is beyond the scope of this paper.

The second result points out the importance of factors that make state-
contingent contracts feasible. Among these factors, formal and informal in-
stitutions play a central role. The reason state-contingent contracts are not
extensively used in practice is because the enforcement system may be highly
inefficient and costly. For instance, the resolution of contractual disputes may
be extremely long and uncertain. Cross-country studies show that the de-
gree of contract enforcement is correlated with the degree of financial develop-
ment. See Levine (1997) and Dolar & Meh (2002) for reviews of the empirical
literature. In this study we interpret the economy with state-contingent con-
tracts as an economy in which financial markets are more developed in part
as a result of higher efficiency of the institutional enforcement. Our study
then provides a welfare assessment of institutional reforms leading to greater
contract enforceability.

The model studied in this paper has some similarities with the model
studied in Khan & Revikumar (2001). There are two important differences.
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The first difference is that their model allows for endogenous growth. Con-
sequently, agency problems affect the long-term growth of the economy. In
our model, instead, agency problems have only level effects. The second
difference relative to Khan and Revikumar’s paper is that they only com-
pare the Optimal Contracts Economy to the Complete Markets Economy.
In our paper, instead, we are primarily interested in comparing the Optimal
Contract Economy with the economy in which state-contingent contracts are
not available (the Bond Economy). This comparison is more relevant for the
question we are interested in, that is, the welfare implications of institutional
reforms that make possible the availability of state-contingent contracts.

Our paper is also related to Angeletos (2003) who also shows that uninsur-
able investment risks may induce under-accumulation of capital. In his paper,
however, market incompleteness is not endogenous, and therefore, it does not
answer the question of whether the availability of state-contingent contracts
has large welfare implications in the presence of agency problems. Our analy-
sis is also more general because we shows that the under-accumulation result
requires very specific assumptions about the specification of the model.

The plan of the paper is as follows. In the next section we describe the
basic theoretical framework and characterize the problems solved by agents
when state-contingent contracts are available (Optimal Contract Economy)
and when they are not available (Bond Economy). Section 3 conducts the
quantitative analysis using parameterized versions of the model. Section 4
considers several extensions and Section 5 concludes.

2 The basic model

There is a continuum of households that maximize the expected lifetime
utility:

E
∞∑

t=0

βtU(ct), U(ct) =
c1−σ
t

1− σ
(1)

where ct is consumption at time t and β is the intertemporal discount factor.
Households are endowed with one unit of time supplied inelastically at the
market wage rate wt.

Each household can run a risky technology that returns F (kt, lt+1, zt+1)
in the next period with the inputs of capital kt and labor lt+1. The variable
zt+1 is an idiosyncratic iid shock that is unknown when kt is chosen but it
is known when lt+1 is chosen. For simplicity we assume that the shock can

3



take only two values denoted by zL and zH , with zL < zH . The probabil-
ity, denoted by p(z), is strictly positive for both realizations of the shock.
The function F is strictly concave in the production inputs and satisfies
limkt→0 EFk(kt, lt+1, zt+1) = limlt→0 EFl(kt, lt+1, zt+1) = ∞.

The agent has the ability to divert the retained capital to get a private
benefit. Diversion of capital is not observable and generates efficiency losses
in the form of a lower probability of the good shock zH . More specifically,
we assume that the probability of the good shock becomes zero in case of
diversion. The private and unobservable return from diversion is additive
to consumption. Given ct the agent’s consumption, the current utility is
U(ct + αkt), where α is a utility parameter which is constant in the model.
When we later specify the functional form for F (kt, lt+1, zt+1), we will also
impose some restrictions on the parameter α that guarantee the inefficiency
of diversion.

For the analysis that follows it would be convenient to define the following
function:

R(wt+1; kt, lt+1, zt+1) = F (kt, lt+1, zt+1)− wt+1lt+1 (2)

This is the gross revenue net of the labor cost. Given the specification of the
return from diversion, the optimal input of labor is fully determined by the
input of capital, the shock and the wage rate, that is, lt+1 = l(kt, wt+1, zt+1).
We can then eliminate lt+1 as an explicit argument of the gross revenue and
write it simply as R(wt+1; kt, zt+1).

In addition to the risky investment, there are state-contingent assets that
pay b(zt+1) units of output in the next period conditional on the realization
of zt+1. The current value of these assets is δt

∑
zt+1

p(zt+1)b(zt+1) where
δt = 1/(1 + rt) is the market discount rate and rt is the equilibrium riskless
interest rate.

2.1 The agent’s problem

Denote by a the agent’s wealth or net worth before consumption. Given
the sequence of prices P t ≡ {rj, wj+1}∞j=t, the optimization problem can be
written as follows:
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Vt(a) = max
c,k,b(zi)

{
U(c) + β

∑
i

Vt+1(a(zi))p(zi)
}

(3)

subject to

a = c + k + δt

∑
i

p(zi)b(zi) (4)

a(zi) = wt+1 + b(zi) + R(wt+1; k, zi), for i = L, H (5)

U(c) + β
∑

i

Vt+1(a(zi))p(zi) ≥ U(c + αk) + βVt+1(a(zL)) (6)

a(zi) ≥ at+1 (7)

This is the optimization problem for any deterministic sequence of prices,
not only steady states. The time subscript t in the value function is moti-
vated by the non-stationarity of the problem. Notice that zi, with i ∈ {L, H},
denotes the next period realization of the shock which is unknown when the
agent chooses the consumption and investment plan. Equation (4) is the
budget constraint. Equation (5) is the law of motion for next period net
worth before consumption, the variable a. Equation (6) is the incentive-
compatibility constraint and equation (7) imposes limited liability. Limited
liability is justified by the assumption that the agent can renegotiate any lia-
bility for which its net worth is smaller than a minimum value at+1. The size
of this lower bound depends on the particular assumptions about the penalty
that can be imposed on a defaulting agent. Following is the description of
two possibilities:

• No market exclusion: One possibility is to assume that there is no
market exclusion if the contract is renegotiated and the investor can
only confiscate the current net worth of the agent. This can be justified
using an argument similar to Kiyotaki & Moore (1997). In this case the
lower bound is at+1 = 0. A variation would assume that labor income
cannot be confiscated. In this case the lower bound is at+1 = wt+1.

• Exclusion from the investment: An extreme form of punishment
assumes that in case of repudiation the agent is precluded from run-
ning the risky technology and a fraction φ of his current and future
(labor) income is confiscated in every period. The lifetime utility after

5



repudiation is V t+1 =
∑∞

j=0 βjU((1−φ)wt+1). The lower bound is then
determined by the condition Vt+1(at+1) = V t+1.

These are only two possibilities. Throughout the paper we will adopt the
first assumption and we impose at+1 = 0.

The structure of problem (3) is not standard because the unknown value
functions Vj, for j = t, t + 1, ..., enter the constraints of the problem and
there are no guarantees that the problem is concave. We will describe in the
next section how we deal with these analytical problems. For the moment
we assume that a solution exists. This solution consists of the sequence of
policy functions {cj(a), kj(a), bj(a)(zi)}∞j=t. Given the solution to the agent’s
problem and the initial distribution of households over asset a—which we
denote by Mt(a)—the general equilibrium can be defined as follows:

Definition 1 Given the initial distribution Mt(a), a general equilibrium is
defined by (i) a sequence of prices P t ≡ {rj, wj+1}∞j=t; (ii) a sequence of aggre-
gate demands for labor L(P t) ≡ {Lj+1(P

t)}∞j=t; (iii) a sequence of aggregate
capital K(P t) ≡ {Kj(P

t)}∞j=t; and (iv) a sequence of aggregate consumption
C(P t) ≡ {Cj(P

t)}∞j=t. These sequences must satisfy: (i) the aggregate de-
mands of labor, capital and consumption are the aggregation of individual
demands and they satisfy Lj+1(P

t) = 1 and Cj(P
t) + Kj(P

t) =
∫

aMj(da);
(ii) the distribution Mt(a) evolves according to individual decisions and the
stochastic properties of the shock.

2.2 Complete Markets and Bond Economies

One of the goal of this paper is to compare the allocation obtained when
state-contingent contracts are feasible with the allocations in two alterna-
tive environments: when state-contingent contracts are not available (Bond
Economy) and when shocks are public information (Complete Markets Econ-
omy).

The optimization problems solved in the economy with complete markets
and in the bond economy are special cases of problem (3). More specifically,
in the Complete Markets Economy the agent’s problem is not subject to
the incentive-compatibility constraint (6). This allows the agent to self-
insure against the investment risk and the first order conditions imply that
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ERk(wt+1; kt, zt+1) = 1 + rt, where Rk is the derivative of the gross revenue
with respect to k. Of course, in the steady state it must be that 1+ rt = 1/β
for all t.

The optimization problem solved in the bond economy is also a special
case of problem (3). This is obtained by restricting b(zL) = b(zH) = b. In this
case the incentive-compatibility constraint never binds and the optimization
problem simplifies to:

Vt(a) = max
c,k,b

{
U(c) + β

∑
i

Vt+1(a(zi))p(zi)
}

(8)

subject to

a = c + k + δtb (9)

a(zi) = wt+1 + b + R(wt+1; k, zi) (10)

a(zi) ≥ 0 (11)

This is a standard concave problem as formally stated in the following
proposition:

Proposition 1 For any sequence of prices, there is a unique solution to
problem (8) and the function Vt(a) is strictly increasing, concave and differ-
entiable at all t.

Proof 1 It can be verified that the feasible set in problem (8) is convex and
the objective function is strictly concave. Therefore, if Vt+1 is concave, Vt

is strictly concave. Moving backward we can establish that limt→−∞ Vt is
concave. Because the objective of problem (8) is strictly concave, the solution
is unique. Standard arguments can be used to prove that the value function
is differentiable. Q.E.D.

Given proposition (1), the solution to the agent’s problem can be charac-
terized by the following first order conditions:

U ′(ct) = β (1 + rt) E
{
U ′(ct+1)

}
+ λt (12)

U ′(ct) = β E
{
U ′(ct+1) ·Rk(wt+1; k, z)

}
+ λt ·Rk(wt+1; k, zL) (13)

7



where λt is the Lagrange multiplier associated with the limited liability con-
straint (11). This is positive if the solution is binding.

The first order conditions make clear that the expected return from the
risky investment is always greater than the return from the risk-free asset,
that is, 1 + rt < ERk(wt+1; k, z; ). To see this, consider the case in which the
solution is not binding. Then (12) and (13) imply,

(1 + rt) · EU ′(ct+1) = ERk(wt+1; k, z) · EU ′(ct+1) +

Cov
(
Rk(wt+1; k, z) , U ′(ct+1)

)
(14)

Because U ′(ct+1) is negatively correlated with Rk(wt+1; k, z), the last term
on the right-hand-side is negative, and therefore, 1 + rt < ERk(wt+1; k, z).

Let’s compare this to the case in which zL = zH = z (no shocks). In this
case the covariance term in equation (14) is zero and the marginal returns
from the two investments are equal, that is, 1 + rt = ERk(wt+1; k, z). In this
case the environment is similar to Aiyagari (1995). The only difference is that
wt+1 is deterministic in our framework. However, even if wt+1 is stochastic at
the individual level, the condition 1+rt = ERk(wt+1; k, z) still holds. Because
the equilibrium interest rate rt is smaller than the intertemporal discount
rate, the model with only earnings risks generates an over-accumulation of
capital.

With investment risks, the result that the interest rate is smaller than
the intertemporal discount rate still holds. However, the marginal return on
capital is not necessarily smaller than the intertemporal discount rate and
there could be an under-accumulation of capital. This result will be shown
numerically in Section 3.

2.3 Optimal contract economy

One of the complication in solving problem (3) is that the unknown function
Vt enters the constraints of the problem. It is then convenient to study the
dual problem which minimizes the cost of providing a certain level of utility
to the agent.

Denote by vt the lifetime utility of the agent and by At(vt) the cost for
the intermediary. This is defined as:
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At(v) = min
c,k,v(zi)

{
c + k + δt

∑
i

[
− wt+1 −R(wt+1; k, zi) + At+1(v(zi))

]
p(zi)

}
(15)

subject to

v = U(c) + β
∑

i

v(zi)p(zi) (16)

U(c) + β
∑

i

v(zi)p(zi) ≥ U(c + αk) + βv(zL) (17)

v(zi) ≥ vt+1, for i = L, H (18)

Equation (16) is the promise-keeping constraint, equation (17) is the
incentive-compatibility constraint and equation (18) imposes limited liabil-
ity. The lower bound vt+1 is the equivalent of at+1 imposed in the original
problem.

This can be interpreted as the problem solved by a financial intermediary
that enters into a long-term contractual relation with the agent. If we can
show that the long-term contract is equivalent to a sequence of short-term
contracts, we can claim that the solution of the dual problem is equivalent
to the solution of the original problem.

There are two main difficulties with the dual problem. The first difficulty
derives from the fact that the constraint set is not convex. Consequently, we
cannot prove that the problem is concave and use first order conditions to
characterize the solution. Therefore, in solving the problem we use a direct
optimization technique described in the Appendix.

The second difficulty is to show that the optimal long-term contract is
free from renegotiation and can be implemented with a sequence of short-
term contracts. As shown in Fudenberg, Holmstrom, & Milgrom (1990),
if the utility frontier is downward sloping, the long-term contract is free
from renegotiation and can be implemented with a sequence of short-term
contracts. In our model, the utility frontier is represented by the negative
of the function At(v). Therefore, it is enough to show that −At(v) is not
increasing for all v < vt. In Section 3 we will show this result numerically
for the particular parameterizations of the model considered in this paper.

Once we have (numerically) established that the solution of the dual
problem (15) is equivalent to the solution of the original problem (3), we can
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easily see the correspondence between the two problems. More specifically,
the cost value At(v) is equal to the net worth a in the original problem.
Likewise, the agent’s value Vt(a) in the original problem corresponds to the
agent’s promised utility v in the dual problem. Therefore, a = At(v) and
v = Vt(a). Finally, the lower bound vt+1 is such that A(vt+1) = 0. This
guarantees that the limited liability constraint a(zi) ≥ 0 is satisfied in the
original problem.

3 Numerical analysis

The goal of this section is to show numerically the macroeconomic and wel-
fare implications of market incompleteness. Although the analysis is not
aimed at matching specific observations, nevertheless it provides important
information about the potential magnitude of these implications.

Parameterization: We assign the following parameter values. The period
in the model is one year and the intertemporal discount rate is β = 0.95. The
risk aversion parameter is σ = 1.5.

We assume that the shock affects the efficiency units of capital. More
specifically, if the investment at time t is kt, the efficiency units of capital
at the beginning of the next period (before choosing labor) is k̃t+1 = zt+1kt.
The total resources returned by the risky technology is:

F (kt, lt+1, zt+1) = k̃t+1 + (k̃ε
t+1l

1−ε
t+1)

θ

The first component is non-depreciated capital and the second component is
the output produced. After setting zL = 0.5 and zH = 1.0, the probability of
the low shock is chosen to have an expected depreciation rate of 8 percent,
that is, p(zL) · zL + (1 − p(zL)) · zH = 0.92. This implies that, with 16
percent probability, capital depreciates by 50 percent and with 84 percent
probability there is no depreciation. A sensitivity analysis will be conducted
by changing the value of zL (keeping the average depreciation rate constant).
The return-to-scale parameter is set to θ = 0.95 and the parameter ε = 0.35.
This implies a labor income share of 60 percent. Finally we set α = 0.2. This
value guarantees that diversion is always inefficient. We will also conduct a
sensitivity analysis with respect to this parameter. Table 1 reports the full
set of parameter values for the baseline economy.
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Table 1: Parameter values for the baseline economy.

Discount rate β 0.95
Risk-aversion σ 1.50

θ 0.95
ε 0.35

Technology zk + [(zk)εl1−ε]θ zL 0.50
zH 1.00
pL 0.16

Diversion parameter α 0.20

Steady state properties: Figure 1 plots several variables for an individual
household in the steady state equilibrium, for the Bond Economy (left panels)
and for the Optimal Contract Economy (right panels). The top panels plot
the household’s value as a function of assets, that is, the function V (a). In
the case of optimal contracts, this is the inverse of the function A(v) derived
from solving the dual problem. Because V (a) is monotonically increasing,
the function A(v) is also increasing. This guarantees that the long-term
contract is free from renegotiation and can be implemented as a sequence of
short-term contracts. Therefore, the solution of problem (15) is equivalent
to the solution of the original problem (3).

The other panels plot the investment in the risky technology, k, the in-
vestment in the state-contingent asset, b(z), and the next period wealth a(z).
In the Bond Economy there are no state contingent assets and b represents
the investment in the riskless asset or bond. In both economies the next
period wealth depends on the realization of the shock. It is interesting to
observe that state-contingent contracts reduce significantly the volatility of
assets, and therefore, the risk of investing in the risky technology (see the last
two panels of Figure 1). This explains why the availability of these contracts
can have substantial macroeconomic and welfare consequences.

Table 2 reports the steady state interest rate, aggregate capital and the
concentration of wealth as measured by the Gini index. In the Complete
Markets Economy the interest rate is equal to the intertemporal discount
rate and the stock of capital (normalized to 1) satisfies ERk(w; k, z) = 1/β.
In the two versions of market incompleteness, instead, the interest rate is
smaller than the intertemporal discount rate. This is not surprising given the
results of Huggett (1993) and Aiyagari (1994). What differs here is that the
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Figure 1: Value function and policy rules in the Bond Economy and in the
Optimal Contract Economy.

aggregate stock of capital is smaller than in the Complete Markets Economy.
In other words, market incompleteness may lead to under-accumulation of
capital. This is the direct consequence of the fact that the accumulation of
real capital is risky and agents require a premium.

Table 2 also shows that the availability of state-contingent contracts
brings the steady state level of capital very close to the complete markets
level. It is also interesting to observe that the availability of state-contingent
contracts reduces the inequality in the distribution of wealth but only slightly.
The Gini index for wealth is relatively small relative to the data. This is be-
cause shocks are i.i.d. and there is no other sources of heterogeneity. If we
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Table 2: Steady state interest rate, capital stock, and wealth inequality for
different degrees of market completeness.

Interest Aggregate Gini
rate capital index

Bond Economy 4.22 0.911 43.8
Optimal Contract Economy 5.21 0.995 42.4
Complete Markets Economy 5.26 1.000

assume that only a sub-group of agents have access to the risky technology—
as we will do in the next section—the model will generate a much higher
concentration of wealth. Notice that in the Complete Markets Economy the
distribution of wealth is not determined. In other words, any distribution
of wealth is a steady state equilibrium as long as in aggregate there is the
same (steady state) level of capital. See Chatterjee (1994) for a proof of this
result.

Institutional reforms and welfare: The steady state comparisons con-
ducted above show that market incompleteness may have substantial macroe-
conomic consequences in the absence of state-contingent contracts. We now
study the welfare implications. We will ask the following question: Assuming
the existence of institutions that make the use of state-contingent contracts
feasible, what are the welfare consequences of introducing such institutions?

Figure 2 plots the transition dynamics for the interest rate, the wage
rate, the aggregate stock of capital and the Gini index. After the intro-
duction of state-contingent contracts, the interest rate increases sharply and
then it converges gradually to the new steady state level. This is because the
introduction of state-contingent contracts increases the demand of capital
immediately, while the supply responds only gradually through capital accu-
mulation. As shown in panel (c), the aggregate stock of capital converges to
a higher level but only gradually. As capital increases, the demand of labor
also increases and to clear the labor market the wage rate must rise (see
panel (b)). The increase in the wage rate reduces profits, and therefore, the
propensity to invest in the risky technology. This effect, however, does not
totally compensate the higher incentive induced by better insurance possi-
bilities provided by state-contingent contracts. Finally, panel (d) shows that
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the introduction of state-contingent contracts reduces the concentration of
wealth as measured by the Gini index.
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Figure 2: Transition to the steady state with state-contingent contracts.

The welfare consequences are calculated as the aggregate additional con-
sumption (appropriately distributed among agents) required to make all
agents indifferent between remaining with the existing institutions (and being
unable to use state-contingent contracts) and undertaking a transition to the
new steady state equilibrium after the introduction of the new institutions
(and having access to state contingent contracts).

Let V Bond(a) = E
∑∞

t=0 βtU(cBond
t ) be the expected lifetime utility of an

agent with net worth a that lives in the steady state of the Bond Economy.
The distribution of agents over a is denoted by M(a). Moreover, define by
V OptCon(a) = E

∑∞
t=0 βtU(cOptCon

t ) the expected lifetime utility of an agent
with net worth a after the introduction of state-contingent contracts (and
therefore, after undertaking the transition to the new steady state). The
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consumption gain from transition for an agent with net worth a is denoted
by g(a). This is determined by the following condition:

V OptCon(a) = E
∞∑

t=0

βtU
(
cBond
t · (1 + g(a))

)
= (1 + g(a))1−σ · V Bond(a)

In other words, the consumption gain is determined by equalizing the life-
time utility reached in the transition with the lifetime utility obtained by
increasing the consumption in the Bond Economy by cBond

t g(a) for all t.
The aggregate consumption gains are given by:

Gains =

∫
a
cBond(1 + g(a))M(da)∫

a
cBondM(da)

− 1

For the baseline parameterization the average gains are 2.32 percent of
aggregate consumption.

Although the average gains are positive, these gains are not uniformly
distributed across agents. The top panel of Figure 3 plots the welfare gains
as a function of the initial wealth. It is interesting to note that the gains
are larger for (initially) wealthier agents. For example, an agent with the
average wealth would gain less than 2 percent. For an agent with 10 times
the average wealth, the welfare gains are 12 percent. The bottom panel plots
the initial and final distribution of agents over assets. This informs us about
the relative importance of poorer agents (who do not gain much from the
transition) and wealthier agents (who are the largest beneficiaries).

The distribution of the welfare gains can be explained as follows. After the
introduction of state-contingent contracts, the aggregate demand of capital
increases. Because the supply responds slowly, the interest rate increases
(see the first panel of Figure 2). The increase in the interest rate is beneficial
for the holders of wealth, that is the richest agents. For the poorer agents,
instead, the increase in the interest rate represents an increase in the cost of
financing because they are net borrowers. We may have expected that the
relaxation of financial constraints are more beneficial for agents with tighter
constraints, that is, the poor. This would have been the case if the interest
rate had remained constant. However, due to general equilibrium effects,
the interest rate does increase, and this benefits those who receive interest
payments, that is, the rich.
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Figure 3: Distribution of the welfare gains following the introduction of state-
contingent contracts.

Sensitivity analysis: We close this section by conducting a sensitivity
analysis with respect to some key parameters. In particular, the utility pa-
rameter for diversion, α, the concavity of the production function, θ, and the
volatility of the shock, zH−zL. Key statistics for the steady state equilibrium
and the welfare gains from the transition are reported in Table 3.

First, we observe that the higher utility from diversion does not affect
significantly our results. A similar conclusion seems to hold per the curva-
ture of the production function. Now the Gini index for the Bond economy
is smaller but the difference is not large. The volatility of the shock, instead,
seems to play an important role. The increase in the volatility has signif-
icant macroeconomic consequences when state-contingent contracts are not
available. For example, the aggregate stock of capital drops by 8 percent
when the low realization of the shock changes from 0.5 to 0.25. The drop
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Table 3: Sensitivity analysis: Steady state values and welfare gains from
transition.

Interest Aggregate Gini Welfare
rate capital index gains

Baseline, α = 0.2, θ = 0.95, zL = 0.5
Bond Economy 4.22 0.911 43.8 2.32
Optimal Contract Economy 5.21 0.995 42.4
Complete Markets Economy 5.26 1.000

Higher utility from diversion, α = 0.3
Bond Economy 4.22 0.911 43.8 2.19
Optimal Contract Economy 5.18 0.992 41.1
Complete Markets Economy 5.26 1.000

Higher curvature of production, θ = 0.915
Bond Economy 4.19 0.911 38.8 2.25
Optimal Contract Economy 5.21 0.994 41.7
Complete Markets Economy 5.26 1.000

Higher volatility of shocks, zL = 0.25
Bond Economy 2.96 0.832 48.3 4.73
Optimal Contract Economy 5.23 0.997 42.1
Complete Markets Economy 5.26 1.000

in the risk-free interest rate is also large. However, the availability of state-
contingent contracts still brings the aggregate stock of capital very close to
the complete markets level. As a result, the introduction of state-contingent
contracts leads to much larger welfare gains, almost 5 percent.

4 Extensions of the model

The model studied in the previous sections is very stylized. For example,
we have assumed that all agents in the economy have access to the risky
investment. It seems more reasonable to think that only a sub-group of
households have access to this investment. Also, we have assumed that agents
do not face any earnings risks. Another assumption is that labor supply is
fixed while in an actual economy it may respond to wages. Finally, we have
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assumed that the input of labor is chosen after the observation of the shock.
The goal of this section is to extend the previous model by considering these
alternative assumptions.

4.1 Only a fraction of the population has access to the
risky technology

One possible interpretation of the risky investment is that it captures the risk
associated with entrepreneurial activities. Therefore, we can assume that the
households that have access to this type of investment are the ones engaged
in entrepreneurial activities and/or high managerial positions. If we adopt
this interpretation, then about 10 percent of households are in the position
of investing in the risky technology (see Quadrini (1999)). We will refer to
these households as “entrepreneurs” and to the others as “workers”.

In this economy, entrepreneurs solve the same problem we have studied
earlier. Workers, instead, solve a simpler problem. Because workers face no
risk, the consumption path can be easily determined using the Euler equation,
U ′(ct) ≤ β(1 + rt)U

′(ct+1), the budget constraint, at = ct + δtbt, and the law
of motion for wealth, at+1 = wt+1 + bt. The Euler equation is satisfied with
the inequality sign if at+1 = 0, that is, if the borrowing limit is binding. In
the steady state the interest rate is smaller than the intertemporal discount
rate and the liability constraint will be binding, that is, at = 0 for all t. The
level of consumption is then equal to ct = δw, where δ and w are constant in
a steady state.

Table 4: Steady state values and welfare gains from transition when 10 per-
cent of the population has access to the risky investment.

Interest Aggregate Gini Welfare
rate capital index gains

Bond Economy 1.84 0.873 95.1 5.81
Optimal Contract Economy 5.24 0.993 94.9
Complete Markets Economy 5.26 1.000

The basic results do not change by assuming that only a fraction of the
population has access to the risky technology. In particular, the aggregate
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stock of capital is still smaller than in the Complete Markets Economy. Fur-
thermore, the availability of optimal contracts brings the aggregate stock of
capital close to the complete markets level. The most notable change is the
increase in the Gini index. This is because only a small fraction of agents
(the entrepreneurs) save. Although the model is stylized, this shows how en-
trepreneurial activities can generate a much larger concentration of wealth.
Also significant is the increase in the welfare gains from the introduction of
state-contingent contracts. These larger gains come from the increase in the
wage rate. Because 90 percent of the population are workers with low level
of consumption, the increase in the wage rate, and therefore consumption,
has an important impact in their utilities.

4.2 Agents also face earnings risks

Would the result change if agents also face idiosyncratic risks to earnings as
in the Bewley economy? To investigate this question we now assume that
agents have different earnings abilities which we denote by ε. Individual labor
income is then the product of the earnings ability with the wage rate, that
is, εw. Earnings abilities follow a two-state Markov process with symmetric
transition probability Γ(ε′/ε).

To keep the problem simple, we assume that earnings abilities are observ-
able. This implies that with optimal contracts the earnings risk is insurable.
Therefore, the problem solved in the Optimal Contract Economy is the same
problem solved before. In the Bond Economy the optimization problem is
also similar. The only difference is that now we take expectations also with
respect to the earnings ability ε.

In Table 5 we report the results for the economy with earnings risks
where the process for earnings abilities has been calibrated by assuming an
autocorrelation of 0.5 and a standard deviation of 0.33. These are the baseline
numbers used in Aiyagari (1994).

Even with earnings risks the aggregate stock of capital is smaller than
in the Complete Markets Economy. However, we observe that the difference
between the two levels of capital is somewhat reduced. This is because now
there is an extra incentive to save which reduces the equilibrium interest
rate. The lower interest rate then facilitates more investment in the risky
technology.
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Table 5: Steady state values and welfare gains from transition when agents
face earnings risks.

Interest Aggregate Gini Welfare
rate capital index gains

All agents have access to risky investment
Bond Economy 3.09 0.972 44.5 5.97
Optimal Contract Economy 5.21 0.995 42.4
Complete Markets Economy 5.26 1.000

Only 10% have access to risky investment
Bond Economy 0.01 0.931 88.6 9.33
Optimal Contract Economy 5.24 0.993 94.9
Complete Markets Economy 5.26 1.000

4.3 Elastic labor supply

In this section we show how the results would change if labor is elastic. We
consider the extreme case in which labor is perfectly elastic. There are two
ways to incorporate this in the model. One possibility is to assume that the
utility function is of the form U(c − ϕ · l). Alternatively, we could assume
that wages are not set competitively and the wage rate is above the market
clearing rate with involuntary unemployment. For the calculation of the
welfare gains we use the first assumption.

Table 6 reports steady state values for the economy with elastic labor.
As can be seen from the table, market incompleteness has a much larger im-
pact on the macroeconomy when labor is elastic. In particular, the aggregate
stock of capital is substantially smaller (with and without state-contingent
contracts) than in the Complete Markets Economy. This is because, with in-
elastic supply, the fall in the demand of labor induces a fall in the equilibrium
wage rate which in turn increases the return from the risky investment (that
is, the expected profit rate increases). This reduces the fall in the demand of
risky capital and in equilibrium the capital stock is higher. When the supply
is perfectly elastic, instead, the lower demand of labor does not lead to lower
wages. Consequently, the fall in investment is bigger.

Figures 4 plots the transition path for several variables when labor is
elastic and when it is not elastic. The plots are constructed using the baseline
economy in which all agents have access to the risky investment. The case
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Table 6: Steady state values and welfare gains from transition when labor is
elastic and all agents have access to the risky technology.

Interest Aggregate Gini Welfare
rate capital index gains

Bond Economy 4.57 0.650 42.5 1.37
Optimal Contract Economy 5.21 0.970 42.4
Complete Markets Economy 5.26 1.000

in which only a fraction of agents invest in this technology are qualitatively
similar (which we omitted for economy of space).

Of course, the assumption that labor is perfectly elastic is an abstraction.
With a more reasonable assumption in which the elasticity of labor is positive
but not infinity, the effects of market incompleteness on the accumulation of
capital are smaller. However, the point we would like to make here is that
the elasticity of labor tends to increase the under-accumulation of capital
when markets are incomplete.

4.4 The input of labor is chosen in advance

Until this point we have assumed that the input of labor is decided after the
observation of the shock. Suppose that both capital and labor have to be
decided one period in advance. To simplify the problem, we make some small
changes in the specification of the technology. The total resources returned
by the risky technology is as follows:

F (kt, lt, zt+1) = (1− d)kt + zt+1(k
ε
t l

1−ε
t )θ

The only relevant change to the technology is that the shock only affects
output, and therefore, the depreciation of capital is not stochastic. We also
modify the benefit from diversion as follows:

U(ct + αyt+1)

where yt+1 = Ezt+1(k
ε
t l

1−ε
t )θ. With this changes the capital-output ratio

chosen by the firm depends only on the wage and interest rates and not on
the asset position of the agent. This facilitates the computation of the agent’s
problem (15).
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Figure 4: Transition to the Optimal Contract Economy for different degrees
of labor elasticity.

Table 7 reports the steady state results for the following parameter val-
ues: α = 1.0, zL = 0, and p(zL) = 0.5. The most important result is that
the aggregate stock of capital is higher than the complete markets level when
markets are incomplete (both in the Bond Economy and in the Optimal Con-
tracts Economy). Also notice that the over-accumulation of capital is quite
large in the bond economy. The introduction of state-contingent contracts
brings it very close to the complete markets level.

The over-accumulation of capital can be explained as follows: Because
labor is chosen before the realization of the shock, the employment choice
is also risky. In other words, if the agent employs more labor, the return
from the risky investment is more volatile. This reduces the demand of labor
which, in turn, reduces the wage rate. Because of the lower wage rate, the
expected profit per unit of capital is higher. This provides an incentive to
invest more in the risky technology. As a result, market incompleteness
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Table 7: Steady state values when labor is chosen in advance and all agents
have access to the risky technology.

Interest Aggregate Gini
rate capital index

Bond Economy 1.70 1.201 63.5
Optimal Contract Economy 4.81 1.010 52.3
Complete Markets Economy 5.26 1.000

generates over-accumulation of capital as in the model with only earnings
risks. Notice, however, that with only earnings risks the wage rate is higher
than in the Complete Markets Economy. Here, instead, the wage rate is still
lower than in the complete market economy.

5 Conclusion

This paper has studied an economy in which agents have investment opportu-
nities in a risky technology. The consideration of uninsurable investment risks
may overturn the previous conclusion that uninsurable risks induce agents
to over-accumulate capital. We have shown that with investment risks, the
equilibrium stock of capital may be smaller than in the complete markets
economy. This may also change some earlier results emphasizing the benefits
of long-run capital taxes. In the final section, however, we have also shown
that the under-accumulation of capital depends on the assumption that labor
is chosen in advance and there is no risk in the employment choice. When
labor is chosen in advance, the model with investment risks may generate an
over-accumulation of capital that is bigger than in the simpler model with
only earnings risks.

We have also compared economies with different degrees of market in-
completeness. We have placed particular attention to economies in which
state-contingent contracts are available but they cannot provide full insur-
ance due to information asymmetries. Even if agency problems are quite se-
vere in the sense that agents can obtain large gains from diverting resources,
the use of state-contingent contracts can lead to an aggregate stock of capital
that is very close to the one with complete markets and substantially higher
than the capital that would prevail when state-contingent contracts are not
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available. We have also seen that institutional reforms that make the use
of optimal contracts feasible can have important welfare consequences. The
next step, then, is to understand which types of institutional environments
facilitate or make possible the use of these contracts. We leave for future
research the study of this and other related issues.
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Appendix: Computation of the equilibrium

Steady state for the Bond Economy: We start the procedure by guess-
ing the steady state interest and wage rates. Given the prices, we solve
problem (8) on a grid of points for the asset holdings a using value function
iteration. After guessing the next period values of V (a) at each grid point,
we approximate this function with a quadratic polynomial. Given the next
period value function, problem (8) is solved at each grid point using a max-
imizing routine that do not requires smoothness of the value function. We
use the Fortran routine BCPOL.

Once the iteration on the value function has converged, we use the agents’
policy rules to find the invariant distribution of agents over a. Starting from
an initial distribution we iterate until convergence. After aggregating using
the invariant distribution, we verify the clearing conditions in the capital and
labor markets. Based on these conditions we update the prices and restart
the procedure until all markets (labor and capital) clear.

Steady state for the Optimal Contract Economy: The numerical
procedure is similar to the procedure used to solve for the steady state of
the Bond Economy based on value function iteration. Because we solve for
the dual problem (15), the agent’s problem is solved at each grid point of
v. In forming the grid for v, however, we do not know the lower bound v.
Therefore, when we guess the prices r and w we also guess the value of v,
which is the first point of the grid. After solving for the individual problem
on all grid points we verify whether A(v) = 0. If not we update the guess for
v until this condition is satisfied.

Transition equilibrium: To compute the transition from the steady state
of the Bond Economy to the steady state of the Optimal Contracts Economy,
we start the procedure by guessing sequences of prices, r and w, and lower
bounds v for a certain number of periods. The number of periods is suffi-
ciently long for the economy to get close to the new steady state equilibrium.
Given the guessed sequences, we solve the agents’ problem backward at each
grid point starting from the final transition period. In the final period the
economy is supposed to have converged to the new steady state, and there-
fore, we already know the solution. Once we have solved for all transition
periods, we start from the initial period and compute the market clearing
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conditions and the condition At(vt) = 0. We then update the guessed se-
quences and continue until all the equilibrium conditions are satisfied in all
transition periods.
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