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Abstract

We estimate a unit root bilinear process using the Maximum Likelihood method
with log-likelihood function constructed by means of the Kalman filter, and evaluate
the finite sample properties of this estimator.

One hundred and six world-wide price series are tested for unit root bilinearity
applying the test suggested by Charemza et al. (2002b). Applying the Maximum
Likelihood estimator based on the Kalman filter, the null hypothesis of no bilinearity is
rejected for 40 out of 106 series at the 5% level of significance. Most of the significant
unit root bilinear coefficient estimates are explosive.
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21 Introduction
A voluminous literature has been published on the topic of modelling macroeconomic and
financial time series, and, as is well known, some of these indicators often appear to fol-
low non-linear processes (see, for example, Hinich and Patterson, 1985, Scheinkman and
LeBaron, 1989, among others). A difficulty arising with regard to this issue is to prop-
erly specify the form of non-linearity that exists. A class of processes that can (partially)
capture possible non-linearity in economic series of data, is the class of bilinear processes
(see Granger and Andersen, 1978, Subba Rao and Gabr, 1984, Terdik, 1999, for discus-
sion). Some examples of their applicability to realistic economic and, in particular, financial
situations are discussed by Granger and Andersen (1978, pp. 14-16).
Bilinear models are a simple non-linear extension of linear models and have been suc-

cessfully applied for analyzing macroeconomic and financial series. For example, Byers and
Peel (1995), using inter-war exchange rate data, show empirical evidence of bilinearity in
the mean, by applying the bilinear-QARCH model, which allows for non-linearity in both
mean and variance. Peel and Davidson (1998) propose a bilinear error correction mecha-
nism (ECM) and suggest its application to models in which the “variables display abrupt
changes”. The authors show that, using annual data on real consumer’s expenditure and
real gross national product for the UK, the bilinear ECM is superior to both the linear and
an alternative non-linear model. On the other hand, Maravall (1983) studies the application
of bilinear models for forecasting non-linear processes and demonstrates improvement over
ARIMA forecasts when the bilinear model is used.
The present work focuses on a narrow class of bilinear processes, with a single bilinear

term, and which, in addition, are 2nd order non-stationary. These processes, called unit root
bilinear, have been recently introduced by Charemza, Lifshits and Makarova (forthcoming)
(abbreviated CLM hereafter), who have also proposed a two-step testing procedure for unit
root bilinearity. Strong evidence of the presence of bilinearity has been established in a large
number of mature and emerging stock market indices (see CLM).
Here, we apply the Maximum Likelihood method for estimating the coefficient of bilin-

earity in unit root bilinear processes. We construct the log-likelihood function using the well-
known Kalman filter (KF) algorithm (see Hamilton, 1994, Harvey, 1989, for derivations),
which is applicable to non-stationary and non-linear processes alike. The log-likelihood
function, formed in this way, is numerically maximized using the Simulated Annealing (SA)
algorithm (see Corana et al., 1987, Goffe et al., 1994) and the familiar Newton-Raphson
(NR) algorithm. The finite sample properties of the Kalman filter estimator are examined
by a series of Monte Carlo simulation experiments and, as an illustration, this technique is
applied to a large selection of CPI or RPI world-wide data.
The rest of the paper is organized as follows: Section 2 states the definition and some

of the main properties of the unit root bilinear process. Section 3 proposes that the unit
root bilinear coefficient be estimated by using the Kalman filter to construct the likelihood,
and then maximizing this using either the Simulated Annealing or the Newton-Raphson
numerical algorithms. Section 4 presents numerical evidence on the finite sample properties
of the maximum likelihood estimator. The two-step testing procedure for unit root bilinear-
ity is outlined in Section 5. A set of 106 world-wide, seasonally unadjusted, monthly price
series are examined for bilinearity, and the test and estimation results discussed in Section
6. Finally, Section 7 concludes.
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2 Unit root bilinear processes
Let {yt}Tt=1 be a discrete time series. A process of the form:

yt =
PX
p=1

apyt−p +

QX
q=0

cqet−q +
MX
m=1

KX
k=1

bm,kyt−met−k, (1)

with et ∼ iidN(0, σ2e) and coefficients c0 = 1, ap, cq, bm,k ∈ R, p = 1, 2, ..., P, q =
1, 2, ..., Q, m = 1, 2, ...,M, k = 1, 2, ...,K is called a bilinear process. The bilinear process is
denoted by BL(P,Q,M,K) and reduces to linear ARMA(P,Q) iff the coefficients bm,k = 0
∀ m,k.
Detailed theoretical analysis of various bilinear models is presented by Granger and

Andersen (1978). We restrict our analysis to investigating the subclass of bilinear processes
with a single bilinear term, BL(1, 0, 1, 1). Granger and Andersen (1978) show that the
necessary stability condition for the process,

yt = a1yt−1 + b11yt−1εt−1 + εt (2)

with a1, b11 6= 0, εt ∼ iidN(0, σ2ε), is a
2
1 + b211σ

2
ε < 1. Introducing the restriction a1 = 1,

CLM define the so-called unit root bilinear process, which is our main interest in the present
study. We consider a process of the form:

yt = yt−1 + byt−1εt−1 + εt

b = b11 6= 0, εt ∼ iidN(0, σ2ε). (3)

Clearly, process (3) is non-stationary since it does not satisfy the aforesaid stability condition.
Further, the process has a drift that depends on the non-linearity parameter, since E(yt) =
bσ2εt. Furthermore, the first differenced process ∆yt = byt−1εt−1+ εt, is also non-stationary,
unlike the first difference of the linear unit root process. To see this, observe that taking
ε0 = y0 = 0, we find V ar(∆yt) = h (t) , a function of the time, t (see CLM for details) which
does not converge to a constant as t→∞ and thus the unconditional distribution of ∆yt is
not independent of time.
Similarly to Donsker’s classical invariance principle, Charemza, Lifshits and Makarova

(2002) introduce scaling in space and time of process (3) with factors 1/
√
T and 1/T, re-

spectively, and show firstly, asymptotic convergence of the scaled process to the solution
of a stochastic differential equation and secondly, that this solution (a) is well-defined for
b ∈ (0, 1/

√
T ), (b) coincides with the limit process of the linear model for b → 0, and (c)

is divergent for b > 1/
√
T . Hereafter, we restrict our analysis to processes of the form (2)

with finite sample size T and b ∈
³
0, 1/
√
T
´
, which seem to be of practical use in eco-

nomics, as such unit root bilinear processes are not explosive, with positive mean (recall
that E(yt) = bσ2εt). Although not explosive within sample (t ≤ T ), any such process with
constant b coefficient will eventually become explosive, when T > b−2, which may be a
desirable property when modelling certain price movements.
To visualize consider the sample paths of a few BL(1, 0, 1, 1) processes generated follow-

ing (3) and using an identical sequence of innovations εt, εt ∼ iid N(0, 1) (Fig. 1 (a) - (c)
below).
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(a) a = 1, b = 0.25/
√
T , T = 1000 (b) a = 1, b = 0.9/

√
T , T = 1000

(c) a = 0.7, b = 0.4, T = 1000

Fig. 1 (a)-(b) unit root bilinear processes; (c) a stationary bilinear process.

As is evident from Fig. 1 (a)-(b), an increase in the coefficient of bilinearity induces
larger variability in the generated processes as well as a steeper trend in the mean.

3 Estimating the bilinear coefficient in a unit root bi-
linear process

In our univariate, unit root bilinear process, (3), the coefficient of bilinearity b determines
the impact of the non-linear part of this process, yt−1εt−1, with εt ∼ iidN(0, σ2ε), t =
1, 2, ..., T, on the observed variable yt. The non-linear part contains the innovations εt−1,
which are unobserved, thus leading to difficulties with regard to the estimation of the bilinear
coefficient. The present work suggests estimating process (3) by means of the Maximum
Likelihood method. We construct the log-likelihood function, lnF (y; b, σ2ε), applying the
Kalman filter to the state-space form presented in Section 3.1:
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lnF (y; b, σ2ε) = ln
TY
t=1

ft(yt|Ψt−1) =
TX
t=1

ln ft(yt|Ψt−1),

where b and σ2ε stand for the unknown parameters, Ψt = {y0, y1, y2, ..., yt} is the set of ob-
servations available at time t = 1, 2, ..., T, and ft(yt|Ψt−1) denotes the recursively expressed
probability density function of yt given Ψt−1. Recursive substitution of εt−1, εt−2, ..., ε1 (i.e.
εt−m = ∆yt−m − byt−(m−1)εt−(m−1), m = 1, ..., t− 1) into equation (3) yields:

yt = yt−1 +
t−1X
j=1

(−1)j+1bj∆yt−j .
jY

k=1

yt−k + btε0

tY
i=1

yt−i + εt. (4)

Since 0 < b < 1/
√
T the term btε0

tQ
i=1

yt−i vanishes with increasing t and, given that

{εt}Tt=0 ∼ iidN(0, σ2ε), the distribution of yt conditional on Ψt−1 is approximately Gaussian
with known mean and variance (see Hamilton, 1994, for the corresponding mean and variance
expressions). Note that if we take ε0y0 = 0 as an initial condition then the conditional
distribution is exactly Gaussian. In addition, since equation (4) leads to a log-likelihood
function, which is a polynomial of degree 2t with respect to b, lnF (y; b, σ2ε) may have more
than one real local maximum.

3.1 The Kalman Filter algorithm

To construct the log-likelihood function, lnF (y; b, σ2ε), we convert the unit root bilinear
process into a state-space form (i.e. a system of two equations: state equation and obser-
vation equation), and apply a tool applicable to non-linear and non-stationary processes,
namely the Kalman filter algorithm. It is, however, well-known that the state-space form
of a given process is not necessarily unique (see, for example, Harvey, 1989, pp. 102-103).
Moreover, the non-linearity of our underlying process (3) might result in state-space rep-
resentations with a state vector following a non-stationary process. This would lead to
difficulties with regard to the choice of the state vector initial values, so we use the following
state-space representation of (3), which is computationally convenient as the state vector is
a stationary process (see below):

yt = At−1 +Bt−1ηt observation equation

ηt+1 = Fηt + ωt+1 state equation

where t = 1, 2, ..., T, At−1 = [yt−1] and Bt−1 =
£
byt−1 1

¤
are time-varying coeffi-

cient matrices, F =

µ
0 1
0 0

¶
and, ηt+1 =

£
εt εt+1

¤0
and ωt+1 =

£
0 εt+1

¤0
with

{εt}Tt=0 ∼ iidN(0, σ2ε). The coefficient of bilinearity, b, and the variance of the innovations,
σ2ε, are the parameters to be estimated. Given the set of observations Ψt = {y0, y1, y2, ..., yt}
available at time t, the Kalman filter algorithm recursively generates an optimal non-linear
forecast of the state vector ηt+1, t = 1, . . . , T . Because the state vector ηt is a stationary
process, we may start the algorithm with an initial value η̂1|0 =

£
0 0

¤0
(see Hamilton,

1994). In brief, the KF algorithm consists in the consecutive application of the following
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four steps, executing steps 2 to 4 T times:

step 1 : initialization of the state vector η̂1|0;
step 2 : optimal least squares forecast of the next observation ŷt|t−1, t = 1, ..., T,

based on the information available at time t− 1, namely the conditional distribution of yt;
step 3 : updating the state vector η̂t|t, t = 1, ..., T, based on the information available

at time t;
step 4 : one period ahead optimal forecast of the state vector η̂t+1|t, t = 1, ..., T ,

based on the information available at time t.

We estimate the unknown parameters b and σ2ε applying the Maximum Likelihood
method to the string of conditional distributions delivered at Step 2. It is straightforward
to show that the log-likelihood function lnF (y; b, σ2ε), derived using the KF algorithm ap-
plied to the state-space form above, is bounded for b < 1/

√
T . To maximize lnF (y; b, σ2ε)

we require a numerical optimization algorithm; however, some such methods (e.g. BFGS,
BHHH, DFP, Polak-Ribiere Conjugate Gradient), often fail to maximize our log-likelihood
function.

3.2 Maximizing the log-likelihood function

If speed is required then, by sacrificing some accuracy, we maximize lnF (y; b, σ2ε) by the
well-known Newton-Raphson (NR) algorithm; however, when precision is needed or NR
fails to maximize our log-likelihood function, we adopt the so-called Simulated Annealing
(SA) algorithm (see Corana et al., 1987, Goffe et al., 1994, among others).
The SA algorithm has a number of advantages over the conventional numerical opti-

mization techniques. It has fewer inherent limitations, for example there is no need for the
function to be smooth or continuous, and it is applicable to multivariate, ill-conditioned
functions with many local optima. It overcomes the main problems associated with tradi-
tional optimization algorithms (e.g. infinitely large parameter values, looping through the
same point, slow convergence or lack of convergence, finding local instead of global opti-
mum, etc.) and finds the global optimum or a good, near-optimal local optimum. Corana
et al. (1987), for example, test the SA algorithm against (a) the Nelder and Mead simplex
method (see Nelder and Mead, 1965) and (b) a global optimizer using Adaptive Random
Search (see Marsi et al., 1980), applying these methods to the Rosenbrock function (of di-
mensions 2 and 4) and to multiminima functions (of dimension 2, 4 and 10). In all the cases
SA found the global minimum or the local minimum closest to the global one and, with a
few exceptions, proved to be "much more reliable and efficient than the other algorithms"
(see Corana et al., 1987, pp. 278). Later, Goffe et al. (1994) apply SA to four econometric
problems and compare the SA’s performance to the one of few conventional algorithms (i.e.
simplex, conjugate gradient and quasi-Newton algorithms), showing that the SA algorithm
is superior.
A major advantage of the SA algorithm is its ability to find the global optimum ir-

respective of the initial parameter values. As is well-known the conventional numerical
optimization techniques, in particular the NR algorithm, require suitably chosen initial val-
ues, which should be as close as possible to the true parameter values. On the other hand,
a disadvantage of the SA algorithm is its high computational cost (see Goffe et al., 1994).
As a result, in our simulation studies (see Section 4) we use the NR algorithm. When ap-
plying NR for maximizing the log-likelihood function, lnF (y; b, σ2ε), we assign b0 and σ20 -
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the starting values of the unknown parameters b and σ2ε - using initial estimates constructed
similarly to a suggestion of CLM: under the assumption that the bilinear coefficient is ap-
proximately zero, i.e. b ≈ 0, equation (3) is equivalent to ∆yt ≈ εt; consequently, applying
the OLS method to ∆yt = byt−1∆yt−1+ εt, allows one to roughly estimate the coefficient of
bilinearity, giving the estimate, bbOLS . Then, with b0 = bbOLS , we estimate the variance from
the residuals, giving, σ20 = σ̂2bεOLS . If the NR algorithm fails to maximize the log-likelihood
function, we switch to the SA algorithm. SA is also used in the application to prices (see
Section 6).
In brief, whilst the conventional optimization algorithms (including NR) move uphill

iteratively, by moving uphill and downhill the SA algorithm ensures first, independence
from the initial parameter values and second, the ability to escape from a local optimum
and to proceed to find the global one. The Simulated Annealing approach is described in
the following section.

3.3 The Simulated Annealing Algorithm

Intuitively, the principles of the SA algorithm can be compared with those of a physical
process by which molten metal is cooled. If the process of cooling is slow (known as an-
nealing), the metal passes gradually from high to low energy state, that is, to the global
minimum energy state of the system. If, however, the metal is cooled rapidly, when fully
cooled it might contain more energy than annealed metal, that is the system will be in a
local minimum state with higher energy than the energy of a slowly cooled metal system.
Assume one is interested in finding the global maximum of a bounded function, L(θ),

where θ = (θ1, θ2, ..., θn) is an n dimensional vector collecting the parameters to be es-
timated (e.g. in our case L(θ) = lnF (y;θ), with θ =

£
b σ2ε

¤0
). We outline the SA

algorithm following the work of Corana et al. (1987) and Goffe et al. (1994). The algorithm
consists in the successive execution of the following steps:

step 1 : Initialization of the vectors θ and ν, and the temperature T :
· θ = θ0 is an n dimensional vector of parameters such that the i-th coordinate,

θ0i , i = 1, ..., n, takes any value in an initially specified interval, in which the parameter θi
lies;

· ν = ν0 is an n dimensional vector of step lengths such that the i-th coordinate,
ν0i , i = 1, ..., n, corresponds to θi’s initial step length;

· temperature T = T
0
;

step 2 : A new point, θnew = (θ1, ..., θi,new, ..., θn), is generated by the rule:

θi,new = θi + r.νi

where i = 1, . . . , n is the i-th coordinate direction and r ∈ [−1, 1] is a uniformly distrib-
uted random number;

step 3 : A decision of acceptance or rejection of the new point, θnew, is formed as
follows:

· if L(θnew) = L(θ) then θnew is accepted, θ := θnew, and the algorithm moves
uphill;

· if L(θnew) < L(θ) then θnew is accepted with probability

P = e(L(θnew)−L(θ))/T . (5)
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If P is greater than a uniformly distributed random number P 0, P 0 ∈ [0, 1], then θ :=

θnew and the algorithm moves downhill. This is known as the Metropolis criterion (see
Metropolis et al., 1953);

step 4 : Steps 2 to 3 are repeated for each coordinate direction i, i = 1, ..., n;

step 5 : Steps 2 to 4 are repeated Nν times;

step 6 : The step vector, ν, is adjusted such that one-half of the total number of
moves are accepted (see Corana et al., 1987, for more detail);

step 7 : Steps 2 to 6 are repeated NT times, that is the length of the step vector is
updated NT times;

step 8 : The temperature is reduced following the rule:

Tnew = rT .T ,

where the reduction factor rT ∈ [0, 1] is set by the user; T := Tnew. Clearly, the higher

the coefficient rT the slower the temperature falls;

step 9 : Steps 2 to 8 are repeated until a termination criterion is satisfied (see Corana
et al., 1987, for more detail).

It is clear from (5) that starting at the current maximum and at lower temperature
decreases the number of downhill moves and, consequently, the length of the step vector, ν,
declines, thus, concentrating the new search on the most promising area. The temperature is
reduced every Nν .NT cycles of moves along every direction and after NT step adjustments,
that is till it is low enough so that no useful improvement can be expected from further
temperature diminishing. The parametersNν , NT and rT are set by the user and suggestions
for their values are presented in Corana et al. (1987).
When using the SA algorithm, however, one needs to carefully choose the initial temper-

ature T
0
(see Corana et al., 1987). Detailed discussion of this issue is also presented in the

work of Goffe et al. (1994), who propose a useful way of determining the initial temperature,
T
0
, namely: starting at low temperature, say, eT 0 = 10, and with reduction factor larger

than unity, say, er eT = 1.5, we identify the temperature, fT , at which all the n intervals in
which the unknown parameters must lie, are in the search area. The initial temperature is
then set as T

0
= eT .
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4 Finite sample properties of the Kalman filter estima-

tor
To examine the finite sample bias and rmse of the KF estimator applied to a unit root
bilinear process, we conducted a series of Monte Carlo simulation experiments for samples

of size T = 50, 100, 250, 500, and coefficients of bilinearity b in the range
³
0, 1/
√
T
´
. In

each experiment we generate series of length T +100, following a DGP of the form (3) with
εt ∼ iid N(0, 1); discard the first 100 elements, apply the NR algorithm to the likelihood
obtained via the Kalman filter to obtain the estimates of b and repeat 1, 000 times to
calculate bias and rmse of the KF estimator. The NR algorithm is initialized using the true
parameter values.

Table 1 Bias and rmse of the Kalman filter estimator

for samples of size T = 50, 100, 250, 500 and b ∈ (0, 1/
√
T );

number of Monte Carlo replications: 1,000.

T 50 100 250 500
b bias rmse bias rmse bias rmse bias rmse
0.01 -0.0009 0.0367 0.0004 0.0219 0.0001 0.0082 0.0001 0.0040

( -0 .0 2 5 ) ( 0 .0 1 4 ) ( 0 .0 1 2 ) ( 0 .0 2 5 )

0.02 -0.0015 0.0357 0.0005 0.0201 0.0002 0.0079 0.0000 0.0040
( -0 .0 4 2 ) ( 0 .0 1 7 ) ( 0 .0 2 5 ) ( 0 .0 0 0 )

0.03 -0.0012 0.0342 0.0003 0.0190 0.0003 0.0079 0.0000 0.0045
( -0 .0 3 5 ) ( 0 .0 1 1 ) ( 0 .0 3 8 ) ( 0 .0 0 0 )

0.04 -0.0003 0.0328 -0.0001 0.0180 0.0006 0.0092 0.0000 0.0063
( -0 .0 0 9 ) ( - 0 .0 0 4 ) ( 0 .0 6 5 ) ( 0 .0 0 0 )

0.05 0.0001 0.0340 -0.0001 0.0167 0.0003 0.0121
(0 .0 0 3 ) ( - 0 .0 0 3 ) ( 0 .0 2 5 )

0.07 0.0001 0.0390 0.0001 0.0212
(0 .0 0 3 ) ( 0 .0 0 3 )

0.09 0.0001 0.0390 -0.0004 0.0303
(0 .0 0 3 ) ( 0 .0 1 2 )

0.12 0.0025 0.0548
(0 .0 4 6 )

Table 1 above presents the results of this empirical exercise. The t-statistics given in
brackets reveal insignificance of the bias at the 10% level of significance. It is evident that

for fixed b ∈
³
0, 1/
√
T
´
, the rmse of the KF estimator progressively decreases with an

increase in the sample size. With a few exceptions, similar conclusion holds for the bias of
the KF estimator. For fixed sample size T, however, a clear increase in the rmse values is
observed for b values approaching the theoretical upper limit of 1/

√
T . 1

To test the significance of the unit root bilinear coefficient b estimated by the KF al-
gorithm, we calculate the Student t-statistic critical values for samples of different size,

1The empirical exercise described above was repeated for the OLS estimator. Comparison between
the OLS and the KF estimator reveals that (a) the bias of the OLS estimator is negative and larger in
absolute value, and (b) the OLS estimator has smaller rmse for samples of small size and bilinearity of small
magnitude, more precisely for {T = 50; b = 0.01, ..., 0.05}, {T = 100, b = 0.01, ..., 0.03}, {T = 250, b = 0.01}.



10
T = 50, 100, 250, 500, and levels of significance 0.01, 0.05, 0.1 (see Table 2 below). We gen-
erate 30,000 random walk series yt = yt−1+et with et ∼ iid N(0, 1), t = 1, 2, ..., T , each time
estimating a regression of the form ∆yt = byt−1et−1+ et. Because the SA algorithm is very
slow, this experiment again uses the NR algorithm to maximize the log-likelihood function.
The parameters b and σ2ε are initialized as explained in Section 3.2 above. If NR fails, we
apply the SA algorithm. In addition, to allow for a drift different from bσ2εt, we also calculate
the Student t-statistic critical values for regressions of the form ∆yt = d + byt−1et−1 + et,
where d is a constant.

Table 2 Critical values of the Kalman filter Student t-statistic;
number of Monte Carlo replications: 30,000.

Levels of significance
Sample size T d = 0 d 6= 0

0.01 0.05 0.1 0.01 0.05 0.1
50 3.2393 1.9514 1.4454 3.3662 2.0202 1.4931
100 2.6781 1.7861 1.3710 2.7468 1.8205 1.3881
250 2.4764 1.7108 1.3268 2.4469 1.7093 1.3108
500 2.3535 1.6611 1.2794 2.3666 1.6481 1.2698

Normal distribution (∞) 2.3263 1.6449 1.2816 2.3263 1.6449 1.2816

As is evident from Table 2, the distribution of the Kalman filter estimates shrinks with
an increase in sample size, approaching the Normal distribution for samples of large size.

5 Testing for unit root bilinearity
Clearly, the distribution of the bilinear coefficients in process of the form (2) would vary with
the variation in the values of the coefficient a1. Since in the present study we investigate the
class of processes (2) with a1 = 1 only (i.e. process (3)), before testing for bilinearity (i.e.
b 6= 0) we test for presence of a unit root in the first-order (linear) autoregressive process.
This is the first step of the two-step testing procedure suggested by CLM. Conditional on
the presence of a unit root, the second step consists in testing the null hypothesis of no
bilinearity, b = 0, versus the alternative of bilinearity, b 6= 0, in a regression of the form
∆yt = byt−1εt−1 + εt (for more detail regarding the validity of the conditional, unit root
bilinear testing procedure see CLM). Clearly, under the null ∆yt = byt−1∆yt−1+εt with b =
0. Based on the OLS method, CLM derive the Student t-test statistic for estimated models
with and without a constant (i.e. ∆yt = (d) + byt−1∆yt−1 + εt), and prove convergence to
functionals of Wiener processes, which are N(0, 1). They report finite sample critical values
for both tests and show that the distributions quickly converge to the Normal. Investigation

of the power of these tests shows that, for b ∈
³
0, 1/
√
T
´
, power rises monotonically with

increasing b, whilst for b ≥ 1/
√
T it declines quickly. Moreover, for samples of size 200 or

larger and b values close to 1/
√
T , the power of the test is close to unity.

In the practical exercise below we test for the presence of bilinearity applying the OLS
method (with critical values calculated for the purposes of this analysis) and the Maximum
Likelihood method based on the KF (with critical values reported in Table 2), and compare
the results. Rejection of the null hypothesis b = 0 leads to an inference in favour of bilinearity.
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6 Application to prices

6.1 Data and results

The data are monthly, seasonally unadjusted consumer or retail price indices (CPI or RPI)
for 106 countries, collected from Datastream (see www.datastream. com). The series vary
in length from 120 to 372 observations, and cover various time periods between January
1970 and December 2001.
All the 106 price series are tested for a bilinear unit root at the 5% level of significance.

Initially, we test for a unit root applying the well-known DF test (MacKinnon, 1991, critical
values). If the null of a unit root is not rejected we proceed with testing for bilinearity
(see Section 5). We reject the null hypothesis of no bilinearity for 37 price series, if the
OLS estimator is applied, and for 40 price series, if the KF estimator is used. All the
estimated regressions include a constant. A summary of the test and estimation results is
presented in Table 3, which lists the significant bilinear coefficient estimates only. To find
the KF estimates of the bilinear coefficient, bbKF , we used the SA algorithm2 with Nν = 20,
NT = 20 and rT = 0.75. The rest of the parameters were set to the values suggested by
Corana et al. (1987).

2The Simulated Anealing algorithm was coded in GAUSS by E.G.Tsionas.
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Table 3 Testing for unit root bilinearity in prices;
estimated regressions with a constant; level of significance: 0.05.

DF OLS KF
country name T 1/

√
T t-st. bbOLS t-st. bbKF t-st.

Aruba 170 0.077 -1.29 -0.061 -3.74 -0.069 -4.29
Botswana 306 0.057 -2.14 –—a –—a 0.035 2.18
Bulgaria 132 0.087 -2.65 0.048 4.22 0.043 3.89
Chad 214 0.068 -0.67 0.056 3.71 0.056 3.75
Colombia 352 0.053 -1.52 0.064∗ 3.74 0.105∗ 3.24
Costa Rica 312 0.057 -1.21 0.154∗ 8.22 0.133∗ 7.68
Dominican Rep. 378 0.051 0.34 0.165∗ 11.70 0.128∗ 10.60
Ecuador 331 0.055 3.10 0.121∗ 5.79 0.116∗ 7.47
El Salvador 371 0.052 -0.74 0.092∗ 5.65 0.074∗ 4.95
Ethiopia 378 0.051 -1.56 0.031 2.28 0.029 2.18
Gambia 368 0.052 -1.19 0.048 2.78 0.045 2.67
Ghana 356 0.053 -1.48 0.112∗ 7.50 0.136∗ 8.86
Greece 360 0.053 -2.31 ––a –—a 0.062∗ 2.17
Guatemala 371 0.052 0.65 0.091∗ 5.06 0.083∗ 4.62
Honduras 370 0.052 5.59 0.108∗ 6.71 0.086∗ 6.46
Hungary 311 0.057 2.85 0.068∗ 3.82 0.050 3.50
India 368 0.052 -0.29 0.143∗ 11.97 0.128∗ 13.51
Indonesia 368 0.052 -0.94 0.129∗ 11.38 0.139∗ 11.97
Jamaica 371 0.052 1.06 0.179∗ 15.07 0.144∗ 12.63
Kenya 372 0.052 0.16 0.029 2.19 0.023 1.99
Malawi 250 0.063 2.24 0.059 3.66 0.034 2.92
Mauritius 372 0.052 -2.31 0.078∗ 5.24 0.062∗ 4.95
Mauritania 189 0.073 -0.94 -0.073 -4.87 -0.070 -4.75
Mexico 371 0.052 0.49 0.158∗ 20.72 0.149∗ 177.5
Morocco 369 0.052 -2.72 0.087∗ 6.57 0.097∗ 8.85
Myanmar 366 0.052 2.23 0.072∗ 3.91 0.082∗ 4.49
Namibia 346 0.054 -1.56 ––a –—a 0.023 1.99
Nepal 374 0.052 -0.55 0.107∗ 7.78 0.109∗ 7.88
Niger 369 0.052 -2.06 0.031 2.47 0.029 2.52
Nigeria 365 0.052 1.04 0.128∗ 6.21 0.097∗ 5.28
Pakistan 371 0.052 -1.93 0.051 3.41 0.057∗ 3.50
Paraguay 368 0.052 0.45 0.047 2.20 0.045 1.88
South Africa 371 0.052 -1.39 0.043 3.19 0.043 2.88
Sri Lanka 370 0.052 0.55 0.071∗ 5.72 0.082∗ 7.50
Suriname 295 0.059 3.72 0.177∗ 11.16 0.159∗ 12.54
Swaziland 364 0.052 -0.69 -0.071∗ -4.96 -0.083∗ -5.92
Turkey 242 0.064 0.92 0.062 2.14 0.133∗ 9.17
Venezuela 336 0.055 6.25 0.156∗ 10.27 0.159∗ 26.10
Zambia 157 0.080 -1.25 0.114∗ 6.84 0.145∗ 8.81
Zimbabwe 263 0.062 4.79 0.073∗ 3.29 0.066∗ 4.34

a The null hypothesis of no bilinearity is not rejected.
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The results presented in Table 3 reveal that the majority of the bilinear coefficient

estimates are of a magnitude larger than the theoretically established upper limit 1/
√
T

(see the values marked by asterisks). Although the estimation results vary with regard to
the applied technique, both methods of estimation lead to similar conclusions concerning
the presence of bilinearity. Bilinearity has not been established for any of the developed
countries and is explosive for 26 using KF (24 using OLS) out of 40 (37) price series.

7 Conclusions
The Maximum Likelihood method has been suggested for estimating the unit root bilinear
process defined by CLM. The log-likelihood function based on the Kalman filter is numeri-
cally maximized applying either the Simulated Annealing or the Newton-Raphson algorithm.
We initialize the NR algorithm by the OLS estimates of the unknown parameters. If NR
fails to maximize the log-likelihood function, we suggest the use of the SA algorithm.
An application to 106 price series reveals that the greater part of the significant bilinear

coefficient estimates (all of them for the developing countries) are explosive.
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