
Solving SDGE Models:
New Algorithm for Sylvester Equation

Ondřej Kameńık1

Abstract
This paper presents a new numerical algorithm for solving Sylvester equation in-
volved in higher order perturbation method developed for solution of stochastic
dynamic general equilibrium models. The new algorithm is better than methods
used so far (esp. very popular doubling algorithm) in terms of computational
time, memory consumption, and numerical stability.

Further, the paper applies the algorithm in a simulation of a large macroe-
conomy model providing a simple welfare analysis of a few monetary rules. The
welfare analysis compares household’s lifetime expected utility.

I wish to thank to Michel Juillard for his invaluable help during this project, for providing the

source code of Dynare C++ prototype, and Douglas Laxton for providing a Dynare code of Czech–EU

calibration of GEM. Many thanks also to my colleagues here in Czech National Bank.

A usual disclaimer applies.

1 The Czech National Bank, Monetary and Statistical Department, E-mail: ondrej.kamenik@cnb.cz.

2 Ondřej Kameńık

Nontechnical Summary
A perturbation approach to solve stochastic dynamic general equilibrium (SDGE) mod-

els seems very promising in comparison with other methods, since it allows handling of
relatively large state space. According to [Jin and Judd, 2002] and [Juillard, 2003], the
solution of k-order approximation consists of finding the non-stochastic steady state and
then solving for k-order approximation around the steady state. The k-order approxima-
tion is found iteratively from the approximations of lower orders. The iterative process
is started by standard solution of linear approximation (k = 1). The iterative step con-
sists of two ordinary linear systems, and one linear Sylvester equation. While the two
equations present no numerical problem, the Sylvester equation is a real computational
challenge. Although size of input data of the three equations is more or less the same, the
Sylvester equation entails solution of huge matrix whose size grows exponentialy with k
and polynomially with number of predetermined variables.

The main result of this paper is developing the recursive algorithm for solving the
Sylvester equation involved in the k-order approximations. The algorithm was imple-
mented in C++ and tested. An efficiency of the recursive algorithm is shown in com-
parison with two methods used so far. These are a method due to [Bartels and Stewart,
1972] implemented by Michel Juillard, and doubling algorithm implemented also by the
author of this paper. Since the application of the Bartels–Stewart approach in the context
of SDGE models doesn’t take into account a special structure of the Sylvester equation,
it has quadratic complexity both in time and memory. This makes the method unusable
for large models or high order approximations. When comparing with the doubling algo-
rithm, the author’s implementation of the doubling algorithm needs almost three times
as much computational time and twice as much memory as the new recursive algorithm.
The superiority of the new recursive approach is shown on the solution of second order
approximation to Global Economy Model (GEM) calibrated for Czech Republic and Euro
area [Laxton and Pesenti, 2003]. In this particulary difficult model, the doubling algorithm
yields relative error of equation residual at order of 10−1, and the new resursive method
at order of 10−14.

Introduction 3

1. Introduction
We open the paper with a sketch of the paper [Juillard, 2003]. This should provide the
reader with an intuition how the Sylvester equation is employed in k-order approximation
of a non-linear SDGE model.

We are interested in discrete time models of the form2:

Et

(
f(y∗t−1, yt, y

∗∗
t+1, ut)

)
= 0, (1)

where y is a vector of n state variables, out of which y∗ denotes m predetermined variables,
and y∗∗ denotes a n−m vector of forward looking variables. (We count static variables as
predetermined.) Further, ut is a vector of stochastic shocks. For the sake of perturbation
method, we write ut as a result of σ scaling of ηt shocks, i.e.

ut = σηt.

A dynamic equilibrium solution of this model is, in fact, a decision function of the
following form:

yt = g(yt−1, ut, σ),

which contains the decision rules for predetermined and forward looking variables, i.e.

y∗t = g∗(y∗t−1, ut, σ)
y∗∗t = g∗∗(y∗t−1, ut, σ)

The original model can be then expressed as having the only reference to unknown
future through serially uncorrelated shocks ut+1, this is:

0 = Et

(
F (y∗t−1, ut, σ, ut+1)

)
= Et

(
f
(
y∗t−1, g(y∗t−1, ut, σ), g∗∗

(
g∗(y∗t−1, ut, σ), ut+1, σ

)
, ut

))
.

(2)

Now let us suppose that we have already found the model’s steady state ȳ, and the
solution to the linear approximation. The latter includes Jacobians of g∗, and g∗∗ with
respect to y∗, and y∗∗ resp. A goal of k-order perturbation method at this point is to
obtain k order derivatives of g with respect to all y, u, σ, including all possible cross
derivatives. In what follows, we provide an intuitive explanation of how the second (and
higher) derivatives of g with respect to y are retrieved and how the Sylvester equation
emerges.

For simplicity, we will do it for the second order (k = 2). However, exactly same
ideas are applicable for steps of higher orders. First, it is not difficult (though technically
demanding) to show that

[Fy∗]
i
α1α2

= 0, (3)

where i goes through all equations, and [Fy∗]iα1α2
is second derivative of i-th equation with

respect to y∗α1
, and y∗α2

3 at the steady state ȳ.

2 We use the same notation as in [Juillard, 2003].
3 For bracketed expressions such as [Fy∗]iα1α2

the superscripts are used for equations, subscripts for
variables.

4 Ondřej Kameńık

Now using equation (2) we will rewrite the equation (3) in terms of derivatives of f ,
known first order derivatives of g, and unknown second order derivatives of g (these are
three dimensional matrices for derivatives of g∗ and g∗∗, i.e. g∗

y∗2 , and g∗∗
y∗2). Since we only

examine how the Sylvester equation comes out, we are interested only in terms involving
unknowns g∗

y∗2 , and g∗∗
y∗2 . Such the terms are obtained as sum of derivatives with respect

to arguments of f multiplied by second derivatives with respect to y∗. These are:

1) The derivative of f with respect to the first argument y∗t−1 is denoted as fy∗−
. However,

the second derivative of the argument y∗t−1 = y∗t−1 is 0, so there is no contribution from
the first argument.

2) The derivative of f with respect to the second argument yt is denoted as fy, which is
block matrix (fy∗ fy∗∗). The second derivative of yt = g(y∗t−1, ut, σ) with respect to
y∗t−1 is a block three dimensional matrix (g∗

y∗2 g∗∗
y∗2)

T . So the overall contribution of
the second argument is [fy∗]β · [g∗y∗2]

β + [fy∗∗]β · [g∗∗y∗2]
β4

3) The derivative of f with respect to the third argument y∗∗t+1 is fy∗∗+
. The second deriva-

tive of y∗∗t+1 = g∗∗(g∗(y∗t−1, ut, σ), ut+1, σ) with respect to y∗t−1 is more complicated:

a) First, it includes a first derivative of g∗∗ with respect to the first argument multi-
plied by a second derivative of g∗ with respect to y∗t−1. This is [g∗∗y∗]β · [g∗y∗2]

β.
b) Second, it includes a second derivative of g∗∗ with respect to the first argument

multiplied by corresponding combinations of first derivatives of g∗. In more detail,
a second derivative [g∗∗

y∗2]
β
α1α2 must be multiplied by a sum of all combinations of

products [g∗y∗]
α1
γ1

[g∗y∗]
α2
γ2

. In tensor notation, this is [g∗∗
y∗2]α1α2 · [g∗y∗]α1 · [g∗y∗]α2 .5

4) Since the fourth argument of f is ut, there is no contribution to the terms in our
interest.

Now note that in the equation (3) there are no other terms containing second derivatives
(not only with respect to y∗t−1) than those listed above, so the (3) can be rewritten as:

[fy∗]β ·[g∗y∗2]
β+[fy∗∗]β ·[g∗∗y∗2]

β+[fy∗∗+
g∗∗y∗]β ·[g∗y∗2]

β+[fy∗∗+
]β ·
[
[g∗∗y∗2]α1α2 · [g∗y∗]α1 · [g∗y∗]α2

]β
= [D],

(4)
where D contains all other terms. The relation (4) is an equation of three dimensional
matrices. With a careful handling of the last term, the equation can be put into two

4 Here we use tensor product notation. For two dimensional A, and three dimensional B, we define[
[A]β · [B]β

]γ
α1α2

=
∑
β

[A]γβ [B]βα1α2

5 Precisely, for three dimensional A, and two dimensional B, C we define

[[A]α1α2 · [B]α1 · [C]α2]βγ1γ2
=
∑

α1,α2

[A]βα1α2
[B]α1

γ1
[C]α2

γ2

Introduction 5

dimensional form, which is:6

fy∗g
∗
y∗2 + fy∗∗g

∗∗
y∗2 + fy∗∗+

g∗∗y∗g
∗
y∗2 + fy∗∗+

g∗∗y∗2
(
g∗y∗ ⊗ g∗y∗

)
= D

This can be rewritten as(
fy∗ + fy∗∗+

g∗∗y∗ fy∗∗
)(g∗

y∗2

g∗∗
y∗2

)
+
(
0 fy∗∗+

)(g∗
y∗2

g∗∗
y∗2

)(
g∗y∗ ⊗ g∗y∗

)
= D

The same ideas made for the second order can be repeated for k-th order ending with an
equation of the form:

AX + BX
(
⊗kC

)
= Dk, (5)

where
A =

(
fy∗ + fy∗∗+

g∗∗y∗ fy∗∗
)

B =
(
0 fy∗∗+

)
C = g∗y∗

X =
(

g∗
y∗k

g∗∗
y∗k

)
matrix of unknowns

Dk = right hand side dependent on k

The remainder of the paper is organized as follows: The second chapter introduces
the new recursive algorithm solving the equation (5), and analyzes memory consumption
and computational complexity. The third chapter compares the recursive algorithm with
Bartels–Stewart approach, and doubling algorithm. It shows that the recursive algorithm
is better than the two alternatives in terms of time, memory, and numerical stability. The
fourth chapter applies the recursive algorithm in a simulation of a large macro model.
The aim of the simulations is a simple welfare analysis of two monetary rules. The first
appendix describes in more detail an algorithm used for block diagonalization of a matrix.
The second technical appendix provides a formal description of the recursive algorithm.

6 We do not use brackets for ordinary two dimensional matrices.

6 Ondřej Kameńık

2. The Recursive Algorithm

2.1. Complexity of the Problem

Before we start with a description of the algorithm, it is useful to asses the computational
complexity of solving (5). Recall, that n is a number of equations in the model (1), and m
is a number of predetermined variables. Size of matrix A in (5) is (n, n), B is also (n, n),
C is (m,m), and finally X and Dk have size of (n, mk).

To see how large the equation (5) can be, let us take the Czech EU calibration of GEM
as an example, see [Laxton and Pesenti, 2003]. It has n = 244 equations, and 49 forward
looking variables. After eliminating static variables from (5), we get m = 88 predetermined
dynamic variables. The following table shows an amount of memory needed for storage of
matrix Dk for a few k’s.

Order k Memory for Dk

2 14.4 MB
3 1.24 GB
4 109.0 GB

The equation (5) can be put in Ax = b form by vectorizing:7(
I ⊗A +

(
⊗kCT

)
⊗B

)
vec(X) = vec(Dk)

Clearly, the problem cannot be attacked by Gausian elimination. As an illustration, con-
sider estimated solution times for EarthSimulator supercomputer quoted in the following
table:

Order k Time for Gausian elimination
2 128 seconds
3 2 years 9 months

2.2. Preconditioning

The solution to (5) is obtained in three steps. First, a suitable linear transformation
preconditioning the equation is found, then the transformed equation is solved, and third,
the inverse transformation is applied to obtain the solution to the original system.

The preconditioning step consists of multiplying by A−1 from the left yielding:

X + A−1BX
(
⊗kC

)
= A−1D

7 vec(X) is a vector of stacked columns of X

The Recursive Algorithm 7

and finding real Schur decompositions K = U(A−1B)UT , and F = V CV T obtaining:

Y + KY
(
⊗kF

)
(6)= D̄

Y (7)= UX
(
⊗kV T

)
D̄ = UA−1D

(
⊗kV T

)
When (6) is solved, we apply an inverse of the linear transformation (7) to recover

solution X, i.e:
X = UT Y

(
⊗kV

)
(8)

Two issues are worth noting here. The first is the existence and stability of inverse
A−1. The existence is implied by a fact that for the first order gu = −A−1fu. The
numerical stability is more complex. Basically, if the matrix A is poorly conditioned8,
the preconditioning step can introduce severe numerical errors. If this is the case, the
model is most likely ill-stated, since inverse of A is fundamental for solution of the linear
approximation. However, the condition number gives only an upper bound of numerical
errors. In practice, therefore, our implementation reports a residual relative size of (5).
The numerical error of A−1B, and A−1D should be checked, only if the residual relative
size is too big.

The second issue regards to the Schur decomposition of C. As it will become clear
from the following section, the recursive algorithm will be boosted by large number of zero
elements in the quasi-triangular matrix F . Additional zero elements can be introduced
into F by sacrificing orthogonality of V , i.e. C = V FV −1. However, the departure from
the orthogonality can introduce large numerical errors, as a condition number of V is no
more equal to 1 as is the case for orthogonal matrices. We implemented an algorithm using
results of [Bavely and Stewart, 1979] and [Dongarra et al., 1992]. The algorithm is briefly
sketched in Appendix A.

2.3. The Recursive Solution

Here we provide the core algorithm of the paper. It solves the equation (6), which can be
vectorized as: (

I +
(
⊗kF T ⊗K

))
vec(Y) = vec(D̄). (9)

Although the algorithm works with the vectorized version, the matrix in (9) is not stored
in memory. A basic idea of the recursive algorithm is to obtain the solution at k level
with the solutions of the same problem (or similar) at k− 1 level. In order to simplify the
notation, let F[k] denote ⊗kF T ⊗K. For k = 0, F[k] = K.

Recall, that both F and K are quasi-triangular matrices. In order to describe the
recursive approach, suppose that the first eigenvalue of F is real, let us denote this as

8 Condition number of a matrix is defined as a relative distance from the closest singular matrix

8 Ondřej Kameńık

r = F11. If we pick y as the first part of Y (it corresponds to the size of F[k−1] matrix),
and d as the corresponding first part of D̄, then y is a solution of

(I + r · F[k−1])y = d. (10)

Note that this is pretty similar to the equation (9). If the first eigenvalue is complex, we
pick the first two parts of Y , and the first two parts of D̄. The first two parts of Y can be
then obtained as a solution of(

I +
(

α β1

−β2 α

)
⊗ F[k−1]

)(
y1

y2

)
=
(

d1

d2

)
, (11)

where α, β1, and β2 constitute the first complex eigenvalue block.
When we obtain the solution of (10) or (11), we go through all non-zero elements of F T

below9 the eigenvalue block and eliminate them by updating subsequent parts of matrix
D̄. More precisely, for the real eigenvalue we update

dj ←− dj − F1j · (F[k−1]) y for all j = 2, . . . ,m

And for the complex eigenvalue we update

dj ←− dj − F1j · (F[k−1]) y1 − F2j · (F[k−1]) y2 for all j = 3, . . . ,m

After the above elimination is performed, subsequent parts (or pair of parts) of Y can
be found as a solution of equation of type (10) (or (11) resp.). In this way, the solution Y
is obtained.

What remains to discuss is how equations for real (10) and complex (11) cases are
solved. As noted before, (10) is a slight generalization of (6) (r = 1). It is clear, that
solving equation (10) at k− 1 level in the same manner as we solved the original equation
(6) at k level, will produce problems of both types ((10) and (11)) at k−2, k−3, . . . levels.
For k = 0, the solution of (10) is easy since I + rK is quasi triangular.

Now it suffices to show how (11) is solved. As Lemma 1 in Appendix B claims, the
solution of (11) is obtained as a solution of two equations of the form:10(

I + 2α · F[k−1] + (α2 + β2) · F 2
[k−1]

)
y = d (12)

Now note that the eigenvalues of F 2 are squares of eigenvalues of F , and since F is the
Schur factor, the order of eigenvalues in F and F 2 is the same. Therefore, this equation
can be solved in the very simmilar manner as we solved the equation (6). We simply go
through all the diagonal blocks of F (coinciding with blocks of F 2), solving an appropriate
equation followed by an elimination.

What are the appropriate equations which need to be solved during this process? For
a real eigenvalue r of F (corresponding to r2 of F 2), the equation takes the form:(

I + 2rα · F[k−2] + r2(α2 + β2) · F 2
[k−2]

)
y = d

9 FT is quasi lower triangular
10 here F 2

[k] = ⊗k
(
FT
)2 ⊗K2

The Recursive Algorithm 9

In fact, this is exactly the same as (12), so we solve it by recursion. At the bottom of
recursion (k = 0), we get an equation of the form (I + αK + (α2 + β2)K2)y = d which is
easy to solve since I + αK + (α2 + β2)K2 is quasi triangular.

For a complex eigenvalue of F corresponding to 2× 2 block of F T(
γ δ1

−δ2 γ

)
we come to an equation of the form:(

I + 2α

(
γ δ1

−δ2 γ

)
⊗ F[k−2] + (α2 + β2)

(
γ δ1

−δ2 γ

)2

⊗ F 2
[k−2]

)(
y1

y2

)
=
(

d1

d2

)
The Lemma 2 in Appendix B claims that this type of equation can be transformed to
solution of two systems of two serial equations of the type (12). In this way, the recursion
is closed.

More formal account is given in Appendix B.

2.4. Memory Consumption

The algorithm given above can be implemented so that its input is overwritten by its
output. Therefore, besides storage for input/output vector, the algorithm needs memory
only for temporary vectors allocated on the recursion’s stack. These are modified right
hand sides in Lemma 1 and Lemma 2 in Appendix B. The peak of memory consumption will
be reached at the bottom of a recursion having all complex eigenvalues in higher recursion
levels. The maximum is:

k∑
i=0

nmi = n
mk+1 − 1

m− 1
.

2.5. Numerical Complexity

Unlike the memory consumption, the numerical complexity is not that simple. If calculat-
ing number of flops, a solution of appropriate recursive formulas yields a fairly complicated
result. Without making any further assumptions, it is not possible to deduce dominating
terms. The following table shows the flops complexity for extreme assumptions of fully
and moderatelly filled matrix F . The latter means that there are pm non-zero elements in
matrix F , where p� m. Note that n1 is a number of forward looking variables.11

11 In an implementation, we do not solve for the derivatives of the decision rules with respect to static
variables, because they are zero. Therefore they are excluded and thus n1 ≤ n−m.

10 Ondřej Kameńık

Assumption Flops complexity
no real eig., full F Θ(mknn1) + Θ(m2k−2nn1) + Θ(mk+1n)
no real eig., moderate F Θ(mknn1)
all real eig., full F Θ(kmk+1n)
all real eig., moderate F Θ(mknn1) + Θ(kpmkn)

The computational time can be divided into three parts. The first portion is spent in
solution of bottom quasi triangular systems, the second is time spent in eliminations, and
the third is time needed for right hand side modifications in Lemma 1 and Lemma 2 of
Appendix B. For cases with all eigenvalues complex, the right hand side modification term
dominates overall complexity. For full F , the term Θ(m2k−2nn1) dominates for k > 2,
and for moderate F , the term Θ(mknn1) is comparable with the term for quasi triangular
systems. This assertion is justified by profiling the code which shows that aproximately half
of computational time is spent by right hand side modifications. If there are no complex
eigenvalues in F , the time is in most cases dominated by eliminations.

2.6. Complex Schur Modification

Having studied the computational complexity, a natural question arises. Why we do not
precondition the equation (5) using a complex Schur decomposition obtaining strictly tri-
angular (though complex) matrices K, and F in (6)? Then, all the calculations would
be much more easier, since the system (6) is triangular. There would be no necessity of
the right hand side modifications whose complexity dominates the overall complexity for
a general case.

However, this “trick” will not improve overall computational time. The reason for this
is that the true complexity lays in preconditioning (7), and recovering (8). The complexity
of these steps is Θ(m2knn1). The time of these steps can be four times longer than time
of the same calculations handling only real numbers.

Comparison with Other Solution Methods 11

3. Comparison with Other Solution Methods

3.1. Bartels–Stewart Approach

The approach suggested by [Bartels and Stewart, 1972] is applicable for solving of a more
general equation than (6), i.e.

X + SXT = D, (13)

where S and T are square matrices and T (without loss of generality) is a block upper
triangular with m × m square blocks. Note that T is not required to have a form of
Kronecker product as in (6). Let Tij denote a block of T , and let X and D be partitioned
according to column partitioning of T . The main idea of this approach is to decompose
the equation (13) to a number of smaller Sylvester equations as follows:

X1 = D1 − SX1T11

Xj = Dj − S

j−1∑
k=1

XjTkj − SXjTjj for j = 2, . . . ,m

Note that the both equations take the form of (13) as the sum in the second equation is
known.12 Also note that if T is a real Schur factor, then each Tjj is either 1× 1, or 2× 2.

Here we consider an implementation of this method as described in [Juillard, 2003].
Recall the equation (5) which solves for k-th derivatives of policy rules g with respect
to state variables y. The derivatives is a multidimensional symmetric matrix, and when
unfolded columnwise, some columns are repeated in both, X and Dk. When the repeated
columns are deleted, the resulting matrices X̂, and D̂k have (m + k − 1)!/(k!(m − 1)!)
columns. These deletions must also be projected in the Kronecker power ⊗kC giving a
matrix Ck not having a form of Kronecker product any more. So we come to the equation

AX̂ + BX̂Ck = D̂k (14)

This system is first preconditioned in a similar manner as for the recursive algorithm. We
obtain quasi triangular Fk = VkCkV

T
k and the equation takes the form:

Ŷ + KŶ Fk = Êk (15)

This is solved in the fashion described above.
First, let us compare the memory consumption of both algorithms. Recall that required

memory for the recursive algorithm is approximately nmk. In order to make the following
expressions more intuitive, we will compare the memory requirements relative to the size
of real algorithm input, which is n(m+k−1)!/(k!(m−1)!).13 In our framework, k is much
smaller than m, so this can be approximated as nmk/k!. The relative memory consumption

12 Notice that our recursive algorithm fits to this pattern. T is block partitioned according to the top level
of Kronecker power ⊗kF , and the smaller Sylvester equations are solved recursively with help of Lemma 1
and Lemma 2 of Appendix B

13 This is a size of D̂k matrix, we neglect size of A, B, and C matrices.

12 Ondřej Kameńık

of the recursive algorithm is then k!. The Bartels–Stewart algorithm allocates memory for
full matrix Vk and quasi triangular matrix Fk . The required memory for these matrices
is approximately 3

2(mk/k!)2, and if divided by the size of input, we get 3
2mk/(nk!).

For a fixed order k, the recursive algorithm is linear in memory consumption, while the
Bartels–Stewart algorithm is polynomial of k-th order with respect to m. The implications
of this conclusion are clear when the above results are applied on the GEM (recall n = 244,
m = 88) as shown in the following table:

absolute relative
Recursive k = 2 14.58 MB 2.00
Bartels–Stewart k = 2 175.5 MB 24.07
Recursive k = 3 1.25 GB 5.86
Bartels–Stewart k = 3 154.24 GB 722.21

When estimating number of flops needed for Bartels–Stewart algorithm, we have to
add flops from Schur decomposition of Ck and solution of (15). The Schur real decompo-
sition has cubic complexity with respect to size of the matrix, so we get O(m3k/(k!)3).14

Supposing that Fk is not block diagonalized, we get number of flops of Bartels-Stewart
algorithm of Θ(nn1m

k/k!)+Θ(nm2k/(k!)2). If not even considering the severe complexity
of the large Schur decomposition, the Bartels-Stewart approach is still worse by m2/n1

than the recursive algorithm, whose worst case dominating flops term is Θ(nn1m
2k−2)

There are a few variants of the Bartels–Stewart approach. One of them avoids the mul-
tiplication of (14) by A−1 in the preconditioning using generalized Schur decomposition of
A, and B. Another uses Hessenberg decomposition of A−1B instead of Schur decomposi-
tion in the preconditioning. This method is known as Hessemberg–Schur algorithm, and
can be found in [Golub and Loan, 1996] and [Anderson et al., 1996].

3.2. Doubling Algorithm

The most popular algorithm for solving equation (6) is a doubling algorithm (see [Anderson
et al., 1996]). It exploits a property that all eigenvalues of both A−1B and C have modulus
smaller than one. This implies that matrix F[k] = ⊗kF T ⊗ K in equation (9) has all
eigenvalues with modulus less than one and thus (F[k])i converges to 0 as i→∞. Now we
can use a classical result of linear algebra:

(I + F[k])−1 =
∞∑
i=0

(−1)i(F[k])i

and the sum can be written as a product, i.e.

(I + F[k])−1 = (I − F[k])
∞∏

j=1

(I + (F[k])2
j

)

14 Here we write O instead of Θ to express that the complexity can be better, for instance Ck might be
already in the Schur form by some lucky accident.

Comparison with Other Solution Methods 13

Notice, that each multiplication in the product doubles a number of summands in the sum;
hence the name “doubling” algorithm.

When these ideas are applied in solving (9), we get the following iterative process:

y0 = vec(D̄k)
M1 = F[k]

y1 = y0 −M1y0

Mj = Mj−1Mj−1 for j = 2, . . .

yj = yj−1 + Mjyj−1 for j = 2, . . .

This iterative process is stopped, when Mjyj−1 is smaller than a user given tolerance,
which means that subsequent yj will not change more than the tolerance. In the doubling
algorithm implementation we do not calculate Mj but we calculate iteratively Fj = F 2j

,
and Kj = K2j

, and then evaluate Mjyj−1 = (⊗kF T
j ⊗Kj)yj−1.

Let us look at the memory requirements. At each step, the algorithm updates a current
solution by addition. This implies that two copies of the current solution are needed. This
means that the memory consumption is 2nmk. However, if F has been successfully block
diagonalized, a careful implementation can update appropriate part of the solution vector
block by block reusing previously allocated memory. So, if m1 ≤ m denotes a size of the
largest diagonal block of F , then the memory consumption is (1 + m1/m)nmk.

Also it is not difficult to calculate number of flops of the doubling algorithm. Let
mf denote a number of non-zero elements in F . Number of flops per one iteration is of
Θ(nn1m

k
f). If ν denotes a number of iterations, the overall complexity is Θ(νnn1m

k
f).

Recall that if we take the most unfavourable case for the recursive algorithm, which is F
with all eigenvalues complex and mf = m2/2, the dominating term of the flops complexity
is Θ(nn1m

k−1
f), which is νmf times better than the doubling algorithm.

One more issue should be brought in. Consider a case for which the input/output vector
vec(D̄k) of (9) is so long, that it cannot fit into physical memory. In these situations, a
number of vector touches is often more critical for performance than flops. By a vector
touch we mean a transport of a data chunk between processor and memory. Obviously, a
vector touch can be very costly if all the data don’t fit into memory.

It is easy to assert, that one iteration of the doubling algorithm has approximately the
same number of vector touches as whole recursive algorithm since the data is traversed in
a similar manner. Therefore, for really large problems which do not fit into memory, one
can expect that the doubling algorithm will need ν times more disk loads and stores.

Much more serious (and often overlooked) issue is roundoff properties of the doubling
algorithm. The algorithm employs square powers of matrices applied repeatedly. Recall
that a roundoff error of such an operation satisfies ‖E‖1 ≤ nu‖A‖21 + O(u2), where n is a
matrix dimension and u is the computer unit roundoff. If there is a significant rounding
error in the first step of the algorithm, and high elements causing this error are far from
the diagonal, then further steps can magnify this error before these elements are cut down.
This problem can be discovered by evaluating residual matrix R of the equation (5). The

14 Ondřej Kameńık

Czech-EU calibration of GEM [Laxton and Pesenti, 2003] suffers from this problem. The
following table shows the computational time and relative residual sizes in a few norms of
doubling and recursive algorithm for the second order simulation.

recursive doubling
Time (seconds) 9.5 29.3
‖R‖1/‖Dk‖1 5.635× 10−15 0.2394
‖R‖∞/‖Dk‖∞ 1.045× 10−13 0.1458
‖R‖F /‖Dk‖F 1.366× 10−14 0.1956
‖ vec(R)‖1/‖ vec(Dk)‖1 2.408× 10−14 0.1088
‖ vec(R)‖∞/‖ vec(Dk)‖∞ 2.419× 10−14 0.3911

The table shows that the doubling algorithm is unusable for this problem.

3.3. A Further Research

The Sylvester equation is a part of a recursive step towards k-order approximation of the
decision rules. Its input data consist of the first derivatives of system equations (1), the
first derivatives of policy rules g, and finally of a combination of the results of the previous
steps 1 . . . k − 1. All inputs are subject to numerical errors, which in turn are propagated
to subsequent orders of the approximation.

A challenging task of the further research would be a development of a perturbation
theory for the Sylvester equation of the form (5). A preliminary examination of the problem
indicates that obtaining normwise error bounds is not much more simple than obtaining
componentwise bounds.

Having this error perturbation theory in hand, one would be able to estimate the
numerical error bounds of the whole process.

Welfare Analysis Application 15

4. Welfare Analysis Application

In this chapter we apply the second order perturbation method for a simple welfare analysis
of two different monetary rules in GEM [Laxton and Pesenti, 2003]. The analysis simply
compares lifetime utility expectations of households for the different parametrizations of
monetary policy rule. Obviously, the linear approximation around the deterministic steady
state is not sufficient for this task. This is because we need to simulate how uncertainty
coming from exogeneous shocks is diffused through other variables, and how households
respond. The monetary policy rule influences the way how the uncertainty is propagated
through the economy.

For the simulation exercises we use a two country version of GEM, calibration for Euro
area (Foreign country) and Czech Republic (Home country). We examine monetary rules
and their welfare implications in the Home country.

4.1. Household Optimization in GEM

Here we provide a sketch of the household optimization in GEM. More details, the model
description, and its parametrization is given in [Laxton and Pesenti, 2003].

The Home households15 maximize lifetime expected utility

Wt(j) = Et

∞∑
τ=t

βτ−t (U(Cτ (j))− V (lτ (j))) ,

where j indexes Home households. The utility of consumption is

U(Ct(j)) = ZU,t
(Ct(j)− bCt−1)1−σ − 1

1− σ

where Ct−1 is per-capita Home consumption, b is a habit persistence parameter, and ZU,t

is a common preference shock. The disutility of labor is given by

V (lt(j)) = ZV,t
lt(j)1+ζ

1 + ζ

where ZV,t is a shock to labor disutility.
A Home household maximizes the lifetime expected utility Wt by choosing holdings of

bonds denominated in home and foreign currency, money holdings, investment, consump-
tion, and setting wages. Its budget constraint include money, bond yields, capital returns,
yield of land, wages, consumption, investment, and non-distortionary taxes. Consumption,
capital accumulation, wage setting, and foreign bond trading are subject to adjustment
costs.

15 The same formulas apply for Foreign country

16 Ondřej Kameńık

4.2. Examined Monetary Rules

The monetary rules in the Home country simulated below are inflation forecast based (IFB)
rule, and a similar rule employing stabilization of exchange rate. A general form of the
both used rules is:

(1 + it+1)4 − 1 = ωi((1 + it)4 − 1) + (1− ωi)Et

(
β−4Pt+1

Pt−3

)
+

ω1Et

(
Pt+1

Pt−3
−Πt+1

)
+ ω2ygap + ω3

(
E4

t+1

E4
t

− 1

)
where it is the interest rate, Pt+1/Pt−3 is year-on-year CPI inflation one period into the
future, Πt is year-on-year CPI inflation target, ygap is GDP gap, and Et is a nominal
exchange rate (units of Home currency per one unit of Foreign currency). We choose
ωi = 0.93, ω1 = 0.39, and ω2 = 0.26. The first rule (referred as pure IFB) doesn’t involve
the exchange rate, ω3 = 0, the second rule reacts quite aggresively having ω3 = 10.

4.3. Simulation Results

We took the GEM calibration described in [Laxton and Pesenti, 2003] with a few mod-
ifications. Firstly, we modified the habit persistence parameter b. We changed it from
b = 0.95 to b = 0.3 in the Home country. The reason is that b = 0.95 makes agents more
value a positive change in consumption than its level. Thus in the stochastic steady state,
the level of consumption doesn’t matter for the lifetime expected utility.

Secondly, we changed a steady state value for stochastic process of the labour disu-
tility preference shocks ZV,t. We changed it from µ(ZV) = 11 to µ(ZV) = 2 leaving its
counterpart, steady state of the consumption utility preference shocks, at µ(ZU) = 1. This
was done also for Foreign country. In this way we put more weight on consumption in the
utility function since this setting gives more realistic stochastic steady state of labour.

Thirdly, we changed the intertemporal elasticity of substitution σ from σ = 1/3. We
simulate two cases, σ = 2/3, and σ = 2.

The lifetime expected utility Wt of the representative household was simulated by
adding a new equation for a non-predetermined variable Wt, i.e.

Wt = U(Ct)− V (lt) + Et(Wt+1)

The simulations presented below are stochastic and were started at the deterministic
steady state (the first period is dropped). The results draw a transition from an economy
with no uncertainty (deterministic steady state) to a world with uncertainty (stochastic
steady state). However, for our analysis the stochastic steady state is more important than
the path of the transition.

The following graphs display simulation results of the two rules for σ = 2. The graphs
in the left column correspond to the pure IFB rule, right column corresponds to the rule

Welfare Analysis Application 17

involving the exchange rate. Where applicable, a solid line is used for the Home country,
dashed for the Foreign country.

Nominal Interest Rate

1 100
8

10

12

14

16

18

20

1 100
−40

−20

0

20

40

Consumption

1 100
1.5

2

2.5

3

3.5

1 100
−1

0

1

2

3

4

Labour

1 100
0.6

0.8

1

1.2

1.4

1 100
0.2

0.4

0.6

0.8

1

1.2

Real Exchange Rate

1 100
0.8

1

1.2

1.4

1.6

1.8

1 100
1.1

1.2

1.3

1.4

1.5

1.6

GDP Gap

1 100
−10

−5

0

5

1 100
−50

0

50

18 Ondřej Kameńık

Investment

1 100
0.2

0.3

0.4

0.5

0.6

0.7

1 100
0

0.5

1

1.5

2

2.5

3

Total Capital Stock

1 100
14

16

18

20

22

1 100
0

20

40

60

80

CPI Inflation y-o-y

1 100
8

10

12

14

16

18

20

1 100
−10

−5

0

5

10

15

20

Lifetime Expected Utility of Home Households

1 100
28

30

32

34

36

1 100
20

25

30

35

40

45

The following are results for σ = 2/3.

Nominal Interest Rate

1 100
5

10

15

20

25

1 100
−30

−20

−10

0

10

20

30

Welfare Analysis Application 19

Consumption

1 100
1.5

2

2.5

3

3.5

1 100
−4

−2

0

2

4

Labour

1 100
0.6

0.8

1

1.2

1 100
−0.5

0

0.5

1

1.5

Real Exchange Rate

1 100
0.8

1

1.2

1.4

1.6

1.8

2

1 100
0.9

1

1.1

1.2

1.3

1.4

GDP Gap

1 100
−15

−10

−5

0

5

1 100
−80

−60

−40

−20

0

20

Investment

1 100
0.3

0.4

0.5

0.6

0.7

1 100
0

0.5

1

1.5

2

2.5

3

20 Ondřej Kameńık

Total Capital Stock

1 100
16

17

18

19

20

21

22

1 100
0

20

40

60

80

CPI Inflation y-o-y

1 100
5

10

15

20

25

1 100
0

10

20

30

40

Lifetime Expected Utility of Home Households

1 100
56

58

60

62

64

66

68

1 100
20

30

40

50

60

70

4.4. Used Software Tools

For the simulations we used C++ Dynare prototype, currently under intensive develop-
ment. Its main aim is to allow simulations of higher orders and/or larger models. It is
almost compatible with its well known Matlab counterpart, Matlab Dynare (see [Collard
and Juillard, 2003]). The C++ source code was provided by Michel Juillard. For the solu-
tion of the Sylvester equation we used the author’s C++ implementation of the recursive
algorithm.

For some parametrizations, the C++ prototype failed to solve deterministic steady
state. In these cases, Matlab Dynare was used to calculate the steady state.

Welfare Analysis Application 21

4.5. Conclusions and Open Questions

In terms of initial lifetime expected utility, the IFB rule performs better in both cases.
For σ = 2, the initial value of the lifetime expected utility W1 is 28 for pure IFB which is
greater than 25 for the exchange rate rule. For σ = 2/3, the initial value W1 is 56 for pure
IFB against 30 for exchange rate rule.

However, if the households are given enough time to accommodate, the IFB rule per-
forms better only for economy with σ = 2/3, yielding stochastic steady state of Wt equal
to 66 for pure IFB and 60 for the exchange rate rule. If σ = 2, than the stochastic steady
state of Wt is 34 for pure IFB, and 44 for the exchange rate rule.

Why the pure IFB rule performs better than the exchange rate rule for σ = 2/3, and
worse for σ = 2? It is not trivial to find an answer to this, and the question is left open.

More problems evolve if one wants to calibrate a model with respect to the stochastic
steady state. So far, a common practice is to calibrate a model and check that the model
yields a reasonable determinsitic steady state. A typical example is a calibration of the
weight between consumption utility and labour disutility, it is chosen so that the labor in
the deterministic steady state is (for instance) 1/4 of the total available time. In this way,
a deterministic steady version of (1) with desired values of some variables at deterministic
steady state gives a constraint on the model parameters. On the other hand, if one wants
to calibrate a model with respect to some desired values of variables at stochastic steady
state (which is a correct way), he faces much more difficult problem, since the equation (1)
involves integration over all stochastic shocks. Moreover, the variances of the shocks enter
to the problem as additional parameters, which cannot be set independently on calibration
of the model parameters.

In our view, a correct non-linear SDGE simulation cannot be effectively done without
a computation tool helping to calculate the stochastic steady state and calibrate the model
with respect to the desired values of some state variables at the stochastic steady state.

22 Ondřej Kameńık

Appendix A. Block Diagonalization Algorithm

A goal of the following is to give a description of the algorithm used for block diagonal-
ization of matrix C. This is a similarity transformation C = V FV −1, where F is a block
diagonal matrix with quasi-triangular blocks. The less the sizes of blocks are, the more
zeros are above diagonal in F .

The initial step of the block diagonalization algorithm is the real Schur decomposition
C = V1F1V

T
1 .

For the following steps, consider a similarity transformation of a block triangular ma-
trix: (

I Q
0 I

)(
R S
0 T

)(
I −Q
0 I

)
=
(

R S + QT −RQ
0 T

)
.

If a solution Q to the Sylvester equation S = RQ−QT is found, then the above similarity
transformation breaks the block triangular matrix into a block diagonal matrix. Therefore,
the following steps Fi = Vi+1Fi+1V

−1
i+1 correspond to the above equation. In general, at

each step we choose a diagonal block of Fi and break it by solving the above Sylvester
equation for Q. Using Q we form Vi+1 (and V −1

i+1), and when the process is finished, V is a
product of all Vi (V −1 likewise). However, Q as the solution of S = RQ−QT can be very
large, making Vi+1, and V −1

i+1 ill conditioned. The large size of Q is implied by large S, and
by insufficiently separated R, and T . The latter can be improved by a different eigenvalue
ordering. An eigenvalue reordering can be done by orthogonal similarity transformation
not worsening the condition number of resulting V .

Intuitivelly, an eigenvalue reordering besides the separation of R and T also changes
size of S, so it is very diffucult to algorithmically predict the size of Q. It is not feasible
to try all possible orderings, that’s why we use a heuristics due to [Bavely and Stewart,
1979]. We take the first eigenvalue16 as matrix R, and T as the rest. Then we calculate Q.
If the greatest absolute value of Q’s elements is less then a user given threshold, we break
the matrix, and carry on with T . Otherwise, we select a suitable eigenvalue from T , and
incorporate it to R by the eigenvalue reordering. Another attempt to break the matrix
is made then. The suitable eigenvalue is selected so that its size would be closest to the
average eigenvalue size 17 of matrix R, since it is likely that such an eigenalue is guilty for
the bad separation.

It is difficult to link the user given threshold for element size in Q with the condition
number of the resulting V . Therefore, in our implementation, the error of the similarity
transformation C = V FV −1 is reported giving a feedback on the threshold to the user.

A comment must be made here regarding the eigenvalue swapping. As it is discussed
in [Dongarra et al., 1992], swapping of ill conditioned eigenvalues or two close eigenvalues
can turn out not possible with respect to computer precision. In this case, such eigenvalues
are brought into R together avoiding their unstable swaps. Another difficulty pointed by
[Dongarra et al., 1992] is that a swap can turn an ill conditioned complex eigenvalue into

16 real eigenvalues correspond to 1× 1 matrices, complex ones to 2× 2
17 complex pairs are counted only once in the average

Appendix A. 23

two real. Extremely, a swap of two complex eigenvalues can yield four real eigenvalues.
In such cases, the algorithm proceeds normally, but the implementation must be able to
recognize it.

24 Ondřej Kameńık

Appendix B. The Recursive Algorithm in Detail

Lemma 1. For any n× n matrix A and β1β2 > 0, if there is exactly one solution of(
I2 ⊗ In +

(
α β1

−β2 α

)
⊗A

)(
y1

y2

)
=
(

d1

d2

)
,

then it can be obtained as solution of(
In + 2αA + (α2 + β2)A2

)
y1 = d̂1(

In + 2αA + (α2 + β2)A2
)
y2 = d̂2

where β =
√

β1β2, and(
d̂1

d̂2

)
=
(

I2 ⊗ In +
(

α −β1

β2 α

)
⊗A

)(
d1

d2

)

Proof. Since(
α β1

−β2 α

)(
α −β1

β2 α

)
=
(

α −β1

β2 α

)(
α β1

−β2 α

)
=
(

α2 + β2 0
0 α2 + β2

)
,

it is easy to see that if the equation is multiplied by

I2 ⊗ In +
(

α −β1

β2 α

)
⊗A

we obtain the result. We only need to prove that the matrix is regular. But this is clear
because matrix (

α −β1

β2 α

)
collapses an eigenvalue of A to −1 iff the matrix(

α β1

−β2 α

)
does. tu

Lemma 2. For any n× n matrix A and δ1δ2 > 0, if there is exactly one solution of(
I2 ⊗ In + 2α

(
γ δ1

−δ2 γ

)
⊗A + (α2 + β2)

(
γ δ1

−δ2 γ

)2

⊗A2

)(
y1

y2

)
=
(

d1

d2

)
it can be obtained as(

In + 2a1A + (a2
1 + b2

1)A
2
) (

In + 2a2A + (a2
2 + b2

2)A
2
)
y1 = d̂1(

In + 2a1A + (a2
1 + b2

1)A
2
) (

In + 2a2A + (a2
2 + b2

2)A
2
)
y2 = d̂2,

Appendix B. 25

where(
d̂1

d̂2

)
=

(
I2 ⊗ In + 2α

(
γ −δ1

δ2 γ

)
⊗A + (α2 + β2)

(
γ −δ1

δ2 γ

)2

⊗A2

)(
d1

d2

)
and

a1 = αγ − βδ

b1 = αδ + γβ

a2 = αγ + βδ

b2 = αδ − γβ

δ =
√

δ1δ2

Proof. The matrix can be written as(
I2 ⊗ In + (α + iβ)

(
γ δ1

−δ2 γ

)
⊗A

)(
I2 ⊗ In + (α− iβ)

(
γ δ1

−δ2 γ

)
⊗A

)
.

Note that the both matrices are regular since their product is regular. For the same reason
as in the previous proof, the following matrix is also regular(

I2 ⊗ In + (α + iβ)
(

γ −δ1

δ2 γ

)
⊗A

)(
I2 ⊗ In + (α− iβ)

(
γ −δ1

δ2 γ

)
⊗A

)
,

and we may multiply the equation by this matrix obtaining d̂1 and d̂2. Note that the four
matrices commute, that is why we can write the whole product as(

I2 ⊗ In + (α + iβ)
(

γ δ1

−δ2 γ

)
⊗A

)
·
(

I2 ⊗ In + (α + iβ)
(

γ −δ1

δ2 γ

)
⊗A

)
·(

I2 ⊗ In + (α− iβ)
(

γ δ1

−δ2 γ

)
⊗A

)
·
(

I2 ⊗ In + (α− iβ)
(

γ −δ1

δ2 γ

)
⊗A

)
=(

I2 ⊗ In + 2(α + iβ)
(

γ 0
0 γ

)
⊗A + (α + iβ)2

(
γ2 + δ2 0

0 γ2 + δ2

)
⊗A2

)
·(

I2 ⊗ In + 2(α− iβ)
(

γ 0
0 γ

)
⊗A + (α− iβ)2

(
γ2 + δ2 0

0 γ2 + δ2

)
⊗A2

)
The product is a diagonal consiting of two n × n blocks, which are the same. The block
can be rewritten as product:

(In + (α + iβ)(γ + iδ)A) · (In + (α + iβ)(γ − iδ)A)·
(In + (α− iβ)(γ + iδ)A) · (In + (α− iβ)(γ − iδ)A)

26 Ondřej Kameńık

and after reordering

(In + (α + iβ)(γ + iδ)A) · (In + (α− iβ)(γ − iδ)A)·
(In + (α + iβ)(γ − iδ)A) · (In + (α− iβ)(γ + iδ)A) =

(In + 2(αγ − βδ)A + (α2 + β2)(γ2 + δ2)A2)·
(In + 2(αγ + βδ)A + (α2 + β2)(γ2 + δ2)A2)

Now it suffices to compare a1 = αγ − βδ and verify that

b2
1 = (α2 + β2)(γ2 + δ2)− a2

1 =

= α2γ2 + β2γ2 + α2β2 + β2δ2 − (αγ)2 + 2αβγδ − (βδ)2 =

= (βγ)2 + (αβ)2 + 2αβγδ =

= (βγ + αβ)2

For b2 it is done in the same way. tu

Here we describe the recursive algorithm solving (6) in more technical detail. We define
three functions (which call recursively each other) of which vec(Y) = solv1(1, vec(D̂), k)
provides the solution Y .

In the following text, we retain m denoting dimension of F , n is dimension of K. Let
mc be a number of complex eigenvalues pairs of F , and mr a number of real eigenvalues,
thus m = mr + 2mc. Additionally, Fj will denote j-th diagonal block of F T , this is 1× 1
or 2×2 matrix depending on j-th eigenvalue of F for j = 1, . . . ,mc +mr. For a fixed j, let
̄ denote an index of the first column of Fj in F T . Finally, whenever we write something
like (Imk ⊗ In + r · F[k])y = d, y and d denote column vectors of appropriate dimensions,
and y̄ is ̄-th partition of y (similarly for d̄). If j-th eigenvalue is real, yj denotes y̄, and
if it is complex, yj denotes a double size vector of stacked vectors y̄, and y̄+1. Similarly
for d.

Function solv1.
The function y = solv1(r, d, k) solves equation

(Imk ⊗ In + r · F[k]) y = d.

The function proceedes as follows:

1) If k = 0, the equation is solved directly, K is upper quasi-triangular matrix, so this is
easy.

2) If k > 0, then we go through all diagonal blocks Fj for j = 1, . . . ,mr +mc and perform:

a) If Fj = (f̄̄) = (f), then we return yj = yj̄ = solv1(rf, d̄, k − 1). Then we
precalculate z = r · F[k−1]yj , and eliminate elements below Fj . This is, for each
ı̄ = ̄ + 1, . . . ,m, we put

dı̄ = dı̄ − f̄̄ız

Appendix B. 27

b) If Fj =
(

α β1

−β2 α

)
, we return yj = solv2(rα, rβ1, rβ2, dj , k − 1). Then we

precalculate
z1 = r · F[k−1]y̄, and z2 = r · F[k−1]y̄+1

and eliminate elements below Fj . This is, for each ı̄ = ̄ + 2, . . . ,m we put

dı̄ = dı̄ − f̄̄ız1 − f̄+1ı̄z2

Function solv2.
The function y = solv2(α, β1, β2, d, k) solves equation(

I2 ⊗ Imk ⊗ In +
(

α β1

−β2 α

)
⊗ F[k]

)
y = d

According to Lemma 1 the function returns

y =
(

solv2p(α, β1β2, d̂1, k)
solv2p(α, β1β2, d̂2, k)

)
,

where d̂1, and d̂2 are partitions of d̂ from the lemma.

Function solv2p.
The function y = solv2p(α, β2, d, k) solves equation(

Imk ⊗ In + 2αF[k] + (α2 + β2)F 2
[k]

)
y = d

The function proceedes as follows:

1) If k = 0, the matrix In +2αK +(α2 +β2)K2 is calculated and the solution is obtained
directly.

2) If k > 0, note that the diagonal blocks of F 2T are of the form F 2
j , since if the F T is

block partitioned according to diagonal blocks, then it is lower triangular. So we go
through all the diagonal blocks Fj for j = 1, . . . ,mr + mc and perform:

a) If Fj = (f̄̄) = (f) then j-th diagonal block of

Imk ⊗ In + 2α · F[k] + (α2 + β2) · F 2
[k]

takes the form

Imk−1 ⊗ In + 2αf · F[k−1] + (α2 + β2)f2 · F 2
[k−1]

and we can put yj = y̄ = solv2p(fα, f2β2, dj , k − 1).
Then we need to eliminate guys below Fj . We precalculate

z = 2α · F[k−1]yj , and w = (α2 + β2) · F 2
[k−1]yj

28 Ondřej Kameńık

and eliminate, this is for all ı̄ = ̄ + 1, . . . ,m we put

dı̄ = dı̄ − f̄̄ız − g̄̄ıw,

where g̄̄ı denotes an element of F 2T at position (̄ı, ̄).

b) If Fj =
(

γ δ1

−δ2 γ

)
, then j-th diagonal block of

Imk ⊗ In + 2α · F[k] + (α2 + β2) · F 2
[k]

takes the form

Imk−1 ⊗ In + 2α

(
γ δ1

−δ2 γ

)
F[k−1] + (α2 + β2)

(
γ δ1

−δ2 γ

)2

F 2
[k−1]

According to Lemma 2, we need to calculate d̂̄, and d̂̄+1, and a1, b1, a2, b2. Then
we obtain

y̄ = solv2p(a1, b
2
1, solv2p(a2, b

2
2, d̂̄, k − 1), k − 1)

y̄+1 = solv2p(a1, b
2
1, solv2p(a2, b

2
2, d̂̄+1, k − 1), k − 1)

Now we need to eliminate guys below Fj . First, we precalculate

z1 = 2α · F[k−1]y̄ z2 = 2α · F[k−1]y̄+1

w1 = (α2 + β2) · F 2
[k−1]y̄ w2 = (α2 + β2) · F 2

[k−1]y̄+1

Then we go through all ı̄ = ̄ + 2, . . . ,m and put:

dı̄ = dı̄ − f̄̄ız1 − f̄+1ı̄z2 − g̄̄ıw1 − g̄+1ı̄w2

References 29

5. References

Anderson, E. W. et al. (1996). Handbook of Computational Economics, volume 1,
chapter Mechanics of Forming and Estimating Dynamic Linear Economies.
Elsevier Science.

Bartels, R. H. and Stewart, G. W. (1972). Solution of the equation ax+xb = c. Comm.
ACM, 15:820–26.

Bavely, C. A. and Stewart, G. W. (1979). An algorithm for computing reducing
subspaces by block diagonalization. SIAM Journal on Numerical Analysis,
16(2):359–367.

Collard, F. and Juillard, M. (2003). Stochastic simulations with DYNARE. A practi-
cal guide. http://www.cepremap.cnrs.fr/˜michel/dynare/guide.pdf, DYNARE
Home Page http://www.cepremap.cnrs.fr/˜michel/dynare.

Dongarra, J. J., Hammarling, S., and Wilkinson, J. H. (1992). Numerical considerations
in computing invariant subspaces. SIAM Journal on Matrix Analysis and
Applications, 13(1):145–161.

Golub, G. H. and Loan, C. F. V. (1996). Matrix Computations. The Johns Hopkins
University Press, Baltimore, Maryland, third edition.

Jin, H.-H. and Judd, K. (2002). Perturbation methods for general dynamic stochastic
models. Unpublished manuscript.

Juillard, M. (2003). Solving stochastic dynamic equilibrium models: A k-order pertur-
bation approach. http://www.stanford.edu/groups/SITE/Juillard.pdf.

Laxton, D. and Pesenti, P. (2003). Monetary rules for small, open, emerging economies.
NBER Working Paper 9568. http://www.nber.org/papers/9568.

