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Abstract

In this paper we use optimal-instrument and new finite-sample meth-
ods to test the empirical relevance of the New Keynesian Phillips curve
(NKPC) equation. Unlike generalized method of moments-based meth-
ods, these generalized Anderson-Rubin tests are immune to the presence
of weak instruments, and allow, by construction, to assess the identifica-
tion status of a model. Our results are illustrated using the Gali-Gertler
(1999) NKPC specifications and data, as well as a survey-based inflation
expectation series from the Philadelphia Fed.

Our test rejects the reported Gali-Gertler estimates, conditional on
their choice of instruments. Nevertheless, and in contrast to Ma (2002),
we do obtain relatively informative confidence sets. This provides support
for NKPC equations and illustrates the usefulness of using exact proce-
dures and optimal instruments in IV-based estimations. In particular, our
results reveal that firms fix prices in a predominantly backward-looking
manner, but that they adjust prices every quarter or so. Furthermore,
the outcomes indicate that it is difficult to pin-point the extent of the
importance of marginal costs for the inflation process.
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1. Introduction

The New Keynesian Phillips curve (NKPC) equation resulted from the efforts of
recent years to model the short-run dynamics of inflation starting from optimiza-
tion principles. In its benchmark form, this equation stipulates that inflation a
time t is a function of expected future inflation and current marginal costs. With
its clearly-elucidated theoretical foundations, the NKPC possesses a straight-
forward structural interpretation and therefore presents a strong theoretical
advantage to the traditional reduced-from Phillips curve (which is justified only
statistically).

However, confronting the NKPC with the data has raised several issues1.
In particular, modeling the marginal cost variable is a fundamental problem.
Whereas, under some conditions, the output gap series is a natural proxy for this
variable, studies using gap measures revealed empirical puzzles; in particular: (i)
the coefficient on the output gap was estimated to be negative when theoretically
it should be positive, and (ii) adding lagged inflation to the above model in an
ad-hoc manner seemed to correct the estimated sign problem; suggesting that,
unlike what the theory predicts, past inflation matters2.

These results spurred further research on both the theoretical and empirical
levels. For instance, Gali-Gertler(1999) modified the standard NKPC theoreti-
cal formulation by allowing a proportion of firms to use a rule of thumb when
setting prices for their goods (rather than allowing all firms to set prices in a
rational manner). The latter modification provides a theoretical justification
for the presence of an inflation lag in the first-order-condition. Models which
incorporate the above features are referred to as hybrid NKPC models.

On empirical grounds, efforts focused on proposing improved proxies for the
marginal cost variable. For example, Gali-Gertler(1999) suggested using mea-
sures of marginal cost derived from a production function instead of relying on
possibly-badly-measured output gaps. Generalized Method of Moments (GMM)
estimation of the hybrid NKPC having these new marginal cost measures yielded
the correct sign on that variable and the model was not rejected according to
Hansen’s J-test. Moreover, the choice for the marginal cost proxy seemed to
affect the estimated weight of the backward- and forward-looking terms in the
equation3.

While the above outcomes appear encouraging, it is important to note that
1See, for example, Gali-Gertler(1999), Gali-Gertler-Lopez-Salido(2001), and the references

cited therein.
2See, for example, Fuhrer-Moore(1995), Roberts(1997) and Fuhrer(1997).
3For example, see Gali-Gertler-Lopez-Salido(2001) and Gagnon-Khan(2001).
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the recent literature on instrumental variable (IV) based inference casts seri-
ous doubts on the reliability of standard inference procedures4. These studies
demonstrate that standard asymptotic procedures (i.e. procedures which im-
pose identification away without correcting for local-almost-identification) are
fundamentally flawed and lead to serious overrejections; these problems are not
small-sample related and occur with fairly large sample sizes, since they are
caused by asymptotics failures. In particular Dufour(1997) shows that usual
t-type tests, based on common IV estimators, have significance levels that may
deviate arbitrarily from their nominal levels since it is not possible to bound
their null distributions.

To circumvent weak-instruments related difficulties, the above-cited work
on IV-based inference has focused on three main directions: (i) refinements
in asymptotic analysis which include the local-to-zero or local-to-unity frame-
works (e.g. Staiger-Stock(1997), Wang-Zivot(1998), and Stock-Wright(2000)),
(ii) proposing asymptotic approximations which hold whether instruments are
weak or not (e.g. Kleibergen(2002), Moreira(2003)), and (iii) developing new
finite-sample-justified procedures based on proper pivots – that is, finding statis-
tics whose null distributions are either nuisance-parameter-free or are bounded
by nuisance-parameter-free distributions (e.g. Dufour(1997), Dufour-Jasiak(2001),
Dufour-Khalaf(2002), and Dufour-Taamouti(2003b,c)).

Clearly, the question of whether the NKPC is supported by the data begs
re-examination using some of these more reliable econometric methods. Such
an excercise was undertaken recently by Ma (2002), who used the asymptotic
test statistics proposed in Stock and Wright (2000) to evaluate the empirical
relevance of the Gali-Gertler NKPC specifications. He concluded that weak
identification was a major concern in these models, and that there was an un-
reasonably large set of parameter values that were compatible with these models.

In this paper, we focus on the new finite-sample methods, with and without
optimal instruments, to test the empirical relevance of the NKPC. The latter
methods allow, by construction, to assess the identification status of a model.
Another major advantage they have is that they are valid in samples typical of
macroeconomic data – i.e. fairly small. Furthermore, they can provide fairly
detailed information regarding the nature of potential under-identification, sug-
gesting useful theory modifications. This is an advantage compared to the Stock
and Wright asymptotic methods because the latter do not provide such infor-
mation directly. As for the optimal instruments, these are derived using the
methods proposed in Dufour (2003), Dufour and Taamouti (2003b,c), and Du-

4see for example Dufour(2003), Stock-Wright-Yogo(2002), and the references cited therein.
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four and Khalaf (2003). The former two studies show when the AR test with
optimal instruments is equivalent to the Wang-Zivot (1998) LM test, and the
circumstances under which the test is exact. The latter shows the equivalence
of the optimal-instrument AR test to Kleibergen’s K-test.

Specifically, we apply the econometric methods presented in Dufour and
Jasiak (2001), which are generalizations of the Anderson-Rubin statistics, with
and without optimal instruments. Like Ma (2002), our results are illustrated
using the Gali-Gertler NKPC specifications and data. In the next section we
reproduce the NKPC models that were developed by Gali and Gertler (1999), as
well as their and Ma’s results. In Section 3, we present the generalized Anderson-
Rubin (hereafter AR) test. Section 4 documents and discusses the results of the
AR test applications with selected instruments to the above NKPC specifica-
tions. A subsection presents the methods of obtaining optimal instruments and
their applications to the hybrid NKPC. The last section concludes.

The Gali-Gertler NKPC models

In Gali-Gertler’s benckmark specification all price-setting firms are forward-
looking in a monopolistically-competitive environment. Thus, inflation, πt, is a
function of next period’s expected inflation, Etπt+1, and real marginal costs, st

(expressed in percent deviation with respect to its steady-state value). Specifi-
cally, the model is given by:

πt = λ1st + βEtπt+1, (1)

with
λ1 =

(1 − θ)(1 − βθ)
θ

, (2)

and where θ is the proportion of firms that do not adjust their prices in period
t, β is the subjective discount rate, and Etπt+1 is the value of inflation for next
period that is expected at time t.

In contrast, Gali-Gertler’s hybrid specification assumes that some of the
firms use a rule-of-thumb when setting their prices. The proportion of such
firms (referred to as the backward-looking price setters) is given by ω. In this
case, the model is written as:

πt = λ2st + γfEtπt+1 + γbπt−1, (3)
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with

λ2 =
(1 − ω)(1 − θ)(1 − βθ)

θ + ω − ωθ + ωβθ
(4)

γf =
βθ

θ + ω − ωθ + ωβθ

γb =
ω

θ + ω − ωθ + ωβθ
,

and where πt−1 is the inflation lag, γf is the forward-looking component of
inflation, and γb is its backward-looking part.

The authors assume rational expectations and re-write the above NKPC
models in terms of orthogonality conditions to be estimated by standard two-
step GMM. Because of small-sample concerns, each re-written model is normal-
ized in two ways: (i) so as to minimize non-linearities (denoted specification
(1)), and (ii) setting the inflation coefficient equal to one (denoted specification
(2)).

The data used is quarterly U.S. data, with πt measured by the percentage
change in the GDP deflator, and real marginal costs given by the logarithm of
the labour income share5. The instruments used include four lags of inflation,
labour share, commodity-price inflation, wage inflation, long-short interest rate
spread, and output gap (measured by a detrended log GDP).

For their benchmark model, Gali-Gertler find values of (θ,β) equal to (0.83,0.93)
and (0.88,0.94) for their specifications (1) and (2) respectively. Constraining β

to 1 yields similar results, namely θ = 0.83 in (1) and θ = 0.92 in (2). The
implied slope coefficients on the marginal cost variable for all these cases is pos-
itive and significant – based on the IV-based asymptotic standard errors, and
the overidentifying restrictions are not rejected according to the J-test. For their
hybrid model, the same normalizations and instrument set are used. In this case,
the obtained values for ω, θ, and β are (0.27,0.81,0.89) and (0.49,0.83,0.91) for
specifications (1) and (2) respectively. In the restricted cases, these are (0.24,
0.80,1.00) and (0.52,0.84,1.00) respectively. Again, the implied slopes are all
positive and found to be significant.

Based on these, and some additional GMM estimations carried out for ro-
bustness purposes, the authors conclude that there is good empirical support for
the NKPC, and furthermore, that the forward-looking component of inflation
is more important than the backward-looking part.

Despite these significant outcomes, it is important to be wary of GMM-based
outcomes, as the severity of weak-instruments effects is now well-understood in

5They also report results for the case where inflation is measured by the non-farm deflator.

These yield similar outcomes to those based on the GDP total deflator measure.
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econometrics6. Given these concerns, Ma (2002) uses the test statistics de-
veloped by Stock and Wright (2000) to re-evaluate the empirical relevance of
these NKPC specifications. These asymptotic methods account for the presence
of weak instruments and provide corrected confidence intervals for the GMM-
estimated parameters.

Ma first notes that the benchmark model presents a theoretical identification
problem; namely that there is an observational equivalence between the sets (β,
θ) and (β, 1/βθ). Thus, there is more than one parameter combination that
satisfies the GMM minimization criterion. In other words, the objective function
being solved by GMM (and which is concentrated with respect to θ) is non-
quadratic. Therefore, conventional tests, such as those applied in Gali-Gertler,
do not provide accurate information on the precision of GMM estimates.

Turning to the estimates from the hybrid model, Ma calculates the corrected
confidence set according to the method proposed in Stock and Wright (2000).
He finds that the 90% S-set is particularly large, including all parameter values
between [0,3] for two of the parameters, and [0,8] for the third. That is, all
parameter combinations derived from these value ranges are compatible with
the model. This is a clear indication of weak identification in this model.

Thus, the validity of the Gali-Gertler GMM-based estimates is in ques-
tion. But, the Stock and Wright intervals provide little concrete direction in
which theoretical research should be oriented. On the other hand, the recently-
advanced finite-sample methods that also deal with the possible presence of
weak instruments may be able to point to such directions. In the next sec-
tion, we present a test strategy belonging in the latter finite-sample category.
It is one proposed in Dufour and Jasiak (2001) and is a generalization of the
Anderson-Rubin (1949) technique.

The AR test

The Anderson-Rubin test has recently received renewed interest7. In its general-
ized form – developed by Dufour and Jasiak (2001) – it is applicable to univariate
models using limited information, and where one or more of the right-hand-side
variables are possibly endogenous.

6Examples include Dufour(1997), Staiger-Stock(1997), Wang-Zivot(1998), Stock-

Wright(2000), Dufour-Jasiak(2001), Stock-Wright-Yogo(2002), Kleibergen-Zivot(2003),

Khalaf-Kichian(2002), Dufour-Khalaf(2003), Dufour-Taamouti(2003b,c) and Dufour(2003).
7See, for example, Dufour(1997), Staiger-Stock(1997), Dufour-Jasiak(2001), Dufour-

Khalaf(2003), and Dufour-Taamouti(2003b,c).
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More formally, consider a limited information simultaneous equations system

y = Y δ + X1κ + u, (5)

where y is an n × 1 dependent variable, Y is an n × m matrix of endogenous
variables, X1 is an n × k1 matrix of exogenous variables, and u is an error
term which satisfies standard regularity conditions typical to IV regressions; see
Dufour-Jasiak(2001).

In this context, consider hypotheses of the form

H0 : δ = δ0. (6)

Define ỹ = y − Y δ0 so that under the null hypothesis, (6) implies

ỹ = X1κ + u. (7)

In view of this, the AR test is based on assessing the exclusion of X2 (of size
n× k2) in the regression of ỹ on X1 and X2, which can be conducted using the
standard F-test or its chi-square asymptotic variant; see Dufour-Jasiak(2001).
Let X = (X1, X2), and define

M = I − X(X ′X)−1X ′

M1 = I − X1(X ′
1X1) 1X ′

1

then the statistic takes the form

AR =

[(
y − Y δ0

)′
M1

(
y − Y δ0

) − (
y − Y δ0

)′
M

(
y − Y δ0

)]
/k2

(y − Y δ0)′ M (y − Y δ0) / (n − k1 − k2)
. (8)

Under the null hypothesis and imposing strong exogeneity and i.i.d. normal
errors, AR ∼ F (k2, n− k1 − k2); the normality and i.i.d. hypotheses can be re-
laxed so under standard regularity conditions and weakly exogenous regressors,
(k2 × AR)

asy∼ χ2 (k2).
The test can be readily extended to accommodate additional constraints on

the exogenous variables coefficients; see Maddala(1974), Dufour-Jasiak(2001),
Dufour-Taamouti(2003b,c) and Dufour(2003). Specifically, consider a hypothe-
sis of the form:

H0 : δ = δ0, κ1 = κ0
1, (9)

where κ1 is a subset of κ, i.e. κ = (κ′
1, κ

′
2)

′. Partition the matrix X1 (into X11

and X12 sub-matrices) accordingly and let

y̆ = y − Y δ0 − X11κ1, (10)
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so the restricted model becomes

y̆ = X12κ12 + u, (11)

and the test may be carried out as above.
While the test in its original form was derived for the case where the first

stage regression is linear, Dufour-Taamouti(2003b,c) have shown that it is in fact
robust to: (i) the specification of the model for Y , and (ii) excluded instruments;
in other words, the test is valid whether the first stage regression is linear or not,
or whether the matrix X2 includes all available instruments or not. As argued in
Dufour(2003), since one is never sure that all instruments have been accounted
for, the latter property is quite important. Most importantly, this test (and
several variants discussed in Dufour(2003)) is the only truly pivotal statistic
whose properties in finite samples are robust to the quality of instruments.

Applications of the AR test

The econometric models that we use for the AR applications are the Gali-Gertler
benchmark and hybrid models in equations (1) and (3) respectively, with Etπt+1

given by a survey measure of inflation expectations, π̃t+1. The Federal Reserve
Bank at Philadelphia publishes quarterly mean forecasts of the next quarter
US GDP implicit price deflator, which we first difference to obtain our inflation
expectations series8. A measurement error term ut is added to the equation to
reflect the fact that the expectations variable is a proxy. Thus, our econometric
equivalents of the Gali-Gertler models are:

πt = λ1st + βπ̃t+1 + ut, (12)

and
πt = λ2st + γf π̃t+1 + γbπt−1 + ut, (13)

where λ1, λ2, γf , and γb are defined as previously (see equations (2) and (4)).
In this framework, and for both the benchmark and hybrid models, y = πt,

Y = (st, π̃t+1)′, and X2 is the 24-variable set of instruments used by Gali-
Gertler. In addition, X1 is zero in the benchmark case, and equal to πt−1 in the
hybrid case.

We test the Gali and Gertler (1999) estimates for the benchmark and hybrid
models, and for both specifications, using their instrument set each time9. An

8Source: http://www.phil.frb.org/econ/spf/index.html.
9Due to the presence of the expectations variable our sample starts in 70:1.
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illustration is as follows: say we want to test their benchmark model specification
(1) estimates. We impose θ = 0.83, β = 0.93, and calculate the corresponding
slope value, which is λ0 = 0.05. The null hypothesis for the AR test is then
given by: H0 : λ0 = 0.05 and β0 = 0.93. Constructing ỹ, we regress it on all
the Gali-Gertler instruments. We also obtain the M and M1 matrices as in
equations (8). With these, we compute the value of the AR statistic according
to equation (8). We have n = 112 observations and k2 = 24 instruments. The
statistic is therefore compared to the F(24,88) distribution, and in the case
where the normality and i.i.d. hypotheses are relaxed, 24×AR is compared to
a χ2(24).

The results are reported in Table 1. From there, we can see that all of
the Gali-Gertler GMM estimates are decisively rejected at the 5% level. In
other words, given the instrument set that was used by Gali and Gertler, both
their benchmark and hybrid models are strongly rejected by the data, whether
specification (1) or (2) estimates are used, and whether the β parameter is
restricted to equal 1.

Next we ask whether, for the same instrument set, there are any parameter
combinations for which the models are not rejected. Thus, we conduct such a
grid search for each of the benchmark and hybrid models, allowing the range
(0,1) as the admissible space for ω, θ, and β, and varying these values with
increments of 0.1. We find that all parameter combinations reject the model at
the 5% level, whether it is the benchmark or the hybrid equation that’s being
tested.

This conclusion is in striking contrast with the findings of Ma (2002), al-
though both our results highlight the weak-instrument problem emphatically.
That is, while the Stock-Wright asymptotic test finds that all parameter com-
binations do not reject the model, we find that all of them actually reject it.
Therefore, it appears that the AR-test has more power compared to the Stock-
Wright methodology10.

Selected Instrument Sets

It is evident that whether a model is rejected or not depends on the instruments
that are used to specify it. An easy way to understand the relevance of various
instrument sets is to specify the model with each and then test it. We consider
seven different instrument sets, each comprised of 4 lags of a variable amongst

10Although, we note that there is a slight difference in our two instrument sets: Ma’s set

includes a constant and has no 4th lag for each of the three variables in levels.
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the following: GDP deflator inflation, wage inflation, commodity price inflation,
labor income share, long-short interest rate spread, quadratically-detrended out-
put gap, and cubically-detrended output gap11. For each of these sets, we con-
duct grid searches for the benchmark and hybrid models again, always admitting
a (0,1) range for each of ω, θ, and β, and still varying the parameter values by
increments of 0.1.

The results are tabulated in Tables 2-3b, and 8a-10b. Table 2 shows, for
the seven instrument sets, those combinations of β and θ values that do not
reject the tested benchmark specification. The remaining Tables are results for
the hybrid model. Tables 3a-3b show the outcomes for estimations over the full
sample, while Tables 8a-8b, 9a-9b, and 10a-10b in the Appendix tabulate results
for non-intersecting sub-samples (70:1-79:4, 80:1-89:4, 90:1-97:4). In each case,
we report the results with four of the instrument sets12.

Overall, results show that there are parameter combinations for which a
given model is rejected, and others for which it is not. Second, some instrument
sets appear to have more informational content than others (i.e. they yield
a smaller set of parameter combinations that do not reject the model). These
results are somewhat positive for macroeconomic theorists because they indicate
that the NKPC models are not rejected outright. But while the scope of the
identification issue is slightly less dramatic with our results than with those
suggested by the Stock-Wright method, our various tables do indeed indicate the
presence of pervasive identification problems. For instance, in the benchmark
model, the instrument sets in columns 1-4 and in column 6 show that there
are many parameter combinations for which the model is valid. Similarly, in
the hybrid model case, there are numerous parameter combinations that do not
reject the NKPC specification.

However, an important fact is that additional information can be gained
from the examination of these tables regarding the direction in which theoretical
research should be oriented. In particular, with the hybrid model case, some
patterns emerge: (i) as the value of θ increases, the values for β decrease, and
(ii) results are more restrictive when ω is not too high or too low. Based on

11For our output gap measure, and for all the tests we conduct, rather than detrending the

log of GDP using the full sample, n, we proceed iteratively: to obtain the value of the gap

at time t, we detrend GDP with data ending in t. We then extend the sample by one more

observation and re-estimate the trend. This is then used to detrend GDP and yields a value

for the gap at time t + 1. And so on till the end of the sample. In this fashion, our gap

measures at time t do not use information beyond that period and can therefore be used as

valid instruments.
12This is to save space. The remaining tables are available upon request.
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these, we can see that if one is willing to assume a range for the subjective
discount rate that is economically meaningful (say, values ranging from 0.8 to
1), then the space of admissible parameter values is greatly reduced: thus θ is
almost never above 0.4, and it is lower when ω is either high or low. That is,
the ω parameter is less well-identified than θ, which implies that research needs
to find better ways of characterizing the inertia in inflation dynamics.

The information in the above tables has been summarised in a number of
graphs. For each model, we show the graphs for the parameter combinations
that do not reject the model when the latter is specified using four different
instrument sets. Figure 1 presents the graphs for the benchmark model for the
instrument sets: lags 1 to 4 of inflation, lags 1 to 4 of wage inflation, lags 1
to 4 of the long-short spread, and lags 1 to 4 of labor income share. Figure 2
depicts graphs for the hybrid model with the same instrument sets. Column 1
shows the graphs for θ and β for all values of ω considered, while the subsequent
columns show θ and β for ω = 0.2, ω = 0.5, and ω = 0.8 respectively. Figures
8, 10 and 12 in the Appendix depict each similar graphs to Figure 2, but for
the subsamples 1970:1-1979:4, 1980:1-1989:4, and 1990:1-1997:4 respectively. In
these cases, however, we show results with lags 1 to 4 for the quadratically-
detrended output gap rather than lags 1 to 4 for the labor income share as the
former are more interesting. Finally, Figures 3, 9, 11, and 13 depict the graphs
corresponding to figures 2, 8, 10 and 12 respectively, but with β constrained to
be equal to or above 0.8 which are economically more meaningful.

The graphs show more clearly the patterns in the results that were observed
from the tables. Furthermore, it is clear from the sub-sample graphs that there
is evidence of parameter instabillity. In particular, whereas the quadratically-
detrended output instrument set results show all parameter combinations to
reject the model in the seventies, results with the same instrument set show
non-rejections for the eighties and nineties.

Optimal Instrument Sets

To be able to state outcomes more specifically, one needs to rely on a particular
instrument set. However, despite its desirable statistical properties, the test as
presented above provides no guidance for practitioners regarding the choice of
instruments. In addition, simulation studies reported in the above-cited refer-
ences show that the power of AR-type tests may be affected by the number of
instruments. To see this, consider the case of (5)-(6): here, the AR test requires
assessing (in the regression of ỹ on X1 and X2) the exclusion of the n × k2
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variables in X2, even though the number of structural parameters under test is
m (κ is m × 1). On recalling that identification implies k2 ≥ m, we see that
over-identification (or alternatively, the availability of more instruments) leads
to degrees-of-freedom losses with obvious implications to power.

To circumvent these problems, Dufour-Taamouti(2003b,c) have shown that
for the problem at hand, an optimal instrument (in the sense of point-optimal
power) may be derived as follows

Z = X2Π2

where Π2 is the coefficient of X2 in the first-stage regression, i.e. the regression
of Y on X1 and X2. Clearly, this strategy involves information reduction, as the
associated AR-test amounts to testing for the exclusion of the n×m variables in
Z and which preserves available degrees-of-freedom, even if the model is highly
over-identified. In other words, the optimal test can reflect the informational
content of all available instruments with no statistical costs.

Unfortunately, of course, Π2 is unknown. So the optimal instruments needs
to be estimated, with obvious implications on feasibility and exactness. Du-
four(2003) shows that if the OLS estimator of Π2 in the unrestricted reduced
form multivariate regression

[
y Y

]
=

[
X1 X2

] [
π1 Π1

π2 Π2

]
+

[
u V

]
(14)

is used in the construction of Z, then the associated AR-test coincides with the
LM procedure defined by Wang-Zivot(1998). In addition, Dufour and Khalaf
(2003) show that Kleibergen’s K-test may be obtained as an optimal AR-test
based on Z where Π2 is replaced by it OLS estimates using the reduced form
(14) constrained by the structural identification condition

π2 = Π2δ.

Dufour and Khalaf (2003) provide simple analytical formulae (applying e.g.
Berndt-Savin(1977) and Dufour-Khalaf(2002b)) to derive this estimate.

Both tests so obtained are not exact, but their asymptotic validity does not
impose identification away. Split sample estimation techniques (where the first
sub-sample is used to estimate Π2 and the second to run the optimal AR-test
based on the latter estimate) may be easily applied to obtain exact optimal AR
tests, as suggested by Dufour-Taamouti(2003b,c) and Dufour(2003); see also
Dufour-Jasiak(2001) regarding split-sample procedures.
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We apply the Wang-Zivot and Kleibergen equivalents of the AR test in
their asymptotic and exact (split-sample case) versions to the hybrid model in
equation (13). The results are found in Tables 4-7 and Figures 4-7.

In general, the obtained confidence sets for given values of ω are well-defined
and fairly tight. In addition, there is a clear negative relationship between the
β and θ parameters, although θ is much better identified for higher values of
β. On a more detailed level, two other things become apparent: (i) the Wang-
Zivot test outcomes are similar to Kleibergen’s for ω = 0.5 and ω = 0.8, but the
former yields a much smaller confidence set when ω = 0.2, and (ii) the split-
sample tests yield considerably smaller confidence sets than their asymptotic
counterparts for ω = 0.2 and ω = 0.5.

The former result indicates that the use of structural information in the
K-test actually yields less informative confidence sets than not using it (as in
the Wang-Zivot test). However, this seems to be a characteristic of the asymp-
totic nature of these tests as outcomes do not differ for their split-sample (i.e.,
exact) counterparts. Indeed, split-sample-based confidence sets are in general
more informative than their asymptotic counterparts, and clearly show that ω

is actually higher than 0.6. This is an important result because it means that
the hybrid NKPC is fairly well-identified for economically-reasonable values of β

(i.e. values of 0.85 and higher). In this case, θ lies in the range (0.1-0.2) and ω,
in the range (0.6-0.97). The implication of these results becomes apparent when
the values of λ2, γf and γb are calculated. Thus, the corresponding confidence
set for the coefficient on the marginal cost coefficient is (0.02-0.47), that of the
coefficient on the forward-looking component of inflation is (0.08-0.25), while
the implied confidence set for the coefficient on the backward-looking compo-
nent of inflation is (0.75-0.91). These decisively show that (i) firms fix prices in
a preponderantly backward-looking manner, but that they adjust them almost
every quarter, and (ii) not much can be learnt in the given context on the role
of marginal costs for inflation.

The first outcome contrasts with conclusions of Gali-Gertler which states
that firms fix their prices mainly in a forward-looking manner, but that they ad-
just them every 4-5 quarters. In addition, our results show that, while marginal
costs are indeed significant, their importance for inflation cannot be learnt with
precision; it might be that marginal costs, with a coefficient close to 0.02, plays
a very small role (as in the case of the Gali-Gertler estimates), or that it plays
a much larger role, with a coefficient closer to 0.5.
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Conclusion

In this paper we used finite-sample methods to test the empirical relevance of the
New Keynesian Phillips curve equation. In addition to traditional instrument
sets, we also used optimal instruments, that were derived based on recently-
developed methods. Our results were illustrated using the Gali-Gertler (1999)
NKPC specifications and data, as well as a survey-based inflation expectation
series from the Philadelphia Fed.

Our test rejected the reported Gali-Gertler estimates (conditional on their
choice of instruments). Nevertheless, we obtained relatively informative con-
fidence sets, specially with optimal instruments. This outcome is in contrast
with those obtained by Ma (2002), and who had used Stock-Wright methods to
obtain confidence sets that account for weak identification in GMM-estimated
models. That is, we found the scope of the identification problem less dra-
matic than that suggested in Ma (2002). Indeed, our results revealed that the
least-well-identified parameter is ω; namely the proportion of firms that do not
adjust their prices in period t). Yet, for economically-meaningful values of the
subjective discount rate, and based on the exact version of the test with optimal
instruments, we concluded that firms fix prices in a predominantly backward-
looking manner, adjusting prices every quarter or so. Similarly, that it is difficult
to pin-point the extent to which marginal costs are important for the inflation
process.
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Table 1: AR test results on Gali-Gertler models - US Data
Tested model spec. restr data sample D.F. Fstat (p-value) Chi-stat (p-value)
Benchmark (1) - 70:1-97:4 88 8.77 (<) 210.54 (<)
Benchmark (2) - 70:1-97:4 88 9.31 (<) 223.61 (<)
Benchmark (1) yes 70:1-97:4 88 11.57 (<) 277.59 (<)
Benchmark (2) yes 70:1-97:4 88 11.55 (<) 277.27 (<)

Hybrid (1) - 70:1-97:4 87 7.98 (<) 199.42 (<)
Hybrid (2) - 70:1-97:4 87 13.55 (<) 338.83 (<)
Hybrid (1) yes 70:1-97:4 87 11.05 (<) 276.26 (<)
Hybrid (2) yes 70:1-97:4 87 17.41 (<) 435.28 (<)
Hybrid (1) - 70:1-89:4 55 4.73 (<) 118.21 (<)
Hybrid (1) yes 70:1-89:4 55 8.19 (<) 204.72 (<)
Hybrid (2) - 80:1-97:4 47 7.01 (<) 175.29 (<)
Hybrid (2) yes 80:1-97:4 47 14.13 (<) 353.19 (<)

Note: Table abreviations are: D.F. is degrees of freedom, spec is specification, restr is re-
stricted, and the symbol ” < ” indicates values that are less than 10−5.

Table 2: Benchmark Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Full Sample

dw1 - dw4 sp1 - sp4 dp1 - dp4 s1 - s4 gq1 - gq4 dc1 - dc4 gc1 - gc4

θ = 0.0 (0 - 0.8) (0 - 1) (0 - 0.5) - - (0 - 1) -
θ = 0.1 (0.3 - 0.6) (0.6 - 1) (0.3 - 0.6) - - (0 - 1) -
θ = 0.2 (0.5 - 0.6) (0.7 - 1) (0.5 - 0.6) (0 - 0.1) - (0 - 1) -
θ = 0.3 0.6 (0.7 -0.9) 0.6 (0 - 0.3) - (0 - 1) -
θ = 0.4 0.6 (0.7 -0.8) 0.6 (0 - 0.5) - (0 - 1) -
θ = 0.5 0.6 (0.7 -0.8) 0.6 (0 - 0.5) - (0 - 1) -
θ = 0.6 0.6 (0.7 -0.8) 0.6 (0 - 0.6) - (0 - 1) -
θ = 0.7 0.6 (0.7 -0.8) 0.6 (0 - 0.7), 1 - (0 - 1) -
θ = 0.8 - (0.7 -0.8) - (0 - 1) - (0 - 1) -
θ = 0.9 - (0.7 -0.8) - (0 - 1) - (0 - 1) -
θ = 1.0 - (0.7 -0.8) - (0 - 1) - (0 - 1) -

Note: Reported values are for the parameter β. Instrument sets are lags 1 to 4 of wage inflation
(dw), long-short interest spread (sp), inflation (dp), labor income share (s), quadratically-
detrended output gap (gq), commodity price inflation (dc), cubically-detrended output gap
(gc).
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Table 3a: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Full Sample

dw1 - dw4

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0 - 1) - - - - - - - - - -
θ = 0.1 (0.4 - 0.7) (0.9 - 1) - - - - - - - - -
θ = 0.2 (0.5 - 0.6) 0.8 (0.9 - 1) - - - - - - - -
θ = 0.3 0.6 0.7 0.8 - - - - - - - -
θ = 0.4 0.6 0.7 0.7 - - - - - - - -
θ = 0.5 0.6 0.7 0.7 - - - - - - - -
θ = 0.6 0.6 - - - - - - - - - -
θ = 0.7 0.6 0.6 0.6 - - - - - - - -
θ = 0.8 0.6 0.6 0.6 - - - - - - - -
θ = 0.9 0.6 0.6 0.6 - - - - - - - -
θ = 1.0 - 0.6 - - - - - - - - -

sp1 - sp4

θ = 0.0 - - - - - - - - - - -
θ = 0.1 - - - - - - - - - - -
θ = 0.2 - - - - - - - - - - -
θ = 0.3 - - - - - - - - - - -
θ = 0.4 - - - - - - - - - - -
θ = 0.5 - - - - 0.6 - - - - - -
θ = 0.6 - - - 0.6 0.5 - - - - - -
θ = 0.7 - 0.6 0.6 0.6 0.5 - - - - - -
θ = 0.8 0.6 0.6 0.6 - 0.5 0.4 - - - - -
θ = 0.9 0.6 0.6 0.6 0.5 - 0.4 0.3 - - - -
θ = 1.0 - - - - - - - - - - -

Note: Reported values are for the parameter β. Instrument sets are lags 1 to 4 of wage inflation (dw) and of long-short interest spread (sp).
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Table 3b: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Full Sample

dp2 - dp5

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0-1) - - - - - - - - - -
θ = 0.1 (0.3-0.7) (0.8-1) - - - - - - (0.7-1) (0.3-0.5) -
θ = 0.2 (0.5-0.6) (0.7-0.8) (0.9-1) 1 1 (0.9-1) (0.8-1) (0.6-0.8) (0.4-0.6) 0.2 -
θ = 0.3 0.6 0.7 (0.7-0.8) (0.8-0.9) (0.7-0.9) (0.7-0.8) (0.6-0.7) (0.4-0.6) (0.3-0.4) 0.11 -
θ = 0.4 0.6 0.7 0.7 0.7 (0.6-0.7) (0.6-0.7) (0.5-0.6) 0.4 (0.2-0.3) 0.11 -
θ = 0.5 0.6 (0.6-0.7) (0.6-0.7) (0.6-0.7) 0.6 (0.5-0.6) (0.4-0.5) (0.3-0.4) 0.2 0.11 -
θ = 0.6 0.6 0.6 0.6 0.6 (0.5-0.6) (0.4-0.5) 0.4 0.3 0.2 - -
θ = 0.7 0.6 0.6 0.6 (0.5-0.6) 0.5 (0.4-0.5) (0.3-0.4) (0.2-0.3) 0.1 - -
θ = 0.8 - 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.1 - -
θ = 0.9 - 0.6 0.6 0.5 (0.4-0.5) 0.4 0.3 0.2 0.1 - -
θ = 1.0 - 0.6 0.6 0.5 0.4 (0.3-0.4) 0.3 0.2 0.1 - -

s1 - s4
θ = 0.0 - - - - - - - - - 0.3 0.8
θ = 0.1 - - - - - - - - (0.6 - 1) (0.1 - 0.6) 0
θ = 0.2 - - - - - 1 0.9 (0.6 - 0.8) (0.4 - 0.5) (0.1 - 0.3) 0
θ = 0.3 - - - - - 0.7 (0.6 - 0.7) 0.5 (0.3 - 0.4) (0.1 - 0.2) 0
θ = 0.4 - - - 0.7 0.7 0.6 0.5 0.4 (0.2-0.3) 0.1 0
θ = 0.5 - - - - 0.6 0.5 0.4 0.3 0.2 (0-0.1) 0
θ = 0.6 - - 0.6 0.6 - 0.5 0.4 0.3 0.2 (0-0.1) 0
θ = 0.7 - 0.6 0.6 - 0.5 0.4 0.3 0.2 0.1 0 0
θ = 0.8 - 0.6 0.6 - 0.5 0.4 0.3 0.2 0.1 0 0
θ = 0.9 - 0.6 0.6 0.5 - 0.4 0.3 0.2 0.1 0 -
θ = 1.0 - 0.6 - 0.5 - - 0.3 0.2 0.1 0 -

Note: Reported values are for the parameter β. Instrument sets are lags lags 2 to 4 of inflation (dp) and lags 1 to 4 of labor income share (s).
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Table 4: Hybrid Model - Wang-Zivot Test
Parameter Combinations that Do Not Reject H0

ω=0.01 ω=0.1 ω=0.19 ω=0.31 ω=0.40 ω=0.49 ω=0.61 ω=0.70 ω=0.79 ω= 0.91 ω=1.00
θ=0.01 - - - - - - - - - - -
θ=0.10 - - - - - - - - (0.81-1.00) - -
θ=0.19 - - - - - (0.99-1.00) (0.81-1.00) (0.64-0.99) (0.44-0.73) - -
θ=0.31 - - - (0.81-0.84) (0.74-0.89) (0.67-0.87) (0.54-0.77) (0.41-0.64) (0.29-0.46) - -
θ=0.40 - - - (0.68-0.76) (0.63-0.76) (0.56-0.73) (0.44-0.63) (0.34-0.51) (0.23-0.36) - -
θ=0.49 - - - (0.62-0.70) (0.56-0.68) (0.49-0.64) (0.38-0.53) (0.29-0.43) (0.20-0.30) - -
θ=0.61 - - - (0.56-0.62) (0.50-0.60) (0.43-0.55) (0.33-0.45) (0.25-0.36) (0.17-0.25) - -
θ=0.70 - - - (0.54-0.60) (0.47-0.56) (0.40-0.51) (0.30-0.41) (0.22-0.32) (0.15-0.22) - -
θ=0.79 - - - (0.52-0.57) (0.45-0.53) (0.38-0.47) (0.28-0.38) (0.21-0.29) (0.14-0.20) - -
θ=0.91 - - - (0.51-0.53) (0.43-0.49) (0.36-0.44) (0.26-0.34) (0.19-0.26) (0.13-0.17) - -
θ=1.00 - - - (0.50-0.51) (0.42-0.47) (0.34-0.42) (0.25-0.32) (0.18-0.24) (0.12-0.16) - -

ω ranges from 0.25 to 0.88.
θ ranges from 0.07 to 1.
β ranges from 0.09 to 1.
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Table 5: Hybrid Model - Kleibergen Test
Parameter Combinations that Do Not Reject H0

ω=0.01 ω=0.1 ω=0.19 ω=0.31 ω=0.40 ω=0.49 ω=0.61 ω=0.70 ω=0.79 ω= 0.91 ω=1.00

θ=0.01 - - - - - - - - - - (0.01-0.21)

θ=0.10 - - - - - - - - (0.79-1.00) (0.13-0.59) (0.01-0.02)

θ=0.19 - - - - - - (0.85-1.00) (0.66-0.94) (0.43-0.69) (0.07-0.31) 0.01

θ=0.31 - - (0.46-0.83) (0.76-0.92) (0.74-0.92) (0.69-0.87) (0.56-0.74) (0.43-0.60) (0.28-0.43) (0.05-0.19) -
θ=0.40 - (0.65-0.73) (0.67-0.79) (0.66-0.81) (0.63-0.79) (0.57-0.73) (0.46-0.60) (0.35-0.48) (0.23-0.34) (0.04-0.15) -
θ=0.49 (0.60-0.68) (0.62-0.72) (0.62-0.74) (0.60-0.73) (0.56-0.70) (0.51-0.63) (0.40-0.51) (0.30-0.40) (0.19-0.28) (0.04-0.12) -
θ=0.61 (0.60-0.69) (0.60-0.70) (0.59-0.70) (0.55-0.67) (0.51-0.62) (0.45-0.55) (0.35-0.43) (0.26-0.33) (0.17-0.23) (0.03-0.09) -
θ=0.70 (0.60-0.69) (0.59-0.69) (0.57-0.68) (0.53-0.63) (0.48-0.58) (0.42-0.51) (0.32-0.39) (0.24-0.30) (0.15-0.20) (0.03-0.08) -
θ=0.79 (0.60-0.69) (0.59-0.68) (0.56-0.66) (0.51-0.60) (0.46-0.54) (0.39-0.47) (0.30-0.36) (0.22-0.27) (0.14-0.18) (0.03-0.07) -
θ=0.91 (0.61-0.69) (0.58-0.67) (0.55-0.64) (0.49-0.57) (0.43-0.51) (0.37-0.43) (0.28-0.32) (0.20-0.24) (0.13-0.16) (0.03-0.06) -
θ=1.00 (0.61-0.69) (0.58-0.66) (0.54-0.62) (0.48-0.55) (0.42-0.49) (0.37-0.41) (0.27-0.30) (0.19-0.22) (0.12-0.15) (0.03-0.06) -

19



Table 6: Hybrid Model - Split Sample Wang-Zivot Test
Parameter Combinations that Do Not Reject H0

ω=0.01 ω=0.1 ω=0.19 ω=0.31 ω=0.40 ω=0.49 ω=0.61 ω=0.70 ω=0.79 ω= 0.91 ω=1.00

θ=0.01 - - - - - - - - - (0.01-1.00) (0.01-0.40)

θ=0.10 - - - - - - - - (0.60-1.00) (0.01-0.53) (0.01-0.04)

θ=0.19 - - - - - - (0.77-0.86) (0.55-0.76) (0.32-0.59) (0.01-0.28) 0.01-0.02

θ=0.31 - - - - - - (0.48-0.59) (0.35-0.50) (0.21-0.37) (0.01-0.17) (0.01)

θ=0.40 - - - - - (0.51-0.57) (0.39-0.49) (0.28-0.40) (0.17-0.30) (0.01-0.13) (0.01)

θ=0.49 - - - - (0.50-0.55) (0.43-0.51) (0.33-0.43) (0.24-0.34) (0.14-0.25) (0.01-0.11) -
θ=0.61 - (0.55-0.57) (0.53-0.57) (0.48-0.54) (0.43-0.51) (0.37-0.46) (0.28-0.37) (0.20-0.29) (0.12-0.21) (0.01-0.09) -
θ=0.70 (0.54-0.58) (0.52-0.58) (0.50-0.56) (0.45-0.52) (0.40-0.48) (0.34-0.42) (0.25-0.33) (0.18-0.26) (0.11-0.18) (0.01-0.08) -
θ=0.79 (0.53-0.59) (0.51-0.58) (0.48-0.56) (0.43-0.51) (0.38-0.46) (0.32-0.40) (0.23-0.31) (0.17-0.24) (0.10-0.16) (0.01-0.07) -
θ=0.91 (0.53-0.60) (0.50-0.58) (0.47-0.54) (0.41-0.49) (0.36-0.43) (0.30-0.37) (0.22-0.28) (0.15-0.22) (0.09-0.15) (0.01-0.06) -
θ=1.00 (0.53-0.60) (0.50-0.57) (0.46-0.54) (0.40-0.47) (0.34-0.42) (0.29-0.36) (0.20-0.27) (0.14-0.20) (0.08-0.14) (0.01-0.05) -
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Table 7: Hybrid Model - Split Sample Kleibergen Test
Parameter Combinations that Do Not Reject H0

ω=0.01 ω=0.1 ω=0.19 ω=0.31 ω=0.40 ω=0.49 ω=0.61 ω=0.70 ω=0.79 ω= 0.91 ω=1.00

θ=0.01 - - - - - - - - - (0.01-1.00) (0.01-0.57)

θ=0.10 - - - - - - - - (0.61-1.00) (0.01-0.54) (0.01-0.05)

θ=0.19 - - - - - - - (0.57-0.74) (0.33-0.58) (0.01-0.28) (0.01-0.03)

θ=0.31 - - - - - - (0.50-0.57) (0.36-0.49) (0.21-0.37) (0.01-0.18) (0.01)

θ=0.40 - - - - - - (0.40-0.48) (0.29-0.40) (0.17-0.29) (0.01-0.14) (0.01)

θ=0.49 - - - - - (0.45-0.50) (0.33-0.42) (0.24-0.34) (0.14-0.25) (0.01-0.11) (0.01)

θ=0.61 - - (0.54-0.55) (0.49-0.54) (0.44-0.50) (0.38-0.45) (0.28-0.36) (0.20-0.29) (0.12-0.20) (0.01-0.09) -
θ=0.70 (0.55-0.57) (0.53-0.57) (0.51-0.56) (0.46-0.52) (0.41-0.48) (0.35-0.42) (0.26-0.33) (0.18-0.26) (0.10-0.18) (0.01-0.08) -
θ=0.79 (0.53-0.59) (0.51-0.58) (0.49-0.55) (0.43-0.50) (0.38-0.45) (0.32-0.40) (0.24-0.31) (0.17-0.24) (0.10-0.17) (0.01-0.07) -
θ=0.91 (0.53-0.60) (0.50-0.57) (0.47-0.54) (0.41-0.48) (0.36-0.43) (0.30-0.37) (0.22-0.28) (0.15-0.22) (0.09-0.15) (0.01-0.06) -
θ=1.00 (0.53-0.60) (0.51-0.57) (0.46-0.53) (0.40-0.47) (0.34-0.42) (0.29-0.36) (0.20-0.27) (0.14-0.20) (0.08-0.14) (0.01-0.06) -
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Figure 1: Benchmark Model - Full Sample
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Figure 2: Hybrid Model - Full Sample
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Figure 3: Constrained Hybrid Model - Full Sample
(no parameter combinations exist with the sp instruments.)
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Figure 4: Wang-Zivot Test (solid line indicates β = 0.85)
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Figure 5: Kleibergen Test (solid line indicates β = 0.85)
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Figure 6: Split Sample Wang-Zivot Test (solid line indicates β = 0.85)
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Figure 7: Split Sample Kleibergen Test (solid line indicates β = 0.85)
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Table 8a: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Sample period (70:1 - 79:4)

dw1 - dw4

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0 - 1) - - - - - - - - - -
θ = 0.1 0.8 - - - - - - - - - -
θ = 0.2 - - - - - - - - - - -
θ = 0.3 - 0.9 1 1 - - - - - - -
θ = 0.4 0.7 0.8 (0.8 - 0.9) 0.9 0.8 - - - - - -
θ = 0.5 (0.7 - 0.8) 0.8 0.8 0.8 0.7 - - - - - -
θ = 0.6 (0.7 - 0.8) (0.7 - 0.8) (0.7 - 0.8) 0.7 0.7 - - - - - -
θ = 0.7 (0.7 - 0.8) (0.7 - 0.8) 0.7 0.7 0.6 - - - - - -
θ = 0.8 (0.7 - 0.8) (0.7 - 0.8) 0.7 (0.6 - 0.7) 0.6 0.5 - - - - -
θ = 0.9 (0.7 - 0.8) 0.7 (0.6 - 0.7) 0.6 0.5 - - - - - -
θ = 1.0 (0.7 - 0.8) 0.7 (0.6 - 0.7) 0.6 0.5 0.4 - - - - -

sp1 - sp4

θ = 0.0 (0-1) - - - - - - - - - (0-1)
θ = 0.1 (0.7-0.8) - - - - - - - (0.9-1) (0.2 - 0.7) (0-0.1)
θ = 0.2 (0.7-0.8) (0.9-1 ) - - - - 1 (0.8-1) (0.5-0.7) (0.1-0.3) 0
θ = 0.3 (0.7-0.8) (0.8-0.9) (0.9-1) (0.9-1) (0.9-1) (0.9-1) (0.7-0.9) (0.5-0.7) (0.3-0.5) (0.1-0.2) 0
θ = 0.4 (0.7-0.8) 0.8 (0.8-0.9) (0.8-0.9) (0.8-0.9) (0.7-0.8) (0.6-0.7) (0.4-0.5) 0.3 (0.1-0.2) 0
θ = 0.5 (0.7-0.8) (0.7-0.8) 0.8 (0.7-0.8) (0.7-0.8) (0.6-0.7) (0.5-0.6) 0.4 (0.2-0.3) 0.1 0
θ = 0.6 (0.7-0.8) (0.7-0.8) (0.7-0.8) 0.7 (0.6-0.7) (0.5-0.6) (0.4-0.5) (0.3-0.4) 0.2 0.1 0
θ = 0.7 (0.7-0.8) (0.7-0.8) 0.7 (0.6-0.7) 0.6 0.5 0.4 0.3 0.2 0.1 0
θ = 0.8 (0.7-0.8) 0.7 0.7 (0.6-0.7) (0.5-0.6) 0.5 0.4 0.3 0.2 0.1 0
θ = 0.9 (0.7-0.8) 0.7 (0.6-0.7) 0.6 (0.5-0.6) (0.4-0.5) (0.3-0.4) 0.2 0.2 - 0
θ = 1.0 (0.7-0.8) 0.7 (0.6-0.7) 0.6 0.5 0.4 0.3 0.2 0.1 - 0

Note: Reported values are for the parameter β. Instrument sets are lags 1 to 4 of wage inflation (dw) and of long-short interest spread (sp).
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Table 8b: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Sample period (70:1 - 79:4)

dp2 - dp5

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0-1) - - - - - - - - (0-1) (0-1)
θ = 0.1 0.7 - - - - - - (0.9-1) (0.4-1) (0-1) (0-0.6)
θ = 0.2 0.7 (0.9-1) - - - 1 (0.8-1) (0.5-1) (0.2-1) (0-0.6) (0-0.3)
θ = 0.3 0.7 (0.8-0.9) (0.9-1) (0.9-1) (0.8-1) (0.7-1) (0.6-1) (0.4-0.9) (0.2-0.7) (0-0.4) (0-0.2)
θ = 0.4 (0.7-0.8) (0.8-0.9) (0.8-0.9) (0.7-1) (0.7-1) (0.6-0.9) (0.5-0.8) (0.3-0.7) (0.1-0.5) (0-0.3) (0-0.1)
θ = 0.5 (0.7-0.8) (0.7-0.8) (0.7-0.9) (0.7-0.9) (0.6-0.8) (0.5-0.8) (0.5-0.7) (0.3-0.6) (0.1-0.4) (0-0.2) (0-0.1)
θ = 0.6 (0.7-0.8) (0.7-0.8) (0.7-0.8) (0.6-0.8) (0.5-0.8) (0.5-0.7) (0.3-0.6) (0.2-0.5) (0.1-0.3) (0-0.2) (0-0.1)
θ = 0.7 (0.7-0.8) (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.2) 0
θ = 0.8 (0.7-0.8) (0.7-0.8) (0.6-0.8) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.1) 0
θ = 0.9 (0.7-0.8) (0.7-0.8) (0.6-0.7) (0.5-0.7) (0.5-0.6) (0.4-0.5) (0.3-0.4) (0.2-0.3) (0.1-0.2) (0-0.1) 0
θ = 1.0 (0.7-0.8) (0.6-0.7) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.3-0.4) (0.2-0.3) (0.1-0.2) (0-0.1) 0

gq1 - gq4

θ = 0.0 - - - - - - - - - - -
θ = 0.1 - - - - - - - - - - -
θ = 0.2 - - - - - - - - - - -
θ = 0.3 - - - - - - - - - - -
θ = 0.4 - - - - - - - - - - -
θ = 0.5 - - - - - - - - - - -
θ = 0.6 - - - - - - - - - - -
θ = 0.7 - - - - - - - - - - -
θ = 0.8 - - - - - - - - - - -
θ = 0.9 - - - - - - - - - - -
θ = 1.0 - - - - - - - - - - -

Note: Reported values are for the parameter β. Instrument sets are lags lags 2 to 4 of inflation (dp) and lags 1 to 4 of quadratically-detrended output
gap (gq).

28



Table 9a: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Sample period (80:1 - 89:4)

dw1 - dw4

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0-1) (0.5-1) - - - - - - - (0.6-1) -
θ = 0.1 (0.1-0.6) (0.6-1) (0.9-1) - - - 1 (0.8-1) (0.5-0.9) (0.1-0.4) -
θ = 0.2 (0.4-0.6) (0.5-0.7) (0.7-0.9) (0.7-0.9) (0.7-1) (0.7-0.9) (0.6-0.8) (0.5-0.6) (0.3-0.4) (0.1-0.2) -
θ = 0.3 0.5 (0.5-0.6) (0.6-0.7) (0.6-0.7) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.4) (0.2-0.3) 0.1 -
θ = 0.4 0.5 (0.5-0.6) (0.5-0.6) (0.5-0.6) (0.5-0.6) (0.4-0.5) 0.4 0.3 0.2 0.1 -
θ = 0.5 0.5 (0.5-0.6) (0.5-0.6) (0.5-0.6) (0.4-0.5) 0.4 (0.3-0.4) (0.2-0.3) (0.1-0.2) - -
θ = 0.6 0.5 0.5 0.5 (0.4-0.5) (0.4-0.5) (0.3-0.4) 0.3 0.2 0.1 - -
θ = 0.7 0.5 0.5 0.5 (0.4-0.5) 0.4 (0.3-0.4) 0.3 0.2 0.1 - -
θ = 0.8 0.5 0.5 (0.4-0.5) (0.4-0.5) 0.4 0.3 0.2 0.2 0.1 - -
θ = 0.9 0.5 0.5 (0.4-0.5) 0.4 (0.3-0.4) 0.3 0.2 - 0.1 - -
θ = 1.0 0.5 0.5 (0.4-0.5) 0.4 (0.3-0.4) 0.3 0.2 - 0.1 - -

sp1 - sp4

θ = 0.0 (0-1) (0.7-1) - - - - - - - (0-1) (0-1)
θ = 0.1 (0.2-0.6) (0.6-1) (0.9-1) (0.7-0.9) (0.7-1) - (0.9-1) (0.6-1) (0.3-1) (0-0.6) (0-0.1)
θ = 0.2 (0.4-0.6) (0.5-0.7) (0.6-0.9) (0.6-0.7) (0.5-0.7) (0.6-1) (0.5-0.9) (0.4-0.7) (0.2-0.5) (0-0.3) 0
θ = 0.3 0.5 (0.5-0.6) (0.6-0.7) (0.5-0.6) (0.5-0.6) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.1-0.3) (0-0.1) 0
θ = 0.4 0.5 (0.5-0.6) (0.5-0.6) (0.5-0.6) (0.4-0.5) (0.4-0.5) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.1) 0
θ = 0.5 0.5 (0.5-0.6) (0.5-0.6) (0.4-0.5) (0.4-0.5) (0.4-0.5) (0.3-0.4) (0.2-0.3) (0.1-0.2) (0-0.1) 0
θ = 0.6 0.5 0.5 0.5 (0.4-0.5) 0.4 (0.3-0.4) 0.3 (0.2-0.3) (0.1-0.2) (0-0.1) 0
θ = 0.7 0.5 0.5 0.5 (0.4-0.5) (0.3-0.4) (0.3-0.4) (0.2-0.3) 0.2 0.1 (0-0.1) 0
θ = 0.8 0.5 0.5 (0.4-0.5) (0.4-0.5) (0.3-0.4) 0.3 (0.2-0.3) 0.2 0.1 0 0
θ = 0.9 0.5 0.5 (0.4-0.5) 0.4 (0.3-0.4) 0.3 0.2 (0.1-0.2) 0.1 0 0
θ = 1.0 0.5 0.5 (0.4-0.5) 0.4 (0.3-0.4) 0.3 0.2 (0.1-0.2) 0.1 0 0

Note: Reported values are for the parameter β. Instrument sets are lags 1 to 4 of wage inflation (dw) and of long-short interest spread (sp).
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Table 9b: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Sample period (80:1 - 89:4)

dp2 - dp5

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0-1) (0.8-1) - - - - - - - (0.2-1) (0-0.2)
θ = 0.1 (0.2-0.6) (0.6-7) 1 - - - - (0.8-1) (0.5-0.9) (0.1-0.4) 0
θ = 0.2 (0.4-0.5) 0.6 (0.7-0.8) 0.8 (0.8-0.9) (0.7-9) (0.6-0.8) (0.5-0.6) (0.3-0.4) (0-0.2) 0
θ = 0.3 0.5 0.5 0.6 (0.6-0.7) (0.6-0.7) (0.5-0.6) 0.5 (0.3-0.4) (0.2-0.3) (0-0.1) -
θ = 0.4 0.5 0.5 0.6 0.6 0.5 0.5 0.4 0.3 0.2 (0-0.1) -
θ = 0.5 0.5 0.5 0.5 0.5 0.5 0.4 (0.3-0.4) 0.2 (0.1-0.2) (0-0.1) -
θ = 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.3 0.2 0.1 0 -
θ = 0.7 0.5 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0 -
θ = 0.8 0.5 0.5 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0 -
θ = 0.9 0.5 0.5 0.5 0.4 (0.3-0.4) 0.3 0.2 0.2 0.1 0 -
θ = 1.0 0.5 0.5 0.5 0.4 0.3 0.3 0.2 - 0.1 0 -

gq1 - gq4

θ = 0.0 - - - - - - - - - (0 - 1) (0 - 1)
θ = 0.1 - - - - - - - (0.9 - 1) (0.4 - 0.8) (0 - 0.5) (0 - 0.1)
θ = 0.2 - - - - - - - 0.5 (0.2 - 0.4) (0 - 0.2) 0
θ = 0.3 - - - - - - - 0.4 (0.2 - 0.3) (0 - 0.1) 0
θ = 0.4 - - - - - - - 0.3 0.2 (0 - 0.1) 0
θ = 0.5 - - - - - - - - 0.1 (0 - 0.1) 0
θ = 0.6 - - - - - - - 0.2 0.1 0 0
θ = 0.7 - - - - - - - 0.2 0.1 0 0
θ = 0.8 - - - - - - - - 0.1 0 0
θ = 0.9 - - - - - - - - 0.1 0 0
θ = 1.0 - - - - - - - - 0.1 0 0

Note: Reported values are for the parameter β. Instrument sets are lags 2 to 4 of inflation (dp) and lags 1 to 4 of quadratically-detrended output
gap (gq).
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Table 10a: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combinations that Do Not Reject H0 - Sample period (90:1 - 97:4)

dw1 - dw4

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0-1) (0-1) - - - - - - (0-1) (0-1) (0-1)
θ = 0.1 (0-1) (0.5-1) 1 - - - (0.9-1) (0.4-1) (0-1) (0-1) (0-0.5)
θ = 0.2 (0.4-0.9) (0.6-1) (0.8-1) (0.9-1) (0.8-1) (0.7-1) (0.5-1) (0.3-1) (0-1) (0-0.6) (0-0.2)
θ = 0.3 (0.6-0.8) (0.7-1) (0.7-1) (0.7-1) (0.7-1) (0.5-1) (0.4-1) (0.2-0.9) (0-0.7) (0-0.4) (0-0.1)
θ = 0.4 (0.6-0.8) (0.7-0.9) (0.7-1) (0.6-1) (0.6-1) (0.5-0.9) (0.3-0.8) (0.2-0.7) (0-0.5) (0-0.3) (0-0.1)
θ = 0.5 (0.6-0.8) (0.6-0.9) (0.6-0.9) (0.6-0.9) (0.5-0.9) (0.4-0.8) (0.3-0.7) (0.1-0.6) (0-0.4) (0-0.2) (0-0.1)
θ = 0.6 (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.8) (0.5-0.8) (0.4-0.7) (0.3-0.6) (0.1-0.5) (0-0.3) (0-0.2) 0
θ = 0.7 (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.8) (0.4-0.7) (0.3-0.6) (0.2-0.5) (0.1-0.4) (0-0.3) (0-0.2) 0
θ = 0.8 (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.7) (0.4-0.7) (0.3-0.6) (0.2-0.5) (0.1-0.4) (0-0.2) (0-0.1) 0
θ = 0.9 (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.7) (0.4-0.6) (0.3-0.6) (0.2-0.4) (0.1-0.3) (0-0.2) (0-0.1) 0
θ = 1.0 (0.7-0.8) (0.6-0.8) (0.5-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.2) (0-0.1) 0

sp1 - sp4

θ = 0.0 (0-1) (0.7-1) (0.8-1) - - - - - (0-1) (0-1) (0-1)
θ = 0.1 (0.3-0.8) (0.7-1) (0.7-1) - - - (0.8-1) (0.3-1) (0-1) (0-1) (0-0.7)
θ = 0.2 (0.5-0.8) (0.7-0.9) (0.7-1) (0.9-1) (0.8-1) (0.7-1) (0.5-1) (0.2-1) (0-1) (0-0.7) (0-0.3)
θ = 0.3 (0.6-0.8) (0.7-0.9) (0.7-0.9) (0.7-1) (0.6-1) (0.5-1) (0.4-1) (0.1-1) (0-0.7) (0-0.4) (0-0.2)
θ = 0.4 (0.6-0.8) (0.7-0.8) (0.5-0.9) (0.6-1) (0.6-1) (0.4-0.9) (0.3-0.8) (0.2-0.7) (0-0.5) (0-0.3) (0-0.1)
θ = 0.5 (0.6-0.8) (0.7-0.8) (0.6-0.8) (0.6-0.9) (0.5-0.8) (0.5-0.8) (0.3-0.7) (0.1-0.6) (0-0.4) (0-0.3) (0-0.1)
θ = 0.6 (0.7-0.8) (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.7) (0.4-0.7) (0.2-0.6) (0.1-0.5) (0-0.3) (0-0.2) (0-0.1)
θ = 0.7 0.7 (0.7-0.8) (0.6-0.7) (0.5-0.7) (0.4-0.7) (0.3-0.6) (0.2-0.5) (0.1-0.4) (0-0.3) (0-0.2) (0-0.1)
θ = 0.8 0.7 (0.7-0.8) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.6) (0.2-0.5) (0.1-0.4) (0-0.3) (0-0.1) 0
θ = 0.9 0.7 (0.6-0.7) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.2) (0-0.1) 0
θ = 1.0 0.7 (0.6-0.7) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.2) (0-0.1) 0

Note: Reported values are for the parameter β. Instrument sets are lags 1 to 4 of wage inflation (dw) and of long-short interest spread (sp).
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Table 10b: Hybrid Model - Parameter Grid Search Results - US Data
Parameter Combination that Do Not Reject H0 - Sample period (90:1 - 97:4)

dp2 - dp5

ω = 0 ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9 ω = 1.0

θ = 0.0 (0 - 1) (0 - 1) - - - - - - - - -
θ = 0.1 (0 - 1) (0.5 - 1) - - - - - - - - -
θ = 0.2 (0.4 - 0.8) (0.7 - 1) (0.9 - 1) - - - - - - - -
θ = 0.3 (0.6 - 0.7) 0.8 0.9 - - - - - - - -
θ = 0.4 - - 0.9 - - - - - - - -
θ = 0.5 - - 0.9 - - - - - - - -
θ = 0.6 - - - - - - - - - - -
θ = 0.7 - - - - - - - - - - -
θ = 0.8 - - - - - - - - - - -
θ = 0.9 - - - - - - - - - - -
θ = 1.0 - - - - - - - - - - -

gq1 - gq4

θ = 0.0 - - - - - - - - - (0-1) (0-0.9)
θ = 0.1 - - - - - - - 1 (0.5-1) (0-0.7) 0
θ = 0.2 - - 1 - 1 (0.9-1) (0.8-1) (0.5-1) (0.3-0.7) (0-0.4) 0
θ = 0.3 0.7 (0.8-0.9) (0.8-1) (0.8-1) (0.8-1) (0.7-1) (0.5-0.9) (0.4-0.7) (0.2-0.5) (0-0.2) 0
θ = 0.4 (0.7-0.8) (0.7-0.9) (0.7-0.9) (0.7-1) (0.6-0.9) (0.6-0.9) (0.4-0.7) (0.3-0.6) (0.1-0.4) (0-0.2) 0
θ = 0.5 (0.7-0.8) (0.7-0.8) (0.7-0.9) (0.6-0.9) (0.6-0.8) (0.5-0.7) (0.4-0.6) (0.2-0.5) (0.1-0.3) (0-0.1) 0
θ = 0.6 (0.7-0.8) (0.7-0.8) (0.6-0.8) (0.6-0.8) (0.5-0.7) (0.4-0.7) (0.3-0.5) (0.2-0.4) (0.1-0.3) (0-0.1) 0
θ = 0.7 (0.7-0.8) (0.7-0.8) (0.6-0.8) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.2-0.4) (0.1-0.2) (0-0.1) 0
θ = 0.8 (0.7-0.8) (0.7-0.8) (0.6-0.7) (0.5-0.7) (0.5-0.6) (0.4-0.6) (0.3-0.4) (0.2-0.3) (0.1-0.2) (0-0.1) -
θ = 0.9 0.7 (0.6-0.7) (0.6-0.7) (0.5-0.7) (0.4-0.6) (0.3-0.5) (0.3-0.4) (0.2-0.3) (0.1-0.2) (0-0.1) -
θ = 1.0 0.7 (0.6-0.7) (0.6-0.7) (0.5-0.6) (0.4-0.6) (0.3-0.5) (0.2-0.3) (0.2-0.3) (0.1-0.2) 0 -

Note: Reported values are for the parameter β. Instrument sets are lags 2 to 4 of inflation (dp) and lags 1 to 4 of quadratically-detrended output
gap (gq).
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Figure 8: Hybrid Model - 1970:1-1979:4
(all parameter combinations reject with the gq instruments.)
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Figure 9: Constrained Hybrid Model - 1970:1-1979:4
(all parameter combinations reject with the gq instruments.)
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Figure 10: Hybrid Model - 1980:1-1989:4

d
w

1 - d
w

4, o
m

eg
a= (0,1)

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

d
w

1 - d
w

4, o
m

eg
a = 0.2

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

d
w

1 - d
w

4, o
m

eg
a = 0.5

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
w

1 - d
w

4, o
m

eg
a = 0.8

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sp
1 - sp

4, o
m

eg
a = (0,1)

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

sp
1 - sp

4, o
m

eg
a = 0.2

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

sp
1 - sp

4, o
m

eg
a = 0.5

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

sp
1 - sp

4, o
m

eg
a = 0.8

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

d
p

2 - d
p

5, o
m

eg
a = (0,1)

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

d
p

2 - d
p

5, o
m

eg
a = 0.2

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

d
p

2 - d
p

5, o
m

eg
a = 0.5

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
p

2 - d
p

5, o
m

eg
a = 0.8

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d
g

q
1 - d

g
q

4, o
m

eg
a = (0,1)

th
eta

beta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

d
g

q
1 - d

g
q

4, o
m

eg
a = 0.8

th
eta

beta

0.00
0.25

0.50
0.75

1.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

35



Figure 11: Constrained Hybrid Model - 1980:1-1989:4
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Figure 12: Hybrid Model - 1990:1-1997:4
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Figure 13: Constrained Hybrid Model - 1990:1-1997:4

d
w

1 - d
w

4, b
eta >= 0.8

o
m

eg
a

theta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12
d

w
1 - d

w
4, b

eta >= 0.9

o
m

eg
a

theta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

sp
1 - sp

4, b
eta >= 0.8

o
m

eg
a

theta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84
sp

1 - sp
4, b

eta >= 0.9

o
m

eg
a

theta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

d
p

2 - d
p

5, b
eta >= 0.8

o
m

eg
a

theta

0.00
0.12

0.24
0.36

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
d

p
2 - d

p
5, b

eta >= 0.9

o
m

eg
a

theta

0.00
0.12

0.24
0.36

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

d
g

q
1 - d

g
q

4, b
eta >= 0.8

o
m

eg
a

theta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.12

0.24

0.36

0.48

0.60

0.72

0.84
d

g
q

1 - d
g

q
4, b

eta >= 0.9

o
m

eg
a

theta

0.00
0.25

0.50
0.75

1.00
1.25

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

38



References

[1] Dufour, J.-M. (1997): “Some impossibility theorems in econometrics, with
applications to structural and dynamic models”, Econometrica, 65, 1365-
89.

[2] Dufour, J.-M. (2003): “Identification, weak instruments, and statistical in-
ference in econometrics”, Canadian Journal of Economics, 36, forthcoming.

[3] Dufour, J.-M. and J. Jasiak (2001). “Finite sample limited information
inference methods for structural equations and models with generated re-
gressors”, International Economic Review, 42, 815-43.

[4] Dufour, J.-M. and L. Khalaf (2003). “Simulation-Based finite-sample infer-
ence in simultaneous equations”, Technical Report, C.R.D.E. Université de
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