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Abstract

ARCH/GARCH models have been widely used to examine �nancial markets data, but formal
explanations for the sources of conditional volatility are lacking. This paper demonstrates the
existence of GARCH e¤ects similar to those found in asset returns, in a standard asset pricing
model with heterogeneous agents. Evolutionary game theory describes how agents endogenously
switch between di¤erent forecasting strategies based on past forecast errors. We show conditions
under which agents agree on the fundamental forecast and those where agents adopt strategies that
use extraneous information. Divergence from agreement on fundamentals could lead to periods of
high volatility in prices and returns. Econometric tests of simulated data show the existence of
GARCH e¤ects, we examine the impact of changes in the model parameters.



The goal of volatility analysis must ultimately be to explain the causes of volatility.
While time series structure is valuable for forecasting, it does not satisfy our need to
explain volatility. .... Thus far, attempts to �nd the ultimate cause of volatility are not
very satisfactory.

- Robert Engle [2001]

Few models are capable of generating the type of ARCH one sees in the data. .... Most
of these studies are best summarized with the adage that "to get GARCH you need to
begin with GARCH."

- Adrian Pagan [1996]

1 Introduction

ARCH/GARCH models have been widely used for estimating and forecasting time series with

conditional volatility. These models have been used to describe the behavior of in�ation, interest

rates and exchange rates1, and they have become the standard tool for analyzing returns in �nancial

markets (Engle [2001]). As the above quotes indicate, however, formal explanations of the sources

of conditional volatility have been elusive.

This paper demonstrates ARCH e¤ects using a game theoretic approach where agents endoge-

nously choose forecasting strategies. An evolutionary game theory mechanism describes how frac-

tions xt = (x1;t; :::; xk;t) of the population using forecasting strategies (e1;t; :::; ek;t) evolve according

to the performance of the strategies. The asset price is a function such that

yt = f (xt; Zt;�t)

where Zt is the information set of the agents and �t is a vector of stochastic elements that includes

dividends and other, possibly extraneous, shocks. A key observation is that the asset price yt

depends on the evolution of agents beliefs, represented by changes in xt as follows.

xt+1 = g(xt; yt; Zt)

1Bollerslev (2001) examined in�ation dynamics with a GARCH model. Engle, Lilien and Robins [1987] use the
ARCH in mean model to study yield curve issues. Diebold and Nerlove [1989] use a multivariate ARCH model to
analyze exchange rates.
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The conditional variance of the asset price can be written as

V (ytjZt) = h (xt; V (�t))

that is, volatility depends on the state of agents�beliefs and the magnitude of the shocks. Con-

ditional volatility arises when agents adopt strategies that propagate the variance of �t to the

variance of yt for a number of periods.

ARCH e¤ects would not arise if agents settled on a single forecast, as many representative agent

models assume. Recent observations of the stock market suggest that changing beliefs is a driving

force behind the dramatic movements in asset prices, such as those seen in technology stocks.

We provide a particular example of such a process, focusing on three forecasting strategies that

satisfy rational expectations. The fundamentalist only uses expected future dividends. The mystic

also uses fundamentals but may also experiment with other extraneous information. The re�ectivist

forms the true mathematical expectation by using all the information about the other forecasts and

the state of the population. Agents switch to strategies that have shown lower forecast errors, and

an evolutionary dynamic of Hofbauer and Weibull [1996] allows us to parameterize how aggressively

they do so.

Standard econometric tests of the simulated data con�rm the existence of ARCH and GARCH

e¤ects for certain standard deviations of the stochastic elements. For small shocks to dividends and

the martingale innovation, mysticism never increases its following and conditional heteroscedasticity

does not appear. However, as the magnitude of the shocks rise, the asset price shows occasional

bubble behavior and the returns data show ARCH and GARCH e¤ects for many of the simulations.

Similarly, if agents are slow to switch to better performing strategies, ARCH and GARCH e¤ects

are not present, but as agents become more aggressive, these e¤ects are increasingly common. We

also note that these e¤ects diminish when shocks to the dividends are very large and/or agents are

extremely aggressive. In this situation, there is so much noise in the returns process that detecting

ARCH and GARCH e¤ects is less likely.

Brock, Hommes and Wagener [2001] extend a standard mean-variance optimization model of

asset prices to an environment with heterogeneous agents.2 We adopt a similar approach, but

2Other studies with heterogeneous expectations include Chiarella [2002], Degrauwe [1993], Lux [1998] and DeLong,
Shleifer, Summers and Waldmann [1990]. Our study di¤ers in our focus on forecasts satisfying rational expectations.
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assume that agents know all the parameters of the model and stick to forecasts based on rational

expectations. LeBaron, Arthur and Palmer [1999] study the time series features of a simulated asset

market and show the existence of ARCH e¤ects and many other features of �nancial markets data.

They use a computational approach with many trader types introduced throughout the simulation

according to a genetic algorithm. The dividend process in their model has serial dependence, which

may be a factor in the existence of conditional volatility, while dividends in the simulated model of

this paper are serially independent. Another advantage to our approach is our ability to compare

the merits of a small number of strategies that can be interpreted in standard economic models.

The focus on the possibility of heterogeneous forecasts in this paper stands in contrast to those

who argue that martingale solutions should be ruled out, according to criteria such as transversality

(see Cochrane [2001] p. 27), minimum state variable (McCallum [1983, 1997]), and expectational

stability (Evans and Honkapohja [1994, 2001]). Parke and Waters [2002] analyze conditions under

which the population is robust to the introduction of mysticism and the agents stick to forecasts

based on fundamentals and conditions where heterogeneity in the forecasts could persist. The

present paper presents a particular example of the class of models whose stability characteristics

are extensively analyzed in Parke and Waters [2002].

The convergence to rational expectations literature, such as the papers on least squares learning

of Marcet and Sargent [1989a, 1989b], is also related. Woodford [1990] and Howitt and McAfee

[1992] show the possibility of learning sunspot equilibria, which depends on accidental correlations

between sunspots and fundamentals, similar to the present work. These papers focus on agents

leaning model parameters over time, while our agents know the parameters and choose forecasts

that are based on multiple solutions to the model.

A paper that does have a formal model explaining conditional volatility in a di¤erent environ-

ment is the study of real interest rate �uctuations in den Haan and Spear [1998]. They construct

on optimizing model where agents hold saving in the form of bonds. Agents are heterogeneous, as

in the present paper, and receive idiosyncratic shocks. Volatility clustering arises due to borrowing

constraints that vary across the business cycle.

The organization of the paper is as follows. Section 2 develops the asset pricing model with

heterogeneous agents. Section 3 describes the di¤erent forecasts, shows how the asset price and

forecast errors are determined. Section 4 shows how agents�choices of strategies evolve over time.
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Section 5 reports the simulations results showing ARCH and GARCH e¤ects. Section 6 concludes.

2 Asset Pricing with Heterogeneous Agents

Brock, Hommes and Wagener [2001]3 extend a standard asset pricing model to the situation where

agents can have heterogeneous beliefs about future prices. Agents are myopic, mean-variance

optimizers who can choose between a risky asset and a riskless asset with gross rate of return R.

An agent�s wealth Wt evolves according to

Wt+1 = RWt + (yt+1 + ut+1 �Ryt) zt

where the price of the risky asset is yt; the dividend payment is ut and zt is the number of shares

purchased by the agent in time t. The asset price and dividend process are stochastic so agents

does not have precise knowledge of yt+1 or ut+1 when making decisions about zt.

Agents may have heterogeneous expectations about an endogenous variable Xt. Let an agent

of type j have the expectation ej;t (Xt+1) formed at time t for the next period value Xt+1. Agents

of type j maximize the following objective over zt, where Vj;t denotes the conditional variance at

time t for agent j.

ej;t (Wt+1)�
a

2
Vj;t (Wt+1)

The parameter a denotes the level of risk aversion. Assuming that the conditional variance

Vj;t (Wt+1) = �2W is the same constant for all types and denoting the demand for shares of type j

as zj;t, the optimization yields the condition

zj;t =

�
1

a�2W

�
ej;t (yt+1 + ut+1 �Ryt) :

There is a constant supply of shares zs per investor and the fraction of the population of type

j is xj;t. Summing the demand over the n types and equating supply and demand yields the

3This model, which they refer to as the Adaptive Belief Sytem, was introduced in the technical literature in Brock
and Hommes [1999].
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following condition for the price of the risky asset.

Ryt =
nX
j=1

xj;tej;t (yt+1 + ut+1)� C (1)

where C = a�2W zs.

If agents are homogeneous and have rational expectations (1) becomes

yt = �Et (yt+1 + ut+1)� C (2)

for � = R�1. The fundamental, perfect foresight, bubble-free solution is

y�t =
1X
s=1

�sut+s �
C

1� �; (3)

which corresponds to the present value model of asset pricing where � is the discount factor.

However, the self-ful�lling nature of expectations admits the class of solutions

yt = Ety
�
t + �

�tmt (4)

to equation (2) where mt is any martingale such that mt = mt�1 + �t for some iid, mean zero

stochastic process �t. Some argue for the exclusion of such solutions on the basis of a transversality

condition, but in a study of short term dynamics, we �nd such criteria unpersuasive.

In the present approach agents use forecasting strategies based on the general solutions (4) to

(2). Agents agree on the expectations of future dividends so Ety�t is common knowledge, but they

may disagree on the use of a martingale in making forecasts.

The key underlying assumptions of Brock, Hommes and Wagener [2001] used in the present

approach are the common beliefs about the dividend process and the constant conditional variance

of the asset prices. However, while Brock, Hommes and Wagener [2001] postulate a number of

di¤erent forecasting strategies, such as trend chasing or perfect foresight, we restrict ourselves to

forecasts based on the general solutions (4).
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3 Strategies

This section postulates three possible strategies for forecasting the asset price yt based on the

general solutions (4). The realization of yt is determined by the forecasts and the fractions of the

population using the di¤erent strategies. Determining yt allows the construction of forecast errors

for each strategy, which act as payo¤ in the evolutionary game theory dynamics.

A fraction of the population 
t uses the fundamentalist forecast based on (3).

e
;t = Ety
�
t+1

Since the one period ahead expectations determine the current asset price, these forecasts of yt+1are

formed without knowledge of yt. Another fraction �t of the population uses a mystic forecast based

on a martingale solution of the form (4).

e�;t = Ety
�
t+1 + �

�t�1mt

One potential reasons agents might consider the mystic forecast is the existence of a spurious

(sunspot) variable that some agents believe a¤ects asset prices.

While both of the above forecasting strategies may be attractive to some, they do not use

all the information in this environment with heterogeneous forecasts. We postulate a a fraction

of the population �t using a third strategy, the re�ective forecast e�;t, which takes into account

the other forecasts and the fractions of the population using each. The asset pricing formula for

heterogeneous agents (1) with the above three forecasts yields

yt = � (
te
;t + �te�;t + �te�;t + Etut+1)� �a�2zs (5)

using the fact that agents have a common expectation about future dividends. The re�ectivist fore-

cast uses all available information to satisfy the asset pricing equation under rational expectations

(2) so it must satisfy

yt = � (e�;t + Etut+1)� �a�2zs: (6)
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Combining (5) and (6), the re�ectivist forecast may be represented as

e�;t = nte�;t + (1� nt) e
;t

where

nt =
�t

�t + 
t
:

The re�ectivist forecast is an average of the other two forecasts, weighted according to their relative

popularity. The re�ectivist strategy is analogous to Keynes�[1935] "beauty contest" interpretation

of predicting stock prices. Agents give primary attention to anticipating the choices of others as

opposed to the intrinsic value of the asset.

Agents choose forecasts based on past performance of the di¤erent strategies. As with many

evolutionary models4, we must specify the payo¤ to a strategy. Following LeBaron et. al. [1999],

agents judge strategies according to squared forecast error5. The forecasts described above deter-

mine the realization of the asset price, which in turn determine the forecast errors for each strategy.

To determine forecast errors, note that agents�forecasts of yt in the previous period are

e
;t�1 = Et�1y
�
t

e�;t�1 = Et�1y
�
t + �

�tmt�1

e�;t�1 = Et�1y
�
t + �

�tnt�1mt�1:

Note that the re�ectivist forecast includes the martingale, weighted according to the popularity of

the mystic forecast, represented by nt. The fraction 
t; �t; �t and nt are determined once yt�1 is

realized and held constant until yt is determined. At time t, the updated fundamental solution

Ety
�
t+1 and martingale mt become available. Agents still do not know the contemporaneous price

yt, but can use the new information to form the following forecasts of yt+1.

4Blume and Easley [1992] discuss this point in the context of an evolutionary study of asset pricing. They are
concerned with long run survival of strategies.

5 In constrast, Brock, Hommes and Wagener [2001] use realized pro�ts. While this is reasonable, accuracy of
forecast is another good an indicator of future performance of a strategy.
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e
;t = Ety
�
t+1

e�;t = Ety
�
t+1 + �

�t�1mt

e�;t = Ety
�
t+1 + �

�t�1ntmt

These forecasts with the asset price equation (5) yield the realization

yt = Ety
�
t + �

�tntmt (7)

The negatives of the three period t squared forecast errors can be written as

��;t = �U2t ; (8)

�
;t = �U2t � 2ntUtAt � n2tA2t ; (9)

��;t = �U2t + 2 (1� nt)UtAt � (1� nt)
2A2t ; (10)

where At = ��tmt�1 is the level of the martingale term. The re�ective forecast

error Ut = Ft +Gt includes the innovation in the fundamentals for yt

Ft = E(y�t j
t)� E(y�t j
t�1)

and a term involving the innovation in the martingale multiplied by the weight nt measuring

the importance of mysticism

Gt = ��tnt(mt �mt�1):

Intuitively, Ut depends on serially independent shocks while At depends on the martingale, which

has autoregressive behavior.

In the payo¤s above, the third terms in the payo¤s to fundamentalism and mysticism (9) and

(10), referred to as martingale terms, is detrimental to each payo¤. However, the second term in
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each involves UtAt; referred to as covariance terms, are potentially bene�cial to one of the payo¤s

depending on the sign of UtAt.

Evolution of �t; 
t and �t depends on the �tness of each strategy, which is the di¤erence between

each payo¤ and the population average payo¤ ��t = �t��;t+
t�
;t+�t��;t. The re�ectivist strategy

has an intrinsic advantage in that is will always have non-negative �tness, but it is possible for the

mystic or fundamentalist payo¤ to be the best. Using the payo¤s (8), (9) and (10) above, the

�tness for re�ectivism is

��;t � ��t =

t�t

t + �t

A2t � 0: (11)

The covariance terms in (9) and (10) cancel in the population average payo¤, but the martingale

terms do not so the population average will always be worse than the payo¤ to re�ectivism.

Despite this property of re�ectivism, if the covariance term 2 (1� nt)UtAt in the payo¤ to

mysticism is positive and su¢ ciently large then ��;t > ��;t > �
;t: If there are few followers of

mysticism, the sign of the covariance term depends on whether the martingale and dividend process

are positively correlated, so UtAt > 0 means that the mystic has conjured a fortuitously accurate

forecast.

These observations give some intuition about the interaction between the strategies. The

realization of the asset price (7) gives some insight into the potential e¤ect on the time series data.

If mysticism is eliminated, so that nt = 0, then the re�ective and fundamental forecasts are identical,

yt follows fundamentals and returns will be determined by dividends alone. However, if nt > 0

the martingale could in�uence the asset price and lead it away the fundamental y�t . Further,

if nt changes over time, both behaviors could be observed for di¤erent stretches of time. The

possibility of the price switching between fundamental and bubble behavior creates the potential

for the detection of ARCH e¤ects.

4 Evolution

This section describes a particular evolutionary framework based on the idea that agents imitate

the strategies of other successful agents6. Agents will switch to other strategies which have better

payo¤s, meaning lower forecast errors. We use a discrete time version of evolutionary dynamics.

6DeLong, Schleifer, Summer, and Waldman [1990] use imitation in their noise trader model.
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Let ri;t be the fraction of agents using forecast i who review their choice of strategy at time t; and

let pij;t be the probability that an agent using forecast j in period t who reviews switches to forecast

i in the next period. If there are k available forecasts, then the change in xi;t is given by

xi;t+1 � xi;t =
kX
j=1

rj;txj;tp
i
j;t � ri;txi;t: (12)

This is the discrete time version of equation (4.24) in Weibull (1997).7

All agents review every period regardless of the payo¤ so ri;t � 1, but that the transition

probabilities pij;t depend on the performance of the strategies. Agent will tend to switch to other

strategies with better payo¤s, meaning lower forecast errors. Agents use payo¤weighting functions

w (�i;t) to arrive at the transition probabilities

pij;t =
w (�i;t)xi;t

wt
; (13)

where wt =
nP
h=1

w (�h;t)xh;t. When the weighting function w (�) is linear wt corresponds to the

population average payo¤. The transition probability pij;t into strategy i depends on its cur-

rent weighted payo¤ w (�i;t) relative to the population average wt and its current popularity xi;t.

Substituting (13) into (12) with ri;t � 1 yields

xi;t+1 = xi;t
w (�i;t)

wt
: (14)

The fraction using strategy i will obviously increase if its payo¤ �i;t is large relative to the payo¤s

to the other strategies, but the dynamics of the system depend on the exact speci�cation for w (�).

The above evolution equation by itself shows that xi;t = 0 is steady state so if a strategy has

no followers it cannot acquire any. Avocates of minimum state variables require that all agents

use the fundamentalist strategy, while those persuaded by rational bubbles would think that all

agents use mysticism. The present paper takes a middle course, since each strategy has attractive

features. Pricing of assets based on fundamentals focuses on real events. Mysticism recognizes

the potential for large short term deviations in asset prices. Re�ectivism uses all the information

7Hofbauer and Weibull (1996, pp. 564-6) consider two speci�c behavioral models contained within this general
framework. Parke and Waters [2001] investigate both in depth.
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available to form a rational expectation. Therefore, we study the evolution of the system under

the following.

Condition 1 The fractions 
t,�t and �t do not fall below certain minimums 
min, �min and �min.

This condition is similar to the evolutionary game theory concept of drift, studied by Binmore,

Gale and Samuelson [1995], who analyze which strategies are robust to the introduction of small

fraction of the population using other strategies.

In practice, we choose a �min to be much lower than the other minimums so that if mysticism is

near its minimum it has very little a¤ect on the asset price and yt essentially follows the fundamental

forecast8. Our goal is to �nd out whether mysticism can gain su¢ cient following to impact the

system, causing bubble-like behavior and inducing ARCH e¤ects in the time series data.

Another element determinig the dynamics is the speci�cation of the weighting function w (�).

Parke and Waters [2002] shows that for a linear9 w (�) and bounded errors, re�ectivism is the

dominant strategy. For a convex weighting function, the conditions for agents to adopt the mystic

forecast improve. Convexity of ! (�) implies that agents are seeking out the best performing

strategy more aggressively. Compared to the replicator dynamic, convexity of the weighting

function means the population shares change overproportionally with the �tness of the strategies10.

Let the weighting function be the following exponential form w (�) = e�� where � parameterizes the

convexity of the function. For higher �, agents are switching to the best forecast more aggressively.

The evolution equation (14) and the payo¤s (8), (9) and (10) determine equations of motion for

the fractions of the population following each strategy. Using the exponential weighting function

above, the second degree Taylor approximation in At of the equation describing the motion of �t

becomes
�t
�t+1

�= 1� �nt (1� nt)A2t + 2�2nt (1� nt)A2tU2t :

Note that
�t
�t+1

< 1 implies that re�ectivism�s share is increasing. This approximation demon-

strates the conditions under which �t might decrease, giving mysticism a chance to succeed. If

8Parke and Waters [2001] relaxes this assumption on the minimum fraction following mysticism and provides a
more nuanced analysis of the stability of the system.

9This case corresponds to the replicator dynamic, the original evolutionary game theory model from biology.
Economists have developed a broader class of evolutionary models from foundations involving social interaction.
10Hofbauer and Weibull [1996] examine the speci�cation of the weighting function in detail.
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the second order term 2�2nt (1� nt)A2tU2t is zero, then the equation corresponds to the linear

weighting case and �t is monotone increasing. However, if the second order term is large enough

then �t will fall. If the correlation between Ut and At favors mysticism as well, the share using

mysticism �t will increase. Writing the approximation as

�t
�t+1

�= 1� �nt (1� nt)A2t [1� 2�U2t ];

�t will fall if � and the magnitude of Ut is su¢ ciently large. So if agents are being aggressive and

the variance of the stochastic terms is high mysticism should have a chance to gain a following,

potentially drawing the price of the asset away from the fundamental forecast.

Re�ectivism has a natural advantage and will have a superior payo¤ to the population average

at all times. However, the mystic payo¤ can be superior if the covariance term in its payo¤

is su¢ ciently large and has the right sign. If, in addition, agents are actively seeking the best

forecasting strategy, many of them may switch to mysticism when its payo¤ is the best.

5 Simulations

Simulations of model with exponential weighting show conditions under which mysticism can gain

a following, potentially producing bubble behavior in the asset price. Econometric tests of the

simulated data demonstrate that the present model with agents switching between forecasts can

generate ARCH and GARCH e¤ects in the data for returns on the asset. If the variance of the

stochastic processes is su¢ ciently large and agents are aggressively seeking the best performing

strategy, then the asset price may deviate from the fundamental forecast and returns could display

ARCH properties.

Figures [1] and [2] show simulated realization for the model given by the evolution equation (14)

with exponential weighting w (�) = e�� and the payo¤s (8), (10) and (9) with di¤erent variances11

of the dividend process ut. The graphs also show the shares of the population using each strategy

across time. The fraction following mysticism �t is the vertical distance from zero, while the fraction

following fundamentalism 
t is the distance from one. The gap between the two represents �t, the

fraction using re�ectivism.
11The exponential weighting function parameter is set to � = 1 unless otherwise noted.
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All simulation begin at the potentially stable point where re�ectivism has its maximum number

of followers. A small fraction "� = 0:001 of the population using the mystic forecast is introduced

but at a much lower level than the minimums for the other strategies "
 = "� = 0:05. The purpose

of setting a low "� is so that e¤ect on the asset price realization, given by (7), is small when the

fraction following mysticism is near its minimum, since nt will also be low. Simulations in the

computational �nance literature often introduce new strategies regularly during the simulation.

The model in this paper could be extended to include many di¤erent mystic forecasts operating

simultaneously, but we focus on a single mystic forecast for clarity. If the following for one mystic

forecast drops below the minimum, we allow �t to remain at "� and set the martingale such that

mt�1 = 0, representing a new mystic forecast.

Both simulations in Figures [1] and [2] have the same martingale innovation process12, but the

standard deviation of the dividend process �u is set to the relatively low value �u = 0:25 for the

simulation shown in Figure 1 while �u = 1:25 in Figure 2. The two simulations show dramatically

di¤erent behavior. In Figure 1, when the standard deviation of the dividend process is small,

the population share for mysticism remains at its minimum and the asset price remains close to

the fundamental forecast. However, in Figure 2, when the dividend shocks are larger, there are

periods when mysticism succeeds in attracting adherents and becoming the dominant strategy at

times. Stretches of time when mysticism dominates often show bubble behavior in the asset price,

represented by the large deviations from zero in the fundamentalist forecast error. Such bubbles

never last inde�nitely. The existence of a minimum fraction following fundamentalism ensures

that the re�ective and mystic forecasts do not coincide and, as the martingale becomes large, the

re�ective forecast eventually outperforms the mystic forecast.13

Econometric tests con�rm that the model produces time series features often associated with

�nancial markets. ARCH and GARCH models are often used to analyze returns on assets. For

12Both the dividend process ut and the martingale innovation process �t are distributed normally for these simu-
lations. The mean of the dividend process is 0.2 throughout. In Figures 1-2, the standard deviation of �t, �� = 0:5:
The evolution parameter � = 1 for both simulations as well.
13See Parke and Water [1999] for a full discussion of this issue. In some models of rational bubbles, such as Hall,

Psaradakis and Sola [1999] have, the bubble collapses with some exogenously given probability. The collapse in our
model occurs endogenously, given the assumption about the minimum fraction using fundamentalism.
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the present model returns are simply

RETt =
ut + yt+1 � yt

yt
: (15)

Assuming markets are e¢ cient implies that returns should be serially independent and �uctuate

about the mean. The dividend process is serially uncorrelated and distributed normally ut �

N(5; �2u)
14. As explained in section 2, agents are assumed to all have the same constant conditional

variance of future wealth �W . We take �W = Et
�
y�2t+1

�
+ �2u which is the highest conditional

variance wealth could take if asset prices follow the fundamental solution. Of course if agents

expect bubbles, �W could be higher, but as long as it is constant, there would be no qualitative

di¤erence in the results. More sophisticated agent could try to estimate an ARCH model every

period and try to anticipate changes in volatility, but this would only increase the serial correlation

in volatility. In our approach, ARCH e¤ects arise solely from heterogeneity in the forecasting

strategies.

5.1 ARCH

Observing the returns formula above (15) shows the potential for serial correlation in the squared

errors. Using the expression for the realized price (7), the di¤erence yt+1 � yt will contain the

term ��t�1mt (nt+1 � nt). Since the evolution equation (14) implies that the fractions of the

population following di¤erent strategies are serially correlated, nt will be as well. This correlation

will be particularly pronounced when the mystic is gaining a following. The square of this term

will appear in the squared errors for the return so the presence of ARCH/GARCH e¤ect seems to

be quite possible.

We test sample runs of 1000 periods for the presence of heteroscedasticity in the returns. Table

1 shows results from applying Engle�s [1989] test, constructing the deviations "t of RETt from its

mean as follows.

RETt = RET + "t (16)

The next step is to test for serial correlation of the squared deviations "2t using least square on the

lags "2t�1; "
2
t�2; "

2
t�3; ::: . Each entry in the table shows the percentage of the sample runs, out of

14Other parameter values are a = 0:25; � = 0:99 and zs = 1:0.
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10,000 trials, that showed signi�cant (at the 99% level) serial correlation of the squared errors for

a given lag length and for various standard deviations of the dividends and martingale innovation.

The individual charts demonstrate the results for a given ��, and the last row gives the percent of

the runs which showed signi�cance in each of the �rst �ve lags.

A Monte Carlo analysis shows the percentage, above which the detected ARCH e¤ects are not

spurious. Performing the same test on white noise returns showed signi�cant ARCH e¤ect for

the �rst lag in 0.0107 of the runs with a standard deviation of 0.0116. Invoking Chebyshev�s

inequality, if ARCH e¤ects appear in more than the threshold of 0.0687 of the sample runs, they

are not spurious with a 99% probability. ARCH e¤ects at longer lags were even less frequent in

the case of white noise returns.

At lower levels of ��, ARCH e¤ects do not appear in more than this threshold fraction. The

small innovations lead to a small At term in the payo¤s, (8), (9) and (10), making the payo¤s similar

so there is little incentive to switch strategies. Furthermore, a small martingale will have relatively

little impact on the asset price and returns. At higher standard deviations of the dividends,

mysticism can gain a following even with small ��, but here the noise created by the dividends

tends to drown out the impact of mysticism on returns.

At higher levels of the standard deviation of the martingale innovation, conditions for the success

of mysticism and the appearance of ARCH e¤ects improves. As the magnitude of the shocks rise,

ARCH e¤ects �rst occur when �� = 0:5 and �u = 1:0, where 0:1180 > 0:0687 of the runs had

signi�cant ARCH e¤ects at the �rst lag. In addition, ARCH e¤ects in this case appeared at all

tested lags.

As �� rises further, ARCH e¤ects become increasingly common. Larger shocks to the martingale

innovation increase the magnitude of the martingale in At as well as Ut opening the possibility that

the covariance terms in the payo¤s to mysticism and fundamentalism, (9) and (10), will play an

important role. The magnitude of the dividends remains important, however. At low �u, such as

�u = 0:5; signi�cant ARCH e¤ects do not appear for any ��, but for �u = 1:0 they are present at

all �� � 0:5. Larger shocks to ut raises the magnitude of Ut in the payo¤s helping to make the

covariance term bigger, which can help mysticism, bigger, in comparison to the martingale term,

which worsens the mystic payo¤.

However, for very large dividend shocks, ARCH e¤ects are diminished. For example, when

15



�� = 1:0, there are signi�cant levels of ARCH for �u = 1:0 and 2:0 but not for �u = 4:0, a pattern

which persists at higher levels of ��. Again, when dividend shocks are large, they can be the

dominant factor determining returns, and, since dividends are uncorrelated, returns are less likely

to exhibit serial correlation of any kind.

These tests clearly show that heterogeneity of forecasting strategies with agents choosing these

strategies endogenously can produce ARCH e¤ects in asset returns, as is commonly seen in the

�nancial markets data. The combination of su¢ ciently large shocks to the martingale innovation

and moderate dividend shocks creates condition where mysticism can gain a following, bubbles can

form and serial correlation can appear in the squared errors of asset returns.

5.2 GARCH

A natural next step is to examine the simulated data that showed ARCH e¤ects to see whether

it is well represented by a GARCH model. GARCH (Generalized ARCH) models, introduced by

Bollerslev [1986], are commonly used to examine �nancial markets data and o¤ers a useful extension

of the ARCH approach. GARCH models reduce the number of parameters estimated and allow

for serial correlation in both the squared errors and the conditional variance of the endogenous

variable, which separates short and long term variability in volatility.

We examine the simulated data using a GARCH(1,1) model that is often used with �nancial

markets data15. This models the conditional variance of the errors Et�1
�
"2t
�
= �2R;t such that

�2R;t = �+ '�2R;t�1 +  "
2
t�1

so it depends on the previous periods conditional variance and squared errors. The advantage of

this speci�cation is its parsimony, multiple lags of "2t are not required as in the ARCH test, and the

separation of the e¤ects of the long term conditional variance �2R;t�1 and the short term squared

errors "2t�1. Of course it is possible to include further lags of either variable, but, as Engle [2001]

notes, the GARCH(1,1) with one lag of each, has proved su¢ cient for most �nancial markets data.

Table 2 reports the results of estimates of the GARCH(1,1) model of simulated data from the

model described in the previous subsection. Each chart in the table gives results for a given

15Bollerslev [1992] surveys ARCH modeling in �nance.
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standard deviation of the martingale innovation while each row summarizes the results from 1000

sample runs of 1000 periods for a given standard deviation of the dividend process. The �rst column

give �u and second column (garch signif ) reports the percent of the runs where ' is signi�cantly

greater than zero16. The following column (arch signif ) shows the percent of the runs where  is

signi�cantly positive, among the sample runs where ' is signi�cant. The next two columns (garch

est and std garch est) show the average estimate of �, among those that are signi�cantly positive,

and the standard deviation of the estimates, to give a sense of the variability of the parameter.

Similarly, the next two columns (arch est and std arch est) report the mean and standard deviation

of the estimated  �s, from the sample runs where both  and � are signi�cantly positive. Finally,

we conduct a Ljung-Box Q test to see if the remaining residuals lacked serial correlation. The �nal

column (diag) reports the percentage of the sample runs which showed no serial correlation of the

samples where � was signi�cantly positive, passing the diagnostic test.

The table shows that many of the sample runs that showed ARCH e¤ects are well represented

econometrically by a GARCH(1,1) model. In all cases, the percentage showing signi�cant GARCH

e¤ects (the estimate of ' > 0) is similar to the percentage that showed signi�cant ARCH e¤ects at

a single lag. Furthermore, the percent passing the diagnostic check for a lack of serial correlation in

the residuals is very high, always over 70% and over 90% in more than half the cases. Examination

of individual samples shows that some runs are better modeled by including a moving average or

autoregressive term or both in the returns equation (16), which is common with high frequency data

(see Enders [2004], p. 145). Combining the information in these columns (garch signif and diag)

gives a good estimate of the percentage of runs well represented by the GARCH(1,1) speci�cation.

For example, for �� = �u = 1:0, the fraction showing signi�cant GARCH e¤ects is 0.459, and the

fraction of these passing the diagnostic test is 0.8998 so the product 0.413 is the faction with a

good �t to the model. The estimates of ' tend to be large, over 0.5, for most of the sample runs

but estimates of the ARCH parameter  are often very small and/or insigni�cant. Such features

are also common to �nancial markets data (Engle [2001]).

The results of the GARCH estimations show similar pattern to the table concerning the ARCH

tests. Higher levels of the standard deviation of the martingale innovation tend to show a greater

16To be counted, the returns also are required to show signi�cant ARCH e¤ects for one lag and the estimate of  
must be positive.
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frequency of signi�cant GARCH e¤ects. This observation is true for the standard deviation of the

dividend process, but as the level of �u rises, GARCH e¤ects are less likely to appear. At high

levels of ��; when GARCH e¤ect are common the adoption and subsequent rejection of mysticism

happens quite quickly. Mysticism can gain a large following but it usually last for less than 10

periods before it is rejected. Outbreaks of mysticism that last longer, as shown in Figure 2,

which tend to occur for more moderate �� may or may not show GARCH e¤ects. A bubble that

forms slowly may show a small change in the volatility of the returns. These observations suggest

that ARCH and GARCH e¤ects are particularly prevalent when agents adopt a forecast that is

extremely divergent from fundamentals, but subsequently reject it quickly.

The result in Table 2 demonstrate that the present model, where agents have the option of

adopting a successful bubble forecast, can produce ARCH and GARCH e¤ects that are very similar

to those found in �nancial markets. For large shocks in the martingale innovation and moder-

ate dividend shocks, a very signi�cant fraction of the sample simulations are well modeled by a

GARCH(1,1) process with parameter values that closely resemble those found in studies of �nancial

markets data.

For some choices of parameters, GARCH e¤ects are quite common. For �� = 2:0 and �u = 1:0,

over two-thirds of the runs showed signi�cant GARCH e¤ects and passed the diagnostic test. An

example of one of these runs is shown in Figure 3. Volatility clustering in the returns is quite

evident and occurs around short outbursts of mysticism. Engle [2001] suggests that clusters of

large shocks must be the result of news, and we can interpret our simulations as agents temporarily

responding to a new variable but quickly discarding it as irrelevant. Any news, whether is matters

to future dividends or not, can have an impact if enough agents think it is important, even for only

a short period of time.

5.3 Agent Aggression

For mysticism to have the opportunity to gain a following, agents must be su¢ ciently aggressive

in switching to the best performing forecast. Such behavior is represented by the parameter

� in the exponential weighting function. Higher � has the e¤ect of placing greater weight on
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better forecasts17, meaning that a greater fraction will change their forecasting strategy to the

better forecasts, increasing the possibility that mysticism could draw so adherents from re�ectivism.

Therefore, an increase in � raises the probability that ARCH and GARCH e¤ects will be detected

in the simulated data, up to a point.

Table 3 shows very few sample runs18 with signi�cant GARCH e¤ects for � = 0:5, but for � = 2

and 4 over one third of the runs showed signi�cant GARCH e¤ects and passed the Q-test on the

residuals. Starting from low levels of �, when agents are more aggressive, GARCH e¤ects are

more prevalent. However, for very high level of � = 8, for example, the frequency of GARCH

e¤ects falls. Examination of some samples19 shows that mysticism has not been driven out. On

the contrary, the fractions following mysticism and fundamentalism �uctuate wildly, creating noisy

realizations for the asset price and returns, making conditional volatility e¤ects more di¢ cult to

detect.

6 Conclusion

ARCH / GARCH models have proved to be extremely successful econometric techniques for detect-

ing conditional volatility, particularly for returns in �nancial markets. This paper shows a formal

model explaining how such e¤ects arise endogenously through agents choices of heterogeneous fore-

casting strategies. Agent switching to forecasts based on martingale solutions can produce bubble

behavior in the asset price and GARCH e¤ects in the returns.

Agents know all the parameters of the model and only use strategies satisfying rational expec-

tations. Their choice of forecast depends on the previous performance of the di¤erent strategies

based on forecast errors. An evolutionary game theory mechanism describes how the fractions

of the population using the di¤erent strategies change over time and allows comparisons of the

dynamics depending on how quickly agents change strategies.

The re�ectivist forecast, which uses the mathematical expectation of the asset price, has an

intrinsic advantage over the other strategies, but mysticism, which uses a forecast based on a

17The role of � here is similar to the search intensity parameter in the multinomial logit approach used by Brock,
Hommes and Wagener [2001]. See Parke and Waters [1999] for a discussion of the relative merits of the two
approaches.
18For these runs �� = 0:5 and �u = 1:0
19See Waters [2002] for numerous examples.
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martingale solution, can gain a temporary following under certain conditions. If the magnitude of

the shocks to dividends and the martingale innovation are large enough and agents are su¢ ciently

aggressive about switching to the best strategy, then mysticism can gain a following, the asset price

may be led away from the fundamental forecast and ARCH and GARCH e¤ect could appear in

the returns. The simulation results reported here conclusively demonstrate the presence of these

e¤ects in the model with endogenous switching between forecasting strategies.

As Engle [2001] notes, the source of conditional volatility must be news of some kind. Our

results suggest that the new information need not be relevant in any fundamental sense. If enough

investor beliive that a piece of information is important, it will be. The process of experimenting

with and rejecting sources of information is a key factor in the appearance of ARCH e¤ects. The

evolution of heterogeneous beliefs is key to understanding the behavior of �nancial markets.
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Figure 1: �u = 0:25, �� = 0:5
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Figure 2: �u = 1:25; �� = 1:25
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Figure 3: �u = 1:0; �� = 2:0

Table 1: Fractions With Signi�cant ARCH E¤ects
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Table 2: GARCH estimation results

Table 3: GARCH estimation for varying ��s
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