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Abstract

In this paper we show that a habit formation model, suitably specified, can
explain why monetary authorities smooth interest rates. To do this we follow
Kozicki and Tinsley (2002) and adopt a geometric form for the way in which
the stock of habit accumulates from past consumption. This matters because
the use of an additive habit stock otherwise violates reasonable postulates of
a utility function. As Wendner (2002) has shown a multiplicative form of the
habit term in the utility function, recently employed by Carroll (2000) and Fuhrer
(2002) has some undesirable properties if the habit function is itself still additive.
In addition the particular kind of habit formation (geometric) that we have
adopted provides a significant improvement to the dynamic structure of the New
Keynesian model. Because the welfare function of the policymaker is that of the
representative agent, and consumers dislike large changes in consumption relative
to the level of consumption to which they aspire, the optimal (one-period) rule
penalises changes in income and also responds sluggishly to shocks. This goes
some way towards accounting for the common observation that the responses of
output and inflation to shocks are drawn out, and the interest rate used for policy
is persistent, even when account has been taken of the persistence in output and
inflation.
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1 Introduction

Recently, the idea of habit formation has forced itself back onto the agenda of modern
macroeconomics. As Carroll (2001) has pointed out, the view that past consumption
patterns of both the individual and others can affect the utility of current consumption
is as old as economics itself. Tts revival, in part, has been driven by its ability to
account for a number of anomalies in first generation stochastic general equilibrium
models, such as the equity premium puzzle, identified by Mahra and Prescott (1985 ),
Abel (1990) and Campbell and Cochrane (1999). It has also been invoked to account
for the excess smoothness of consumption (Muellbauer, 1988, Deaton, 1992).

In this paper we put habit formation to another use. In particular we show that
a habit formation model, suitably specified, can explain why monetary authorities
smooth interest rates. In order to do this we follow Kozicki and Tinsley (2002) and
adopt a geometric form for the way in which the stock of habit accumulates from
past consumption. This matters because the use of an additive habit stock otherwise
violates reasonable postulates of a utility function (Wendner, 2002). Wendner (2002)
has shown that the multiplicative form of the habit term in the utility function, re-
cently employed by Carroll (2000) and Fuhrer (2002) has some undesirable properties
if the habit function is itself still additive. This problem does not arise if the subtrac-
tive (linear) form of the habit term in the utility function that was originally used by
Muellbauer (1988) is used in combination with an additive habit formation function.

Sack and Wieland (2000) have argued that interest rate smoothing by the mone-
tary authorities may be the optimal response when stabilising output and inflation.
They point to three widely cited explanations for interest rate smoothing. First, asset
markets are typically forward looking (Woodford, 1999). Hence, history-dependent
central-bank behaviour, when anticipated by private agents, can serve stabilisation
objectives even when the reduction in the magnitude of interest rate movements is
not a social objective per se. The persistence in interest rates allows the monetary
authority to manipulate long-term rates and hence aggregate demand with relatively
modest movements in the short-term rate. Goodfriend (1991) and Roberts (1992)
focus on the stabilising role that smooth interest rate responses have on capital mar-
kets: sharp interest rate reversals can expose firms and financial intermediaries to
interest rate risks. Another view extends Brainard’s (1967) work on the impact that
uncertainty has on monetary policy. According to this interpretation since central
banks have limited knowledge about the economy, they prefer to move cautiously and
smooth interest rates.

We generalise the habit formation model of consumption to allow for both a
multiplicative utility function and a habit\aspiration function which is a geometrically
weighted average of past consumption. The geometric form of the aspiration function
addresses the recent concerns of Wendner (2002). The geometric form allows us to
derive an optimising model of the IS-PC form in which there is a greater degree of
inertia in both inflation and output compared to the additive form of habit formation.
The geometric form also allows us to derive a rule for the interest rate in which there
is equivalent inertia in the setting of interest rates by the monetary authority.

Because the welfare function of the policymaker is that of the representative agent,



and consumers dislike large changes in consumption relative to the level of consump-
tion to which they aspire, the optimal (one-period) rule penalises changes in income
and also responds sluggishly to shocks. This goes some way towards accounting for
the common observation that the responses of output and inflation to shocks are
drawn out, and the interest rate used for policy is persistent, even when account has
been taken of the persistence in output and inflation.

We establish the case for interest rate smoothing within the standard New Key-
nesian paradigm. We combine habit persistence in consumption with sluggishness in
price setting that arises in this model from wage indexation. There are a number of
other forms of price stickiness - Calvo contracts for example are particularly com-
mon - that are likely to generate similar results. But the central point is that the
particular kind of habit formation that we have adopted provides an improvement
to the dynamic structure of the New Keynesian model. When we set up the policy-
maker’s problem, the implied feedback rule for the interest rate which minimises the
policymaker’s loss function includes current, future and lagged terms in inflation and
output and the interest rate. In section 2 we discuss the form in which habit appears
in the utility function of the representative household. In section 3 we integrate the
habit function into a standard version of the New Keynesian model and derive the
optimal feedback rule from the welfare function of the government. In section 4 we
report some simulations of a linearised version of the model and demonstrate how
important the particular form of habit formation is for the properties of the model.

2 Properties of a generalised Habit function

FEmpirical findings on consumption have stimulated intensive research on habit for-
mation (Fuhrer, 2000 and Carrol, Overland and Weil, 2000). Fuhrer(2000) introduces
a model with an endogenous additive linear habit with a multiplicative utility func-
tion (which becomes non-separable) and shows that optimising behaviour leads to
an augmented version of the IS equation where the output gap depends on the ex-
ante real interest rate and on past and expected output. More recently Tinsley and
Kozicki (2002) have critically reviewed traditional output models and have intro-
duced an aspiration level whose log is approximated by a weighted average of past
log consumption. This formulation produces linearised FOCs with higher order, self-
reciprocating polynomials in lag and lead operators. We analyse the properties of
both habit specifications in a multiplicative utility function.

The representative household is infinitely lived and is assumed to maximise its
expected utility, U:

o

U=E{> FUu,() (1)

=0

U(.) is the instantaneous utility function, 3 = 1/(1 + 6) measures a household’s
impatience to consume and 6 is the subjective rate of time preference. The utility



function now takes the form common in the literature’:

(CoH o)

Ut = 11—«

(2)
C, is consumption at time ¢, « is the inverse of the intertemporal elasticity of sub-
stitution and H is the stock of habits. The parameter v indexes the importance of
the habit stock. If v = 0, only the absolute level of consumption matters, while if
v = 1, then consumption relative to the stock of habit is all that matters?. This
specification of the utility function is referred to as multiplicative, in contrast to the
subtractive formulation originally introduced by Deaton and Muellbauer (1980). The
stock of habit, or reference level of consumption, can be expressed as:

Hy =M (Hi—1) + (1= X F(Cy-1) (3)

The function F is a general specification of the habit function which can be
either linear in its additive formulation (Fuhrer, 2000) or logarithmic in its geometric
specification (Tinsley and Kozicki, 2002).

By assuming that lim,, oo A"H;_, = 0 habit formation in its additive form can
be expressed as:

Hif = (1= X) 8L N Cry (4)

where the superscript a indicates that aspiration levels are additive in past levels of
consumption.

Alternatively, the habit stock is a geometrically weighted average of past con-
sumption:

=11 (5)

which corresponds to the multiplicative habit specification proposed by Tinsley and
Kozicki (2002) where F is logarithmic. For A\ = 0 we get Hy = C;_; which is the
specification adopted by Fuhrer (2000). The parameter A measures the strength with
which previous levels of consumption matter for current aspiration levels.

As Wendner (2002) shows with habit persistence there are some desirable prop-
erties that a utility function should satisfy:

LFor a separable problem this utility function is the constant relative risk aversion utility function
with the coefficient of relative risk aversion equal to a and independent of C. For the problem we
have this does not hold.

?In the literature, the standard of comparison against which current consumption is measured can
be internal to the household, so it is only what levels of consumption were in the past that matters,
or it can be external so it is consumption relative to what other households consume. In this paper
we confine ourselves to the internal form of comparison. Carroll et al (2000) also refer to this as
inward and outward looking.



AU(.)/dv < 0 (P1)

U()/dC; > 0 (P2)
dU(.)/OH, <0 (P3)
8MRSCMCH1/8U <0 (P4)

Property P1 requires that an increase in the strength of habits, v, with no change
in current or past consumption, reduces utility. This happens because the larger
is v the less is the utility generated from current consumption. Hence, habit form-
ing consumers will postpone consumption since households benefit not only from
consumption levels but also from consumption growth (Deaton, 1992). Property P2
requires that an increase in current consumption, with no change in past consump-
tion, and therefore with no change in the habit stock, increases utility. Property P3
requires that an increase in the habit stock with no change in current consumption
reduces utility. This happens because when a household gets used to a given habit
stock, he will derive less utility from a given amount of current consumption. Prop-
erty P4 requires that an increase in the importance of a given habit stock in period t,
as measured by v, requires a lower marginal rate of substitution C; for Cyr1. Higher
consumption today adds to the future habit stock which then lowers future effective
consumption.

With respect to property P1 we can show that:

oU
Fie =521 Uty In(Hiy ) (6)

where the log of the habit stock is given by:

(A, ;) = In (1= X) S X1y S 0 (7)

In(H1 ;)= (1= X)) 22 N ' InCrajs <0 (8)

As (7) shows, in the additive case the argument of the additive specification can
be either greater or less than one (hence positive or negative) so we cannot sign the
derivative, whereas in the multiplicative case an increase in the strength of habits,
v, always decreases utility since, by assumption, the aggregate consumption level,
CtJrjfi > 1.



We now examine the properties of the intertemporal utility function with respect
to consumption in order to verify whether properties P2 and P3 hold for both speci-
fications.

With respect to property P23:

oue  Cre . Cle
— w1\ TR FN I
ac«t Ct v ( ) ]_15 Hg_;'_J (9)
8Um . atl_a o) 7y (G— 1) Ctl+]a
a0, = ¢ V- MEE 2N C (10)

Where C; = CyH;". A change in consumption today will in general increase the
instantaneous utility at time ¢. However, this will also raise the consumer’s aspirations
so that when consumption falls back to its previous level, there will be a measure of
dissatisfaction. This will continue until the aspiration level falls back to its previous
levelt. To ensure that this dissatisfaction does not outweigh the increase in instanta-
neous utility from higher consumption and that the utility function remains concave®
we assume that \ is smallS.

We now analyse whether property P3 holds. We can show that:

ou* _ Ct1+a
_ 0 7] J <
o = U A . 0 (11)

3The derivative of U = U; + U411 + .... with respect to C; is:

U __ aU, +I33Ut+1 OHyyq +

DC; — 00, BH,, 0C; 1 e
si-a : eie omg o
Uy _ Cp 70Uy Yy | ot _ i1, f+ _ j—1H 1
where ac, = TC;  @H,y; —  Hiy; ' 9C, =(1-X2)A =({1=-X2x

In this model the household is richer for one day. However, this gives the household a taste for
the higher level of consumption and it suffers disutility in the future as actual consumption returns
to its former level. Eventually the household’s aspirations return to their former levels. We assume
that this windfall gain cannot be taken in the form of an increase in wealth so that its benefits cannot
we spread across time as in the standard life cycle model.

®The curvature of the utility function in both specifications is given by:

2r7a lorama n Cl o
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where A(j) = (1—X)AY~Y. Again, both specifications will be concave if we assume either
that the autoregressive habit parameter, A, is small.

®The assumption concerning a low value for A is confirmed by some empirical studies (see in
particular Fuhrer, 2000).
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hence habit-forming consumers dislike large and rapid changes in consumption in
both specifications. As a household builds a stock of habits, he gets used to a given
consumption level. The higher the habit stock the less is the utility derived from a
given amount of consumption.

To demonstrate P4 we first derive the marginal rate of substitution for both forms
of habit specification:

¢l T giyi—1Ci

VRS c, — VY (1=X) Zj:l BA HE, (13)
CiCrpr = ﬁatl-':la —v (1 . )\) ZT 5j)\i—2 CA’tlJ:ja
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MRSE g, = o N P (1)
5Ct+1 —w (1 - )\) ZT 5‘7)\]72 Ct+j
Cry1 j=2 Ciy1

Appendix A shows that if we assume that consumption grows at a constant posi-
tive rate 0 = Cé—:l and denoting A = Ao~ (@t?(1=9)) then the MRS can be rewritten
as:

1 - U(U_;AZ ZJT:1 A
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Appendix A also shows that as T — oo :
y a m (1 — a)

OMRSE,c,,,/0v=0MRSZ ¢, /Ov= a1 Ino (17)

When consumption growth is positive, such that ¢ > 1 the consistency with property
P4 requires in both specifications a > 1. In this case an increase in the strength
of habits reduces the marginal rate of substitution between C; and Cyy1 at a given
consumption path. Consumption today adds to the future habit stock thus reduc-
ing future effective consumption. Therefore, a lower amount of Cy4; is needed to
compensate the household for a marginal reduction in Cy as v rises.



3 Habit Formation in the New Keynesian Model

3.1 The optimising IS schedule

Here we integrate the general form of habit formation of the previous section into
a more or less standard New Keynesian Model. We start from a representative
household who is infinitely lived and maximises expected utility given by (57). The
one period utility, U;, comprises a multiplicative endogenous habit as discussed above
and the disutility of labour:

(CeH")™ L

Uy = —
¢ l-« 1+~

(18)

L is the supply of labour, v the elasticity of labour supply. Utility is increasing at
a decreasing rate in consumption and disutility is increasing at an increasing rate in
labour supply In each period the representative household is subject to the budget
constraint:

W,
Ci+ By = FtLt + Ry Bi (19)
t

B; denotes bonds, W; denotes the nominal wage rate for employed hours and Ry is
the real, one-period gross return to bonds. P, is the price level.

The first order conditions for optimal consumption, bond allocations and hours
worked are:

ou

E == Et {—At + /BRt+1At+1} == O (20)
8U Ut UV oo ; i

or _ LA

where A; is the Lagrangian multiplier on the ¢ period flow constraint, with A, > 0.
We can easily see (Tinsley, 2001) that the first relationship in its log-linear form
reproduces the term structure of interest rates. Log-linearising (20):

xr = By {111 +10g(B) 4+ pryr | =0 (23)

Where we define the short-term interest rate as p,,q = log Ryy1 = 7141 — 7gq2 and
then solving forward we get:
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Iy = (pn,t _ﬁn) = Z(pt+1+i _p) (24)
i=0

the n period real interest rate is the sum of the real short term interest rates.
Replacing 24 in 21 Appendix B shows that a log deviation formulation of 21 is:

o0

Ei S g0y + Y 9i(ye—g + 8Ye15) — (g — D) ¢ =0 (25)
j=1

where we have normalised on y, by assuming market clearing ¢, = 1. Let us

denote w(A) = (fjﬁ/\) and z(A) = 1(1_;;\\)2 The coefficients are defined as:

a— vl —a)(l—XN)z(\) +w(N)]

= 1 — Bow(A)
g = (1-) (1- a)lv_(—ﬁ;lju—t(i\\)ﬁvz()\))

1 —a)v(—1+ AFvz(N))
1 — Bow(A)

g = ¥ ia-n!

The relationship in (25) reduces to a higher-order Euler equation which has the
desirable feature, as stressed by Tinsley and Kozicki (2001) that it improves con-
sistency with what we observe in the data while preserving the simplicity of the
minimalist model.

We can easily verify that the augmented IS aggregate demand relationship in (25)
nests Fuhrer’s specification. For A = 0, we have z(\) = w(\) = 1,50 the coeflicients
become:

o == _ﬁv((lvilﬁ;)a) D <y, (26)
¥ (1-a)v

(27)

A= <
Note that the coefficients on current, lagged and future consumption are higher in

the multiplicative form.
For n — oo the infinite backward and forward sum can be expressed as:

Z)@ (ye—; +ﬁjyt+j> =Y <(1 —1)\L) + (1 —1>\6F) B 2) (2)

=1
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(29)

L is the lag operator, so L'z; = x; _; and F is the lead operator, so Flx; = xy;.
So now the IS equation can be written as a function of the long-term real interest

rate p,,

e = bo + b1 (Ye—1 + Byt1) — b2py s + b3 (Pns—1 + BPris1)

where:

_ 1 9
ho= (14 BA?) (A 90)

1
by = —
go
e = .~ 1
¥ (1+ 823 g0

(30)

In contrast with the standard optimising IS equation, the relationship for output
in (30) contains extra leads and lags. The additional lead and lag terms lead to
smoother output responses to movements of real interest rates (and shocks) compared

to a model which is only forward looking.

3.2 The Supply Side

A revenue maximizing monopolistic firm indexed by z produces a single differentiated
nontraded good, also indexed by z, employing a continuum of differentiated labor
inputs indexed by k. The representative firm takes wages as given and chooses prices

and labour inputs to maximize profits:

max  P(2)Y(2) — WiLy
P(z), L(k)

subject to the production function:

Yt(z) =Ly

and to the demand function for a particular good z:

10

(31)

(33)



where 1 is the price elasticity of demand faced by each monopolist and £, is the gen-
eral price level. The production function (32) of the monopolistic producer exhibits
decreasing returns with respect to labor L; which is defined as:

L= [/01 Lt(k)%dk} Tosst (34)

with L¢(k) denoting differentiated labor inputs, where k € [0,1]. The parameter ¢ is
the (constant) elasticity of substitution between labor inputs.

Let Wi(k) denote the nominal wage of worker k. Then, the aggregate nominal
wage W; is equal to:

W, = { /O 1 Wt(k)1_¢dk] s ¢>1 (35)

Hence, the firm’s maximization problem implies a demand for labor of type k,
L{?d, equal to:

7. (Pt(z))¢n<z> (36)

We assume that nominal wages are indexed to price changes between time t and
time ¢t —1:

P, P
Wﬁz( t) wE (37)
P

where W denotes the fully flexible nominal wage, and Pit - is one plus the rate of

inflation at time ¢. The parameter p captures the extent to which the i wage is
indexed.

For the sake of simplicity, and in common with much of the literature, we impose
symmetry across agents so that p, = g and V~Vtk = VT/t, so (37) reduces to:

and substituting (38) into (36):

7 (P;é"j))(/) (Pi)(bym (39)

11



where we have dropped the index z Thus in a symmetric environment, output Y;(2)
and all prices P;(z) are equal in equilibrium across firms, hence Y;(z) = ¥; and

Given the consumer’ demand schedule (33) and the labor demand (39), a profit
maximizing firm will set the optimal price, F;, according to the following markup
rule:

Wy
P Y
Relationship (40) is the standard pricing rule with fully flexible real wages followed

by monopolistic firms which face a constant elasticity of demand. By replacing (40)
in (38) the real wage can be expressed as :

M ()i "

(40)

= P4 P

Replacing (41) and (39) in the first order condition for the household given by
equation (22)7:

1+v¢ P —p(l+y9)
<w1ﬁ 1) (Pt = 1) e =N (42)

where we have replaced L; with (39) and the real wage with (41). By replacing
in A; the FOC (22) assuming ¢ = y and log-linearizing we get:

P48 = ye(y+9) = > 95 + Fyery) (43)
=1

where 7 = log(P;) — log(P;—1). We replace again the infinite backward and for-
ward sum using 28:

Ty = a1 (M1 + Brg1) + agye — a3 (Ye—1 + Pyer1) (44)
where
_ A
@ = T
—  _(tgo)
@2 = L9
a3 = ————r (v +90— 1)
3 pitd)(+px0) V1T 90— g

Note that as A — 0 44 reduces to the standard Phillips specification where
inflation, 7, depends on current output gap, y;.

7 e P —your _1 P ®
~(35)" () T ) F At (1) =0
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3.3 Maximising Welfare

We next need to derive a loss function for the monetary authority. Assume the mon-
etary authority shares household preferences over consumption and labour:

W, = U(Cy, Hy) — V(L) (45)

We can approximate 45 using a Taylor’s series expansion:

—~ ~ 2
U/(Cp, Hy) = U+ Ug,Cy+ Up, Hy + 2o (46)
UHt,gtﬁtQ + UCt,HQtétj:It + UHt,CQtﬁta (47)
~ T2
V(L) =V + ViL + Vi 2 (48)

where all the derivatives are evaluated at the steady-state levels C' and H and L.
Variables with a tilde denote deviation of consumption, habit and labour (in levels)
from their steady-state. Appendix C shows that a utility-based welfare function for
the policymaker is given by:

W, =U(1-a) %”yc%a+7N1—2A+A%+%1—a@(y_»?
_%O—ﬂ' (1+7) (b2,u2 (1 — 2)\—1—)\2) 1710 (H ¢ HS

where I denotes terms which are not affected by monetary policy and O (|| £ ||*) are
higher order terms which can be neglected. So the policy objective function can be
rewritten as:

1

2

l%z—Uﬂ—@( >

M%+1@@—I—Om5W0 (49)

with

Li = (a+7) (1=22+2) - (1—av) (1 -
Ly = (L+v)¢'

where we assume that authorities can control the volatility of current output and
inflation but they cannot affect past realisations of inflation and output. Also we
assume that the correlation between output and inflation is time invariant. The
resulting objective function is similar to the utility based loss derived by Gali and
Monacelli (2002). Note that if v =X =0 then L1 = (a + 7); hence in a utility-based
framework if habits play no role, the monetary authority will place a larger weight
on the volatility of inflation relative to the volatility of output.

13



3.4 The Optimal Reaction Function

Standard literature originating from Taylor (1979) postulates that the objective for
monetary policy is to minimize some combination of the variance of inflation and
output around their equilibrium level. When the utility function is time separable
the maximisation of household welfare is equivalent to minimising the volatility of
output and inflation (Woodford,1997 and Woodford, 1999). However, when habit
formation is allowed for, the implied time non-separability of the utility function
changes the authority’s objective in addition to enriching the dynamics of the output
and inflation specification.
From (49) it follows that the welfare based loss function can be expressed as:

: 1 1
rr})lnm =U(1-a) <§L1yt2 - §L27r? +C+0(] ¢ H3)> (50)
t

Given the time non-separability of the utility function, standard dynamic pro-
gramming cannot be applied. However we could focus on the one-period loss function
and by minimising (50) with respect to y;, we get the reaction function:

Ly (v + 90) Lo
— T, = ———aoT 51
Ly (1 +~¢) 27 (51)

By replacing (30) in (51) and rewriting everything in terms of p, we derive the
optimal feedback rule:

Yt =

pr = k1Amy + ko(Ame_y + BAT1) + ks (pi_1 + Bpisr) (52)
where

L _ _ 1 L =_2
k1= gotraz k2 = qrpmyTia (%‘A)’ and ks = 55y

If A = 0 (Fuhrer, 2000) then habits just depend on past consumption H; = C;_;
and the coefficients of the feedback rule become:

o fLi f
k= gy7ray

- L of o)
2 (1_,_/3)\2) Lg 2 13

k=

i | ! L _ ety=(1—av) f_ (el :
where as shown in section 3.1 gy < go, T T TeE and ay = PEEErE In this

specification the short term interest rate responds to past output, current inflation,

14



one period lagged and leading change of output but it does not respond to the lagged
and leading short-term interest rate.
at

: L -1 (y+a)
_ _ _ t _ (o
Note when v = 0, lim,—0g0 = «, Lé = Tae and a5 = w1ty * 50 the

short-term interest rate responds only to inflation:
KL —aLtQQ,kt =0 and k§ =0

The response of the short-term interest rate to the output gap and to current and
expected inflation will be higher in a world where A, in the habit function, is positive
and habits are multiplicative. In this case there will also be interest rate smoothing
so interest rate also respond to past and expected interest rate. This is a strong result
and implies that interest rates respond more smoothly than in Fuhrer’s case where
just past consumption enters the utility function. We show in the next section how
this modification affects the properties of a calibrated model.

4 Simulation Exercise

In the following sections we calibrate the log-linearised new keynesian macro-model
derived in section (3) under the assumption of multiplicative habits and show the
implications for output and inflation.

Our stylised, linearised model takes the form:

Ye = bo + 01(ys—1 + Bye1) — bapy s + b3 (Pt + BPpnir1) (53)
T = a1 (m-1 + Brey1) +aoye — a3 (Ye-1 + Byer1) (54)
pe = k1 AT, + ko(Am 1 + BAT 1) + K3 (pr1 + Bppsn) (55)
Tt = T4l = P T UPn i1 — Pryt) (56)

where (53) is the IS relationship with multiplicative habits, (54) is the hybrid Phillip’s
equation, (55) is the utility-based loss function and (56) is an equilibrium relationship
which links the short term real interest rate to its long term real interest rate®.

8Under the assumption of efficient markets and rational expectations, the expected return of
an n period bond will equal the real return from investing in one-period bills for n periods hence
P = =307 ! Ei(p,;)- The real interest rate is recovered from the Fisher equation E; {p,,;} =
Et {Tt+L — 7I't+1+1} . Therefore:

15



5 AIM

We simulate the model using the Anderson-Moore (AIM) algorithm. AIM is a rational
expectations algorithm for computing the vector autoregressive reduced-form of a
forward-looking linear structural model;

0
Z Hiwt—i-i = &t (57)
T nx1
=T
where H;, with ¢ = —0, ......... , T represent the structural coeflicients of the model.

We start rewriting the model in a more compact form:

HZ = Et (58)

where H is the vector of structural coefficients for different orders of lead and
lags:

H =37 S 1 (S JH, 59
(nxn)(T+6+1) { 0 9] ( )
Zt = [l’t,T ...... [ 17 . :I?t+9], (60)

and Z collects for various leads and lags the vector of variables x = [yt, T Tty Prs pn,t] .
Finally € = [ey,,&x,,€r,,0,0] is the vector of shocks.

5.1 Conditioning equations

To derive the restricted Vector Autoregressive Representation of the structural model
AIM constructs a matrix P which is a n x (6 + 7)n matrix which comprises a set
of auxiliary conditions (@) which are imposed to ensure the non-singularity of the
leading matrix Hy plus a set of stability condition on the forward-looking part of the
system which provide the additional equations that close the system under saddle-
path stability.

1
pn.t = EEt [(Tt — 7Tt+1) e T (TtJrnfl — 7Tt+n)}

We can derive an iterative method to calculate the ex-ante n—period long term real interest rate
as:

Tt — Tt4l = NPy 41 — (n— 1)pn—1.t = Ppt T n(pn,.t+1 - pn.t)

which will be used in our simulations and where to get the result we have assumed that (n —
1)pn—1.t = (’I’L - 1)pnt
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pr——
P

Q Tt—r B
[ ol ] —0 (61)
Onx(0+1)n Tt4+0-1

The matrix P can then be partitioned into left and a square right blocks so that
P = (Pl ‘ PQ)Z

Pz[gl]:[ﬂ PQ} (62)

" Onxtn Onxon

The conditioning equation can be rewritten as:

Ti—1 Ti46-1

where z; now depends on its past values through the coefficient matrix P; and on
its future through the coefficient matrix P».

5.2 Vector Autoregressive Representation

Given det(P, 1) # 0 and premultiplying by —]32_1 yields the auto-regressive repre-
sentation:

where B is given by the first n rows of —F; 1p, and
B=[B; Br ... By] (65)

Replacing the implied forecast formula of (64) in (57) yields the observable struc-
ture:

-
S()ilft = Z Siiﬁtfi + & (66)
i=1
Therefore for Sp non-singular, the restricted VAR representation is:

Ty = Bi_iri_i +wy (67)
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where B;_; = SalSi and u; = Salst. Therefore a VAR can be written in the
standard MA(oco) form as:

oo oo oo
. N
Ty = g Bi_ju_; = g B{_;S) et—i = g Ciict—i
=0 =0 i=0

Therefore the responses of x; are determined by the rows of BZ?i.These are the
responses of & to standard shocks in &;.

2y = Ciep + Cy_16¢—1 + Ci_26¢—2... (68)
Therefore the matrix Cy, has the interpretation:

8,275
Oey—p

=C_p, (69)

which will be used in our impulse response analysis

6 Calibration and Policy Experiment

Table 1 reports the values assigned to the parameters in our simulation exercise. The
value of the power utility coefficients, «, is set to 6.11 as in the FIML estimates of
Fuhrer (2000). Since we simulate the model on a quarterly basis we set the fractional
discount factor 3 at 0.99 which corresponds to an annual rate of 3.96% (Woodford
and Rotemberg (2000)). As in Ravenna and Natalucci (2002) we set 7 to 2, implying
an elasticity of labour supply equal to %

Moving to the parameter in the wage and price equation we set the elasticity of
demand, ¥ equal to 7.88 as in Woodford and Rotemberg (2000). We do not have
a specific estimate for the elasticity of labour inputs, ¢, so we set it equal to 3 as
in the calibration exercise of Sarajevs (2000). As in Alogoskoufis-Manning (1998)
the estimate of the wage indexation index  is set to 0.96 to reflect the almost total
indexation experience of most OECD countries.

We then move to our simulation exercise where we set v to 0.2”. We then compare
the response of inflation, output and interest rates to a standardised unitary shock
to inflation ,output and the interest rate in two cases. One which corresponds to
Fuhrer’s specification for habits and the other to the geometric form used in this
paper. This corresponds to A equal to zero in Fuhrer’s case and A equal to 0.4 in our
case.

The results are graphed in Figures 1 to 3. A number of features of these results
stand out. The immediate jump in all state variables is identical for the two cases
of additive and multiplicative habit formation. However, the subsequent adjustment

9The habit strength parameter is set in order to ensure that the properties of the utility function
illustrated in section 2 are satisfied.
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Table 1: Parameter Values
Parameter Values
Utility Function

a 6.11 Fuhrer (2000)
B 0.99 Woodford and Rotemberg (2000)
0 2 Ravenna (2002)
Wages and Prices
o] 3 Sarajevs (2000)
1 7.8  Woodford and Rotemberg (2000)
© o 0.96 Alogoskoufis-Manning (1998)
Parameters
v 0.2
A 0& 04

is quite different. For the multiplicative habit case adjustment in output, inflation
and interest rates is much more sustained. A quite modest re-specification has a very
large impact on the properties of the New Keynesian model. For the inflation shock
the response of output (and the long term interest rate) in the multiplicative case is
hump shaped.

7 Conclusions

We have shown that a relatively modest re-formulation of the habit specification
of the consumption model of Carroll (2000) and Fuhrer (2002) to make the stock of
habit a geometric average of past levels of consumption achieves two things. Firstly, it
addresses some recent concerns of Wendner (2002) that the approach used by Carroll
and Fuhrer violates some reasonable postulates of the utility function. Secondly, when
this habit function is incorporated into an otherwise standard New Keynesian model,
we are able to generate a much smoother response to shocks in output and inflation.
Interest rate adjustment is also much smoother. Nevertheless, what we have done
does not fully generate other features of the data. For example, the initial response
of inflation to an innovation in output is still immediate, when there is considerable
evidence to suggest that inflation responds with a delay. Recent developments in
the literature on optimal price adjustment (Mankiw and Reis, 2003) with sticky
information suggest further ways of modifying the model to improve the response of
the model to shocks.
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A The Marginal Rate of Substitution

We start from the additive habit specification. To prove property P4 we first rewrite
13 as:

C(lfa)Hf'u(lfoc)fl

_ . FyvTF—1 g t+J
1 v (1 )\) 2321 B )\ C’J;aHt_UJ(l_a)

y a _
N[RSCtCHl a Hiyq —v(i-a) Ciya e 7 \j—2 Cgi;a)Ht_Jrvj(l_a)_l
B (Tt) ( Cy > —v(l=A) ijz B X o e v
t t
(70)
Note that if consumption grows at a constant rate o, implyingC—gfg—1 = o then Hf =
—a —v(l—a)— i (=) ) £1—>\2 —v(l-a)=1
U=V 10 and we can rewrite P = (+'Ct) (U < “"*)) =
(=2 ™" oo, o (o =)
g iletv(l-a)] —E‘I:i‘)) If we denote A = Ao~ v(1-2) .
— j (6=2) (14T
e _ 1ol Ay, A _ v (1—A _1>
MRS, ¢, | = (71)

p)
C o— S o— _
A= A/\) 2 j=a A A—o! /\)\) (llilT -1 _A)

Dividing both the numerator and the denominator by A we can rewrite 71 as:

(1—A) — vl (4 - A7)

MRS? = 72
CiCya A(l —A) _Ugg;AE (A2 —AT) ( )
If o >1asT — oo then limy_,.c AT =0 and the MRS becomes:
y a 1
]\/[RSCtCt+1 - Z (73)
hence
1
OMRSE,c,, [0v = (1 - a)% (74)

In the multiplicative case we start from rewriting 14 as:

107n the additive case we can rewrite the habit function as:

T—1 A

H,=X'Hy ¢+ (1=X\)oC, Z <;> =0,

=0

as T — oo

1-AX
o —

since we assume that lim7— o AT Hi—p =0
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B (1-a)
- Htmj v, ;
1—o(1=A) 2 0 BN 1{(H_7+”> CTﬁ

_ (1-a) _ (1-a)
Hy va i—92 H™" . v,
5|(%) "] a5 T ]
(75)

: . Hm N\ —v(1—a) A\ (1-a) ,
Since consumption grows at a rate o then: (il> (%) = gil-a)(1-v)

Ho\ = 0oa |
{(%) %} = o(1=a)(1=v) — 5 A we can rewrite 75 as:
t t

o (1= 0525, (0aY)

MRSZ ¢, | = : (76)
T ca— By Ay
and following the same procedure we rewrite 76 as:
o ((1 —cA) — v@ (cA - O'TAT)>
MRSE¢,,, = (77)

cA(l —cA) — v@ (((7A)2 - O'TAT)

Note that limy_eol AT = ¢T1-0)1-v) — 0 if o > 1. In this case the MRS
becomes:

. 1

]\/_[R tht+1 - Z (78)
1

OMRSE ¢, /0v = (1 - a)% (79)

B The optimising IS schedule

ou n o ev(1-A)AL - (it
8_611: — Et {Hzlctz( ) - (1 - )\) UCt 1 jz;ﬁj)\j ICtJeri:lCt-i(-j—i) _ At}

(80)

A log-deviation formulation of 80 is:
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ac; L= (1= X)X, (BN
(1= a)v(1 = A) [~1+ Bor(1 = N i (93]

oU { —a+ Bo(1 =) [o(1 = 0) (1= @) S (BN + X1 v (BN }

0
- = Bu(1= ) S () o)
)\j—l(l —a)v(l =) [—1+ BuA(l —)\)] 4 B
’ TGl - Ny T
Hence
oU =
ac;, ~ g0t ]Z:;gj (ct—j + Bertj) (81)
o= —a+ Bu(l=A) [o(1 =X (1 —a) 37, BN + 37, B'X]

1= Bu(l =)0, BN

V71— a) (1= 0) [=1+ Boa(1 - N I (33)']
g5 = : (82)
L= Bo(l— X)Xy (BN

So even if the number of addends changes with j we can always approximate the

summation in the squared brackets of 82, for a given value of j, with lim, Z?;Ojfl <ﬁ)\2)i =
ﬁ In fact, the last elements of the summation will drop as j increases but as they
are very small they won’t affect the size of the coefficients.

So we can now approximate the infinite sum in g and g; and obtain the coefficients:

a—Bu(l—A) (U“:z;(;;a) + 171/&)

g0 = (1— 20,
(1-8X)

(1-X) A1-X\)
(1 — O[) UT (—1 + ,67)@)

Bu(1—A
(1- 553

g = X

(1 - )i (-1 + 530
Bu(l—X
(1 - 553

) =N"lg

gi = N
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C Maximising Welfare

Assume the monetary authority shares households’ preferences over consumption and
labour:

W, = U(Cy, Hy) — V(L) (83)
We can approximate using a Taylor’s series expansion

Uc,c,C?
Ctygt { + (84)
UHt,HthtQ UCthétht UHuCtﬁItét
+ +
2 2 2
where all the derivatives are evaluated at the steady-state levels C and H and the
variable with a ~ denote deviation of consumption and habit (in levels) from their
steady-state. Defining ¢; = log(C;/C) and hy = log(H;/H) = (1 —X) .02, A ey

allows us to approximate C; and Hy as:

U(Cy,Hy) = U+UCtét+UHtht+

Gi=c (a+3d+0(¢r)) (55)

o=t (gt +0 (1€ )) (56)

Plugging (85) and (86) in (84)! :

1 1
Ut(Ct,Ht) = U+ UCtC <Ct + 56%) + UHtH (ht -+ 5@?) (87)

+ UCuCQtCQCL? + UHhHéHthQ

+ UCt7Ht CHCtht

Substituting the derivatives of U'? in (87) we get:

U(Cr,H) =U+U(1—a) E(l —a)c? + %(1 — aw)h? + (¢; — vhy) —v(1 — a)cihy
(88)

We then consider the log-linearisation of the disutility of labour as in Woodford
and Monacelli (2002):

" The result in (87) uses the symmetry in the cross-derivatives Uc,,m, (~7t1:-VIt and Ug, ¢, I-Nlt(N/‘t
2The partial derivatives of U, are:Uc, = (1 — a)%;UH[ = —(1- a)v%; Uc,c, = —a(l —
a)%? []thHt = (1 - a) (77(1 - a) + 1)%; Uthth = UCr,,Ht = _ﬂliTaL%'
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N 72
Vi(Li) =V + VL + VLLj‘ (89)

where again we can log-linearise L; around the steady state L :

~ 1
Li=L <lt+§lf+0(|| £ ||3)> (90)
1+
given the function V;(L;) = Ll’;_,: in steady-state VZ; L? = vV, L so:
1
Villy) =V +VLL (lt+§(1+7) th) (91)

¢ —bu
The log-linearisation of . = (’t/)lﬁl) (Pfil) Y; gives:

ly =y — oumy (92)

which substituted in (91):

1
Vi(Ly) =V + VL L (yt — Qpmy + 3 (L+7) (ye — ¢M7Tt)2) +O ([ ¢1P) (93)
Subtracting (93) from (88) assuming that in equilibrium ¢, = y; and considering

that in steady-state Vi, L = U(1 — a)'3 gives:

We= U =0) (5 (1= alut + 51— a0l = (19) 0~ dum?| + C+O (I €I )
(o)

where C' = —vhy (1 — acy)—dumg. Since by = (1 — X) D70, Xly, = (1-2) ( L 1) =

(=ML .
T Yt we can express the above expression as:

We=U(l—-« %Uy{—(oz—ﬁ—’y) (1_2)\+)\2)+(1—av)(1—)\)2} > 95
( )<—%aﬁuﬂmzml—zwx%+f+o<||£||3> o

where

I = —v (1 - >\) (ytfl - )\yth) - U(l - 04) (1 - )\) (ytytfl - )\ytflyt72) (96)
+ (L+79) ¢ (meye — 2Am— 11 + N Ty—2ye2)

“We know that in steady-state U. = (1-a)g; R = % = 13V, = U.*% and that in equilibrium
the budget constraint is:

C+B=%L+RB

then £ =% and VoL=U.=(1-a)U
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