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ABSTRACT

The paper describes and illustrates a perturbed polynomial path method, denoted
P3 and named after related perturbation and parametric path methods, for quickly
and accurately computing changes in the real cost of living, ∆ct, as nominal
prices change in observation periods t = 1, ..., T, and for computing
associated residual quantities, ξt, i.e., differences between observed and
optimal quantities of goods which maximize a given utility function on a budget
line at given nominal prices and income. As prices change, for a given nominal
income, a representative consumer moves from one utility-maximizing point to
another in combined income and substitution effects. By definition, ∆ct is an
adjustment of a consumer's real income, which restricts them to a pure
substitution effect, i.e., to be on the same initial indifference curve as
prices change. The P3 method has at least four advantages: (1) The P3 method is
based on kth-order approximating polynomials, computed in h steps, for each
observation period, with resulting accuracy of about h-k. (2) The P3 method can
empirically evaluate a price index, however motivated, in terms of sizes of
residual quantities of a corresponding utility-maximizing problem. E.g., a
geometric-mean index can be evaluated in terms of sizes of residual quantities
of a Cobb-Douglas utility function because both the index and the utility
function are based on constant expenditure shares. (3) The P3 method uses only
derivatives of a utility function and can compute results even when there are
no known explicit closed-form solutions, as illustrated with the tiered CES
(TCES) utility function. (4) The P3 method can account for estimated trend,
cycle, and seasonality in residual quantities, by estimating univariate ARMA
models of initial residuals and recomputing ∆ct and ξt for a modified utility
function which incorporates the estimated trend, cycle, and seasonality. The
paper illustrates these advantages with Cobb-Douglas and TCES utility
functions.

                        
*The paper represents the author's views and does not necessarily represent any
official positions of the Bureau of Labor Statistics. Thanks to B. Chen, D.
Johnson, and R. Verbrugge for comments and help.
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1. Introduction.

The paper describes and illustrates a perturbed polynomial path method,

denoted by P3 and named after related perturbation and parametric path methods

(Fleming, 1971; Judd, 1998, 2003; Chen and Zadrozny, 2003), for quickly and

accurately computing changes in the real cost of living, ∆ct, as nominal prices

change in observation periods t = 1, ..., T, and for computing associated

residual quantities, ξt, i.e., differences between observed logs of quantities

and optimal logs of quantities of goods, which maximize a given utility

function on a budget line at given nominal prices and income. As prices change

for a given nominal income, a representative consumer moves from one utility-

maximizing point to another in combined income and substitution effects. By

definition, ∆ct is an adjustment of a consumer's real income which restricts

them to a pure substitution effect, i.e., to be on the same initial

indifference curve as prices change. Given an initial cost of living index,

usually normalized to one, ∆ct converts to level or index form as ct = 1 + ∆ct

for t = 1, ..., T. The measure T⋅ln| T/T
t

T

1t tξξ∑ =
| of residual-quantity sizes

allows us to empirically evaluate a computed cost of living or any price index,

however motivated, in terms of its corresponding ∆ct computed by the P3 method.

We denote the cost of living by COL and the COL computed by the P3 method as

COLP3.

The P3 method has at least the following four advantages:

1. Accurately Computing the COL. The paper describes and illustrates the

P3 method for computing a 4th-order polynomial (Taylor series) approximation of

an exact ∆ct. Extension to computing a general kth-order polynomial

approximation of ∆ct should be evident. The P3 method divides a unit-length

period t into h equal-length segments, computes the kth-order approximation of

each segment, sums the h approximations, and, thereby, approximates the exact

∆ct, which is an integral over a path of optimal quantities consumed in period

t. COLP3 is numerically accurate to about h-k. We illustrate COLP3 with (k,h) =

(4,10), which implies a computed COL with about 10-4 accuracy. Larger k and h

imply greater accuracy, for example, (k,h) = (6,22) implies about 10-8 accuracy.

Table 1 depicts minimal values of h for attaining about 10-4, 10-8, and 10-16

accuracy for k = 1, ..., 6. If a price index aims to measure COL, its accuracy

can be evaluated by comparing it with COLP3 based on the same or nearly the same

utility maximizing problem. For example, the accuracy of the geometric-mean
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price index can be evaluated by comparing it with COLP3 based on maximizing a

Cobb-Douglas utility function. Current economic discussions consider price

indexes based at most on 2nd-order approximations of a utility function, called

superlative price indexes (Diewert, 1976), and consider more rudimentary

arguments about 1st- and 2nd-order approximation errors (Hausman, 2003).

2. Empirically Evaluating the COL. The empirical validity of a COLP3

cannot be evaluated by comparing it with the true COL, because the true COL is

unobserved. For the same reason, strictly, the empirical validity of a price

index being considered cannot be evaluated by comparing it with a "standard"

price index. However, a price index can be evaluated indirectly by the sizes of

residual quantities of the corresponding COLP3, based on a corresponding or the

same utility function. For example, a geometric-mean price index corresponds to

the COLP3 of a Cobb-Douglas utility function, because both the index and the

COLP3 of a Cobb-Douglas utility function are based on expenditure shares being

constant over time. Thus, the empirical validity of a geometric-mean price

index can be evaluated by the sizes of residual quantities of the COLP3 implied

by a Cobb-Douglas utility function with the same expenditure shares.

The P3 method also accurately computes optimal quantities of n purchased

and consumed goods (and services), as predicted by maximizing utility at given

prices. The optimal or predicted quantities are the log-form nonlinear

regression function, f(pt), in the regression lnqt = f(pt) + ξt, where lnqt, lnpt,

and ξt denote n×1 vectors of logs of observed quantities of goods, logs of

observed prices of goods, and residuals of logs of quantities. The utility

function at particular parameter values -- the "model" -- and quantities

implied by maximizing utility are jointly empirically validated if their

implied residual quantities are sufficiently small. Similarly, a price index is

empirically validated if residual quantities of the corresponding utility-

maximizing problem are small. For normally distributed residual quantities,

-2×log-likelihood function or L = T⋅ln| Σ̂ | measures a model's fit of observed

quantities, hence, L measures a model's and predicted quantities's empirical

validity, where ln| Σ̂ | denotes the log determinant of Σ̂  = T/T
t

T

1t tξξ∑ =
, a

positive definite (with probability one) estimate of the residual covariance

matrix. Adding a penalty for the number of parameters, extends L to an

information criterion. Thus, the empirically most valid model and associated

predicted quantities should imply the lowest L or information criterion.

The method can be used to better understand differences among common

price indexes. For example, recently the official unchained consumer price
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index for urban consumers (CPIU) has been significantly above the unofficial

chained CPIU (CCPIU). Although, the indexes are based on essentially the same

formula, the CCPIU is updated more frequently. The P3 method can be used as

follows to better understand this difference, presumably due to some

nonlinearity. First, suppose we have a utility function chosen either a priori,

such as Cobb-Douglas with share parameters equal to observed expenditure

shares, or by minimizing an L measure. Second, suppose we have computed COLP3

using the chosen utility function and the CPIU and CCPIU indexes at the two

update frequencies. On average over a sample, only the nonlinear terms should

differ between the two indexes. Thus, we can better understand the average

divergence between the CPIU and CCPIU indexes over a given time span by

studying how the utility function's derivatives and the sample moments of

quantities and prices of goods differently affect the nonlinear terms in the

indexes. We plan to do this in the future.

3. General Differentiable Utility Functions. The P3 method uses only

derivatives of a utility function and can compute ∆ct for utility functions for

which the standard consumer maximization problem has no known explicit closed-

form solution. The P3 method requires only (i) that the utility function is

differentiable the desired number of times and (ii) that it satisfies second-

order conditions (Mann, 1943) along the computational path. By illustrating

results with a tiered constant elasticity of substitution (TCES) utility

function, we show that the P3 method applies to far more general, yet

parametrically tractable (parsimonious), utility functions than are commonly

used, such as Cobb-Douglas or CES (Arrow et al., 1961).

4. Trend, Cycle, and Seasonality. We can redefine the utility function

and reapply the P3 method to include predictable temporal variations, such as

trend, cycle, and seasonality. Suppose we initially compute ∆ct and ξt, for t =

1, ..., T, using an invariant utility function. Given initial residual

quantities, we can account for their trend, cycle, and seasonality by

estimating a vector autoregressive moving-average (VARMA) model, ξt = tξ̂  + εt,

for t = 1, ..., T, where tξ̂  = Φ(L)ξt-1 + Θ(L)εt-1, Φ(L) and Θ(L) are lag-

generating polynomials in positive powers of the lag operator L, and εt is an

n×1 vector of white-noise disturbances, distributed NIID(0,Σ) (Kaiser and

Maravall, 2001). With many goods, estimating a nondiagonal VARMA model, which

allows all possible feedbacks among different variables, is infeasible.

However, because the residual model needs only to predict one period ahead,

even with many goods we can separately estimate a univariate ARMA model for
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each residual. Then, we can treat tξ̂ , the predictable part of ξt, as part of the

utility function and reapply the P3 method. In the recomputation, we would treat

tξ̂  as exgoneous, like prices, and would fit an interpolating polynomial to its

observed discrete-time differences. The initial computation reacts to trend,

cycle, and seasonality in prices but the recomputation also reacts to these

effects in quantities. Thus, the P3 method can include effects of predictable

temporal variations in prices and quantities, according to an estimated VARMA

model of residual quantities. The approach is consistent with Hausman (2003).

The paper proceeds as follows. Section 2 describes the P3 method in two

subsections as a combination of substitution and income effects. Section 3

extends the discussion of section 2 from an invariant utility function to a

time-varying utility function and discusses the statistical issues of empirical

validation and parameter estimation. Section 4 illustrates the P3 method with

Cobb-Douglas and TCES utility functions and a sample of 10 aggregated goods

from data at the Bureau of Labor Statistics. Cobb-Douglas utility functions

provide reference cases of closed-form solutions, which can be used to check

the accuracy of the P3 method, and TCES utility functions provide new test cases

for the P3 method, with no known closed-form solutions. Section 5 contains

concluding remarks and is followed by an appendix, figures, tables, and

references.

2. P3 Method Computations.

2.1. Preliminary Discussion.

Let [1,T+1) = ∪ T

1t
)1t,t[

=
+  denote a continuous time interval divided into

T unit-length intervals or periods indexed by their beginning moments, t = 1,

..., T, where [t,t+1) = {s|t ≤ s < t+1}. The following definitions of variables

hold both in continuous-time, within a period t, and in discrete time, at the

beginning moments t = 1, ..., T. Subscript t denotes variables in discrete time

at the beginning moments and argument s or (s) denotes variables in continuous

time within periods. The computations apply separately to each period. We

concentrate on what happens within period t, think of it as the current period,

and think of period t+1 as the next period.

Let p = (p1, ..., pn)T and q = (q1, ..., qn)T denote n×1 vectors of nominal

prices and real quantities of goods (and services) purchased and consumed by a
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representative consumer. Then, let pt denote the vector of nominal prices

observed in period t by the consumer and the investigator and let qt denote the

vector of quantities observed in period t by these agents. Throughout, vectors

are defined as columns, superscript T denotes transposition, and "quantities"

are quantities of goods and services. Each period t, the representative

consumer faces the budget line qpT
t  = et, in nominal terms, where q denotes any

n×1 vector of nonnegative quantities and et = t
T
tqp  denotes nominal expenditures.

Following the standard utility-maximizing theory, we assume the consumer treats

et as given nominal income and call it such. We say a vector of quantities is

optimal if it maximizes a utility function on a budget line.

We consider the budget line as qpT
t  = etct, where ct is the real COL. For

each period t, we think of moving over the period from beginning to end. Let ct

and tc′  be real COL at the beginning and end of period t. Then, given the

initial value ct  = 1, we want to compute the change in real COL over the

period, ∆ct = tc′  - ct, caused by price changes over the period. Also, we want to

compute corresponding residual quantities, ξt = lnqt -  ln tq̂ , where lnqt is the

vector of observed logs of quantities and ln tq̂  is the vector of optimal logs of

quantities at current prices and income, pt and et. We convert current and next

period's nominal prices to real prices by dividing them by current nominal

income, et, as tp
~  = pt/et and 1tp

~
+  = pt+1/et, and, correspondingly, convert budget

lines from nominal to real terms as, for example, qpT
t  = ctet to qp~T

t  = ct.

Figure 1 depicts the P3 method for two goods and is constructed based on

an assumed utility function, current prices, pt, next period's prices, pt+1, and

current quantities, qt. Each point in figure 1 represents quantities of the two

goods. Figure 1 has five utility maximizing points A to E with associated

budget lines AA to EE. Point A denotes currently observed quantities, qt = (q1t,

q2t)T, and has one indifference curve and three budget lines through it. The

indifference curve, denoted AB, passes through points A and B and is given by

u(q) = u(qt), where u(⋅) is an assumed utility function. The flattest budget

line through A, denoted CC, with utility maximizing point C, is given by qp~T
1t+  =

t
T

1t qp + /et, where t
T

1t qp + /et is the Laspeyres price index over period t. The

medium-sloped currently-observed budget line through A, denoted EE, with

utility maximizing point E, is given by qp~T
t  = 1. Point A maximizes utility on

EE only by the remotest chance. The steepest budget line through A, denoted AA,
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which maximizes utility at A is given by qp~ T
t′  = 1, where tp

~′  = ∇u(qt)T/∇u(qt)qt

according to first-order conditions (2.2) and (2.3) Note that ∇u(qt)qt is scalar

because ∇u(qt) is 1×n. For example, the Cobb-Douglas utility function implies

tp
~′  consists of expenditure shares. Point B on indifference curve AB maximizes

utility on budget line BB given by qp~T
1t+  = ϕt( t

T
1t qp + /et), where ϕt is a positive

fraction to be computed. Point D maximizes utility on budget line DD at next

period's prices and current income, given by qp~T
1t+  = 1. Budget lines AA and EE

are defined solely by period t information, while budget lines BB to DD are

defined by both period t and t+1 information and have slopes given by pt+1.

First, we consider the increase in real income or equivalent decrease in

real COL, when the consumer moves from A to D as a result of the hypothetical

change in nominal prices, tp′∆  = pt+1 - tp′  ≠ 0, for constant nominal income et,

where tp′  is constructed to make A optimal on AA. We start at point A, which is

an optimal consumption point on budget line AA. As the relative price of good

one increases from tp′  at AA to pt+1 at BB, the optimal consumption point moves

from A to B in a pure substitution effect along indifference curve AB. This

move causes real income to decrease by (ϕt - 1)( t
T

1t qp + /et) at next period's

prices, pt+1.

Although, in general, 0 ≤ ϕt ≤ 1 and 0 < t
T

1t qp + /et, figure 1 indicates 0 <

ϕt < 1 and 0 < t
T

1t qp + /et < 1. Concavity to the origin of indifference curves,

i.e., second-order condition (2.4), causes 0 ≤ ϕt ≤ 1. A nearly straight-line

indifference curve implies a large substitution effect, hence, ϕt ≅ 0 and a

maximal decrease in real income when moving from A to B; a very curved

indifference curve implies a small substitution effect, hence, ϕt ≅ 1 and a

minimal decrease in real income when moving from A to B.

However, for constant nominal income, et, nominal price changes also cause

the nominal price level, hence, real income to change. Figure 1 indicates that

real income increases by 1 - t
T

1t qp + /et > 0 when moving from C to D. Thus, for

constant nominal income, et, price changes tp′∆  = pt+1 - tp′  cause a net change in

real COL of

(2.1)     ∆ct = ϕt( t
T

1t qp + /et) - 1,
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when moving from A to D, or an equivalent net change in real income of -∆ct = 1

- ϕt( t
T

1t qp + /et). Although, in general, the net ∆ct could be positive, zero, or

negative, figure 1 indicates that net ∆ct = ϕt( t
T

1t qp + /et) - 1 < 0, when moving

from A to D. Section 2.2 explains the P3 method in general for computing the

initial ∆ct = (ϕt - 1)( t
T

1t qp + /et) or, equivalently, computing ϕt of the pure

substitution move from A to B, such that the remaining ∆ct = ( t
T

1t qp + /et) - 1 of

the pure income move from B to D requires no additional P3-style computations.

We consider the change in real COL starting from A on budget line AA,

caused by the hypothetical price changes tp′∆  = pt+1 - tp′  ≠ 0. The same change in

real COL and real income results if we start from A as a nonoptimal consumption

point on the currently observed budget line EE or from any other budget line

through A. This occurs because, regardless of the starting budget line, we

start from the same point A and the computed ϕt depends only on the indifference

curve AB, which is uniquely defined by A. We start from budget line AA in order

to move from A to D along a continuously optimal path as prices change, because

the P3 method is guaranteed to work only when second-order condition (2.5) holds

continuously. Thus, the computed ∆ct would remain ϕt( t
T

1t qp + /et) - 1 even if it

were computed as caused by the observed price changes, ∆pt = pt+1 - pt.

If we only want ∆ct, then, we only need to complete the computations

discussed in section 2.2. Otherwise, if we also want to evaluate the computed

COL's empirical validity, we need to compute residual quantities. In terms of

figure 1, the vector of residual quantities is the vector difference A - E on

budget line EE. In section 2.3, we discuss computing the residual quantities in

a combined pure-substitution and real-income move caused by the price changes

tp′∆  = pt - tp′ . The move is equivalent to moving in figure 1 from A as optimal

on AA to E as optimal on EE. The computation of the residual quantities is a

simple modification of the computation of ∆ct discussed in section 2.2.

2.2. Computing the Cost of Living.

The appendix explains definitions and rules of matrix differentiation and

should be skimmed or read before continuing. In this section and the next one,

we work with derivatives of vector functions of vector arguments, which

includes vectorized matrix functions of vectorized matrix arguments, in

differential and gradient forms. Differentials are denoted by d and gradients
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by ∇. Differentials are defined as usual, but gradients are defined more

generally and include the usual definitions of gradients, Jacobians, and

Hessians as special cases. All equations are derived in differential form and

as few as possible are further converted to gradients. Derived differentials

are strictly infinitesimally small, hence, uncomputable and gradients are

finite valued, hence, automatically computable. However, we can and do

interpret and compute the differentials as finite directional derivatives. We

could convert all differentials to gradients and compute all equations in

gradient form. Chen and Zadrozny (2003) follow this approach, but especially

here, this would result in unnecessary complicated derivations and unnecessary

computations with large and sparse Kronecker products and related permutation

and vectorization operations (Magnus and Neudecker, 1988). To minimize these

complications, we propose computing almost all differentials as directional

derivatives, which amounts to computing in the forward mode of automatic or

algorithmic differentiation, currently the preferred method for quickly and

accurately computing derivatives (Griewank, 2000).

Because, henceforth, all prices are real as defined in section 2.1, for

simplicity we drop the tilde which denotes "real" in prices and denote real

prices by pt. We discuss computing the change in the real cost of living, ∆ct,

and residual quantities, ξt, for each observation period t = 1, ..., T. However,

because the computations are self contained within each period, we proceed with

the understanding that "period t" is any of the periods t = 1, ..., T and

mostly do not repeat this qualification. We also refer to period t as the

"current" period and period t+1 as the "next" period.

In the standard problem, the representative consumer maximizes utility,

u(qt), with respect to quantities, qt, on the budget line, t
T
tqp  = ct, for given

prices, pt, and initial real cost of living, ct = 1. The Lagrangian function of

the maximization problem is u(qt) + λt(ct - t
T
tqp ), where λt is the budget line's

scalar Lagrange multiplier. Totally differentiating the Lagrangian function,

setting the result to zero, and imposing dpt = 0 and dct = 0 because pt and ct

are given, implies (∇u(qt) - λt T
tp )dqt + dλt(ct - t

T
tqp ) = 0, where d denotes the

differential of a function or variable. Because dqt and dλt can assume any

nonzero values, the last equation implies the usual first-order conditions,

(2.2)     ∇u(qt) - λt T
tp  = 0,
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(2.3)      t
T
tqp  - ct = 0,

where ∇u(qt) = [∂u(qt)/∂q1t, ..., ∂u(qt)/∂qnt] is the 1×n gradient row vector of

first-partial derivatives of u(qt). Equations (2.1) and (2.2) can be solved for

unique values of qt and λt, at least locally and numerically, for given values

of pt and ct, if second-order condition (2.5) holds.

So far, we have discussed the standard utility maximizing problem in

which real income, ct, is given. Now, we discuss the problem in which qt and ct

change in response to price changes, tp′∆  = pt+1 - tp′  ≠ 0, such that ct varies to

keep the consumer on the same indifference curve. In section 2.3, we discuss

the related problem in which ct is dropped as a variable because it is

identically equal to one. Combining the differentials of (2.2) and (2.3) with

du(qt) = ∇u(qt)dqt = 0, which keeps the consumer on the same indifference curve,

implies

(2.4)     F(x)dy = G(y)dp  or  
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where ∇2u(q) is the n×n Hessian matrix of second-partial derivatives of u(q) and

F(x) is an (n+2)×(n+2) matrix function of x = (yT, pT)T, the (2n+2)×1 vector of

all variables, and G(y) is an (n+2)×n matrix function of y = (qT, λ, c)T, the

(n+2)×1 vector of variables to be determined. Following statistical section 3,

in the problem considered here, we say p is exogenous because prices are the

given variables and y is endogenous because it is determined by the problem's

solution. If the utility function is differentiable k times, then, F(x) is

differentiable k-2 times. G(y) is always differentiable any number of times and

has constant first-partial derivatives and zero higher-order partial

derivatives. Henceforth, for simplicity, we frequently suppress time subscript

t and quantity argument q in the utility function and its derivatives, keeping

in mind that x (hence, y) are evaluated at time t.

The variables in x are either observed or can be computed. Given the

utility function, prices, and quantities, the first-order conditions (2.2) and

(2.3) imply c = pTq and λ = ∇uq/c, so all variables in x are known. Given x,
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equation (2.4) is solved uniquely as dy = H(x)dp, where H(x) = F(x)-1G(y), if

and only if |F(x)| ≠ 0, where |⋅| denotes the determinant of a square matrix.

Laplace expansion of a determinant and equation (2.4) imply |F(x)| = λ|B(x)|,

where B(x) = 








−
−∇

×11
T

2

0p

pu
 is the bordered Hessian of the standard utility

maximizing problem with first-order conditions (2.2) and (2.3). The second-

order condition of the standard problem is |B(x)| < 0 (Mann, 1943). Given λ >

0, the second-order condition of the present constant-utility problem is

(2.5)     |F(x)| = λ|B(x)| < 0.

We say dropped old goods or as yet unpurchased new goods are inactive,

because their quantities are zero (or numerically nearly so) and they do not

figure in the first-order conditions, but currently purchased and consumed

goods are active. Positive prices and quantities of active goods imply positive

expenditures, finite and positive marginal utilities, and, hence, a finite and

positive Lagrange multiplier, λ = ∇uTq/c > 0. Therefore, at a utility maximizing

x, which satisfies second-order condition (2.5), equation (2.4) has the unique

solution

(2.6)     dy = H(x)dp,

where H(x) = F(x)-1G(y) is an (n+2)×n matrix function of x. Dividing dy and dp

by ds converts them to the time derivatives dy/ds and dp/ds. Indeed,

henceforth, we consider differentials of variables to be time derivatives, but,

for simplicity, suppress their ds divisors.

For s ∈ [t,t+1), we want to compute ∆yt = yt+1 - yt = ∫
+

=

1t

ts
)s(dy . Let y(s)

and ŷ (s) denote exact and approximate solution paths of y, for a given price

path p(s), for s ∈ [t,t+1). Some exceptional utility functions, such as CES,

have known closed-form solution paths, but for most utility functions which

satisfy the second-order conditions, we can only compute an approximate

solution path, ŷ (s). The implicit function theorem, upon which the P3 method is

based, implies that if the utility function is differentiable k+3 times and

satisfies the second-order conditions, so that its maxima are interior points,

then, the exact solution path is differentiable k+1 times, integrates as
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∫
+

=

1t

ts
)s(dy , and, for s ∈ [t,t+1), has the kth-order polynomial (Taylor series)

approximation

(2.7)     ŷ (s) = yt + ∇yt(s-t) + (1/2!)∇2yt(s-t)2 + ... + (1/k!)∇kyt(s-t)k,

where yt, ..., ∇kyt are (n+2)×1 coefficients to be determined in terms of

observed prices and quantities. We treat the true y and p processes and their

polynomial interpolates as differentiable continuous-time processes in s ∈

[t,t+1) and as discrete-time processes in t = 1, ..., T. Ford (1955) discusses

connections between continuous and discrete processes and their polynomial

interpolates.

Following equation (2.7), we could approximate ∆yt as tŷ∆  = ∫
+

=

1t

ts
)s(ŷd  = ∇yt

+ (1/2!)∇2yt + ... + (1/k!)∇kyt, which has the accuracy ε = |∆yt - tŷ∆ | =

(1/(k+1)!)|∇k+1y(θ)|, for θ ∈ (t,t+1) (Apostol, 1974, pp. 241-242). We are

interested in the accuracy's order of magnitude in k. With sufficient

differentiability of F(x), we can increase k to achieve the desired solution

accuracy, although this might lead to a large k with resulting difficulties in

deriving, storing, and computing the necessary derivatives. For example, Judd

(1998, figure 13.1, p. 483) reports needing k ≥ 10 to achieve 10-6 solution

accuracy within about a 40% deviation from a center-point solution with 10-14

accuracy. When applying the "pure" perturbation method, we can increase only k

to improve accuracy. By adding "polynomial path" to "perturbation," we can also

increase h to achieve desired accuracy. Table 1 shows that semi-single-,

single-, and double-precision orders of magnitude of accuracy can be achieved

with relatively low combinations of k and h. We introduce h by dividing the

unit-length time interval of each period t into h subintervals of equal length

1/h, apply a kth-order polynomial approximation to each subinterval, and sum

the h approximations.

For each period t and a chosen positive integer h, we partition the

period into h subperiods of equal length 1/h as [t,t+1) = ∪ h

1i=
[ti,ti+(1/h)),

where [ti,ti+(1/h)) = [t+(i-1)/h,t+(i/h)) for i = 1, ..., h. For each subperiod

ti = t1, ..., th in period t, we compute the y coefficients, it
y∇ , ..., 

it
ky∇ ,

recursively and approximate ∆yt as
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(2.8)     tŷ∆  = ∑ =
∆h

1i it
ŷ ,

          
it

ŷ∆  = ∫
+

−+=

)h/i(t

)h/)1i(ts
)s(ŷd  = 

it
y∇ h-1 + (1/2!)

it
2y∇ h-2 + ... + (1/k!)

it
ky∇ h-k.

Because each term, 
it

ŷ∆ , has accuracy on the order of h-(k+1), which is denoted by

ε = O(h-(k+1)), their sum, tŷ∆  = ∑ =
∆h

1i it
ŷ , has accuracy on the order of h-k or ε

= O(h-k). The idea of summing h integrals of low-order polynomials over

subintervals of length (b-a)/h instead of integrating a high-order polynomial

over the whole interval [a,b] is basic in numerical integration (Judd, 1998,

ch. 7, pp. 251-283).

Solution accuracy has the factor γ = 1/(k+1)!)|∇k+1y(θ)|. Instead of

deriving bounds on γ in terms of derivatives of H(x), we can estimate it as

follows. Let )x̂(ρ  = ||r( x̂)||/|| x̂|| denote the relative accuracy of a computed

solution, x̂, where ||⋅|| denotes a vector norm (Golub and Van Loan, 1996, pp.

52-54), r(x) denotes the column vector of equations (2.2), (2.3), and u(q) - u0

= 0, such that u0 denotes initial utility. Strictly, x̂∆  is computed, so that x̂

= x̂∆  + x0, where x0 is an assumed or given initial value of x. Accuracy can

also be expressed as ε ≤ γh-k, so that we can estimate γ as the average value of

|| )x̂(r ||hk for various values of h and k. By setting h and k sufficiently large,

we can usually obtain an acceptably small )x̂(ρ  for the computed x̂, although we

cannot set h and k so large that h-k cannot be stored as a nonzero number on the

computer being used. Table 1 depicts minimal values of h for attaining accuracy

of orders h-k = 10-4, 10-8, and 10-16, for k = 1, ..., 6. Additional numerical

errors arise from computing the y coefficients but should be acceptably small

or, in the case of inverting F(x), can be made acceptably small by making

indifference curves sufficiently curved, i.e., by ensuring that |F(x)| of

second-order condition (2.5) is sufficiently below zero.

We now explain the P3 method for computing the y coefficients, 
it

y∇ , ...,

it
ky∇ , when k = 4. Extension from the 4th-order approximation to the general

kth-order approximation should be conceptually straightforward, although the

details are tedious. Having stated the approximate y process (2.7), we now

derive the computational equations of the P3 method. We differentiate

approximate y process (2.7). We differentiate differential (2.6) of the unknown

true y process three more times, to obtain differentials (2.10) of y in terms
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of the differentials of H(x) and prices. We derive differentials of H(x) in

terms of differentials (2.11) of F(x) and G(y). We state price process (2.15),

analogous to approximate y process (2.7), and express its coefficients (2.17)

in terms of observed forward-differenced prices (2.18). Finally, we discuss

combining these results and computing the coefficients of the approximate y

process (2.7), hence, computing ∆yt according to equation (2.8).

For k = 4, s ∈ [ti,ti+h), and ti = t1, ..., th, differentiating approximate

y process (2.7) four times with respect to s implies

(2.9)     d ŷ (s) = 
it

y∇  + 
it

2y∇ (s-ti) + (1/2) it
3y∇ (s-ti)2 + (1/6) it

4y∇ (s-ti)3,

          d2 ŷ (s) = 
it

2y∇  + 
it

3y∇ (s-ti) + (1/2) it
4y∇ (s-ti)2,

          d3 ŷ (s) = 
it

3y∇  + 
it

4y∇ (s-ti),

          d4 ŷ (s) = 
it

4y∇ .

For each s = ti = t1, ..., th, we compute the y coefficients, it
y∇ , ..., 

it
4y∇ ,

so that they are equal to the 1st to 4th differentials of true y process (2.6).

Using the product rule of differentiation (6.17) to differentiate

equation (2.6) three times, implies

(2.10)    d2y(s) = dH(s)dp(s) + H(s)d2p(s),

          d3y(s) = d2H(s)dp(s) + 2dH(s)d2p(s) + H(s)d3p(s),

          d4y(s) = d3H(s)dp(s) + 3d2H(s)d2p(s) + 3dH(s)d3p(s) + H(s)d4p(s),

where H(s) ≡ F(x(s))-1G(y(s)).

Repeatedly applying the product rule of differentiation to F(s)H(s) =

G(s), implies dF(s)H(s) + F(s)dH(s) = dG(s), d2F(s)H(s) + 2dF(s)dH(s) +

F(s)d2H(s) = d2G(s), and d3F(s)H(s) + 3d2F(s)dH(s) + 3dF(s)d2H(s) + F(s)d3H(s) =

d3G(s), where dkF(s) ≡ dkF(x(s)) and dkG(s) ≡ dkG(y(s)), for k = 0, ..., 3. Then,

solving for dH(s), d2H(s), and d3H(s), implies

(2.11)    dH(s) = F(s)-1[dG(s) - dF(s)H(s)],
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          d2H(s) = F(s)-1[d2G(s) - d2F(s)H(s) - 2dF(s)dH(s)],

          d3H(s) = F(s)-1[d3G(s) - d3F(s)H(s) + 3d2F(s)dH(s) + 3dF(s)d2H(s)].

Equations (2.11) are fully recursive. Given utility function u(⋅), we compute

F(s), G(s), and H(s). Then, we compute dF(s), dG(s), and dH(s). Then, we

compute d2F(s), d2G(s), and d2H(s). Finally, we compute d3F(s), d3G(s), and

d3H(s).

For k = 1, 2, and 3, dkF(s) and dkG(s) are

(2.12)    dkF(x) = 























∇

−

−∇

××

××

×

1111
k

1111
Tk

11
k2k

00))q(u(d

00pd

0pd))q(u(d

,  dkG(y) = 





















 λ

×n1

Tk

n
k

0

qd

Id

.

The price differentials, dkp, are given by equations (2.16). The quantity and

Lagrange-multiplier differentials, dkq and dkλ, are elements of computed dky.

If we multiply differentiate u(q) with respect to q but not further with

respect to z, where q is a multiply differentiable funtction of z, then,

vectorization rule (6.3) and gradient definition (6.14) imply that, for k and m

≥ 1, vec(dk(∇mu(q))) = [(Πk-1 ⊗ dqT) ⊗ 
n1mn

I
×− ]∇k+mu(q)dq. However, if we multiply

differentiate u(q) with respect to z, where q is multiply differentiable with

respect to z, then, chain rule (6.16) adds terms in djq ≠ 0, for j ≥ 2, to

vec(dk(∇mu(q))). Thus, repeatedly applying product rule of differentiation

(6.17) to multiply differentiate ∇u(q) and ∇2u(q) with respect to time s and

using vectorization rule (6.3) implies, for m = 1,

(2.13)    vec(d(∇u(s))) = ∇2u(s)dq(s),

          vec(d2(∇u(s))) = [dq(s)T ⊗ In]∇3u(s)dq(s) + ∇2u(s)d2q(s),

          vec(d3(∇u(s))) = [dq(s)T ⊗ dq(s)T ⊗ In]∇4u(s)dq(s)

                           + 2[d2q(s)T ⊗ In]∇3u(s)dq(s) + ∇2u(s)d3q(s),
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and, similarly, for m = 2,

(2.14)    vec(d(∇2u(s))) = ∇3u(s)dq(s),

          vec(d2(∇2u(s))) = [dq(s)T ⊗ 2n
I ]∇4u(s)dq(s) + ∇3u(s)d2q(s),

          vec(d3(∇2u(s))) = [dq(s)T ⊗ dq(s)T ⊗ 2n
I ]∇5u(s)dq(s)

                           + 2[d2q(s)T ⊗ 2n
I ]∇4u(s)dq(s) + ∇3u(s)d3q(s),

where ∇ku(s) ≡ ∇ku(q(s)), In and 2n
I  are n×n and n2×n2 identity matrices, and

dkq(s) is the top n-dimensional subvector of dky(s). The definition of the

gradient in the appendix implies ∇u(q) = 1×n = [∂u(q)/∂q1, ..., ∂u(q)/∂qn],

∇2u(q) = n×n = [∂vec(∇u(q))/∂q1, ..., ∂vec(∇u(q))/∂qn], ..., ∇5u(q) =  n4×n =

[∂vec(∇4u(q))/∂q1, ..., ∂vec(∇4u(q))/∂qn].

We assume prices follow a 4th-order polynomial process for s ∈ [t,t+1)

and t = 1, ..., T, analogous to approximate y process (2.7),

(2.15)  p(s) = tp′  + ∇pt(s-t) + (1/2)∇
2pt(s-t)2 + (1/6)∇3pt(s-t)3 + (1/24)∇4pt(s-t)4,

with n×1 price coefficients, tp′ , ∇pt, ..., ∇
4pt. Whereas the price coefficients

remain at their initial values, indexed at t1 = t, throughout computations in

period t, the y coefficients, 
it

y∇ , ..., 
it

4y∇ , are indexed by ti and updated at

each iteration i = 1, ..., h.

From price process (2.15), we require only that it passes through initial

and ending prices in period t, i.e., p(t) = tp′  and p(t+1) = pt+1, because, in

the discrete-time utility-maximizing problem, consumers care only about

beginning- and end-of-period prices and do not care about within-period prices.

Section 2.1 explained that initial prices, tp′ , are computed to make current

observed quantities, qt, optimal and generally differ from observed prices, pt.

However, as shown in figure 2, we want prices to vary nonlinearly in order to

compute nonlinear or higher-order effects of price variations on ∆ct and ξt, in

this case up to 4th-order effects.
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For k = 4 and s ∈ [t,t+1), differentiating price process (2.15) four

times with respect to s, implies

(2.16)    dp(s) = ∇pt + ∇2pt(s-ti) + (1/2)∇3pt(s-ti)2 + (1/6)∇4pt(s-ti)3,

          d2p(s) = ∇2pt + ∇3pt(s-ti) + (1/2)∇4pt(s-ti)2,

          d3p(s) = ∇3pt + ∇4pt(s-ti),

          d4p(s) = ∇4pt.

For k = 4, differencing price process (2.15) four times with respect to

t, we express the price coefficients, ∇pt, ..., ∇4pt, in terms of forward-

differenced prices, ∆pt, ..., ∆4pt, as

(2.17)    ∇pt = ∆pt - (1/2)∆2pt + (1/3)∆3pt - (1/4)∆4pt,

          ∇2pt = ∆2pt - ∆3pt + (11/12)∆4pt,

          ∇3pt = ∆3pt - (3/2)∆4pt,

          ∇4pt = ∆4pt,

such that forward-differenced prices are defined relative to initial "optimal"

computed prices, tp′ , and subsequent observed prices, as

(2.18)    ∆pt = pt+1 - tp′ ,

          ∆2pt = pt+2 - 2pt+1 + tp′ ,

          ∆3pt = pt+3 - 3pt+2 + 3pt+1 - tp′ ,

          ∆4pt = pt+4 - 4pt+3 + 6pt+2 - 4pt+1 + tp′ .
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As required, price coefficients set according to forward differences, by

equations (2.17) and (2.18), imply price process (2.15) passes through computed

initial and observed future prices, tp′ , pt+1, ..., pt+4. Similarly, price

coefficients set according to backward or centered differences, respectively,

imply the price process passes through computed initial prices and observed

past prices or computed initial prices and observed past and future prices.

Although setting the price coefficients according to equations (2.17) and

(2.18) does achieve a perfect fit of observed prices in period t and

neighboring periods, the motivation for setting the price coefficients in this

way is numerical, not statistical.

In seven numbered steps, we now discuss the details of computing ∆ct

iteratively, for ti = t1, ..., th, as the last element of ∆yt. The steps pertain

to any period t = 1, ..., T and are fully recursive, so that every step can be

completed as long as previous steps have been completed.

Step 1: Initialize xt, prices, and their differentials. For s = t1 = t,

compute x(s) = xt = ( T
ty , T

tp′ )T = ( T
tq , λt, ct, 

T
tp′ )T, where qt is observed,

following first-order conditions (2.2) and (2.3), λt = ∇u(qt)qt and tp′  =

∇u(qt)T/λt, and  ct = 1. Following equations (2.16), set price differentials as

dp(s) = dpt = ∇pt, ..., d4p(s) = d4pt = ∇4pt and, following equations (2.17) and

(2.18), compute price coefficients, ∇pt, ..., ∇4pt, in terms of initial computed

and future observed prices, tp′ , pt+1,  ..., pt+4.

Step 2: Compute 1st-order y coefficient. Because true and approximate y

processes are evaluated at the same times, s = ti = t1, ..., th, in all

remaining steps y differentials and coefficients are equal, i.e., dky(ti) =

it
ky∇ . Thus, following equation (2.6), the first equation of (2.9), and the

first equations of (2.16) to (2.18), compute

(2.19)    H(xt) = F(xt)-1G(yt),

          ∇yt = H(xt)dpt.

Step 3. Compute 2nd-order y coefficient. Following the first equations of

(2.13) and (2.14), compute

(2.20)    vec(d(∇u(qt))) = ∇2u(qt)∇qt,
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          vec(d(∇2u(qt))) = ∇3u(qt)∇qt,

where ∇qt is the top n-dimensional subvector of ∇yt. Following equation (2.12),

compute

(2.21)    dF(xt) = 























∇

−

−∇

××

××

×

1111t

1111
T
t

11tt
2

00))q(u(d

00dp

0dp))q(u(d

,  dG(yt) = 























∇

λ∇

×n1

T
t

nt

0

q

I

,

where ∇λt is the next to last element of ∇yt. Following the first equation of

(2.11), compute

(2.22)    dH(xt) = F(xt)-1[dG(yt) - dF(xt)H(xt)].

Following the second equation of (2.9), the first equation of (2.10), the first

and second equations of (2.16) to (2.18), and, using d2y(t1) = ∇2yt, compute

(2.23)    ∇2yt = dH(xt)dpt + H(xt)d2pt.

Step 4: Compute 3rd-order y coefficient. Following the second equations

of (2.13) and (2.14), compute

(2.24)    vec(d2(∇u(qt))) = [ T
tq∇  ⊗ In]∇3u(qt)∇qt + ∇2u(qt)∇2qt,

          vec(d2(∇2u(qt))) = [
T
tq∇  ⊗ 2n

I ]∇4u(qt)∇qt + ∇3u(qt)∇2qt,

where ∇2qt is the top n-dimensional subvector of ∇2yt. Following equation

(2.12), compute

(2.25)    d2F(xt) = 























∇

−

−∇

××

××

×

1111t
2
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T
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2

11t
2

t
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00))q(u(d

00pd

0pd))q(u(d

,  d2G(yt) = 























∇

λ∇

×n1

T
t
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nt
2

0

q

I

,
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where ∇2qt is the top n-dimensional subvector and ∇2λt is the next to last

element of ∇2yt. Following the second equation of (2.11), compute

(2.26)    d2H(xt) = F(xt)-1[d2G(yt) - d2F(xt)H(xt) - 2dF(xt)dH(xt)].

Following the third equation of (2.9), the second equation of (2.10), the first

to third equations of (2.16) to (2.18), and, using d3y(t1) = ∇2yt, compute

(2.27)    ∇3yt = d2H(xt)dpt + 2dH(xt)d2pt + H(xt)d3pt.

Step 5: Compute 4th-order y coefficient and update y. Following the third

equations of (2.13) and (2.14), compute

(2.28)    vec(d3(∇u(qt))) = [ T
tq∇  ⊗ T

tq∇  ⊗ In]∇4u(qt)∇qt

                            + 2[ T
t

2q∇  ⊗ In]∇3u(qt)∇qt + ∇2u(qt)∇3qt,

          vec(d3(∇2u(qt))) = [
T
tq∇  ⊗ T

tq∇  ⊗ 2n
I ]∇5u(qt)∇qt

                            + 2[ T
t

2q∇  ⊗ 2n
I ]∇4u(qt)∇qt + ∇3u(qt)∇3qt,

where ∇3qt is the top n-dimensional subvector of ∇3yt. Following equation

(2.12), compute

(2.29)    d3F(xt) = 
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where ∇3λt is the next to last element of ∇3yt. Following the third equation of

(2.11), compute

(2.30)   d3H(xt) = F(xt)-1[d3G(yt) - d3F(xt)H(xt) + 3d2F(xt)dH(xt) + 3dF(xt)d2H(xt)].



20

Following the fourth equation of (2.9), the third equation of (2.10), the first

to fourth equations of (2.16) to (2.18), and, using d4y(t1) = ∇4yt, compute

(2.31)    ∇4yt = d3H(xt)dpt + 3d2H(xt)d2pt + 3dH(xt)d3pt + H(xt)d4pt.

Following equation (2.8), compute

(2.32)    tŷ∆  = ty∇ h-1 + (1/2) t
2y∇ h-2 + (1/6) t

3y∇ h-3 + (1/24) t
4y∇ h-4

and update y as 
2t

y  = yt + tŷ∆ .

Step 6: Update price coefficients, 
2t

x , and y. For s = t2 = t + 1/h,

following equations (2.15) and (2.16), update prices and their differentials,

as

(2.33)   
2t

p  = tp′  + ∇pt(1/h) + (1/2)∇
2pt(1/h)2 + (1/6)∇3pt(1/h)3 + (1/24)∇4pt(1/h)4,

         
2t

dp  = ∇pt + ∇2pt(1/h) + (1/2)∇3pt(1/h)2  + (1/6)∇4pt(1/h)3,

         
2t

2pd  = ∇2pt + ∇3pt(1/h) + (1/2)∇4pt(1/h)2,

         
2t

3pd  = ∇3pt + ∇4pt(1/h),

         
2t

4pd  = ∇4pt,

such that price coefficients ∇pt, ..., ∇4pt remain at initially computed values.

Set 
2t

x  = (
T
2t

y , T
2t

p )T. For s = t2, repeat steps 2 to 5 and update y coefficients

to 
2t

y∇ , ..., 
2t

4y∇ . Following equation (2.32), compute 
2t

ŷ∆  = 
2t

y∇ h-1 +

(1/2)
2t

2y∇ h-2 + (1/6)
2t

3y∇ h-3 + (1/24)
2t

4y∇ h-4 and update y as 
3t

y  = 
2t

y  + 
2t

ŷ∆ .

Step 7: Repeat steps 2 to 6. For s = t3 = t + 2/h, update prices and their

differentials, as

(2.34)   
3t

p  = tp′  + ∇pt(2/h) + (1/2)∇
2pt(2/h)2 + (1/6)∇3pt(2/h)3 + (1/24)∇4pt(2/h)4,
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3t

dp  = ∇pt + ∇2pt(2/h) + (1/2)∇3pt(2/h)2  + (1/6)∇4pt(2/h)3,

         
3t

2pd  = ∇2pt + ∇3pt(2/h) + (1/2)∇4pt(2/h)2,

         
3t

3pd  = ∇3pt + ∇4pt(2/h),

         
3t

4pd  = ∇4pt.

Set 
3t

x  = (
T
3t

y , T
3t

p )T. For s = t3, repeat steps 2 to 5 and update y coefficients

to 
3t

y∇ , ..., 
3t

4y∇ . Compute 
3t

ŷ∆  = 
3t

y∇ h-1 + (1/2)
3t

2y∇ h-2 + (1/6)
3t

3y∇ h-3 +

(1/24)
3t

4y∇ h-4 and update y as 
4t

y  = 
3t

y  + 
3t

ŷ∆ . Repeat these steps for s = t4 = t

+ 3/h, ..., s = th = t + (h-1)/h. At the last step, compute ht
ŷ∆  and pick ∆ct as

the last element of 
ht

ŷ∆ .

2.3. Computing Residual Quantities.

We compute -exp(ξt) = tq̂  - qt exactly like ∆ct, except that we delete all

reference to ct in y, x, F(x), and G(y), because now ct ≡ 1 so that it drops out

as a variable. Thus, now y = (qT, λ)T, as before x = (yT, pT)T, F(x) is still

defined by equation (2.4) but with the last row and column deleted, and G(y) is

still defined by equation (2.4) but with the last row deleted. Thus, equation

(2.4) now becomes

(2.35)    F(x)dy = G(y)dp  or  
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dp.

After redefining F(x) and G(x) according to equation (2.35), we compute

∆yt in response to ∆pt = pt - tp′  exactly as we computed ∆yt in response to ∆pt =

pt+1 - tp′  in the previous section. Previously, we started at the price-quantity

combination tp′  and qt, corresponding to point A on budget line AA in figure 1,

and ended at the price-quantity combination pt+1 and qB, where qB corresponds to

point B on budget line BB in figure 1. Now, we start at the same price-quantity
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combination and end at the price-quantity combination pt and tq̂ , which

corresponds to point E on budget line EE in figure 1. Previously, we picked ∆ct

as the last element of computed ∆yt. Now, we pick -exp(ξt) = tq̂  - qt as the top

n-dimensional subvector of computed ∆yt.

3. Statistical Analysis and Time-Varying Utility Functions.

[to be completed]

4. Illustrative Application.

[to be completed]

5. Conclusion.

[to be completed]

6. Appendix: Matrix Differentiation.

6.1. Definitions of Matrix Derivatives.

Let A(x) ∈ Dk: Rn → Rp×q be a K-times differentiable p×q matrix function

of the n×1 vector x. A(x) could be a function of the matrix X ∈ Rk×m, such that

x = vec(X), where vec(⋅) is the columnwise vectorization of a matrix. We

consider derivatives of elements of A with respect to elements of x in three

forms: the ∂ or partial derivative form, the d or differential form, and the ∇

or gradient form.

For k = 1, ..., K and i1, ..., ik ∈ {1, ..., n}, we define k
ki1i "∂ A ∈ Rp×q by

(6.1)      k
ki1i "∂ A = 
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as the partial derivative form of k-th order partial derivatives of the

elements of A with respect to 
1i

x , ..., 
ki

x .

The differential form associated with (6.1) is

(6.2)     dkA = ∑∑ ==
∂n

1ki ki1i
n

11i "" A⋅d
1i

x ⋅⋅⋅ d
ki

x ,

where the dxi's are small (strictly, infinitesimal) increments to the elements

of x = (x1, ..., xn)T.

The gradient form associated with (6.1) and (6.2) can now be built up

recursively, starting with k = 1. We call matrix representations of kth

derivatives of vector function or vectorizations of matrix functions "k-

gradients," which generalizes common terminology. For example, for scalar

functions the 1-gradient is the gradient (in the usual sense) and the 2-

gradient is the Hessian; for vector functions or vectorizations of matrix

functions, the 1-gradient is the Jacobian.

We use the following rule for vectorizing matrix products,

(6.3)     vec(ABC) = [CT ⊗ A]vec(B),

where A, B, and C are matrices conformable to the matrix product ABC and ⊗

denotes the Kronecker matrix product (Magnus and Neudecker, 1988, p.30).

6.2. Representations of Matrix Derivatives.

For k = 1, (6.1) and (6.2) become

(6.4)     ∂iA = 
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(6.5)     dA = ∑ =

n

1i
∂iA⋅dxi.
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Note that vectorization, summation, and differentiation operations are

commutative, i.e., can be applied in any order. Therefore, we vectorize (6.5),

to obtain

(6.6)     vec(dA) = [∂1vec(A), ..., ∂nvec(A)]dx,

where dx = (dx1, ..., dxn)T, so that

(6.7)     vec(dA) = ∇A⋅dx,

(6.8)     ∇A = [∂1vec(A), ..., ∂nvec(A)].

Equations (6.7) and (6.8) relate the ∂, d, and ∇ forms of first-order

derivatives of A to each other.

To obtain analogues of (6.7) and (6.8) for k = 2, we differentiate them

to obtain

(6.9)     vec(d2A) = d(∇A)dx,

(6.10)    d(∇A) = [d(vec(∂1A)), ..., d(vec(∂nA))]

                = ∑ =

n

1j
[∂j(vec(∂1A)), ..., ∂j(vec(∂nA))]dxj.

Then, we vectorize (6.10) to obtain

(6.11)    vec(d(∇A)) = ∑ =

n

1j
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Then, because vec(∇A) = 
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# , we obtain

(6.12)    vec(d(∇A)) = [∂1vec(∇A), ..., ∂nvec(∇A)]dx.
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Continuing in this manner for k = 2, ..., K, we obtain

(6.13)    vec(d(∇k-1A)) = ∇kA⋅dx,

(6.14)    vec(dkA) = [(Πk-1 ⊗ dxT) ⊗ Ipq]∇kA⋅dx,

where Πk-1 ⊗ dxT denotes k-2 successive Kronecker products of dxT (Π0 ⊗ dxT =

dxT, Π1 ⊗ dxT = dxT ⊗ dxT, ...), and

(6.15)    ∇kA = [∂1vec(∇
k-1
A), ..., ∂nvec(∇k-1A)].

Applied for k = 1, ..., K, (6.15) recusively organizes gradient form

derivatives of A up to order K as matrices. Basically, ∇kA is the Jacobian

matrix of the vectorization of ∇k-1A.

6.3.  Differentiation Rules.

Let A(x) ∈ D: Rn → Rp and B(y) ∈ D: Rp → Rq be differentiable vector

functions (or vectorizations of matrix functions). Let C(x) ∈ D: Rn → Rq be the

differentiable composite vector function C(x) = B(A(x)). Then, the gradient

form of derivatives of C(x) is given by the chain rule of differentiation,

(6.16)    ∇C(x) = ∇B(A)⋅∇A(x).

Let A(x) ∈ D: Rn → Rp×q and B(x) ∈ D: Rn → Rp×q be differentiable matrix

functions conformable to the ordinary matrix product C(x) = A(x)⋅B(x). Then, the

differential form of derivatives of C(x) is given by the product rule of

differentiation,

(6.17)    dC(x) = dA(x)⋅B(x) + A(x)⋅dB(x).

Rules (6.16) and (6.17) are quickly proved by elementwise application of

the scalar chain rule of differentiation and the scalar product rule of

differentiation.
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7. Figures and Tables.

Figure 1: Price Substitution and Real Income Effects

Explanation: Figure 1 depicts the current period, t. The points A to E are
defined as follows: A is the currently observed consumption point, at current
observed quantitites, qt; B is optimal on budget line BB, on the same
indifference curve AB as A, at next period's observed prices, pt+1; C is optimal
on budget line CC, through A, at next period's prices; D is optimal on budget
line DD, at next period's prices and current nominal income, et; E is optimal on
observed budget line EE, through A, at current prices and current income. The
budget lines are defined as follows: AA is given by qp~ T

t′  = 1, for tp
~′  =

∇u(qt)T/∇u(qt)qt; BB is given by qp~T
1t+  = ϕt( t

T
1t qp + /et), for 0 < ϕt < 1; CC is

given by qp~T
1t+  = t

T
1t qp + /et < 1; DD is given by qp~T

1t+  = 1; and, EE is given by

qp~T
t  = 1.
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Figure 2: Example of Polynomial Price Path
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Table 1: Accuracy of Perturbed Polynomial Path Method

Accuracy Order

of Magnitude ε

Polynomial Order

k

Step Size

h-1
Number of

Iterations h

1 1.00×10-4 104

2 1.00×10-2 102

3 4.55×10-2 22

4 1.00×10-1 10

5 1.43×10-1 7

Semi-single

Precision

ε = O(10-4)

6 2.00×10-1 5

1 1.00×10-8 108

2 1.00×10-4 104

3 2.15×10-3 465

4 1.00×10-2 100

5 2.50×10-2 40

Single Precision

ε = O(10-8)

6 4.55×10-2 22

1 1.00×10-16 1016

2 1.00×10-8 108

3 4.64×10-6 215,444

4 1.00×10-4 104

5 6.31×10-4 1585

Double Precision

ε = O(10-16)

6 2.15×10-3 465

Comments: Given the polynomial order of approximation, k, and the number of
iterations or summed integrals, h (both positive integers), the accuracy of the
final computed result is about ε ≅ h-k (a positive real number). Alternately,
given the desired accuracy, ε, and the polynomial order, k, the required number
of summed terms to achieve the desired accuracy is h = ε-1/k, where x is the
ceiling function, i.e., the smallest integer ≥ real number x.
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