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Abstract 

 

 
This paper applies a dynamic programming methodology to the valuation problem for the 
flexibility to switch. In our model, flexibility provides an investor with the right, or option, to 
perform a switch between a less profitable and a more profitable project at no cost. In contrast 
to previous analyses, the option to switch can be exercised in the future at any time during the 
decision horizon. We present the solution methodology that allows to determine the value of 
the flexibility and to identify the optimal timing of the switching decision. Comparative 
statics demonstrate how changes in the input parameters affect the values of the problem’s 
solution.  The results partially explain why investing in flexible manufacturing systems is 
reported to have both low profitability and rate of diffusion.  
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The Manufacturing Flexibility to Switch Products: 

Valuation and Optimal Strategy 
Introduction 

       Many manufacturing firms are investing today in flexible 

manufacturing systems (FMS) in an attempt to improve their responsiveness 

to unforeseen changes in product markets and manufacturing technology1. 

FMS are designed to provide their adopters with the capability to meet 

the ever-increasing market demand for product variety, improved product 

quality, shorter delivery times, faster product innovation and higher 

delivery reliability. Moreover, this improved market performance can be 

achieved at reduced costs of operations, with shorter processing, set-up, 

and manufacturing lead times as well as increased machine utilization. 

Despite numerous potential advantages of FMS, their achievement in 

practice have been impeded by a number of factors, including difficulties 

with the financial appraisal of a new technology in the capital budgeting 

process, the technical complexity of FMS and changes in the 

organization's structure that are required for their successful 

implementation (Boer et al. [1989]). These factors have contributed to 

the relatively low profitability of FMS - as expressed by the traditional 

financial methods - and consequently, have led to a lower rate of 

diffusion of these systems as compared to other industrial innovations 

(Mansfield[1993]).  

       One of the major requirements for the increased adoption of FMS is 

the development of financial methods that would allow one to adequately 

evaluate the benefits of these systems during the capital budgeting 

analysis, and thus demonstrate their superiority over investments in less 

costly, dedicated technologies. There exists a growing consensus that 

traditional capital budgeting methods, such as net present value 

techniques, are not appropriate for analyzing investments in FMS (Kaplan 

[1986], Kulatilaka [1988]). In particular, these traditional approaches 

are not suited for capturing the value of manufacturing flexibility, 

which is considered to be a major strategic benefit of FMS. Although the 

importance of flexibility has been found to gain widespread acceptance 

(DeMeyer et al. [1987]), attempts to develop valid and reliable measures 

of flexibility have incurred a number of obstacles. Flexibility measures 

are needed to advance both theoretical and applied research on 

manufacturing flexibility. In particular, flexibility measures will help 

managers justify investments in flexible technology and determine the 

                                                 
1 See for example the Wall Street Journal from September 15, 1999 article about FMS at Honda. 



performance levels of their firms. Consequently, operationalizing 

flexibility is considered today the most important priority in research 

on manufacturing flexibility (Gerwin [1993]).  

       Flexibility is widely recognized as one of the key components of a 

successful manufacturing strategy and defined as a capability of a firm 

to quickly and economically respond to various types of environmental 

uncertainty (Chung and Chen[1990]). In many situations, the investment in 

flexibility is equivalent to "banking" flexibility that is storing it for 

its future use in changing environments (Gerwin[1993]). In this sense, 

flexibility is a source of real options that a firm may choose to 

exercise in the future. These real options are typically provided by the 

means of various flexibility facets or dimensions such as product 

flexibility (the capability of a production system to quickly introduce 

new products),  mix flexibility (the ease with which the firm offers 

different combinations of multiple products), volume flexibility (the 

capability of a system to operate economically at different aggregate 

production volumes), and process flexibility (the ability to produce the 

same set of products using different processes and materials). The 

literature on manufacturing flexibility provides numerous examples 

illustrating how firms can use these flexibility dimensions, either 

defensively to adapt to sudden changes in market conditions, or 

proactively to redefine competitive conditions (see Chen et al. [1992] 

and Gerwin [1993]). 

       The aforementioned flexibility dimensions provide specific 

examples of the flexibility or option to switch, which enables production 

systems to switch between alternative modes of operation in response to 

changing market conditions. The valuation of benefits resulting from 

investing in the flexibility to switch has been recently addressed, in a 

real option framework, with mathematical tools such as dynamic 

programming (Kulatilaka [1988], Kulatilaka and Trigeorgis [1994]) and 

contingent claims analysis (Triantis and Hodder [1990], Tannous [1990]). 

Most of these analyses compare investments in flexible technologies, 

allowing for switching between alternative modes of operation and 

inflexible or rigid technologies representing irreversible commitment to 

only one of the operating modes. The decision horizon has typically a 

finite length of N periods and switching decisions can be made only at 

preset and fixed points in time (typically, at the beginning of each 

period). Operating in a given mode results in a stream of cash flows to 

the firm, contingent upon the realization of uncertainty modeled as a 

stochastic process. A typical framework models one source of uncertainty 

(such a price, demand, exchange rate) which affects all operating modes. 



Decision to switch to one of the alternative modes involves trading off 

the costs of switching and the expected profits incurred as a result of 

switching decisions. Under these assumptions, the value of flexibility to 

switch is defined as a difference between the expected profits from 

investing in flexible rather then inflexible technology. 

       The above framework appears first in Kulatilaka[1988], who 

develops a stochastic dynamic program to compute the value added to the 

firm as a result of the investment in flexibility to switch. The set of 

operating modes includes alternative modes of production, waiting to 

invest, temporarily shutting down a plant, and abandoning the production. 

Kulatilaka and Trigeorgis[1994] consider the value of flexibility by 

comparing the values of flexible and rigid technologies, where flexible 

technology allows for switching between two mutually exclusive projects. 

The valuation of flexibility is conducted in the absence as well as in 

the presence of (asymmetric) switching costs. Triantis and Hodder[1990] 

apply the option pricing methodology to value the capability of a 

production facility to offer different combinations of multiple products. 

The switching decisions involve adjustments in product production rates 

subject to the capacity of the facility constraint. Tannous[1996] applies 

contingent claims analysis to quantify the benefits of volume flexibility 

and develops a model which can be used in determining the optimal level 

of investment in volume flexibility. Similar analyses are recently 

applied to value the flexibility of multinational production networks in 

Kogut and Kulatilaka[1994] and Huchzermeier and Cohen[1996]. 

The critical mass achieved by these theoretical investigations made 

possible the transmission of knowledge to practitioners.  However, for a 

successful implementation of these calculations in practice simpler 

methods should be investigated.  Recently Copeland and Antikarov [2001] 

discuss a few simple solutions to the valuation of the flexibility of 

switching technologies in their real option book written for 

practitioners.  

       In line with the objective of making simpler solutions to 

complicated problems available to practitioners this paper develops a 

simple real option framework for the measurement of the value of 

flexibility to switch between alternative projects. The value of 

flexibility is derived in the context of a firm facing the choice between 

the two investment opportunities referred to as rigid and flexible 

scenarios. In the former, the firm invests in one of the two available 

projects at the beginning of the planning horizon without the right to 

reverse its investment decision later, whereas in the latter the firm 

additionally acquires the option to switch between the alternative 



projects in the future. Assuming the knowledge of the stochastic 

evolutions of the projects, we provide a mathematical formulation to the 

real option valuation problem using a dynamic programming approach. The 

solution methodology allows one to value the flexibility to switch and 

provides a decision rule indicating the critical ratio of the projects' 

values at which the timing of the switch becomes optimal. 

       This study differs from the existing research on the measurement 

of flexibility to switch in that it allows the switching between the 

projects to take place at any point in time during the planning horizon. 

In effect, the real option to switch corresponds to an American-style 

call option rather then a European-style call, as in the previous 

analyses. This assumption makes the analysis more complex and implies the 

need for an application of an analytic approximation to the option-

valuation problem. The solution methodology applied in this paper is 

based on the approximation proposed in Barone-Adesi and Whaley[1987] for 

American options written on commodities. We extend their methodology to 

solve the differential equation for the value of the option to switch, 

contingent upon the evolution of two state variables representing the 

stochastic evolutions of the projects' values. Our model is similar to 

previous analyses in that it assumes two operating modes  (Kulatilaka and 

Trigeorgis [1994]), irreversibility of the switching decision and the 

absence of switching costs (Triantis and Hodder [1991]). Despite these 

restrictions, our model can be considered general enough to assess the 

value of various types of flexibility options, including various 

dimensions of manufacturing flexibility.   

       The rest of the paper is organized as follows: Section 2 develops 

the theoretical framework for analyzing the option value of flexibility 

to switch and outlines the solution methodology. Section 3 presents the 

sensitivity analysis. Conclusions are given in the last section.  

 

 

The flexibility to switch: the theoretical framework 

        

       Consider a firm facing a decision to invest in one of the two 

mutually exclusive projects, say A and B, at the beginning of the time 

horizon [0,T]. Each project results in a different stream of cash flows 

to the firm.  We assume, as customary, that the present value of the 

future cash flows for each project follows a geometric Brownian motion 

stochastic process. Under these assumptions, we consider two investment 

scenarios that can be adopted by the firm. One situation, called a "rigid 

scenario," is characterized by the absence of flexibility to switch 



between alternative projects during the time horizon [0, T]. Under this 

scenario, the firm invests at time zero in the more profitable project.  

This means that based on the information about the project values 

available at that time the project with the highest net present value 

(NPV) is undertaken. In other words, the firm invests in project B rather 

then project A if NPV(B) > NPV(A). Moreover, once the investment decision 

is made, it cannot be reversed later. Under the second scenario, called 

further a "flexible scenario," the firm additionally acquires at time 

zero the flexibility or an option to switch between alternative projects, 

which may be exercised any time during the time interval [0, T]. This 

flexibility enables the firm to invest initially in a more profitable 

project (say project B) and to receive additionally the right to the 

difference of present values PV(A) - PV(B) at the time it chooses to 

exercise the option to switch from project B to project A. The foregoing 

analysis assumes that the option to switch can be exercised only once (in 

particular, the reverse switch is not permitted) and involves no 

switching costs.  

       The firm facing the choice between the rigid and flexible 

investment scenarios selects the one with the higher profitability at 

time zero (i.e. higher NPV). If project B is selected at time zero, the 

investment in the rigid scenario brings to the firm a value equal to 

PV(B) which is acquired at the initial investment cost I. On the other 

hand, the flexible scenario brings the value of PV(B) + V(A, B, 0), where 

V(A, B, t) denotes the value of the flexibility to switch operation from 

B to A at time t. The initial investment required under this scenario is 

I + C(A, B), where C(A, B) denotes the incremental cost required to 

invest in flexibility to switch from B to A. Obviously, the firm chooses 

the flexible scenario only if the value of the flexibility V(A, B, 0) 

exceeds the extra cost C(A, B) needed to acquire it. The symmetric 

argument holds for the valuation of the option to switch from project A 

to project B.   

       The formulation of the dynamic program for V(A, B, t) provided 

below assumes knowledge of the stochastic processes followed by the two 

project values, PV(A) and PV(B). In general, one could identify a number 

of sources of uncertainty affecting the PV of each project (stochastic 

cashflows, discount rates, etc.), and possibly incorporate the impact of 

the stochastic evolutions of these variables on the two project values. 

In our analysis, we choose to consider that the impact of these 

uncertainties can be collapsed into processes representing geometric 

Brownian motion specifications(we simplify the notation by using symbols 

A and B to represent PV(A) and PV(B), respectively). Thus:  



dA = Aααααdt + AσσσσAdzA     dB = Bββββdt + BσσσσBdzB             [1] 

where α, β represent the growth rates, σA,  σB  are the instantaneous 

variances, and dzA, dzB are Wiener processes for projects A and B, 

respectively. The uncertainties in the stochastic processes A and B are 

correlated, with the coefficient of correlation ρAB. 

       Now, the valuation problem can be formulated as follows. At time 

t, 0<t<T, the firm that adopts the flexible scenario attempts to maximize 

its profits by choosing between exercising the right to switch between 

projects B and A or postponing the decision until later to obtain more 

information about the evolutions of the projects. Assuming that the next 

decision instant is at time t + dt, the optimal switching strategy 

becomes: 

 

 V(A,B,t) = MAX {At - Bt,Et(V(A + dA,B + dB,t + dt)exp(-γγγγ dt))}      [2] 

  

Equ.[2] expresses the value of the option to switch between projects B 

and A at time t. It indicates that, if the switch is exercised 

immediately, the option is worth the difference between the PVs of 

projects A and B. If the decision is postponed until time t + dt, the 

option is worth the expectation of its future value discounted to time t 

at a discount rate γ. The expectation is computed based on the 

information at time t. The maximization reflects the fact the firm makes 

its choice optimally bearing in mind not only the immediate payout (such 

as a positive At-Bt) but also the consequences of the future evolutions 

of projects A and B. Equ.[2] also applies to the value of the option to 

switch at the beginning of the decision interval, V(A,B,0). This value 

represents the maximum price that the firm is willing to pay for the 

flexibility given by the right to switch between alternative projects.    

       Equ. [2] is known as the Bellman equation (see, for example, 

Oksendal [1991]) and represents the dynamic programming problem in 

continuous time. Assuming that it is not optimal to exercise the option 

at time t but rather postpone the decision until time t + dt, the 

following successive steps modify the right-hand side of equ.[2]. First, 

apply Taylor's theorem to expand the term exp(-γdt). Second, replace the 

term V(At+dA,Bt+dB,t+dt) by its equivalent V(At,Bt,t) + dV(At,Bt,t) and 

apply Itô's lemma for two variables (see,for example, Ingersoll [1987]) 

to expand differential dV. Next, apply the expectancy operator to the 

expanded expression, keeping in mind that E(dzA) = E(dzb) = 0 and 

E(dzAdzB)=ρAB dt.  These steps yield the following expression for the 



value of the option (time subscripts are dropped for convenience of 

notation): 

        

V A
2A2VAA B

2B2VBB ABVAB VPV VB Vt dt dt)V+ (dt) ==== ++++ ++++ ++++ ++++ ++++ ++++ −−−−{ } (
1
2

1
2

1σσσσ σσσσ ρρρρ σσσσ σσσσ αααα ββββ γγγγ οοοοAB A B PV B

[3]  

with o(dt) representing the terms that go to zero faster then dt as dt  

-> 0. Dividing by dt and proceeding to limit as dt->0, we get the second-

order partial differential equation for the value of the option to 

switch: 

 

1
2

1
2

σσσσ σσσσ ρρρρ σσσσ σσσσ αααα ββββ γγγγA
2 A2VAA B

2B2VBB A BABVAB VA VB Vt V =0++++ ++++ ++++ ++++ ++++ −−−−AB A B  

 [4] 

 To specify the value of the option in the situation when it becomes 

optimal to exercise the switch at time t, we add the following boundary 

conditions:   

                  V(0,B,t)=0     

 V(A, B, t*) = At* - Bt*  [5] 

                  VA(t*)=1,  VB(t*)=1  

  

The boundary conditions,[5] are known as the value matching and the high 

contact conditions (Dixit and Pindyck [1994]) and correspond to the 

American-style call option to switch, which may be exercised any time 

before or at the expiration date T. On the other hand, if the expiration 

is limited to time T only, equations [4] and [5] represent the valuation 

problem of the European-style call option, for which the solution 

methodology is known (see McDonald and Siegel [1985]). 

       To solve differential equ. [4] s.t. [5], one utilizes the fact 

that function V(A, B, t) is homogeneous of degree 1 in (A, B) (Ingersoll 

[1987], p.210). This allows the reduction of equ. [4] to a one 

dimensional problem expressed in terms of the ratio of projects A and B. 

The assumption of homogeneity allows the following substitution:    

             V(A, B, t)  =  B W(A/B, t)  =  B W(S, t) [6] 

where W(S, t) is the value of the option to switch contingent on the 

ratio S of projects A and B with the exercise price equal to unity, at 

time t. Successive differentiation of V(A, B, t) yields: 

               

    VA  =  WS                 VB = W - S WS  

                   VAA= WSS/B                 VBB=S
2WSS/B            



                   VAB=  - S WSS/B            Vt  =  BWt   [6’] 

Substituting these derivative expressions into [4], one gets the 

following second-order differential equation: 

 

   1 2 2 2 2 0/ [ ] ( ) ( )σσσσ σσσσ ρρρρ σσσσ σσσσ αααα ββββ ββββ γγγγA B AB A B S WSS SWS Wt W++++ −−−− ++++ −−−− ++++ ++++ −−−− ====  

  [7] 

 Similarly, the boundary conditions [5], become: 

                       W (0,t)=0 

 W(St* t*)  =  St*  - 1  [8] 

 WS=1 

       Equ.[7] with the boundary conditions [8] may be solved through 

approximation using  an approach proposed by Barone-Adesi and Whaley 

[1987], (BAW) who showed how to solve a similar differential equation for 

American options written on commodities. The mathematical details of the 

solution’s derivation are similar to BAW and we do not present the 

resulting (somewhat complex) formulas2.  A by product of the derivation 

is the ratio S* for which switching is optimal. In what follows  we 

present numerical examples and provide insights on valuing the 

flexibility to switch and the ratio S* for which switching is the optimal 

strategy. 

 

Numerical Examples and Sensitivity Analysis   

      

       This section explains how the values of parameters entering the 

valuation model affect the value of the option to switch W(S, t) and the 

optimal ratio to switch S*, at any point in time t, in the interval      

 [0, T].  As explained previously, the set of input parameters in the 

model includes:  the growth rates of projects A and B, the variances of 

the two projects,  the discount rate, the  correlation coefficient 

between projects A and B, the time to expiration of the option T - t, and 

the ratio S of projects A and B at time t.  To simplify the analysis, we 

choose the time at which the solution is calculated to be the beginning 

of the time horizon [0, T] and consider the time to expiration T as the 

only time-related variable in the model. In the same spirit we take the 

value of project B as numeraire so the solution for V is identical with 

the solution for the companion transformation W.  

 There are eight input parameters and two outputs in the model. 

Studying the impact of joint variation in values of eight input 

                                                 
2 The derivation is available from the authors upon request.  



parameters on the solution (outputs) is obviously limited. We can, 

however, form pairs of input parameters, and observe the impact of their 

variation on the optimal solution, for fixed values of the remaining six 

parameters. To present the results of our analysis, we define the base 

case as: S = 1, α  =  0.05, β  =  0.03, σA  =  0.3, σB  =  0.2, γ  =  

0.15, T = 1, ρAB = 0. This means that whenever one of the input parameters 

is kept fixed, its value is given by the base case. One easily verifies 

that it is possible to form 28 different pairs of input parameters for V 

and 21 pairs of input parameters for S* (the difference between the two 

is because the optimal ratio S* is independent of  S). While it is 

impossible to present in a short study the analyses of all possible 

pairs, we present the results of the most important, in our opinion, 

numerical scenarios. The analysis focuses on the impact S the initial 

ratio, T time to expiration, project volatilities and correlation have on 

the value V of the flexibility to switch. At the same time the impact of 

T time to expiration, project volatilities and correlation on S* is 

analyzed.     

       First, it is interesting to see how the value of the option V 

depends upon the project values ratio S and the time to expiration T 

(recall that S is the ratio of the project values, and T is the length of 

time remaining in the decision horizon). The values of the option for 

different pairs (S,T) are reported in Table 1. One observes that 

flexibility has very little value for small values of S and increases 

along with the increase in S. Moreover, one can see how V increases with 

the increase in time, and that this increase is more significant for 

larger values of S. As explained previously, one may use the values of V 

reported in Table 1 to assess the investment in the option to switch: if 

the price one has to pay to acquire the flexibility does not exceed V at 

time 0, the investment is justified. Finally, the last row in Table 1 

shows the optimal ratio to switch S* corresponding to various values of 

T. These numbers indicate when the switch between the alternative 

projects should be undertaken: if the "current" ratio S exceeds S*, the 

switch should be exercised. Figure 1 gives the graphical account of the 

sensitivities that the value of the option has with respect to the ratio 

of the projects and time. It appears that S has a more significant impact 

on the value of the flexibility than time.  It is clear from the analysis 

that the value of the option erodes with the passage of time if the ratio 

S does not change.  

 From a managerial point of view, if the ratio of the two projects  

is not expected to change considerably, investing in the real option to 



switch does not make too much sense. If the price one pays at time 0 is 

equal to the value of the option at time 0 and the ratio S does not 

change, investing in flexibility is value destroying.  To make this point 

clear, let’s consider that the initial ratio is S=1 and the option is 

open for 3 years and 3 months (T=3.25). The value of the option declines 

to .07 (for .25 years remaining) from .23 (for 3.25 years remaining) if 

three years pass by and nothing else changes. However if the ratio 

suddenly moves to 1.25 when three months remain in the life of the real 

option, the value of the real option is restored to its initial value. If 

on the other hand at any time t, S* is reached then switching becomes 

optimal and the initial decision to invest in flexibility makes sense. 

Table 1 shows that we are dealing here with a term structure of optimal 

ratios S*: the ratio changes its value if times goes by. This shows that 

ignoring time in such an analysis can lead to erroneous interpretations.

 Whenever the initial ratio is greater than S* we have the trivial 

case when the value of the option is equal to the difference between the 

values of the two projects. In Table 1 if S=1.5 and the option  to switch 

is open for only 3 months (T=.25) the value is .5, reflecting the fact 

that S* for t=.25 is 1.48.    

       Second, one examines the impact of the correlation between the 

projects and time. We present the results of the analysis for the pairs 

(T, ρAB),  0 < T < 2,   1 ≥ ρAB ≥ -1.  Figure 2A (see also Table 2A) 

demonstrates how V decreases in T for different values of ρAB, given that 

S = 1. One notes that, in general, the value of V is always higher for 

negatively than positively correlated projects. Moreover, it decreases 

more sharply for negatively correlated projects as T approaches zero. 

Figure 2B (see also Table 2B) shows a similar pattern for the ratio S*. 

Whereas, the decrease in the value of the option with the decrease in 

time to expiration (with all other variables, including S, kept constant) 

is consistent with the option theory, the impact of correlation on V and 

S* is less obvious. It justifies a higher price for the option to switch 

between the negatively rather than positively correlated projects. At the 

same time, it shows that the flexibility of switching between positively 

correlated projects has, in general, less value and therefore one should 

not overstate the benefits of such flexibility.  

 Running the analysis of  (T, ρAB) for values of S significantly 

different from one (not shown), we observed that the ratio S not only 

significantly affects V but also influences the pattern observed in 

Figure 2A and 2B and Table 2A and 2B. As S significantly departs from 

one, the surface representing V tends to flatten and thus the impact of 



time and correlation is weaker than that observed for values of S close 

to 1.   

       Third, we examine the effect of the uncertainties in the project 

values on the flexibility value and S*. Table 3A demonstrates how 

variances of the projects' values affect the value of the option, given 

that 0.5 ≥ σi ≥ 0.1, i = A, B, and the project values are negatively 

correlated (ρAB=-.5). Table 3B shows how variances affect the optimal 

ratio S*. One observes that in this scenario, the higher the 

uncertainties, the higher is the value of the flexibility and the higher 

ratio to switch. Figures 3A and 3B summarize these findings graphically. 

It appears that uncertainty is an important factor that influences both 

the investment and the switching decisions.  

       Interestingly, the pattern observed in Figures 3A and 3B, while 

true for negative ranges of correlation, is not exactly replicated in 

case of positively correlated projects. In the latter case, the surface 

representing V (S*) achieves its minimum at some positive value with 

respect to σA for a given value of σB (and vice versa). Table 4A and 4B 

as well as Figure 4A and 4B tell this very interesting story. Therefore, 

we conclude that one should study the impact of uncertainty in the model 

in conjunction with the correlation between the projects. Mixtures of 

variances (volatilities) and correlation will decrease both the 

flexibility value and the optimal ratio to switch. The general idea that 

uncertainty increases the flexibility to switch value3 is incorrect. When 

projects are positively correlated, managers should pay attention  both 

to the projects’ level of uncertainty (volatility) and to the ratio 

project A volatility to project B volatility.      

       The numerical examples we have studied demonstrate the impact of 

selected input parameters on the solution to the valuation model. It 

appears that the ratio of the projects, at the time the decisions to 

invest or to switch are considered, is the primary factor influencing 

these decisions. The research has also studied the impact of time, 

correlation, and projects' variances on the value of option to switch and 

the optimal exercise of the flexibility option. These observations imply 

that inappropriate assessment of the projects' characteristics may lead 

to erroneous investment decisions or inappropriate timing of switching 

decisions.                 

   

                                                 
3 See for instance Grinblatt and Titman (1998) 
 
 



The Initial Ratio and Time 

 

Given the importance this research finds for the initial project value A 

to project value B ratio, some further analysis4 is in order. 

 Let’s recall that S is the ratio of two geometric Brownian motions 

St=At/Bt. Applying Itô’s lemma, one gets the following expression for dS: 

 

dS S dt S dz dzA A B AB A A B B==== −−−− ++++ −−−− ++++ −−−−( ) ( )αααα ββββ σσσσ σσσσ σσσσ ρρρρ σσσσ σσσσ2
 [9] 

The parenthesis in the last term of [9] can be rewritten as: 

                      σσσσ σσσσ σσσσS S A A B Bdz dz dz==== −−−−  [10] 

with  

                      σσσσ σσσσ σσσσ σσσσ σσσσ ρρρρS A B A B AB==== ++++ −−−−2 2 2  [10’] 

 

Now one can solve [9] as for a simple Brownian motion and obtains: 

S t S dz tS S A B( ) ( )exp[ ]exp{[( . ) ( . )] }==== −−−− −−−− −−−−0 5 52 2σσσσ αααα σσσσ ββββ σσσσ   [11] 

The solution given by [11]consists of a deterministic component, usually 

called signal, represented by the second exponent and a stochastic 

component, usually called noise, represented by the first exponent. In 

order to asses the true ratio S(t), one would like to have a signal which 

dominates the noise. From [11] it is obvious that one can find a time t 

for which the signal dominates the noise with a required degree of 

confidence.  The condition is for the exponent representing the signal to 

be greater than the exponent representing the noise. Solving for the 

inequality, one obtains:  

                      t
C S

A B

>>>>
−−−− −−−− −−−−

2 2

2 2 25 5
σσσσ

αααα σσσσ ββββ σσσσ[( . ) ( . )]
   [12] 

where C is the number of standard deviations for the required confidence 

level. Assuming that, in our base case ,the degree of confidence, 

required is 55 percent (C=.13), it should take almost 88 years to obtain 

a ratio where the signal dominates the noise. For higher levels of 

confidence the number of years is very large. It is obvious that, under 

the circumstances, the observed ratio at one point in time is just 

incomplete information. To obtain more information, it will mean to wait 

much longer then the opportunity window exists. Therefore, one can 

conclude that the switch is always based on a very noisy estimate. It is 

                                                                                                                                                                                
 
4 Ambarish and Seigel (1995) discuss te same idea in another context. 



very much possible for this to be the reason of the low profitability of 

investing in flexibility (Mansfield, [1993]).      

 

Conclusions 

 

       In this paper, we have developed a model for evaluating the value 

of the flexibility to switch. We defined flexibility as the capability to 

switch between the alternative projects at no cost, and contrasted 

investment in flexibility with the situation, in which one makes the 

irreversible investment in only one of the projects. We developed our 

real option model under the assumption that the flexibility to switch has 

a value only during the limited time horizon. We formulated the valuation 

problem as a dynamic programming problem in a continuous time. The 

resulting partial differential equation for the value of the option to 

switch, contingent upon the ratio of the projects, can be solved through 

approximation. We examined how the values of the input parameters 

entering the valuation model affect the value of its outputs: the value 

of the flexibility to switch and the ratio of the projects, at which the 

switching decision becomes optimal. 

       We believe that our formulation offers a valid alternative to the 

recent attempts to quantify the flexibility to switch and incorporate 

this value into the capital budgeting process. Our valuation model 

expands the existing literature on the measurements of flexibility and 

provides a mathematical tool that can support managers facing choices 

associated with investments in manufacturing flexibility. At the same 

time, we recognize the limitations of our formulation. In the current 

model, switching costs are negligible and the switching decision cannot 

be reversed. We are planning to address these issues in future studies.  
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 TABLE 1 

  
The value V of the flexibility to switch as a function of  

the initial ratio S and time T  
 
 

S    T    
 .25 .75 1.25 1.75 2.25 2.75 3.25 
.50 0.00000 0.00113 0.00532 0.01142 0.01828 0.02531 0.03220 
        
.75 0.00381 0.02659 0.04847 0.06732 0.08360 0.09778 0.11023 
        
1.00 0.07256 0.12349 0.15619 0.18101 0.20109 0.21787 0.2322 
        
1.25 0.25975 0.29340 0.32038 0.34211 0.36015 0.37544 0.38859 
        
1.50 0.5 0.50863 0.52315 0.53737 0.55031 0.56186 0.57214 
        
1.75 0.75 0.75 0.75232 0.75809 0.76488 0.77177 0.77839 
        
2.00 1. 1. 1. 1. 1.00049 1.00236 1.00495 
        
S* 1.48804 1.72664 1.86923 1.97356 2.05591 2.12356 2.18047 
 
The last row  indicates the critical value S* for  which the 
projects should be switched.  
 



 
FIGURE 1 

 
The value V of the flexibility as a function of the initial 

ratio S and time T 
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TABLE 2 
 

Sensitivity analysis for changes in correlation and time 
 
 

PANEL A 
The value V of flexibility as a function  

of correlation and time 
 

ρρρρ   T   

 .25 .50 .75 .1.00 1.25 
-1 0.099641 0.1392 0.168289 0.19181 0.2117 
      
-.8 0.094871 0.132621 0.160419 0.182923 0.20197 
      
-.6 0.089837 0.125673 0.152101 0.173525 0.19168 
      
-.4 0.084489 0.118288 0.143254 0.163522 0.18072 
      
-.2 0.078764 0.110376 0.133769 0.15279 0.16895 
      
0 0.072569 0.101808 0.123492 0.141154 0.15619 
      
.2 0.065767 0.092394 0.112192 0.128352 0.14213 
      
.4 0.058136 0.081829 0.099502 0.113966 0.12633 
      
.6 0.049277 0.069558 0.084756 0.097239 0.10794 
      
.8 0.038299 0.054349 0.066475 0.076497 0.08513 
      
1. 0.021936 0.031735 0.039336 0.045741 0.05134 

 
  
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 A  
 
 

  The value V of  flexibility as a function 
 of correlation and time 
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TABLE 2 
 

Sensitivity analysis for changes in correlation and time 
 
  

 PANEL  B 
 The value of S* as a function of correlation and time 

 
ρρρρ   T   

 .25 .50 .75 1.00 1.25 
-1. 1.6883 1.90914 2.06757 2.19395 2.29995 
      
 -.8 1.65072 1.85596 2.0027 2.1195 2.21732 
      
 -.6 1.61213 1.80155 1.93652 2.04372 2.13335 
      
 -.4 1.57232 1.74566 1.86875 1.96627 2.04769 
      
 -.2 1.53106 1.68794 1.79897 1.88673 1.95987 
      
 0.0 1.48804 1.62793 1.72664 1.80448 1.86923 
      
  .2 1.44284 1.56496 1.65095 1.71862 1.7748 
      
  .4 1.39495 1.49804 1.57068 1.62775 1.67508 
      
  .6 1.34392 1.42564 1.48378 1.52951 1.56742 
      
  .8 1.2909 1.34564 1.38668 1.4194 1.44669 
      
 1. 1.24309 1.26171 1.27705 1.29055 1.30258 
      

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 
 

FIGURE 2 B 
 

 
  The value of S* as a function of correlation and time 
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TABLE 3 
 

Sensitivity analysis for changes in volatilities  
with a correlation of -.5 

 
 

PANEL A 
The value V of  flexibility as a function  
of volatilities with a correlation of -.5 

!A   !B   

 .1 .2 .3 .4 .5 
.1 0.07239 0.10596 0.14115 0.17671 0.21221 
      
.2 0.10596 0.13598 0.16860 0.20230 0.23635 
      
.3 0.14115 0.16860 0.19887 0.23059 0.26298 
      
.4 0.17671 0.20230 0.23059 0.26046 0.29118 
      
.5 0.21221 0.23635 0.26298 0.29118 0.32032 

 
 
 
 
 

PANEL B 
   S* as a function of volatilities with a correlation of -.5 
 

!A   !B   

 .1 .2 .3 .4 .5 
.1 1.39937 1.57977 1.80448 2.06915 2.3757 
      

.2 1.57977 1.7692 2.00523 2.28551 2.6118 
      

.3 1.80448 2.00523 2.25516 2.55333 2.9017 
      

.4 2.06915 2.28551 2.55333 2.87292 3.2467 
      

.5 2.37575 2.61188 2.90176 3.24676 3.6499 
 
 
 
 



 
 
 

FIGURE 3 A 
 
 

 The value V of flexibility as a function  
of volatilities with a correlation of -.5 
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FIGURE 3 B  
 
 

 S* as a function of volatilities with a correlation of -.5 
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TABLE 4 

 
Sensitivity analysis for changes in volatilities  

with a correlation of .5 
 

PANEL A 
 The value V of flexibility as a funciton 
 of volatilities with a correlation of .5 

 

!A   !B   

 .1 .2 .3 .4 .5 
.1 0.0457413 0.0723926 0.105966 0.141154 0.176719 
      
.2 0.0723926 0.0822305 0.105966 0.13598 0.168606 
      
.3 0.105966 0.105966 0.118974 0.141154 0.168606 
      
.4 0.141154 0.13598 0.141154 0.15555 0.176719 
      
.5 0.176719 0.168606 0.168606 0.176719 0.19181 
 
 
 

PANEL B 
    S* as a function of volatilities with a correlation of .5 

 

!A   !B   

 .1 .2 .3 .4 .5 
.1 1.29055 1.39937 1.57977 1.80448 2.06915 
      
.2 1.39937 1.44843 1.57977 1.7692 2.00523 
      
.3 1.57977 1.57977 1.65871 1.80448 2.00523 
      
.4 1.80448 1.7692 1.80448 1.90684 2.06915 
      
.5 2.06915 2.00523 2.00523 2.06915 2.19395 

 



FIGURE 4 A 
 

 The value V of flexibility as a function  
of volatilities with a correlation of .5 
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FIGURE 4 B 
 
 

S* as a function of volatilities with a correlation of .5 
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