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ABSTRACT. The methods of various moving average rules remain popular with fi-
nancial market practitioners. These rules have recently become the focus of empirical
studies. However there seem to have been very few studies on the analysis of the
type of financial market dynamics resulting from the fact that some agents engage in
such strategies. In this paper we seek to fill this gap in the literature by proposing
a market of financial market dynamics in which demand for traded assets has both a
fundamentalist and a chartist component. The chartist demand is governed by the dif-
ference between a long run and a short run moving average. Both types of traders are
bounded rational in the sense that, based on a certain fitness measure, traders switch
from strategy with low fitness to the one with high fitness. We characterise first the
stability and bifurcation properties of the underlying deterministic model via the re-
action coefficient of the fundamentalists, the extrapolation rate of the chartists and the
lengths used for the moving averages. By increasing the switching intensity, we then
examine various rational routes to randomness for different, but fixed, long run mov-
ing average. The price dynamics of moving average is also examined and it is found
that an increase of the window length of the long moving average can destabilize an
otherwise stable system, leading to more complicated, even chaotic behaviour.
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1. INTRODUCTION

Technical analysts, also known as “chartists” (referring here to analysts who use the
various moving average rules), attempt to forecast prices by the study of patterns of
past prices and a few other related summary statistics about security trading. Basi-
cally, they believe that shifts in supply and demand can be detected in charts of market
movements. In an environment of efficient markets, technical trading rules should not
be useful for generating excess returns. However, despite all the evidence presented
in academic journals that security prices follow random walks, and consequently that
these security markets are at least weak-form efficient, as defined by Fama (1970), the
use of technical trading rules still seems to be widespread amongst financial markets
traders.

There have been various studies of the use and profitability of technical analysis in
recent years. Taylor and Allen (1992) document the enduring popularity of the trading
rules in their survey of currency traders in London. Of the respondents, 90% replied
that technical trading rules are an important component of short-term investment strate-
gies. Allen and Taylor (1990, 1992) suggest that this is an important finding given the
apparent ability of exchange rates to move far from fundamentals over protracted pe-
riods of time, as documented by Frankel and Froot (1986, 1990). Earlier empirical
literature on stock returns finds evidence that daily, weekly and monthly returns are
predictable from past returns. Pesaran and Timmermann (1994, 1995) present further
evidence on the predictability of excess returns on common stocks for the S&P 500
and Dow Jones Industrial portfolios and examine the roubstness of the evidence on the
predictability of U.S. stock returns. To investigate the sources of the predictability, in
Brock et al (1992), two of the simplest and most popular trading rules, moving average
and the trading range break rules, are tested through the use of bootstrap techniques.
They find that returns obtained from buy (sell) signals are not likely to be generated by
four popular null models, which are the random walk, the AR(1), the GARCH-M and
the EGARCH models. They document that buy signals generate higher returns than
sell signals and the returns following buy signals are less volatile than returns on sell
signals. This asymmetric nature of the returns and the volatility of the Dow series over
the periods of buy and sell signals suggest the existence of nonlinearities in the data
generation mechanism. Recent efforts, such as Lo et al (2000) and Goldbaum (2003),
have also examined explicitly the profitability of technical trading rules and the impli-
cations for market efficiency. The profit generating potential of trading rules has also
been scrutinised within the genetic programming framework by Neely at al (1997) and
by the use of artificial neural networks by Gencay (1998) and Fernandez-Rodriguez et
al (2000).

Most of the cited research has focused on empirical studies. Furthermore, in terms
of agents’ actual demand (that are based on the various signals) and tests involving
real world data, the hypothesis of profitability of trading rules is highly and ideally
simplified. To apply the results in practice, the question as to how to determine the
amount to buy/sell and how the market prices are affected following these buy/sell
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actions is not clear. There seem to have been very few studies on the analysis of the
type of financial market dynamics resulting from the fact that some agents engage
in technical trading strategies. This paper seeks to fill this gap in the literature by
proposing a market of financial market dynamics in which demand for traded assets
has both a fundamentalist and a chartist component. Chartists are assumed to chase the
trend generated by long moving average. Both types of traders are boundedly rational
in the sense that, based on a certain fitness measure, traders switch from strategies with
low fitness to the ones with high fitness.

The paper develops and analyses a model in which individual boundedly rational
behaviour leads to inefficiencies in an asset market which can be exploited through
use of various moving average rules. The main objectives of this paper are to analyze
the stability properties of the model, particularly in relation to the moving average
trading strategies, and the potential for the model to generate complex dynamics, and
to examine the impact of the moving average trading rules on the market dynamics.

The plan of the paper is as follows. In the following section, we focus on one of the
simplest cases when the fundamentalists’ demand is determined by mean reversion to
the fundamental price, while the chartists’ demand is based on the sign of the differ-
ence of short and long moving averages, as in Chiarella (1992) and Brock and Hommes
(1997, 1998). Based on certain fitness measures, such as observed differences in pay-
offs, the traders can make an endogeneous selection of which trading strategies to use,
such as in Blume et al (1994), Brock and Hommes (1997), Brock and LeBaron (1996)
and Brown and Jennings (1989). Consequently, an adaptive heterogeneous asset pric-
ing model with a market maker scenario is developed. In Section 3, the existence,
local stability and bifurcation of the fundamental price, in terms of the reaction coef-
ficient of the fundamentalists, the extrapolation rate of the chartists, the lengths used
for the moving averages, and switching intensity, is analyzed when the lengths of the
long moving average is small. The analysis, combined with some results on general
window length for some special cases, gives us some important insights into the effect
of increasing the length of the long moving average. In Section 4, by increasing the
switching intensity among the two strategies, we examine numerically various rational
routes to randomness for different, but fixed, long-run moving averages. The price dy-
namics induced by the moving average rule is then examined numerically in Section
5 and it is found that an increase of the window length of the long moving average
can destabilize an otherwise stable system, leading to more complicated, even chaotic
behaviour. Section 6 concludes the paper.

2. AN ASSET PRICING MODEL UNDER A MARKET MAKER

Following the framework of Brock and Hommes (1998), this section sets up an as-
set pricing model with different types of heterogeneous traders who trade according
to different technical trading rules, such as fundamental analysis and charting. The
market clearing price is arrived via a market maker scenario in line with Chiarella and
He (2003b) rather than the Walrasian scenario used in Brock and Hommes (1998) and
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Chiarella and He (2002). Whilst the market maker and Walrasian auctioneer mecha-
nisms are highly stylized accounts of how the market claering price is arrived at, we
feel that the former is closer to what is going on in real markets. To focus on the pric-
ing dynamics of technical trading rules, we motivate the excess demand functions of
different types of traders by their trading rules directly, rather that the demand func-
tions driven from utility maximization of their portfolio investment with both risky
and risk-free assets (as for example in Brock and Hommes (1998) and Chiarella and
He (2002, 2003b)).

Consider an asset pricing model with only one risky asset. Let Pt be the price (cum
dividend) per share of the risky asset at time t. Let N be the total number of traders
(assumed to be a constant) in the market, among which there are Nh,t of type h traders
at time t with h = 1, 2, · · · , H and

∑H
h=1Nh,t = N . Then the market fractions of

different types of traders at time t can be defined as

nh,t = Nh,t/N, h = 1, 2, · · · , H. (1)

Let the excess demand for the risky asset of trader i at time t be Di,t. Then the aggre-
gate excess demand at time t is given by

Dt =
N

∑

i=1

Di,t = N
h

∑

i=1

nh,tDh,t, (2)

whereDh,t corresponds to the representative excess demand function of type h traders.
We assume that prices are set period by period via a market maker mechanism and
adjusted according to the aggregate excess demand. Thus

Pt+1 = Pt +
µ

N
Dt + ε̃t = Pt + µ

h
∑

i=1

nh,tDh,t + σεε̃t, (3)

where ε̃t is an i.i.d. normally distributed random variable that captures a random excess
demand process either driven by unexpected news about fundamentals, or representing
noise created by noise traders with ε̃t ∼ N(0, 1) and σε ≥ 0. In equation (3) the
parameter µ > 0 measures the speed of price adjustment of the market maker to the
excess demand.

For simplicity, we consider throughout this paper that there are only two types of
traders: fundamentalists and chartists, who in fact are the most widespread types of
traders in financial markets and whose trading strategies and excess demand functions
are specified in the following discussion. We assume that there are Nf,t fundamen-
talists and Nc,t chartists at time t. Then the market fraction of fundamentalists and
chartists at time t are given by, respectively

nf,t =
Nf,t

N
, nc,t =

Nc,t

N
. (4)

The aggregate excess demand Dt at time t in (2) is then given by

Dt = N [nf,tD
f
t + nc,tD

c
t ], (5)
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where Df
t and Dc

t are the excess demands of the fundamentalist and chartist, respec-
tively. Set

mt = nf,t − nc,t,

so that nf,t = (1 +mt)/2 and nc,t = (1 −mt)/2. Following from (3)-(5), the market
price of the risky asset is then determined by

Pt+1 = Pt +
µ

2
[(1 +mt)Df,t + (1 −mt)Dc,t] + σεε̃t. (6)

Fundamentalists—The fundamentalists believe that the market price should be given
by the fundamental price that they have estimated based on various types of fundamen-
tal information, such as earnings, exports, general economic forecasts and so forth.
They buy/sell the stock when the current price is below/above the fundamental price.
For simplicity, we assume that the fundamental price is a positive constant P ∗ and the
excess demand of the fundamentalists is given by1

Df
t = α(P ∗ − Pt), (7)

where the parameter α > 0 is a combined measure of the aggregate risk tolerance of
the fundamentalists and their reaction to the mis-pricing.

Chartists—Unlike the fundamentalists, the chartists trade based on charting signals
generated from the costless information contained in the history of the price, such
as moving averages among various technical trading rules used in financial markets.
The chartists’ excess demand is assumed to be based on signals generated by moving
averages2. More precisely, a moving average of length k at time t is defined as

makt =
1

k

k−1
∑

i=0

Pt−i, (k ≥ 1).

A trading signal is defined as difference between a short-run moving average maSt and
a long-run moving average maLt , namely

ψS,Lt = maSt −maLt , (8)

where L ≥ S are positive integers. For the chartists, their excess demands are assumed
to be governed by

Dc
t = h(ψS,Lt ), (9)

where the function h has the general properties

h(0) = 0, h′(x) > 0, xh′′(x) < 0.

1 Given an annual risk free rate r, the excess demand function in (7) should be formed by Df
t =

α[P ∗ − (1 + r/K)Pt], where K corresponds to the trading frequency per year. To characterize asset
price dynamics at a high-frequency (such as K = 250 for daily) the risk-free rate per trading period
r/K is very small, so here we simply treat it as zero.
2As we stated in the introduction a variety of moving average trading rules are used by market traders.
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This corresponds to the very popular technical trading rule based on the crossing of
the long run and short run moving averages. By setting S = 1 we obtain the moving
average rule whereby chartists wish to be long (short) when the current price is above
(below) the moving average. For S > 1 we obtain the double moving average rule
according to which the chartists go long (short) when the short run moving average
moves above (below) the long run moving average. In this paper, we select

h(x) = tanh(ax), a = h′(0) > 0.

We note that this form of chartist excess demand function allows us to capture some
elements of the filtered moving average rules. This is so since, when a is small, the
chartists initially react cautiously to the long/short signals, in a sense waiting to con-
firm the maintenance of the change in sign of the signal. In this way they minimize the
costs incurred if the signal changes frequently in a short time period.

Fitness Measure and Population Evolution—In order to introduce the adaptiveness of
agents, we follow the mechanism of Brock and Hommes (1998) and define the fitness
functions πf,t, πc,t as their realized capital gains3:

πf,t = Df
t−1(Pt − Pt−1) − Cf , πc,t = Dc

t−1(Pt − Pt−1) − Cc, (10)

where Cf , Cc ≥ 0 are the costs of their strategies. Then the population fractions are as-
sumed to be updated by the well known discrete choice model or ‘Gibbs’ probabilities
(e.g. Manski and McFadden (1981))

nf,t =
eβUf,t

eβUf,t + eβUc,t
, nc,t =

eβUc,t

eβUf,t + eβUc,t
, (11)

where
Uf,t = πf,t + ηUf,t−1, Uc,t = πc,t + ηUc,t−1, (12)

and η ∈ [0, 1] measures the memory of the cumulated fitness function and β ≥ 0
measures the switching intensity among the two strategies. In particular, if β = 0,
there is no switching between strategies among agents. See Brock and Hommes (1998)
for a more extensive discussion of this switching mechanism.

A Complete Asset Pricing Model—It follows from (5)-(6) that the market price of the
risky asset is determined according to

Pt+1 = Pt +
µ

2

[

(1 +mt)α(P ∗ − Pt) + (1 −mt)h(ψ
S,L
t )

]

+ ε̃t (13)

and, from (10)-(11), that the difference of population fractions mt evolves according
to

mt = tanh
[β

2
(Ut − C)

]

, (14)

3As indicated in footnote 1, we assume the risk free rate for the trading period is zero.
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where C = Cf −Cc ≥ 0, µ ≥ 0 measures the speed of price adjustment of the market
maker based on the excess demand, and

Ut = [Df
t−1 −Dc

t−1][Pt − Pt−1] + ηUt−1, (15)

By setting σε = 0, the nonlinear stochastic dynamical system (13)-(15) becomes a
nonlinear deterministic system where the price follows

Pt+1 = Pt +
µ

2

[

(1 +mt)α(P ∗ − Pt) + (1 −mt)h(ψ
S,L
t )

]

. (16)

In general system (14)-(16) is an L+ 2 dimensional non-linear difference system. We
seek principally to understand how its dynamic behaviour is affected by the reaction
coefficient of the fundamentalists, the excess demand function of the chartists, the
lengths used for the moving averages, and the switching intensity.

3. STABILITY AND BIFURCATION ANALYSIS

In this section, we consider price dynamics of the deterministic system (14)-(16).
We first state the following result on the existence of the unique steady state and the
corresponding characteristic equation.

Proposition 3.1. For the deterministic system (14)-(16), assume η ∈ [0, 1). Then
there exists a unique steady state (Pt,mt, Ut) = (P ∗,m∗, 0), where P ∗ is the constant
fundamental price and m∗ = tanh(−βC/2). In addition, the characteristic equation
of this steady state is given by

Γ(λ) = λ(λ− η)ΓS,L(λ), (17)

where

ΓS,L(λ) ≡ λL − (1 − ᾱ)λL−1 − ā(
1

S
−

1

L
)(λL−1 + ...+ λL−S)

+
ā

L
(λL−S−1 + · · · + λ+ 1) = 0 (18)

and
ᾱ = αµ(1 +m∗)/2, ā = aµ(1 −m∗)/2. (19)

Proof. See Appendix A.1 �

The parameter ᾱ measures the combined effect of, the speed of price adjustment of
the market maker µ toward the aggregate excess demand, the speed of current price
adjustment of the fundamentalists towards their expected fundamental price α, and the
market equilibrium fraction m∗. The parameter ā measures the combined effect of the
speed of, price adjustment of the market maker µ, the extrapolation rate of the chartists
to the difference of short and long run moving averages of the past prices a, and the
equilibrium market fraction m∗. Obviously, m∗ = 0 when C = 0.

We now analyse the local stability of the unique steady state and its bifurcation
properties. Given the structure of equation (17), the local stability and bifurcations are
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determined by the eigenvalues of ΓS,L(λ) = 0. For the simplicity, we take S = 1. In
the following discussion, we concentrate on the case S = 1 and L ≥ 1.

For general L ≥ 1, we first obtain the following result.

Lemma 3.2. Let S = 1 and L > 1.
(i). If ᾱ = 1 + ā, then the eigenvalues λi of Γ1,L satisfy |λi| < 1 if and only if 0 <

ā < L. In addition, for ā = L, the λi satisfy λi 6= 1 and (1−λLi )/(1−λi) = 0.
(ii) A necessary condition for |λi| < 1 for all i is

0 < ā < L, 0 < ᾱ <

{

2 + ā for L = 2l;
2 + L−1

L
ā for L = 2l + 1.

(20)

Proof. See Appendix A.2. �

The above Lemma 3.2 leads to the following corollary.

Corollary 3.3. For S = 1 and L ≥ 1,
• if ᾱ = 1 + ā, then the steady state price P ∗ is locally stable for 0 < ā < L. In

addition, at ā = L, there occurs a 1 : L+ 1 resonance bifurcation4.
• a necessary condition for the steady state price to be stable is given by (20). In

addition, ᾱ = 2 + ā for even L and ᾱ = 2 + ā(L− 1)/L for odd L leads to a
flip bifurcation.

The first result in Corollary 3.3 indicates the stability of the fundamental price along
the line ᾱ = 1 + ā only, as indicated in Fig. 1. However, it has two implications.
First, along the line, the stability region is proportionally enlarged as lags for the long
moving average L increase. Secondly, for fixed lag L, the stability line segment ᾱ =
1 + ā for 0 < ā < L is part of the stability region on the parameter (ᾱ, ā) parameter
plane. Consequently, we may conjuncture that the stability region is enlarged as lag L
increases. However this conjuncture is in general not true and this will become clear
from the following theoretical results for cases of L = 1, 2, 3 and 4 in this section and
numerical results for higher lags L in Sections 4 and 5. The second result in Corollary
3.3 gives us necessary stability boundaries for ā and ᾱ, indicated by Fig. 1. For general
lag L, we have the following result that gives more precisely common stability region
for any lags.

4Resonance bifurcations occur when the eigenvalues lie on the unit circle. When ā = L, the eigenvalues
are given by λk = e2kµπi with µ = 1/(L + 1). Geometrically, the L eigenvalues correspond to the
L + 1 unit roots distributed evenly on the unit circle, excluding λ = 1. When L = 1, a flip or period-
doubling bifurcation occurs. When L = 2, according to Kuznetsov (1995), the bifurcation is known as
a 1:3 strong resonance, which may lead to two sets of period three cycles with one set stable and other
set unstable (see Chiarella and He (2000) for more details). For L ≥ 2, according to Sonis (2000), the
bifurcation is given by 1 : L + 1 periodic resonances. For L1 = L2 = L = 3, 4, instability of the
steady state leads to 1:4 and 1:5 periodic resonance bifurcations, respectively, and similar dynamics to
1:3 resonance bifurcation are also found. Theoretical analysis for such types of bifurcation of higher
dimensional discrete systems can be exceedingly complicated and not yet completely understood, (see
Example 15.34 in Hale and Kocak (pp. 481-482, (1991)))
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ᾱ

ā
ᾱ = 1 + ā

ᾱ = 2 + āā = L
ᾱ = 2 + ā(L− 1)/L

1

1 2

DS

FIGURE 1. Common stability region DS and necessary stability
boundaries ā = L and ᾱ = 2+ ā for even lag L and ᾱ = 2+ ā(L−1)/L
for odd lag L for S = 1 and general lag L > 1.

Proposition 3.4. For S = 1 and L > 1. If 1 + ā < ᾱ < 2 then P ∗ is locally
asymptotically stable (LAS).

Proof. See Appendix A.3 �

The stability region and necessary stability boundaries in terms of parameters (ᾱ, ā)
given by Proposition 3.4 are plotted in Fig. 1. The region DS corresponds to the
stability region defined by Proposition 3.4. Note that the stability condition holds for
all L, indicating that the region DS is the common stability region for all L. This
becomes clear from the following results where stability and bifurcation are analysed
for L = 1, 2, 3 and 4.

For L = 1, 2, 3 and 4, the following proposition describes explicitly the regions of
local asymptotic stability (LAS) in the (ᾱ, ā) plane and the bifurcation behaviour at
the boundaries of those regions where local asymptotic stability turns to instability.

Proposition 3.5. For S = 1 and L = 1, 2, 3, 4, the local stability and bifurcation of
the fixed point P ∗ can be described as follows.

(i) For L = 1, P ∗ is LAS if

(ᾱ, ā) ∈ D11(ᾱ, ā) = {(ᾱ, ā); 0 < ᾱ < 2, 0 < ā}.

In addition
– a flip bifurcation occurs when ᾱ = 2, and
– a saddle-node bifurcation occurs when ᾱ = 0.

(ii) For L = 2, P ∗ is LAS if

(ᾱ, ā) ∈ D12(ᾱ, ā) = {(ᾱ, ā); 0 < ᾱ < ā+ 2, 0 < ā < 2}.

Furthermore,
– a saddle-node bifurcation occurs when ᾱ = 0,
– a Hopf bifurcation occurs when ā = 2, and
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– a flip bifurcation occurs when ᾱ = ā+ 2.
(iii) For L = 3, P ∗ is LAS if

(ᾱ, ā) ∈ D13(ᾱ, ā) = {(ᾱ, ā); 0 < ᾱ <
2

3
ā+ 2, ā(2 − ᾱ + ā) < 3}.

Furthermore,
– a saddle-node bifurcation occurs when ᾱ = 0,
– a Hopf bifurcation occurs when ā(2 − ᾱ + ā) = 3, and
– a flip bifurcation occurs when ᾱ = 2

3
ā+ 2.

(iv) For L = 4, P ∗ is LAS if

(ᾱ, ā) ∈ D14(ᾱ, ā) ={(ᾱ, ā); 0 < ᾱ <
3

4
ā+ 2, 0 < ā < 4,

(5ā− 4ᾱ)(4 + ā)2 < ā(8 + 3ā− 4ᾱ)2}.

In addition, a flip bifurcation occurs when ᾱ = 3
4
ā+ 2.

Proof. See Appendix A.4. �

ᾱ

ā

D11

Flip boundary

2
(a)

α

µ

D1
D2

Flip boundary

(b)
FIGURE 2. Stability region D11 and bifurcation boundary in the (ᾱ, ā)
plane (a), and the (α, µ) plane (b), whereD11 = D1∪D2 and λ ∈ (0, 1)
in D1, λ ∈ (−1, 0) in D2.

Consider the case S = L = 1 for which the stability region is D11. Obviously, the
stability condition is independent of ā, as shown in Fig. 2(a). By assuming mt = 1
in this case, the price equation is simplified to Pt+1 − P ∗ = [1 − αµ](Pt − P ∗).
Hence the stability condition 0 < ᾱ = αµ < 2 can be expressed in terms of the
speed of the price adjustment of the fundamentalists towards the fundamental price
(α) and the speed of price adjustment of the market maker (µ). The stability region in
terms of the parameters α and µ is plotted in Fig. 2(b), indicating that the stability of
the steady state price P ∗ is maintained only when the reaction speeds from both the
fundamentalists and the market maker are balanced in a certain way. Note that, when
αµ = 1, the prices stay at the constant steady state price P ∗. The stability region D11

is then divided into two regions D1(αµ < 1) and D2(1 < αµ < 2). On the one hand,
the eigenvalue λ = 1 − αµ is positive for (α, µ) ∈ D1 and negative for (α, µ) ∈ D2.
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Consequently, relative to the steady state price, the returns of the market price Pt are
positively (negatively) correlated in the region D1 (D2). On the other hand, in the
region D1 the market price is under-adjusted (or under-reacted) by either the market
maker or the fundamentalists, while in the region D2 the market price is over-adjusted
(or over-reacted) by both the market maker and the fundamentalists. We thus call D1

(D2) a region of under-reaction (over-reaction) from the point of view of either the
market maker or the fundamentalists. In addition, ᾱ = 2 leads to a flip bifurcation,
resulting from overreaction of either the market maker or the fundamentalists.

2

1

1 2 3 4
ᾱ

ā

D1

D3

D2

Flip boundary

Hopf boundary

(a)

4

3

2

1

1 2 3 4
ᾱ

ā

D13
Flip boundary

Hopf boundary

(b)
FIGURE 3. (a) Stability region D12 = D1 ∪ D2 ∪ D3 and bifurcation
boundaries for S = 1 and L = 2; (b) Stability region D13 and bifurca-
tion boundaries for S = 1 and L = 3.

Consider next the case L = 2. The stability region D12 and bifurcation boundaries
are plotted in Fig. 3(a) in the (ᾱ, ā) parameter plane. The stability region D12 can
be divided into three regions D12 = D1 ∪ D2 ∪ D3 with both the eigenvalues λ1,2

are positive in D1, negative in D2, and complex in D3. Along the boundary between
D1, D2 and D3, we have real double eigenvalues. The Hopf bifurcation boundary is
defined by ā = 2 and ᾱ ∈ (0, 4). The nature of the Hopf bifurcation is determined
by the value ω of the complex eigenvalues λ1,2 = e±2πiω, and hence the value of
ρ = 2 cos(2πω) (see Chiarella and He (2003a) for detailed discussion on the nature of
the bifurcation). It can be verified that, along the Hopf bifurcation boundary,

ρ = 2 − ᾱ ∈ [−2, 2] for ᾱ ∈ [0, 4].

In the case L = 3. The stability region D13 and the bifurcation boundaries are
plotted in Fig. 3(b) on the (ᾱ, ā) parameter plane. Different from the cases S = 1 and
S = 2, the Hopf bifurcation now depends on both parameters ᾱ and ā. The nature of
the Hopf bifurcation is determined by

ρ ≡ 2 cos(2πω) =
3

ā
− 1 ∈ [0, 2] for ā ∈ [1, 3].
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4

3

2

1

1 2 3 4 5
ᾱ

ā

D14

(a)

ᾱ

ā

1 2 3 4 5

1

2

3

4 D11

D12

D13

D14

DS

(b)
FIGURE 4. (a) Stability region D14 and bifurcation boundaries for
S = 1 and L = 4; (b) Comparison of stability regions and bifurca-
tion boundaries D1L for L = 1, 2, 3, 4.

In the case L = 4. With the help of numerical calculation, the stability region D14

can be plotted in Fig. 4(a) on the (ᾱ, ā) parameter plane. One difference from the
previous cases L = 1, 2 and 3 is that the stability region of the parameter ā becomes
smaller for small values of ᾱ (i.e. 0 < ᾱ < 2).

A comparison of the stability regions D1L for L = 1, 2, 3 and 4 is plotted in Fig.
4(b), which leads to the following observations:

• As L increases, the stability region for the parameter ā becomes smaller for
smaller values of ᾱ (say ᾱ < 2), and is enlarged for larger values of ᾱ.

• The steady state can only be locally stable when either the fundamentalists re-
duce their speed of price adjustment towards their expected fundamental price
and the chartists extrapolate the difference of the moving averages weakly, or
the reactions of the chartist and fundamentalist are balanced in a certain way
(that is, the parameters ᾱ and ā are near the line ᾱ = 1 + ā, as indicated in
Lemma 3.2 and Fig. 4(b)).

• Based on the analytical results for L = 1, 2, 3, 4 and Corollary 3.3 and Propo-
sition 3.4 for general L, we conjecture that: as lag L increases, the stability
region tends to shrink towards, but stretch along, the line α = 1 + ā with
common stability region DS .

Given a large of variety on moving averages used in financial markets and difficulty
of eigenvalue analysis for high-order characteristic equations, it is not clear how dif-
ferent moving averages influence the stability of the steady state price and types of
bifurcation differently. However the analysis has given some important insights into
the fact that local asymptotic stability depends on some subtle balance between the re-
actions of fundamentalists and chartists. We also able to conjecture the general effect
of the lag length of the long moving average. This conjecture is partial verified by the
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numerical simulations in the following sections. In the following section, we exam-
ine numerically some rational routes to randomness when agents’ switching intensity
increases for different moving average rules.

4. RATIONAL ROUTES TO RANDOMNESS

In this section, we consider the effect of the switching intensity on the price dy-
namics of the deterministic system (14)-(16). In order to see the effect under different
long-run moving average, we choose S = 1 and consider two extreme cases on the
long-run moving average L = 4 and L = 100, respectively. In both cases, we select a
fixed set of parameters as follows:

α = 1, µ = 2, η = 0.2, a = 1, C = 1. (21)

For β = 0, it follows from (19) that ᾱ = 1 and ā = 1.

4.1. Case L = 4. For β = 0, the fundamental price P ∗ is locally stable. As β in-
creases, ā increases and ᾱ decreases. It then follows from Proposition 3.5(iv) that the
fundamental price becomes unstable as the switching intensity increases. This is ver-
ified by numerical simulations. To illustrate the effect of the switching intensity β on
the price and population dynamics, we include phase plots, in terms of (Pt,mt), for
different values of β = 0.2, 0.3, 0.49, 0.52, 0.555 and 0.57 in Fig. 4.1. It is found that,
once the fundamental price P ∗ becomes unstable, the solutions converge to figure-
eight shaped attractors for low switching intensity(e.g. the case β = 0.2 and 0.3). As
the switching intensity increases, the figure-eight shaped attractor has grown initially
(for β = 0.3, 0.4) and then stretched to a scissors-shaped attractor (for β = 0.49).
As the intensity increases further, the simple attractor becomes more complicated (for
β = 0.52) and eventually leads to strange attractors (for β = 0.555 and 0.57). The
bifurcation diagram of the price and the corresponding Lyapunov exponent with re-
spect to the switching intensity parameter β are plotted in Fig. 4.3. One can see that
the market price variation increases as the switching intensity increases. These pat-
terns are similar to the rational routes to randomness studied extensively in Brock and
Hommes (1997, 1998). A common interesting feature displayed in Fig. 4.1 is that all
the attractors are symmetric about the constant fundamental price. This feature is also
shared in most of cases for general lag L. A much more extensive analysis would be
required to determine the nature of the mechanism generating such a feature, it may
be caused by either the Hopf bifurcations or special structure of the model.

Insert Figures 4.1 and 4.2 here

To illustrate the time series behind the interesting phase plots in Fig. 4.1, the price
time series for β = 0.2, 0.49, 0.52 and 0.57 are plotted in Fig. 4.2 over the first 500
trading periods. It is found that, as the switching intensity increases, the prices os-
cillate first around the fundamental price periodically or quasi-periodically and then
irregularly. Also, the price becomes more volatile (e.g. the case β = 0.52 and 0.57).
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Insert Figure 4.3 here

4.2. Case L = 100. For β = 0, we conjectured earlier that the fundamental price P ∗

is unstable for large L with the selected parameters and this is confirmed by numerical
simulations. To illustrate the effect of the switching intensity β on the price and pop-
ulation dynamics when a long moving average of L = 100, instead of the case L = 4
in the previous discussion, we include phase plots, in terms of (Pt,mt), for different
values of β = 0.05, 0.1, 0.2, 0.3, 0.35, 0.42, 0.45, 0.46 and 0.4652 in Fig. 4.4. As β in-
creases, the attractor starts with narrow figure-eight shaped ones (for β = 0.05 and 0.1)
and is then stretched (or extrapolated) by the chartists towards the extreme high/low
price levels (for β = 0.2). The closed attractors are then broken down to Lorenz-like
attractors of the 3-dimensional continuous Lorenz system, see Peitgen et al (1992) (for
β between 0.3 and 0.35), which is not observed for the case L = 4. As the switching
intensity increases further, the Lorenz-like attractors merge into one connected strange
attractor (for β = 0.42) and then to strange attractors (for β = 0.45, 0.46 and 0.4652).
The bifurcation diagram and the corresponding Lyapunov exponent with respect to the
switching intensity parameter β are plotted in Fig. 4.6. Similar to the case of L = 4, as
the switching intensity increases, the volatility of both price and population increases.

Insert Figures 4.4 and 4.5 here

The corresponding price time series are illustrated for β = 0.1, 0.3, 0.35, 0.42 and
0.46 in Fig. 4.5. One can see that an increase of the switching intensity can generate
very interesting price patterns when L = 100, comparing with L = 4. With lower
switch intensity (β = 0.1), the fundamental price is unstable and extrapolation of the
price trend by the chartists push the price away from the fundamental price. Because
of their limited long/short position, their fitness or utility become smaller when they
reach their limited position. This leads traders to switch back to the fundamentalists,
bringing price towards the fundamental price. Because of the increase of the fitness
of the chartists, the price is pushed further to different extreme level. As the switch-
ing intensity increases (for β = 0.3, 0.35), such switching from high/low extreme to
low/high extreme happens very quickly. At the same time, the price becomes more
volatile. As the intensity increase further, the regular switching pattern of the price
between two extreme levels is destroyed, leading to highly volatile price pattern (for
β = 0.46).

Insert Figure 4.6 here

It is interesting to see different rational routes to randomness forL = 4 andL = 100.
For L = 4, the strange attractors (in terms of the phase plots) become more dense as
the switching intensity increases and the frequency of oscillation of the price series are



A DYNAMIC ANALYSIS OF MOVING AVERAGE RULES 15

very high (see Fig. 4.2). However, for L = 100, the time periods of price staying at
either high or low levels are prolonged and prices become even volatile at the extreme
levels (see Fig. 4.5). Correspondingly, the strange attractors concentrate more on the
extreme levels and become less dense within the attractors (see Fig. 4.4).

5. DYNAMICS OF LONG-RUN MOVING AVERAGE

In this section, we consider the effect of the long-run moving average on the price
dynamics of the deterministic system (14)-(16). For comparison, we select a fixed set
of parameters as follows:

α = 1, µ = 2, β = 0.4, η = 0.2, a = 1, C = 0. (22)

It follows from (19) that ᾱ = 1 and ā = 1. Hence the fundamental price is locally
stable for L = 2, 3, 4 and unstable for L ≥ 5. Fig. 4.7 illustrates how the phase plot
(in terms of (Pt,mt)) changes as the lag L increases.

Insert Figures 4.7 and 4.8 here

For L = 5, the attractor is given by an figure-eight shaped closed orbit with small
price variation (about 1% of the fundamental price level) and there is a trend among the
traders to switch from the fundamentalists to the chartists. For L = 8, the size of the
attractor is enlarged, implying that the deviations of both price and population from
the fundamental value, which is Pt = 100,mt = 0, is enlarged. Hence an increase
in the moving average window L destabilizes the price dynamics. This destabilizing
effect becomes more significant when L is increased further to L = 9, 10, 50 and price
dynamics even become more complicated for L = 90 and 100, as indicated by the
phase plots in Fig. 4.7.

In order to understand such destablizing effect of the moving average, let us examine
the time series in Fig. 4.8. It is found that, following the cross over of the long moving
average and the market price, both the chartists and fundamentalists take the same
long/short position initially, but soon after they take opposite positions. This helps to
build up either up or down trend, pushing price to either higher or lower level initially,
but soon after, their different positions slow down the trend built up initially and bring
the price back towards the fundamental price level. The time period for changing
position to bring the price towards the fundamental price is proportional to the lag L.
When the lag L for the moving average is small, position changes happen quickly. As
L increases, it takes longer time to change the price trend and bring the price towards
the fundamental price level.

The above destablizing effect of the lag L holds in general for the parameters lo-
cated within regions in which the fundamental price is locally stable for lower lags and
unstable for higher lags, as discussed in the above. However, it can be verified that for
the parameters located within regions in which the fundamental price is unstable for
lower lags, but stable for higher lags, an increase of lag L can stabilizing an otherwise
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unstable system. In particular, for the parameters satisfying α = 1 + ā, Corollary 3.3
implies that the fundamental price is locally stable for ā < L. Numerical simulations
(not reported here) indicate that, in this case, an increase of L can bring an explosive
system to a (locally) stable system.

6. CONCLUSIONS

Within Brock and Hommes’ (1998) asset pricing model with heterogeneous and
adaptive beliefs, price fluctuations are driven by an evolutionary dynamics between
different expectation schemes. Consequently various rational routes to randomness
are observed when the intensity of choice to switch prediction strategies is high. This
analytic oriented framework relies on its mathematical tractability of lower dimension
system and it is in general difficult to have a clear picture when the prediction strate-
gies involve a long history of price, such as the long moving average rules. Given the
popularity of moving average strategies in both the real market and empirical stud-
ies, this paper analyzes the impact of the moving average on the market dynamics
and potentially rational routes to randomness. Within the confines of a model of the
fundamentalists and trend followers (who trade on the trend generated by the cross of
the latest price over the long moving average) we are able to obtain some important
qualitative insights into the impact of the moving average in general. Intuitively a long
moving average smooths price dynamics and hence an increase of the length of the
moving average is expected to stabilize the market price dynamics. However our re-
sults show that, within a market maker scenario, this is in general not true (except both
the reaction coefficient α of the fundamentalists and the extrapolation rate a of the
trend followers are balanced in certain way satisfying ᾱ = 1 + ā). In fact, the length
of the moving average is destabilizing the market price and, to our knowledge, this is
a new result related to the dynamics of the moving average. Another contribution of
this paper is that a similar rational routes to randomness when the switching intensity
is high is observed across various moving average rules. In subsequent research, a
more realistic model with large number of trading rules, in particular with agents us-
ing different moving average strategy, should be studied extensively by using various
numerical simulation tools, such as genetic algorithms and neural networks.

APPENDIX A. PROOFS OF MAIN RESULTS

A.1. Proof of Proposition 3.1. The deterministic system (14)-(16) can be written as follows:










Pt+1 = F (Xt)

Ut+1 = H(Xt)

mt+1 = G(Xt).

(23)

where

Xt = (Pt, Pt−1, · · · , Pt−(L−1), Ut,mt),

F (Xt) = Pt +
β

2
[−(1 −mt)α(Pt − P ∗) + (1 −mt)h(ψ

S,L
t )], (24)

H(Xt) = [−α(Pt − P ∗] − h(ψS,L
t )][F (Xt) − Pt] + ηUt, (25)

G(Xt) = tanh[β(H(Xt) − C)/2]. (26)
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One can easily see that, for η ∈ [0, 1), (Pt, Ut,mt) = (P ∗, 0,m∗) is the unique steady state of the system (23), where P ∗

corresponds to the constant fundamental price and m∗ = tanh(−βC/2). Also, evaluated at the unique steady state,

∂F

∂Pt

= 1 +
µ

2
[−(1 +m∗)α+ (1 −m∗)a(

1

S
−

1

L
)],

∂F

∂Pt−1
=

∂F

∂Pt−2
= · · · =

∂F

∂Pt−(L−S)

=
µ

2
(1 −m∗)a(

1

S
−

1

L
),

∂F

∂Pt−(L−S−1)

= · · · =
∂F

∂Pt−(L−1)

=
µ

2
(1 −m∗)a(−

1

L
),

∂F

∂Ut

=
∂F

∂mt

= 0,

∂H

∂Pt

=
∂H

∂Pt−1
= · · · =

∂H

∂Pt−(L−1)

= 0,

∂H

∂Ut

= η,
∂H

∂mt

= 0,

∂G

∂Pt

=
∂G

∂Pt−1
= · · · =

∂G

∂Pt−(L−1)

= 0,

∂G

∂Ut

= ηβ/2,
∂G

∂mt

= 0.

Based on these calculations, one can verify that the characteristic equation of the steady state has the form of (17).

A.2. Proof of Lemma 3.2. For S = 1 and ᾱ = 1 + ā,

Γ1L(λ) ≡ λL +
ā

L
(λL−1 + · · · + λ+ 1) = 0.

It follows from Chiarella and He (2002) that |λi| < 1 iff − 1
L
< ā

L
< 1, i.e., ā < L (since ā > 0).

In general, following from Jury’s test, necessary conditions for |λi| < 1 for all i are ā/L < 1 and

ΓiL(1) = ᾱ > 0

(−1)LΓ1L(−1) =

{

2 − ᾱ+ ā > 0 for L = 2l

2 − ᾱ+ L+1
L
ā > 0 for L = 2l + 1

A.3. Proof of Proposition 3.4. Let f(λ) = λL and g(λ) = −(1− ᾱ+ ā)λL−1 + ā
L

[λL−1 + · · ·+λ+1]. Then on |λ| = 1,

|g(λ)| < |1 − ᾱ+ ā| + ā, |f(λ)| = 1.

If 1 + ā < ᾱ < 2, then |g(λ)| < |f(λ)| on |λ| = 1. Following from Rouche’s theorem, f(λ) and Γ1L(λ) = f(λ) + g(λ)

have the same number of zeros inside |λ| = 1. Therefore |λi| < 1 for i = 1, 2, · · · , L.

A.4. Proof of Proposition 3.5. For S = 1,

Γ1,L(λ) ≡ λL − (1 − ᾱ)λL−1 − ā(1 −
1

L
)λL−1 +

ā

L
(λL−2 + · · · + λ+ 1) = 0.

i.e.
Γ1,L(λ) ≡ λL − [1 − ᾱ+ ā(1 −

1

L
)]λL−1 +

ā

L
(λL−2 + · · · + λ+ 1) = 0.

• For L = 1,
Γ1,L(λ) ≡ λ− (1 − ᾱ) = 0.

Hence |λ| < 1 iff 0 < ᾱ < 2. Also λ = +1 for ᾱ = 0 and λ = −1 for ᾱ = 2.
• For L = 2,

Γ2,1(λ) = λ2 + c1λ+ c2 = 0,

where
c1 = −(1 − ᾱ+

1

2
ā), c2 =

ā

2
.

Following Jury’s test, |λi| < 1 iff

π1 ≡ 1 + c1 + c2 = ᾱ > 0,

π2 ≡ 1 − c1 + c2 = 2 − ᾱ+ ā > 0,

π3 ≡ 1 − c2 = 1 −
ā

2
> 0.
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Hence P ∗ is LAS if (ᾱ, ā) ∈ D12(ᾱ, ā). Also, λ1 = 1 and |λ2| < 1 when π1 = 0, λ1 = −1, |λ2| < 1 when
π2 = 0 and λ1,2 ∈ C, |λ1,2| = 1 when π3 = 0.

• For L = 3,

Γ1,3(λ) ≡ λ3 − [1 − ᾱ+ ā(1 −
1

3
)]λ2 +

ā

3
(λ+ 1) = 0.

Denote

c1 = −[1 − ᾱ+
2

3
ā], c2 = c3 =

ā

3
.

Then |λi| < 1 iff

π1 ≡ 1 + c1 + c2 + c3 = ᾱ > 0,

π2 ≡ 1 − c1 + c2 − c3 = 2 − ᾱ+
2

3
ā > 0,

π3 ≡ 1 − c2 + c1c3 − c23

= 1 −
ā

3
[2 − ᾱ+ ā] > 0.

Hence P ∗ is LAS if (ᾱ, ā) ∈ D13(ᾱ, ā). Furthermore, π1 = 0, π2 = 0 and π3 = 0 give the saddle-node, flip and
Hopf bifurcation boundaries, respectively.

• For L = 4,

Γ1,4(λ) ≡ λ4 − [1 − ᾱ+
3

4
ā]λ3 +

ā

4
(λ2 + λ+ 1) = 0.

Denote

p = −[1 − ᾱ+
3

4
ā], q =

ā

4
.

Then, using Jury’s test, |λi| < 1 iff

Γ1,4(1) = ᾱ > 0,

Γ1,4(−1) = 2 − ᾱ+ ā > 0,

ā < 4

and both the determinants of matrixes

A =





1 0 q
p− 1 1 + q 0
2q − p p− 1 1 + p− q



 , B =





1 0 −q
p 1 − q −q
0 p− q 1 − p





are positive. It can be verified that |A| > 0, |B| > 0 iff (1 + q)2[1 + p − 2q] + q(p − 1)2 > 0 and p < 1,
respectively, which leads to the result.
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