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Abstract

This paper studies computational aspects of moral-hazard problems. In particular,
we consider deterministic contracts as well as contracts with action and/or compen-
sation lotteries, and formulate each case as a mathematical program with equilibrium
constraints (MPEC). We investigate and compare solution properties of the MPEC
approach to that of the linear programming (LP) approach with lotteries. We propose
a hybrid procedure that combines the best features of the both. The hybrid procedure
obtains a solution that is, if not global, at least as good as an LP solution. It also pre-
serves the fast local convergence property by applying the SQP algorithm to MPECs.
The numerical results on an example show that the hybrid procedure outperforms the
LP approach in both computational time and solution quality in term of the optimal
objective value.

1 Introduction

This paper studies mathematical programming approaches to solve moral-hazard problems.
More specifically, we formulate moral-hazard problems with finitely many action choices,
including the basic deterministic models and models with lotteries, as mathematical programs

with equilibrium constraints (MPECs). One advantage of using an MPEC formulation is the
size of resulting program, which is often a thousand times smaller than the linear programs
derived from the LP lotteries approach [18, 19]. This feature makes the MPEC approach an
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appealing alternative when solving a large-scale linear program is computationally infeasible
because of limitations on computer memory or computing time.

The moral-hazard model studies the relationship between a principal (leader) and an
agent (follower) in situations in which the principal can neither observe nor verify an agent’s
action. The model is formulated as a bilevel program, in which the principal’s upper-level
decision takes the agent’s best response to the principal’s decision into account. Bilevel
programs are generally difficult mathematical problems and much research in the economics
literature has been devoted to analyzing and characterizing solutions of the moral-hazard
model (see Grossman and Hart [7] and the references therein). When the agent’s set of actions
is a continuum, an intuitive approach to simplify the model is to assume the agent’s optimal
action lies in the interior of the action set. One then can treat the agent’s problem as an
unconstrained maximization problem and replace it by the first-order optimality conditions.
This is called the first-order approach in the economics literature. However, Mirrlees [12, 13]
showed that the first-order approach may be invalid because the lower-level agent’s problem
is not necessarily a concave maximization program and that the optimal solution may fail to
be unique and interior. Consequently, a sequence of papers [20, 8, 9] has developed conditions
under which the first-order approach is valid. Unfortunately, these conditions are often more
restrictive than is desirable.

In general, if the lower-level problem in a bilevel program is a convex minimization (or
concave maximization) problem, one can then replace the lower-level problem by the first-
order optimality conditions, which are both necessary and sufficient, and reformulate the
original bilevel problem as an MPEC. This idea is similar to the first-order approach to
the moral-hazard problem with one notable difference: MPEC formulations include com-
plementarity constraints. The first-order approach assumes that the solution to the agent’s
problem lies in the interior of the action set, and hence, one can treat the agent’s problem
as an unconstrained maximization problem. This assumption may also avoid issues associ-
ated with the failure of the constraint qualification at a solution. General bilevel programs
do not assume an interior solution assumption. As a result, the complementarity condi-
tions associated with the Karush-Kuhn-Tucker multipliers for inequality constraints would
appear in the first-order optimality conditions for the lower-level program. MPECs also
arise in many applications in engineering (e.g., transportation, contact problems, mechani-
cal structure design) and economics (Stackelberg games, optimal taxation problems). One
well-known theoretical difficulty with MPECs is that the standard constraint qualification
such as linear independence constraint qualification and Mangasarian-Fromovitz constraint
qualification fails at every feasible point. An extensive literature has developed to refine
constraint qualifications and stationarity conditions for MPECs; see Scheel and Scholtes [22]
and the references therein. We also refer to the two-volume monograph by Facchinei and
Pang [2] for theory and applications of equilibrium problems and to the monographs by Luo
et al. [11] and Outrata et al. [16] for more details on MPEC theory and applications.

The failure of the constraint qualification conditions means that the set of Lagrange
multipliers is unbounded and that conventional numerical optimization software may fail to
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converge to a solution. Economists have avoided these numerical problems by reformulating
the moral-hazard problem as a linear program involving lotteries over a finite set of outcomes.
See Townsend [24, 25] and Prescott [18, 19]. While this approach avoids the constraint
qualification problems, it does so by restricting aspects of the contract, such as consumption,
to a finite set of possible choices even though a continuous choice formulation would be
economically more natural.

The purpose of this paper is twofold: (1) To introduce to the economics community the
MPEC approach, or more generally, advanced equilibrium programming approaches, to the
moral hazard problem; (2) To present an interesting and important class of incentive prob-
lems in economics to the mathematical programming community. Many incentive problems,
such as contract design, optimal taxation and regulation, and multiproduct pricing, can be
naturally formulated as an MPEC or an equilibrium problem with equilibrium constraints

(EPEC) [23]. This greatly extends the applications of equilibrium programming to one of
the most active research topics in economics in past three decades. The need for a global
solution for these economical problems provides a motivation for optimization community
to develop efficient global optimization algorithms for MPECs and EPECs.

The remainder of this paper is organized as follows. In the next section, we describe
the basic moral-hazard model and formulate it as a mixed-integer nonlinear program and
as an MPEC. In Section 3, we consider moral-hazard problems with action lotteries, with
compensation lotteries, and with the combination of the both. We derive MPEC formulations
for each of these cases. We also compare the properties of the MPEC approach and the LP
lottery approach. In Section 5, we develop a hybrid approach that preserves the robustness of
global solution from the LP approach and the fast local convergence of the MPEC approach.
The numerical efficiency of the hybrid approach in both computational speed and robustness
of the solution is illustrated in an example.

2 The Basic Moral-Hazard Model

2.1 The Deterministic Contract

We consider a moral-hazard model in which the agent chooses an action from a finite set
A = {a1, . . . , aM}. The outcome can be one of N alternatives. Let Q = {q1, . . . , qN} denote
the outcome space where the outcomes are dollar returns to the principal ordered from
smallest to largest.

The principal can only observe the outcome, not the agent’s action. However, the
stochastic relationship between actions and outcomes, which is often called a production

technology is common knowledge to both the principal and the agent. Usually, the produc-
tion technology is exogenously described by the probability distribution function, p(q | a),
which presents the probability of outcome q ∈ Q occuring given that action a is taken. We
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assume p(q | a) > 0 for all q ∈ Q and a ∈ A; this is called the full-support assumption.

Since the agent’s action is not observable to the principal, the payment to the agent is
only based on the outcome observed by the principal. Let C ⊂ R be the set of all possible
compensations.

Definition 1 A compensation schedule c = (c(q1), . . . , c(qN)) ∈ RN is an agreement between
the principal and the agent such that c(q) ∈ C is the payoff to the agent from the principal
if outcome q ∈ Q is observed.

The agent’s utility u(x, a) is a function of the payment x ∈ R received from the principal
and of his action a ∈ A. The principal’s utility w(q − x) is a function over net income q − x

for q ∈ Q. We let W (c, a) and U(c, a) denote the expected utility to the principal and agent,
respectively, of a compensation schedule c ∈ RN when the agent chooses action a ∈ A, i.e.,

W (c, a) =
∑

q∈Q

p(q | a) w (q − c(q)) ,

U(c, a) =
∑

q∈Q

p(q | a) u (c(q), a) .
(1)

Definition 2 A deterministic contract (proposed by the principal) consists of a recommended
action a ∈ A to the agent and a compensation schedule c ∈ RN .

The contract has to satisfy two conditions to be accepted by the agent. The first condition
is the participation constraint. It states that the contract must give the agent an expected
utility no less than a required utility level U∗:

U(c, a) ≥ U∗. (2)

The value U∗ represents the highest utility the agent can receive from other activities if he
does not sign the contract.

Second, the contract must be incentive compatible to the agent; it has to provide in-
centives for the agent not to deviate from the recommended action. In particular, given
the compensation schedule c, the recommended action a must be optimal from the agent’s
perspective and maximize the agent’s expected utility function. The incentive compatibility

constraint is given as follows:

a ∈ argmax{U(c, a) : a ∈ A}. (3)

For a given U∗, a feasible contract satisfies the participation constraint (2) and the in-
centive compatibility constraint (3). The objective of the principal is to find an optimal

deterministic contract, a feasible contract that maximize his expected utility. A mathemat-
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ical program of finding an optimal deterministic contract (c∗, a∗) is:

maximize(c,a) W (c, a)

subject to U(c, a) ≥ U∗,

a ∈ argmax{U(c, a) : a ∈ A}.

(4)

Since there are only finitely many actions in A, the incentive compatibility constraint
(3) can be presented as the following set of inequalities:

U(c, a) ≥ U(c, ai), for i = 1, . . . , M. (5)

These constraints ensure that the agent’s expected utility obtained from choosing the rec-
ommendation action is no worse than that of choosing other actions. Replacing (3) by the
set of inequalities (5), we have an equivalent formulation of the optimal contract problem:

maximize(c,a) W (c, a)

subject to U(c, a) ≥ U∗,

U(c, a) ≥ U(c, a1),
...

U(c, a) ≥ U(c, aM ),

a ∈ A = {a1, . . . , aM}.

(6)

2.2 A Mixed-Integer Nonlinear Programming Formulation

The optimal contract problem (6) can be formulated as a mixed-integer nonlinear program.
Associated with each action ai ∈ A, we introduce a binary variable yi ∈ {0, 1}. Let y =
(y1, . . . , yM) ∈ RM and let eM denote the vector of all ones in RM . To ease the notation, we
define

U(c) = (U(c, a1), . . . , U(c, aM)) ∈ RM ,

W (c) = (W (c, a1), . . . , W (c, aM)) ∈ RM .
(7)

The mixed-integer nonlinear programming formulation for the optimal contract problem (6)
is

maximize(c,y) yTW (c)

subject to yTU(c) ≥ U∗,

yTU(c) ≥ U(c, a1),
...

yTU(c) ≥ U(c, aM ),

eT
My = 1,

yi ∈ {0, 1} ∀ i = 1, . . . , M.

(8)
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The above problem has |Q| nonlinear variables, |A| binary variables, one linear constraint
and (|A| + 1) nonlinear constraints. To solve a mixed-integer nonlinear program, one can
use MINLP [3], BARON [21] or other solvers developed for this class of programs. For (8),
since the agent will choose one and only one action, the number of possible combinations
on the binary vector y is only M . One then can solve (8) by solving M nonlinear programs
with yi = 1, and yj = 0 in the i-th nonlinear program, as Grossman and Hart suggested
in [7] for the case where the principal is risk averse. They further point out that each
nonlinear program is a convex program if the agent’s utility function u(x, a) can be written
as G(a)+K(a)V (x), where (1) V is real-valued, strictly increasing, concave function defined
on some open interval I = (I, Ī) ⊂ R; (2) lim

x→I
V (x) = −∞; (3) G, K are real-valued functions

defined on A and K is strictly positive; (4) u(x, a) ≥ u(x, â) ⇒ u(x̂, a) ≥ u(x̂, â), for all
a, â ∈ A, and x, x̂ ∈ I. The above assumption implies that the agent’s preferences over
income lotteries are independent of his action.

2.3 An MPEC Formulation

In general, a mixed-integer nonlinear program is a difficult optimization problem. Below,
by considering a mixed-strategy reformulation of the incentive compatibility constraints for
the agent, we can reformulate the optimal contract problem (6) as a mathematical program
with equilibrium constraint (MPEC); see [11].

For i = 1, . . . , M , let δi denote the probability that the agent will choose action ai.
Then, given the compensation schedule c, the agent chooses a mixed strategy profile δ∗ =
(δ∗1, . . . , δ

∗
M) ∈ RM such that

δ∗ ∈ argmax

{

M
∑

k=1

δkU(c, ak) : eT
M δ = 1, δ ≥ 0

}

. (9)

Observe that the agent’s mixed-strategy problem (9) is a linear program, and hence, its
optimality conditions are necessary and sufficient.

The following lemma states the relationship between the optimal pure strategy ai and
the optimal mixed strategy δ∗.

Lemma 1 Given a compensation schedule c̄ ∈ RN , the agent’s action ai ∈ A is optimal to
the problem (3) iff there exists an optimal mixed strategy profile δ∗ to the problem (9) such
that

δ∗i > 0,

M
∑

k=1

δ∗k U(c̄, ak) = U(c̄, ai),

eT
Mδ∗ = 1, δ∗ ≥ 0.
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Proof If ai is an optimal action of (3), then let δ∗ = ei, where ei is the i-th column in an
identity matrix of order M . It is easy to verify that all the conditions for δ∗ are satisfied.
Conversely, if ai is not an optimal solution of (3), then there exists an optimal action aj such
that U(c̄, aj) > U(c̄, ai). Let δ̃ = ej. Then δ̃TU(c) = U(c̄, aj) = U(c̄, ai) > δ∗TU(c). We have
a contradiction. 2

Let u ⊥ v indicate orthogonality of vectors u and v, i.e., uTv = 0. An observation
following from Lemma 1 is stated below.

Lemma 2 Given a compensation schedule c ∈ RN , a mixed strategy profile δ is optimal to
the linear program (9) iff

0 ≤ δ ⊥
(

δTU(c)
)

eM − U(c) ≥ 0,

eT
Mδ = 1

(10)

Proof. This follows from the optimality conditions and the strong duality theorem for the
LP (9). 2

Substituting the incentive compatibility constraint (5) by the system (10) and replacing
W (c, a) and U(c, a) by δTW (c) and δTU(c), respectively, we derive an MPEC formulation
of the principal’s problem (6):

maximize(c,δ) δTW (c)

subject to δTU(c) ≥ U∗,

eT
Mδ = 1,

0 ≤ δ ⊥
(

δTU(c)
)

eM − U(c) ≥ 0.

(11)

To illustrate the failure of constraint qualification at any feasible point of an MPEC,
we consider the feasible region F1 = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0, xy = 0}. At the point
(x̄, ȳ) = (0, 2), the first constraint x ≥ 0 and the third constraint xy = 0 are binding.
Vectors of the gradient of the binding constraints at (x̄, ȳ) are (1, 0) and (2, 0), which are
dependent. It is easy to verify that the gradient vectors of the binding constraints are indeed
dependent at other feasible points.

......................................................................................................................................................................................................................................................................

.....
...
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...............................................

.....
...
..
.

..................................................................................

....
...
..
..•

(1, 0)

(2, 0)

0 x

y

2

Fig. 1. The feasible region F1 = {(x, y) | x ≥ 0, y ≥ 0, xy = 0}.
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The following lemma states the relationship between the optimal solutions for the principal-
agent problems (6) and the corresponding MPEC formulation (11).

Theorem 1 If (c∗, δ∗) is an optimal solution for the MPEC (11), then (c∗, a∗
i ), where i ∈

{j : δ∗j > 0}, is an optimal solution for the problem (6). Conversely, if (c∗, a∗
i ) is an optimal

solution for the problem (6), then (c∗, ei) is an optimal solution for the MPEC (11).

Proof The statement follows directly from Lemma 2. 2

The MPEC (11) has (|Q| + |A|) variables, 1 linear constraint, 1 nonlinear constraint,
and |A| complementarity constraints. Hence, the size of the problem grows linearly in the
number of the outcomes and actions. As we will see in Section 3.4, this feature is the main
advantage of using the MPEC approach comparing to the LP lotteries approach.

3 Moral-Hazard Problems with Lotteries

In this section, we study moral-hazard problems with lotteries. In particular, we consider
action lotteries, compensation lotteries, and the combination of the both. For each case, we
first give definitions for the associated lotteries and then derive the nonlinear programming
or MPEC formulation.

3.1 The Contract with Action Lotteries

Definition 3 A contract with action lotteries is a probability distribution over actions,
π(a), and a compensation schedule c(a) = (c(q1, a), . . . , c(qN , a)) ∈ RN for all a ∈ A. The
compensation schedule c(a) is an agreement between the principal and the agent such that
c(q, a) ∈ C is the payoff to the agent from the principal if outcome q ∈ Q is observed and
the action a ∈ A is recommended by the principal.

In the definition of a contract with action lotteries, the compensation schedule c(a) is
contingent on both the outcome and the agent’s action. Given this definition, one might raise
the following question: if the principal can only observe the outcome, not the agent’s action,
is it reasonable to have the compensation schedule c(a) contingent on the action chosen by
the agent? After all, the principal does not know what action is implemented by the agent.
One economic justification is as follows. Suppose that the principal and the agent sign a
total of |A| contracts, each with different recommended action a ∈ A and compensation
schedule c(a) as a function of the recommended action, a. Then, the principal and the agent
would go to an authority or a third party to conduct a lottery with probability distribution
function π(a) on which contract would be implemented on that day. If the i-th contract is
drawn from the lottery, then the third party would inform both the principal and the agent
that the recommended action for that day is ai with the compensation schedule c(ai).
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Arnott and Stiglitz [1] use ex ante randomization for action lotteries. This terminology
refers to the situation that random contract occurs before the recommended action is cho-
sen. They demonstrate that the action lotteries will result in a welfare improvement if the
principal’s expected utility is nonconcave in the agent’s expected utility. However, it is not
clear what the sufficient conditions would be needed for the statement in the assumption to
be true.

An NLP Formulation

When the principal proposes a contract with action lotteries, the contract has to satisfy
the participation constraint and the incentive compatibility constraints. In particular, for
a given contract (π(a), c(a))a∈A, the participation constraint requires the agent’s expected
utility to be at least U∗:

∑

a∈A

π(a)U(c(a), a) ≥ U∗. (12)

For any recommended action a with π(a) > 0, it has to be incentive compatible with
respect to the corresponding compensation schedule c(a) ∈ RN . Hence, the incentive com-
patibility constraints are:

∀ a ∈ {â : π(â) > 0} : a = argmax{U(c(a), ã) : ã ∈ A}, (13)

or equivalently,

if π(a) > 0, then















U(c(a), a) ≥ U(c(a), a1),
...

U(c(a), a) ≥ U(c(a), aM).

(14)

However, we do not know in advance that at an optimal solution, whether π(a) will be
strictly positive for an action a. One way to overcome this difficulty is to reformulate the
solution-dependent constraints (14) by:

∀ a ∈ A :



























π(a)U(c(a), a) ≥ π(a)U(c(a), a1),

...

π(a)U(c(a), a) ≥ π(a)U(c(a), aM ),

(15)

or in a compact presentation,

π(a) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ (a, ã( 6= a)) ∈ A×A. (16)

Finally, since π(·) is a probability distribution function, we need

∑

a∈A

π(a) = 1,

π(a) ≥ 0, ∀ a ∈ A.

(17)
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The principal chooses a contract with action lotteries that satisfies participation con-
straint (12), incentive compatibility constraints (16), and the probability measure con-
straint (17) to maximize his expected utility. An optimal contract with action lotteries
(π∗(a), c∗(a))a∈A is then a solution to the following nonlinear program:

maximize
∑

a∈A

π(a)W (c(a), a)

subject to
∑

a∈A

π(a)U(c(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

π(a) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ (a, ã( 6= a)) ∈ A×A,

π(a) ≥ 0, ∀ a ∈ A.

(18)

The nonlinear program (18) has (|Q|∗|A|+|A|) variables and (|A|∗(|A|−1)+2) constraints.
In addition, its feasible region is highly nonconvex due to the last two sets of constraints
in (14). As shown in the following graph, the feasible region F2 = {(x, y) | xy ≥ 0, x ≥ 0}
is the union of the first quadrant and the y-axis. Furthermore, the standard nonlinear
programming constraint qualification fails to hold at every point on the y-axis.
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•
−3 (1, 0)(−3, 0)

Fig. 2. The feasible region F2 = {(x, y) | xy ≥ 0, x ≥ 0}.

An MPEC formulation

Another formulation of the incentive compatibility constraints (14) is to introduce a binary
variable y(a) ∈ {0, 1} for each action a ∈ A. Then the condition (14) and nonnegativity
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constraint on π(a) can be replaced by the following complementarity constraints:

∀ a ∈ A :



























(1 − y(a)) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ ã( 6= a) ∈ A,

0 ≤ π(a) ⊥ y(a) ≥ 0,

y(a) ∈ {0, 1}.

(19)

After replacement of the last two sets of constraints in (18) by (19), the resulting MPEC,
with variables (π(a), c(a), y(a))a∈A, for the optimal contract with action lotteries problem is:

maximize
∑

a∈A

π(a)W (c(a), a)

subject to
∑

a∈A

π(a)U(c(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

∀ a ∈ A :



























(1 − y(a)) (U(c(a), a) − U(c(a), ã)) ≥ 0, ∀ ã( 6= a) ∈ A,

0 ≤ π(a) ⊥ y(a) ≥ 0,

y(a) ∈ {0, 1}.

(20)

Allowing the compensation schedules to be dependent on the agent’s action will increase
the principal’s expected utility; see Theorem 2. The difference between the optimal objective
value of the NLP (18) (or the MPEC(20)) and that of the MPEC (11) characterizes the
principal’s improved welfare from using an optimal contract action lotteries.

Theorem 2 The principal prefers an optimal contract with action lotteries to an optimal
contract. His expected utility from choosing an optimal contract with action lotteries will
be at least as good as that of choosing an optimal contract.

3.2 The Contract with Compensation Lotteries

Definition 4 For any outcome q ∈ Q, a randomized compensation c̃(q) is a random variable
on the set of compensations C with a probability measure F (·).

Remark If the set of compensations C is a closed interval [c, c̄] ∈ R, then the measure of
c̃(q) is a cumulative density function (cdf) F : [c, c̄] → [0, 1] with F (c) = 0 and F (c̄) = 1.
In addition, F (·) is nondecreasing and right-continuous.

To simplify the analysis, we assume that every randomized compensation c̃(q) has finite
support.
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Assumption 1: Finite support for randomized compensation. For all q ∈ Q, the ran-
domized compensation c̃(q) has finite support over an unknown set {c1(q), c2(q), . . . , cL(q)}
with a known L.

An immediate consequence of Assumption 1 is that we can write c̃(q) = ci(q) with
probability pi(q) > 0 for all i = 1, . . . , L and q ∈ Q. In addition, we have

∑L
i=1 pi(q) = 1 for

all q ∈ Q. Notice that both (ci(q))
L
i=1 ∈ RL and (pi(q))

L
i=1 ∈ RL are endogenous variables

and will be chosen by the principal.

Definition 5 A compensation lottery is a randomized compensation schedule
c̃ = (c̃(q1), . . . , c̃(qN)) ∈ RN , in which c̃(q) is a randomized compensation satisfying As-
sumption 1 for all q ∈ Q.

Definition 6 A contract with compensation lotteries consists of a recommended action a to
the agent and a randomized compensation schedule c̃ = (c̃(q1), . . . , c̃(qN )) ∈ RN .

Let cq = (ci(q))
L
i=1 ∈ RL and pq = (pi(q))

L
i=1 ∈ RL. Given the outcome q is observed

by the principal, we let w(cq, pq) denote the principal’s expected utility with respect to a
randomized compensation c̃(q), i.e.,

w(cq, pq) = IE w(q − c̃(q)) =
L
∑

i=1

pi(q)w(q − ci(q)).

With a randomized compensation schedule c̃ and a recommended action a, the principal’s
expected utility then becomes

IE W (c̃, a) =
∑

q∈Q

p(q | a)

(

L
∑

i=1

pi(q)w(q − ci(q))

)

=
∑

q∈Q

p(q | a)w(cq, pq). (21)

Similarly, given a recommended action a, we let u(cq, pq, a) denote the agent’s expected
utility with respect to c̃(q) for the observed outcome q:

u(cq, pq, a) = IE u(c̃(q), a) =
L
∑

i=1

pi(q)u(ci(q), a).

The agent’s expected utility with a randomized compensation schedule c̃ and a recommended
action a is

IE U(c̃, a) =
∑

q∈Q

p(q | a)

(

L
∑

i=1

pi(q)u(ci(q), a)

)

=
∑

q∈Q

p(q | a)u(cq, pq, a). (22)

To further simply to notation, we use cQ = (cq)q∈Q and pQ = (pq)q∈Q to denote the
collection of variables cq and pq, respectively. We also let W(cQ, pQ, a) denote the principal’s
expected utility IE W (c̃, a) as defined in (21), and similarly, U(cQ, pQ, a) for IE U(c̃, a) as in
(22).
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An optimal contract with compensation lotteries (c∗Q, p∗Q, a∗) is a solution to the following
problem:

maximize W(cQ, pQ, a)

subject to U(cQ, pQ, a) ≥ U∗,

U(cQ, pQ, a) ≥ U(cQ, pQ, a1),
...

U(cQ, pQ, a) ≥ U(cQ, pQ, aM),

a ∈ A = {a1, . . . , aM}.

(23)

Define
W(cQ, pQ) = (W(cQ, pQ, a1), . . . ,W(cQ, pQ, aM)) ∈ RM ,

U(cQ, pQ) = (U(cQ, pQ, a1), . . . ,U(cQ, pQ, aM)) ∈ RM .

Following the derivation as in Section 2, we can reformulate the program for an optimal
contract with compensation lotteries (23) as a mixed-integer nonlinear program with decision
variables (cQ, pQ) and y = (yi)

M
i=1:

maximize yTW(cQ, pQ)

subject to yTU(cQ, pQ) ≥ U∗,

yTU(cQ, pQ) ≥ U(cQ, pQ, a1),
...

yTU(cQ, pQ) ≥ U(cQ, pQ, aM),

eT
My = 1,

yi ∈ {0, 1} ∀ i = 1, . . . , M,

(24)

Similarly, the MPEC formulation with decision variables (cQ, pQ) and δ ∈ RM is:

maximize δTW(cQ, pQ)

subject to δTU(cQ, pQ) ≥ U∗,

eT
Mδ = 1,

0 ≤ δ ⊥
(

δTU(cQ, pQ)
)

eM − U(cQ, pQ) ≥ 0.

(25)

Arnott and Stiglitz [1] call the compensation lotteries ex post randomization; this refers
to the situation that the random compensation occurs after the recommended action is
chosen or implemented. They show that if the agent is risk averse and his utility function
is separable, and if the principal is risk neutral, then the compensation lotteries are not
desirable.
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3.3 The Contract with Action and Compensation Lotteries

Definition 7 A contract with action and compensation lotteries is a probability distribution
over actions, π(a), and a randomized compensation schedule c̃(a) = (c̃(q1, a), . . . , c̃(qN , a)) ∈
RN for every a ∈ A; The randomized compensation schedule c(a) is an agreement between
the principal and the agent such that c̃(q, a) ∈ C is a randomized compensation to the agent
from the principal if outcome q ∈ Q is observed and the action a ∈ A is recommended by
the principal.

Assumption 2 For every action a ∈ A, the randomized compensation schedule c̃(q, a)
satisfies the finite support assumption (Assumption 1) for all q ∈ Q.

With Assumption 2, the notation cq(a), pq(a), cQ(a), pQ(a) is analogous to what we have
defined in Section 3.1 and 3.2. Without repeating the same derivation process described
earlier, we give the MPEC formulation for the optimal contract with action and compensation
lotteries problem with variables (π(a), cQ(a), pQ(a), y(a))a∈A:

maximize
∑

a∈A

π(a)W(cQ(a), pQ(a), a)

subject to
∑

a∈A

π(a)U(cQ(a), pQ(a), a) ≥ U∗,

∑

a∈A

π(a) = 1,

∀ a ∈ A :







































∀ ã( 6= a) ∈ A :

(1 − y(a)) (U(cQ(a), pQ(a), a) − U(cQ(a), pQ(a), ã)) ≥ 0,

0 ≤ π(a) ⊥ y(a) ≥ 0,

y(a) ∈ {0, 1}.

(26)

Linear Programming Approximation

Townsend [24, 25] was among the first to use linear programming techniques to compute
static incentive constrained problems. Prescott [18, 19] further apply linear programming
specifically to solve moral-hazard problems. A solution obtained by the linear programming
approach is an approximation to a solution to the MPEC(26). Instead of treating cQ(a) as
unknown variables, one can construct a grid Ξ with element ξ to approximate the set C of
compensations. By introducing probability measures associated with the action lotteries on
A and compensation lotteries on Ξ, one can then approximate a solution to the moral-hazard
problem with lotteries (26) by solving a linear program. More specifically, the principal
chooses probability distributions π(a), and π(ξ| q, a) over the set of actions A, the set of
outcomes Q, and the compensation grid Ξ. One then can reformulate the resulting nonlinear
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program into a linear program with decision variables π = (π(ξ, q, a))ξ∈Ξ,q∈Q,a∈A:

maximize(π)

∑

ξ,q,a

w(q − ξ)π(ξ, q, a)

subject to
∑

ξ,q,a

u(ξ, a)π(ξ, q, a) ≥ U∗,

∑

ξ,q

u(ξ, a)π(ξ, q, a) ≥
∑

ξ,q

u(ξ, ã)
p(q|ã)

p(q|a)
π(ξ, q, a) ∀ (a, ã( 6= a)) ∈ A×A,

∑

ξ

π(ξ, q̃, ã) = p(q̃|ã)
∑

ξ,q

π(ξ, q, ã) ∀ (q̃, ã) ∈ Q×A,

∑

ξ,q,a

π(ξ, q, a) = 1,

π(ξ, q, a) ≥ 0 ∀ (ξ, q, a) ∈ Ξ ×Q×A.

(27)

Note that the above linear program has (|Ξ|∗|Q|∗|A|) variables and (|A|∗(|Q|+ |A|−1)+2)
constraints. The size of the linear program will grow enormously and quickly when one
chooses a fine grid. For example, if there are 50 actions, 40 outputs, and 500 compensa-
tions, then the linear program has one million variables and 4452 constraints. It will become
computationally infeasible because of the limitation on the computer memory, if not the
time required to solve a large-scale linear program. On the other hand, a solution of the
LP obtained from a coarse grid will not be satisfactory if an accurate solution is needed.
Prescott [19] points out that the constraint matrix of the linear program (27) has block angu-
lar structure. As a consequence, one can apply the Dantzig-Wolfe decomposition algorithm
to the linear program (27) to lessen the need for computer memory and the computational
time. Recall that the MPEC (11) for the optimal contract problem has only (|Q| + |A|)
variables and |A| complementarity constraints with one linear constraint and one nonlinear
constraint. Even with the use of the Dantzig-Wolfe decomposition algorithm to solve the LP
(27), choosing the “right” grid is still an issue. With the advances in both theory and nu-
merical methods for solving MPECs in the last decade, we believe that the MPEC approach
has greater advantages in solving a much smaller problem and in obtaining a more accurate
solution.

The error from discretizing set of compensations C is characterized by the difference
between the optimal objective value of the LP (27) and that of the MPEC (26).

Theorem 3 Assume the agent is risk averse over the payoff received from the principal and
his effort and the principal is risk averse or risk neutral over his net income. The feasible
region of the LP (27) is contained in the feasible region of the MPEC (26). The optimal
objective value of the LP (27) is lower than that of the MPEC (26).

15



4 A Hybrid Approach toward Global Optimization

One reason that nonconvex programs are not popular among economists is the issue of the
need for global solutions. While the local search algorithms for solving nonconvex programs
have fast convergence properties near a solution, they are designed to find a local solution.
Algorithms for solving MPECs are no exception. One heuristic in practice is to solve the
same problem with several different starting points. It then becomes a trade off between the
computational time and the quality of the “best” solution found.

Linear programming does not suffer from the global solution issue. However, to obtain an
accurate solution to a moral-hazard problem via the linear programming approach, one needs
to use a very fine compensation grid. This often leads to solve large-scale linear programs
with millions of variables and ten or hundred thousands of constraints, which might be
computationally infeasible, due to insufficient computer memory and long computational
time.

Certainly, there is a need to develop a global optimization method with fast local con-
vergence for MPECs. Below, we propose a hybrid approach combining both MPECs and
linear programming approaches to find a global solution (or at least better than the LP
solution) of an optimal contract problem. The motivation for this hybrid method comes
from the observation that the optimal objective value of the LP approach from a coarse grid
could provide a lower bound on the optimal objective value of the MPEC as well as a good
guess on the final recommended action a∗. We then can use this information to exclude
some undesired local minimizers and to provide a good starting point when we solve the
MPEC (11). This heuristic procedure toward a global solution of the MPEC (11) leads to
the following algorithm.

A hybrid method for the optimal contract problem as an MPEC (11)

Step 0: Construct a coarse grid.

Step 1: Solve the LP (27) for the given grid.

Step 2:















































(2.1) : Compute π(·, ·, a) =
∑

ξ∈Ξ

∑

q∈Q

π(ξ, q, a), ∀ a ∈ A;

(2.2) : Compute IE[ξ(q)] =
∑

ξ∈Ξ

ξπ(ξ, q, a), ∀ q ∈ Q;

(2.3) : Set the initial point c0 = (IE[ξ(q)])q∈Q and δ0 = (π(·, ·, a))a∈A;

(2.4) : Solve the MPEC (11) with the starting point (c0, δ0).

Step 3: Refine the grid and repeat Step 1 and Step 2.

Remark If the starting point from an LP solution is close to the optimal solution of the
MPEC (11), then the sequence of iterates generated by the SQP algorithm converge Q-
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quadratically to the optimal solution. See Proposition 5.2 in Fletcher et al. [5].

One can also develop the similar procedures to solve the global solutions for optimal
contract problems with action and/or compensation lotteries. However, the MPECs for
contracts with lotteries are much more numerically challenging problems than the MPEC
(11) for deterministic contracts.

5 An Example and Numerical Results

To illustrate the use of the mixed-integer nonlinear program (8), the MPEC (11) and the
hybrid approaches, and to understand the effect on discretizing the set of compensations
C, we only consider to problems of deterministic contracts without lotteries. We consider
a two-outcome example in Karaivanov [10]. Before starting the computational work, we
summarize the problem characteristics of various approaches to compute the optimal deter-
ministic contracts in Table 5.1.

Table 5.1. Problem characteristics of various approaches

MINLP (8) MPEC (11) LP (27)

# of Variables |Q| |Q| + |A| |Ξ| ∗ |Q| ∗ |A|

# of Binary Variables |A| – –

# of Constraints |A| + 2 2 |A| ∗ (|Q| + |A| − 1) + 2

# of Complem. Constraints – |A| –

Example: No Action and Compensation Lotteries

Assume the principal is risk neutral with utility w(q− c(q)) = q − c(q), and the agent is risk

averse with utility u(c(q), a) =
c1−γ

1 − γ
+ κ

(1 − a)1−δ

1 − δ
. Suppose there are only two possible

outcomes, e.g., a coin-flip. If the desirable outcome (high sale quantities or high production
quantities) happens, then the principal receives qH = $3; otherwise, he receives qL = $1. For
simplicity, we assume that set of actions A consists of |A| equally-spaced effort level within
the closed interval [0.01, 0.99]. The production technology for the high outcome is described
by p(q = qH |a) = aα with 0 < α < 1. Notice that since 0 and 1 are excluded from the action
set A, the full-support assumption on production technology is satisfied.

The value of the parameters for the particular instance we solve is given in Table 5.2.

Table 5.2. The value of parameters used in the example.

γ κ δ α U∗ |A|

0.5 1 0.5 0.7 1 10
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We solve this problem first as an mixed-integer nonlinear program (8) and then as an
MPEC (11). For the LP lotteries approach, we start with 20 grid points in the compensation
grid (we evenly discretize the compensation set C into 19 segments) and then increase the
size of the compensation grid to 50, 100, 200, · · · , 5000.

We submitted the corresponding AMPL programs to the NEOS server [15]. The mixed-
integer nonlinear programs were solved using the MINLP solver [3] on the computer host
newton.mcs.anl.gov. To obtain fair comparisons between the LP, MPEC, and hybrid
approaches, we chose SNOPT [6] to solve the associated mathematical programs. The AMPL
programs were solved on the computer host tate.iems.northwestern.edu.

Table 5.3 gives the solutions returned by the MINLP solver to the mixed-integer nonlinear
program (8). We use y = 0 and y = eM as starting points. In both cases, the MINLP solver
returns a solution very fast. However, it does not guarantee to find a global solution.

Table 5.3. Solutions of the MINLP approach.

Starting # of Regular # of Binary # of . Solve Time Objective
Point Variables Variables Constr. (in sec.) Value

y = 0 2 10 12 0.01 1.864854251

y = eM 2 10 12 0.00 1.877265189

For solving the MPEC (11), we try two different starting points to illustrate the possi-
bility of finding only a local solution. The MPEC solutions are given in Table 5.4 below.

Table 5.4. Solutions of the MPEC approach with two different starting points.

Starting # of # of Complem. Read Time Solve Time # of Major Objective
Point Variables Constraints (in sec.) (in sec.) Iterations Value

δ = 0 22 10 0 0.07 45 1.079621424

δ = eM 22 10 0 0.18 126 1.421561553

The solutions for the LP lottery approach with different compensation grids are given
in Table 5.5. Notice that the solve time increases faster than the size of the grid when |Ξ|
is in the order of 105 and higher, while the number of major iterations only increase about
3 times when we increase the grid size 250 times (from |Ξ| = 20 to |Ξ| = 5000).
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Table 5.5. Solutions of the LP approach with 8 different grids (# of constraints = 112).

# of Read Time Solve Time # of Major Objective
|Ξ| Variables (in sec.) (in sec.) Iterations Value

20 400 0.01 0.03 31 1.876085819

50 1000 0.02 0.06 46 1.877252488

100 2000 0.04 0.15 53 1.877252488

200 4000 0.08 0.31 62 1.877254211

500 10000 0.21 0.73 68 1.877263962

1000 20000 0.40 2.14 81 1.877262184

2000 40000 0.83 3.53 71 1.877260460

5000 100000 2.19 11.87 101 1.877262793

Finally, for the hybrid approach, we first use the LP solution from a compensation grid
with |Ξ| = 20 to construct a starting point for the MPEC (11). As one can see in Table
5.6, with a good starting point, it only takes SNOPT 0.01 second to find a solution to the
example formulated as the MPEC (11). Furthermore, the optimal objective value is higher
that of the LP solution from a fine compensation grid with |Ξ| = 5000.

Table 5.6. Solution of the hybrid approach.

LP Read Time Solve Time # of Major Objective
|Ξ| (in sec.) (in sec.) Iterations Value

20 0.01 0.03 31 1.876085819

MPEC Read Time Solve Time # of Major Objective
Starting Point (in sec.) (in sec.) Iterations Value

δ6 = 1, δi(6=6) = 0 0.02 0.01 13 1.877265298

6 Conclusions and Future Work

The purpose of this paper is to introduce the MPEC approach and apply it to moral-
hazard problems. We have presented MPEC formulations for optimal deterministic contract
problems and optimal contract problems with action and/or compensation lotteries. We also
formulated the former problem as a mixed-integer nonlinear program. To obtain a global
solution, we have proposed a hybrid procedure that combines the LP lottery and the MPEC
approaches. In this procedure, the LP solution from a coarse compensation grid provides a
good starting point for the MPEC. We then can apply specialized MPEC algorithms with fast
local convergence rate to obtain a solution. In an numerical example, we have demonstrated
that the hybrid method is more efficient than using only the LP lottery approach, which
requires to solve a sequence of large-scale linear programs. Although we can not prove that
the hybrid approach will guarantee to find a global solution, it finds one better than the
solution from the LP lottery approach. We plan to test the numerical performance of the
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hybrid procedure on other examples such as the bank regulation example in [18] and the
two-dimensional action choice example in [19].

One can extend the MPEC approach to single-principal multiple-agent problems without
any problem. For the model of multiple-principal multiple-agent [14], it can be formulated as
an equilibrium problem with equilibrium constraint (EPEC) [23]. We will investigate these
two topics in our future research.

Another important topic we plan to explore is the dynamic moral-hazard problem; see
Phelan and Townsend [17]. In the literature, dynamic programming is applied to solve
this model. We believe that there is an equivalent nonlinear programming formulation.
Analogous to the hybrid procedure proposed in Section 4, an efficient method to solve this
dynamic model is to combine dynamic programming and nonlinear programming.
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