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Abstract

We introduce a general framework to value pilot project investments under the presence of both,
market and technical uncertainty. The model generalizes different settings introduced previously in the
literature. By distinguishing between the pilot and the commercial stages of the project we are able
to frame the problem as a compound perpetual Bermudan option. We work on an incomplete market
setting where market uncertainty is spanned by tradable assets and technical uncertainty is private to the
firm. The value of these investment opportunities as well as the optimal exercise problem are solved by
approximate dynamic programming techniques. We prove the convergence of our algorithm and derive
a theoretical bound on how the errors compound as the number of stages of the compound option is
increased. Furthermore, we show some numerical results and provide an economic interpretation of the
model dynamics.

1 Introduction

The value of the investment opportunity to introduce a new product is subject to significant uncertainty.

This uncertainty is exacerbated when this product comes together with a technological improvement. Market

factors outside the control of a firm, such as product demand, prices of raw materials or labor costs are not the

only sources of risk that affect the value of these projects. When new technologies or marginal improvements

of existing technologies are involved, there is considerable technical uncertainty with respect to the final

implementation and recurrent costs. This may also apply to revenues, as the value that these improvements

may have for the final customer and, therefore, his willingness to pay for the product, could be affected by

technical factors.

We could think of technical uncertainty as uncertainty with respect to the efficient production frontier of the

firm, that is to say the final output/input ratio of the production function. A few examples of improvements

in the efficient frontier of the firm are, for instance, a new technology that is able to perform exactly the
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same functions as the previous one with fewer raw materials, or one that does so with cheaper inputs, or

one that requires less time and investment for its implementation to take place. Unlike market uncertainty,

which the firm has little control over, technical uncertainty could be greatly reduced by investing in pilot

projects that give us considerable information about the performance of a new technology before the huge

investment required for its full scale implementation is made.

In general, pilot investments have a very natural option interpretation. In fact, they could be considered as

investments that allow the firm to limit its losses in case of negative outcomes, while maintaining the profits

resulting from more favorable scenarios. However, unlike a financial option, our underlying, i.e., the value

of the commercial stage, is not completely tradable in a market. Moreover, the process of the underlying is

affected by the investment decisions taken by the firm. The higher the investment made in the pilot stage,

the more technical uncertainty that is resolved. Thus, the value of the project will move more rapidly with

increasing investment. These are the two fundamental differences between the real options setting in this

paper and standard financial settings, and we will keep them in mind when interpreting our results.

Optimal R&D investment has been the subject of numerous studies in the economic and business literatures,

beginning with Lucas (1971). He addressed the problem of optimal allocation of effort throughout the

development stage of the project in a general case where effort is controllable and time to completion is

random. However, there is no modeling of learning and all uncertainty is private.

The next major work in the area was done by Roberts and Weitzman (1981), who modeled continuous

learning through time. Based on a proportionality assumption between cumulative investment and total

uncertainty resolved they derive a diffusion process that should be followed by the expected benefits of a

project. Since they do not take into account market uncertainty in their model, their results will be only

applicable for a small set of projects where market uncertainty is negligible and could be ignored.

Grossman and Shapiro (1986) provide a few interesting models of R&D programs under certainty and

uncertainty in progress and time to completion. The market dimension is absent and there is no linkage

between the actions taken and the distribution of the time to completion.

McDonald and Siegel (1986) analyze the value of waiting to invest. In their model, the investment opportunity

could be effectively translated into an option to exchange one asset for another. Therefore, they are able to

adapt existing results in the financial literature (see Margrabe, 1978) to solve for the value of the option to

invest. Their setting is useful when time to build is negligible and only market uncertainty is considered.

It is also applicable when the development stage of the project has already been completed and a firm is

considering whether to launch the commercial stage of a project or wait for more favorable market conditions.
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Majid and Pyndick (1987) developed a continuous investment model with time-to-build. In their setting

the only role of investment is to bring a project closer to completion and there is no learning involved.

Pyndick (1993) is probably the first to take into account market and technical uncertainty into a coherent

framework that values investments with uncertain costs. In his model revenues are fixed and costs are driven

by market and technical uncertainty. However, unlike in Roberts and Weitzman, the stochastic process for

the evolution of costs is not derived from fundamental principles about learning. Moreover, he does not

distinguish between development and production stages. This distinction turns out to be relevant as, in

many industries, most technical learning takes place in the former.

More applied work has been done recently, most of it focused on specific industries or project characteristics.

Messica and David (2000) analyzed the effect of the life cycle of the future project’s revenues on the optimal

investment allocation in the development stage. Cortazar et al (2001) focused on optimal exploration in-

vestments in a mine under price and geological uncertainty. Bach. et Paxson (2001) modeled investment in

the drug development process. Schwarz et Soraya (2003), using a model similar to that of Pyndick (1993),

analyzed investment in the IT industry both in acquisition and development projects.

In general, the value of investment opportunities in the pilot stage will be driven by both technical and market

uncertainty. As it was previously mentioned, market uncertainty will, in most of the cases, be completely

exogenous to the firm and correlated to economic fundamentals and tradable assets in the market. Technical

uncertainty is private to the firm, and its evolution depends on the level of pilot investment made by the

firm. In this paper, by adopting a compound option approach and using dynamic programming techniques,

we will value these investment opportunities and find the corresponding optimal investment decisions. In

our setting, both market and technical uncertainties are dynamically evolving and affecting the evolution

of the value of the option through time. Tradability assumptions will be made on the market uncertainty

driving the value of the project and we will value technical uncertainty by specifying a ”market price” of

technical risk that will play a role of a utility function by characterizing the firm’s attitude towards technical

risk. This will allow us to work in a unique risk neutral measure and to apply standard financial engineering

techniques to obtain the value of our option to invest. Thus, the results obtained shall not be interpreted as

strict non-arbitrage prices of financial derivatives, but as plausible economic valuations of these investment

opportunities.

Throughout this paper we will use the words pilot and development stage interchangeably to refer to the

period of time before a decision was made to launch the full scale project. For the following stage we will

use the terms commercial or production stage indistinctly. At some point this may become an artificial

distinction; nevertheless, this will allows us to formulate our problem in an optionality setting.
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The main contributions of this paper lie under two different areas: Real Options and Dynamic Programming.

In the former, we provide a general framework for valuing pilot project investments in an environment, where

both market and technical uncertainty affect the value of the underlying asset. We emphasize on the distinc-

tion between them, and relate the volatility coefficient driving technical risk to general economic assumptions

about the learning process. On the Dynamic Programming side, we successfully apply approximate dynamic

programming techniques in an infinite dimensional unbounded state space with independent increments to

solve for our value function. We proof the convergence of the proposed algorithm and provide theoretical

bounds on how the errors compound as we increase the number of stages of the compound option. The

algorithm proposed could also be applied to a variety of financial products, being specially suited to value

compound perpetual Bermudan options.

The remainder of this paper is structured as follows. Section 2 sets up the general model explaining our mod-

eling assumptions in detail and defines the general Bellman Equation to solve. It also introduces additional

simplifying assumptions that allow us to keep the model computationally tractable without altering the

main essence of the problem. Section 3 develops the approximate dynamic programming approach adopted

to solve our problem, proves the convergence of the algorithm and derives theoretical bounds on the errors.

Section 4 discusses the results of the paper. Section 5 concludes.

2 The Model

2.1 General Structure

In our setting, we consider a firm analyzing the possibility of launching a big commercial project, for example,

introducing a new drug, a new model of aircraft, or starting the operation of an oil well. Due to the

magnitude and risk level of the project’s commercial stage, we assume that it can not be launched before

investing in N steps of a pilot project. The goal of the pilot stage, aside from making the launch of the

commercial stage feasible, is to resolve most of the technical uncertainty associated with a project of this

nature. To consider a pilot step completed the firm has to invest an amount I belonging to the interval

[I, I] that denotes the maximum and minimum possible investment levels per step. Completion of any pilot

step takes ∆T units of time regardless of the level of investment. Investment decisions are made at times

t ∈ Λ = {0 = T0, T1, ..., Ti, ...} where Ti > Ti−1 and ∆T = Ti − Ti−1 for any i ≥ 1. In other words, funding

decisions are made at discrete points in time with a periodicity of ∆T . This is a realistic assumption as most

firms revise their funding decision periodically. Unlike most compound options in the financial market, it is

perfectly possible for the firm to suspend investment on the pilot at a certain time Ti for any i ≥ 1 if, for

instance, market conditions are not favorable, and resume investment at a later point in time Ti+k, where
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k ∈ N. Moreover, we will work under the assumption that the progress made in previous steps is not lost if

investment is suspended temporarily.

Let St be the value of a claim to all revenues of the commercial stage based on the information available

at time t. Similarly, Kt, will be the value of a claim to all costs corresponding to the commercial stage,

implementation and recurrent costs. We could think of St and Kt as the Net Present Value (NPV) of these

cash flow streams assessed at time t. In addition, St and Kt will be the values of these claims, assuming

that the commercial stage could be launched at the current time t. Of course, this is not possible if the

pilot stage has not yet been completed, making these claims unfeasible in this case. However, by separating

the underlying assets from the option to invest, this abstraction will allow us to formulate our problem

consistently and, since once the pilot stage is completed these claims will become feasible, it will not affect

the results obtained. More structure to the processes followed by St and Kt, as well as the information set

available at time t, will be described in greater detail in the next subsection.

We could think of this investment opportunity as a perpetual N -stage Bermudan option. A perpetual

Bermudan option is an option that could be exercised at fixed specified dates in the future with no expiration

date. In our setting, this set of fixed dates is given by Λ. At this fixed set of dates the firm has the option

to acquire an N − 1 stage perpetual Bermudan option, which will give it the right to obtain, at a fixed set

of dates, an N − 2 stage perpetual Bermudan option and so on. However, the amount of money spent on

the option influences the volatility of the underlying assets. This optionality set up will become clearer in

the next section once we explain in detail the assumptions regarding the learning process and the processes

governing the evolution of revenues and costs.

2.2 Learning and Stochastic Process

In this subsection we will state our assumptions regarding the evolution of the underlying assets St and Kt,

namely, the value of a claim to revenues and a claim to costs of the commercial stage. The risk free rate in

our setting will be denoted by rf .

Assumption 1: The Process for Revenues

We assume the revenue process to be completely driven by market uncertainty and perfectly correlated with

a tradable asset, which, without loss of generality, is taken to be St itself. The value of St follows:

dSt = αsStdt + σsStdw1
t (1)

where w1
t is a standard Browian motion that represents the market uncertainty driving revenues. Moreover,
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St accrues dividends at a rate δs. In other words, the market price of risk of w1
t , which we label by λ1, is

uniquely defined by: λ1 = (αs + δs − rf )/σs. This market price of risk represents the excess return over the

risk free rate per unit of volatility that an investor demands for being exposed to a particular source of risk,

in this case, w1.

The fact that there is no technical uncertainty with respect to revenues is a reasonable assumption for a

large number of investment projects of this type, as technological improvements are usually reflected in cost

reductions and not revenue increases. Nevertheless, our setting could be easily generalized to account for

private uncertainty on the revenues side of a project. The spanning assumption for revenues is a sensible

assumption to make in industries where prices and demand are very sensitive to economic fundamentals,

especially when the output of a project is a commodity or a marketed asset. These economic fundamentals

are in turn correlated with the stock market in general and, in particular, with the stock of the firm. This

depends on the characteristics of the industry such as the type of product supplied, the elasticity of demand

with respect to price, the competition dynamics, etc. For instance, in the airplane manufacturing industry,

it is reasonable to expect the value of a claim to future revenues on a new jet to be developed by Boeing or

Airbus to be highly correlated with the state of the world economy in general and the firms’ stock prices in

particular. The automobile manufacturing and high-tech industries are other examples where the spanning

assumption is also suitable. However, it may be too strong of an assumption to make for industries like the

pharmaceutical and food industries that provide basic products characterized by a very inelastic demand

with respect to price.

The dividend rate δs has a rich economic interpretation. First, it could be thought of as the yearly cash

inflow that the project will currently generate if it were properly functioning. In this purely financial view

δs is completely equivalent to a dividend yield. However, in a competitive market environment, a delay in

launching a new product may have more undesirable consequences to a firm. Indeed, market share could be

lost to competitors who may launch a close substitute in the market place while the firm is waiting for more

favorable conditions. We could think of this second interpretation, as an opportunity cost view on δs. In

many industries the long term effects of losing market share may be much higher than the yearly revenue

forgone, or not be appropriately reflected in the actual dividend rate observed in the market. To account for

these effects, the parameter δs should be increased in these cases.

Assumption 2: The Process for Costs

The process for the costs Kt is driven by both, market and technical uncertainty. The market uncertainty

driving costs, which we will denote by the brownian motion w2
t , is perfectly correlated with a tradable asset,

which we label by ct. Moreover, this asset accrues dividends at a rate δc and follows the following process:
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dct = αcctdt + σcctdw2
t (2)

We will also assume that w1
t and w2

t , i.e., market uncertainty of revenues and costs, have a correlation of ρ.

The previous equation implies that the market price of risk of w2
t , which we label λ2 is completely specified

by non-arbitrage conditions and equal to (αc + δc − r)/σc. Total costs are usually influenced by market

factors such as prices of materials, capital or labor costs, to cite a few. Thus, the economic justification for

the tradability assumption on w2 is similar to the one given for the market uncertainty of revenues.

If at time t ∈ Λ there are j stages in the pilot project remaining for completion and the firm decides to invest

an amount I, the process that Kt will follow between t and t + ∆T for any i ≥ 0 is given by:

dKt = αk(Kt, I, j)dt + σkKtdw2
t + g(Kt, I, j)dzt (3)

The Brownian term zt corresponds to technical uncertainty, which is private to the firm and independent of w1
t

and w2
t . Unlike the cases of w1 and w2, the market price of risk for z, λz, is not determined by non-arbitrage

considerations, but has to be assessed from the risk preferences of the firm. The growth rate αk(Kt, I, j) and

technical volatility level g(Kt, I, j) are intrinsic to the project and technical characteristics of the investment

under consideration and, in general, dependent on the investment level and the number of steps remaining

for completion. However, log market volatility, σk, is assumed to be constant and independent of the level of

investment. More about the structure of the drift and technical diffusion coefficient will be specified below.

Assumption 3: Learning

The diffusion term that drives technical uncertainty is a function of the investment made for the pilot step and

the number of steps remaining for completion, g(Kt, I, j). It is here where the main difference between this

setting and standard financial options arise, through the pilot investment level we can influence the process

of the underlying. We introduce the following general restrictions on the drift and technical volatility terms,

αk(Kt, I, j) and g(Kt, I, j) respectively. As we will see below all of these restrictions correspond to general

and reasonable economic assumptions about the learning process. Note that whenever we talk about the

”learning process” in this paper, we are referring exclusively to the process driving technical uncertainty.1

Assumption 3a : g(Kt, 0, j) = 0. If there is no investment, no learning takes place, and thus, no technical

uncertainty is resolved.
1Our framework could be easily adapted to value investment opportunities, where learning is on the market side, i.e., that

help reduce market uncertainty in the commercial stage. Valuing marketing pilot projects is the first example that comes to
mind
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Assumption 3b : δg(Kt, I, j)/δI ≥ 0. The higher the investment made, the higher the resolution of uncer-

tainty.

Assumption 3c : g(Kt, I, 0) = 0. There is no technical learning once the pilot stage has been completed.

Assumption 3d : ∆jg(Kt, I, j) = g(Kt, I, j)− g(Kt, I, j − 1) > 0. There is more learning at earlier steps of

the pilot stage. We could label this condition decreasing learning with respect to investment. It is consistent

with general economic assumptions about decreasing marginal returns of factors of production. In addition,

if we consider each step as part of a series of independent experiments that could be placed in a flexible

order, the firm will want to reorder this steps such that those that reduce more technical uncertainty are

placed first. Marginal learning decreasing in the number of steps completed (i.e increasing in the number of

stages remaining for completion) will result as a consequence of this reordering.

Assumption 3e : δg(Kt, I, j)/δKt ≥ 0. This is a logical scaling assumption and says that the higher the

total costs the higher the total uncertainty reduced.

The drift term will also be in general dependent on the level of investment and the number of stages remaining

for completion. We will assume αk(Kt, I, j) satisfies the following assumptions

Assumption 3f : δαk(Kt, I, j)/δI ≤ 0. Drift in costs is non increasing with respect to investment. The

higher the investment that takes the place the more costs are expected to drop.

Assumption 3g : ∆jαk(Kt, I, j) = αk(Kt, I, j) − αk(Kt, I, j − 1) ≤ 0. Expected cost reduction decreases

with the number of stages completed. It has a similar economic interpretation as the analogous restriction

for technical volatility.

Unlike for the case of technical volatility, when the pilot stage is completed (j = 0) or when no investment

is taking place, the drift is non-zero, as costs are still expected to change as a result of market uncertainty.

2.3 Change of Measure

In standard financial settings, markets are complete and all different sources of risk are spanned by tradable

assets in the economy. Thus, any financial derivative whose payoff is constructed from these tradable assets

must have a unique price consistent with non-arbitrage. Moreover, there is a unique risk neutral measure

under which the price of any tradable asset discounted by the money market account is a martingale2, i.e.,

the price of any tradable asset grows at the risk free rate.

In our setting, the technical uncertainty faced by the projects, unlike market uncertainty driven by the
2It is actually a local martingale. However since we are working with “nice” diffusion coefficients through this paper, every

local martingale is a martingale.
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brownian terms w1
t and w2

t , is specific to the firm and hence not traded in the market. Therefore, as in most

real investment opportunities, we are working in an incomplete market setting where there are infinitely many

values consistent with the non-arbitrage condition, and infinitely many equivalent risk neutral measures that

give us an arbitrage free economic valuation.

As the non-arbitrage bounds could be quite big, and hence of little practical use, additional considerations as

how the firm values private risk are needed. This is done by fixing a “market price” for technical uncertainty,

which we will call λz. Unlike the market prices for w1 and w2 which are completely determined by non-

arbitrage conditions, λz is not a true market price since technical uncertainty is not tradable in the market.

However, it will play the role of a utility function and allow us to “complete” the market in order to work in

an equivalent risk neutral measure parameterized by this λz. By changing its value we will allow for different

risk specifications with regard to technical uncertainty, obtaining different equivalent risk neutral measures,

thus creating different plausible economic valuations for our investment opportunity.

Following standard financial mathematics argurments, we deduce from assumptions 1 and 2 that the market

price of risk for the market brownian of revenues (w1) and costs (w2) are given by (αs + δs − rf )/σs and

(αc + δc − rf )/σc respectively.

Now, fix λz and denote the unique risk neutral measure defined from it as Q(λz). For ease of notation we will

omit the explicit dependence hereafter. Since we want to work with a standard three-dimensional Brownian

Motion, we first decompose w2
t in w1

t and a component orthogonal to both w1
t and to zt, which we will call

w2′
t (the market component of costs that is orthogonal to that of revenues). By Cholesky decomposition, we

can then rewrite the process for ct as:

dct = αcctdt + ρσcctdw1
t +

√
1− ρ2σcctdw2′

t

we can now redefine the new risk premium for w2′ which we denote by λ2′ as the solution to:

αc + δc − rf = λ1ρσc + λ2′
√

1− ρ2σc

This simplifies to :

λ2′ =
αc + δc − rf − ρσc(αs + δs − rf )/σs

σc

√
1− ρ2

Following standard arguments in the finance literature (Duffie (2001)), we construct the equivalent measure

as follows:

Let η = (λ1, λ2′ , λz) be the vector of market prices of risk for the three orthogonal Brownian Motions. We

define a three-dimensional Brownian Motion, Bt, as Bt = (w1
t , w2′

t , zt).

Let ξt be a density process defined as:
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ξt = exp

(
−

∫ t

0

ηdBs − 1
2

∫ t

0

η.ηds

)

By Ito’s Lemma it is easy to verify that dξt = −ξtηdBt. Moreover, since the market price of risk η is bounded,

ξt is a martingale3 with finite variance and, therefore, the density process of an equivalent probability measure

Q, which we defined by dQ
dP = ξt.

Then by Girsanov’s Theorem, a standard Brownian Motion under Q, BQ
t , is defined by BQ

t = (w1Q
t , w2′Q

t , zQ
t ) =

Bt + ηt = (w1
t + λ1t, w

2′
t + λ2′t, zt + λzt). Let w2Q

t be a Brownian motion independent of zQ but that has a

correlation of ρ with w1Q,

Using Girsanov’s theorem and the values for market prices of risk we obtain the process followed by the

underlying claims under the risk neutral measure.

When switching from the real to the risk neutral measure an important modification needs to be made when

working with the cost process Kt. If the firm is risk averse, standard economic theory suggests that it asks

for a lower reduction in expected costs to undertake technological investments that are more volatile. 4 In

other words, as a risk averse firm will be more conservative in its assessments of costs, it will use a lower

rate to discount them. The effect of risk aversion on the discount factor of costs is therefore opposite to

the effect on the discount factor of revenues. Thus, we add instead of substracting the term λσ from the

drift rate in the risk neutral measure. Equivalently we can work with the process of −Kt, since, consistent

with our definition, a claim on costs forces the firm to pay out all the cash disbursements required by the

implementation of the projects. With these consideration, the process for St and Kt under Q are given by:

dSt = (rf − δs)Stdt + σsStdw1Q
t (4)

dKt = (rfKt − δλz

k (Kt, I, j))dt + σkKtdw2Q
t + g(Kt, I, j)dzQ (5)

where δλz

k (Kt, I, j) is given by:

3Actually, Novikov’s condition, i.e., E
[
exp( 1

2

∫ T
0 ηs.ηsds)

]
< ∞ is a much weaker requirement for ξt to be a martingale and

accommodates stochastic or time dependent market prices of risk. See Duffie (2001) or Musiela and Rutkowski (1997) for a
more rigorous treatment of the subject. This condition is automatically satisfied in our setting since we will work with constant
market prices of risk.

4A risk averse agent that follows orthodox economic principles is risk averse for losses as well as for revenues. However, there
is a growing literature in Behavioral Finance and Economics that focuses on non standard utility functions. In some cases, due
to framing effects an agent may be risk averse for wins and risk seeking on loses. However, for our setting, this framing effect
makes little sense as costs are not evaluated separately as pure losses.
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δλz

k (Kt, I, j) = [rfKt − λ2σkKt − λzg(Kt, I, j)]− αk(Kt, I, j) (6)

δλz

k (Kt, I, j) = [rf − σk

σc
(αc + δc − rf )]Kt − λzg(Kt, I, j)− αk(Kt, I, j)

where the superscript λz indicates that the function δk is λz dependent.

The term δλz

k is analogous to a dividend rate of a financial asset, but it has a more appealing economic

intuition. From expression (6) we could see that it represents the difference between the rate at which firms

should discount costs according to their risk preferences (the term inside the brackets) and the actual growth

rate of these costs. It is through this term that changes in risk preferences with regard to private uncertainty

modifies the economic valuations obtained using risk neutral pricing.

Note that, since we will work exclusively in the risk neutral measure Q, we will omit the superscripts Q from

the Brownian terms from here on.

2.4 Bellman Equation

We would like to determine the value of the investment opportunity V (St,Kt, j) at each t ∈ Λ as a function

of the underlying assets and the number of pilot steps remaining for completion. We would also want to

find the optimal feasible investment policy I(St,Kt, j) to follow at each revision time t ∈ Λ. To be feasible

I(St,Kt,j) has to be either 0 (no pilot investment is realized) or take any level value in the interval [I, I],

i.e., we complete one more step in the pilot project and have j − 1 steps remaining for completion at time

t + ∆T .

The value of the investment opportunity V (S0,K0, j) is given by the solution to the following Bellman

Equation:

V (St,Kt, j) = max
I∈[I,I]∪{0}

{
−I1{I>0} + αEQ[V (St+∆T ,Kj,I

t+∆T , j − 1{I>0})]
}

(7)

where α := e−rf ∆T is the discount factor, t ∈ Λ and St and Kj,I
t follow (4) and (5) respectively with starting

points St and Kt. The expectation is taken under the measure Q and, as previously mentioned we omit the

superscript hereafter.

In the case case where there is no possibility of waiting to launch the commercial stage after the pilot project

is completed, the boundary condition of the problem is given by:

V (ST ,KT , 0) = [ST −KT ]+
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where T corresponds to the time of the completion of the last pilot step. However, if the firm has the

flexibility to wait before deciding to launch the project and, moreover, could do so at any point in time after

the pilot stage is completed, the boundary condition becomes the value of a perpetual Option to exchange

one asset for another. When St and Kt follow log normal process this option has a closed form solution. We

refer the reader to Merton (1973) and Margrabe (1978) for additional details.

The model presented above sets up the most general framework to work with. Due to its flexibility, it can

be used to model many investment situations seen in the real world. However, when it comes to valuing the

pilot project investments, we face a computational challenge mainly due to what is known in the dynamic

programming literature as the curse of dimensionality. Indeed, we have to keep track of the value of S, K and

j at each time step. In addition, the space of decisions is infinite, and this makes finding the optimal strategy

cumbersome. Therefore we introduce the following simplifying structure to come up with a computationally

tractable model without altering the main essence of the problem.

1. Revenues will be considered fixed at a level S̄

2. We set only one level of investment I = I = I. Hence the decision becomes a binary go-no go decision.

3. We work with g(Kt, I, j) = σzKtIjγ where σz is a proportionality constant and γ > 0. This form

satisfies assumptions 3a through 3e with γ > 0 guaranteeing that learning is higher in earlier steps

than in later steps.

4. For the drift, we will use for simplicity: αk(Kt, I, j) = (αk−βIjγ)Kt where αk and β > 0 are constant

terms. This form is consistent with assumptions 3f and 3g. We could think of αk as the log normal

drift driven by market factors since it is independent of the level of investment. The second term is the

expected reduction in drift following technical investment and has a similar form as the one assumed

for g(Kt, I, j). Thus, investment is expected to reduce costs more drastically at earlier steps of the

pilot. From (6), δλz

k could now be simplified to:

δλz

k (Kt, I, j) = [rf − αk − σk

σc
(αc + δc − rf )− (λzσz + β)Ijγ ]Kt

Note that we obtain a log normal expression. To take advantage of this simplified form we will work

with the dividend lognormal coefficient, which we will label δ̂λz

k (I, j) which is given by:

δ̂λz

k (I, j) = rf − αk − σk

σc
(αc + δc − rf )− (λzσz + β)Ijγ (8)
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The dividend coefficient above below has an interesting economic interpretation. The first three terms

inside the brackets are drift effects caused by market factors regardless of the level of investment.

The last term only affects the drift when technical investment, and thus, learning, takes place. This

investment effect on the drift could, in turn, be decomposed in two separate ones. The β term represents

the intrinsic effect on the drift that depends on the technological characteristics of the investment under

consideration. The λz term is the effect on the present value of costs caused by an increase in the

discount factor, as the future costs outflows are subject to less uncertainty when learning is taking

place.

5. After the pilot stage is completed the firm has the ability to defer the launch of the commercial stage

to any point in time. When revenues are fixed at S̄ this boundary condition amounts to nothing more

than the value of a perpetual American put, which is given by:

V (KT , 0) = 1{
KT≥− ρS̄

1−ρ

} (−ρ)−ρS̄1−ρKρ
T

(1− ρ)1−ρ
+ 1{

KT≤− ρS̄
1−ρ

}[S̄ −KT ]+ (9)

with ρ and δ defined as:

ρ = 1/2− (rf − δ)/σ2
k −

√
2rf/σ2

k + [(rf − δ) /σ2
k − 1/2]2

δ = rf − αk − σk

σc
(αc + δc − rf )

These additional simplifications make the problem tractable while maintaining the essence of the paper, which

is to capture the value of technical learning under the presence of both, market and technical uncertainty

and the tradeoffs between the value of investing in the pilot stage and its costs.

Consequently, the Bellman equation that we need to solve is a simplification of (7):

V (Kt, j) = max{−I + αE[V (Kj,I
t+∆T , j − 1)], αE[V (Kj,0

t+∆T , j)]}

where between times t and t + ∆T , Kj,0
t and Kj,I

t follow :

dKj,0
t =

(
rf − δ̂λz

k (I, j)
)

Kj,0
t dt + σkKj,0

t dw2
t (10)

dKj,I
t =

(
rf − δ̂λz

k (I, j)
)

Kj,I
t dt + σkKj,I

t dw2
t + σzKtIjγdzt (11)

with δλz

k (I, j) given by (8) and the boundary condition given by (9).
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3 Solution Approach: Approximate Dynamic Programming

We would like to find the value function V (Kt, j) and optimal investment policy I(Kt, j) at any step j =

0, 1, ...n. The value function and optimal investment policy at step 0 are given by the boundary condition.

The value function at any particular stage j > 0, V (Kt, j) can be determined by an iterative process if

we know the value function and optimal investment process at the the previous step, V (Kt, j − 1) and

I(Kt, j− 1). In order to do this, we define an iterative operator which has the contraction properties needed

to reach convergence. The first subsection lays down the theoretical foundations under which our algorithm

will be based, followed in the next subsection by a description of the algorithmic procedure used.

3.1 Theoretical Foundation

First, we start by carrying out a change of variable to make the implementation easier. Indeed, since Kt is

lognormal and in order to take advantage of the independence of increments of the normal distribution, we

work in the log space. Letting kt = ln Kt, by Ito’s Lemma

dkj,0
t =

(
rf − δ̂λz

k (0, j)− σ2
k

2

)
dt + σkdw2

t (12)

dkj,I
t =

(
rf δ̂λz

k (0, j)− δ̂λz

k (I, j)− σ2
k + σ2

zI2j2γ

2

)
dt + σkdw2

t + σzIjγdzt (13)

It is clear from equations (12) and (13) that the increments of kj,0
t and kj,I

t are independent. This indepen-

dente increment characteristic of the state variable will be of major importance in the theoretical analysis

that follows. For notational simplicity we use the same letters V and I used before to denote the value

function V (kt, j) and optimal investment decision I(kt, j):

V (kt, j) = max{−I + αE[V (kj,I
t+∆T , j − 1)], αE[V (kj,0

t+∆T , j)]} (14)

The boundary condition given in (9) is also adjusted accordingly.

We will work in the measure space L2(<d, B(<d), λ), where B(<d) and λ denote the Borel σ-field and

the Lebesgue measure respectively. We construct a Hilbert Space on L2 by defining the following inner

product : < J, J̃ >=
∫

J(x)J̃(x)dx, where J, J̃ ∈ L2. The norm induced by this inner product is defined by

‖J‖2 =
∫

J2(x)dx.

In order to solve for the value function at a given stage j, V (kt, j), let us define for any function J ∈

14



L2(<d, B(<d), λ), a family of dynamic programming operators
(
T j

)
for j = 1, ...n by:

T jJ(kt, j) = max
{
−I + αE[V (kj,I

t+∆T , j − 1)], αE[J(kj,0
t+∆T , j)]

}
(15)

where the diffusions of kj,I
t+∆T and kj,0

t+∆T are given by equations (12) and (13).More explicitly,

T jJ(x, j) = max
{
−I + α

∫
V (x + z1, j − 1)f(z1)dz1, α

∫
J(x + z2, j)f(z2)dz2

}
(16)

where f(.) is the normal distribution density and z1 and z2 are normal random variables distributed as

follows:

z1 ∼ N

((
rf − δ̂λz

k (I, j)− (σ2
k + σ2

zI2j2γ)
2

)
∆T, (σ2

k + σ2
zI2j2γ)∆T

)

z2 ∼ N

((
rf − δ̂λz

k (0, j)− σ2
k

2

)
∆T, σ2

k∆T

)

These values are consistent with equations (12) and (13). Note also that the integral is taken over the entire

real line, so we are working in an infinite dimensional space.

We will show that the operators T j are contractions in the L2(<d, B(<d), λ) under the norm previously

defined.

Proposition 1 Given J(kt, j−1), the operator T j is a contraction under the introduced λ-norm, i.e ‖T jJ−
T j J̃‖ ≤ α‖J − J̃‖ for any J and J̃ in L2(<d, B(<d), λ) and α ∈ (0, 1). Moreover, for any function J̃ the

sequence T j
m(J̃) converges to the value function V (kt, j) as m → +∞.

Proof. First note that once we know V (kt, j−1) we could think as the entire first term on the max of (15) as

a deterministic function of kt and j, which we will label g(kt, j). In other words g(., j) = −I +αE[V (., j−1)].

Thus, (15) and (16) and simplify to:

T jJ(kt, j) = max
{

g(kt, j), αE[J(kj,0
t+∆T , j)

}
(17)

T jJ(x, j) = max
{

g(x, j), α
∫

J(x + z2, j)f(z2)dz2

}
(18)

Let PJ =
∫

J(x+z2, j)f(z2) be the expected value of the function after one period. Let z2 = z for notational

simplicity. We can establish that ‖PJ‖2 ≤ ‖J‖2 since:

‖PJ‖2 =
∫

(PJ)2(x)dx =
∫ [∫

J(x + z, j)f(z)dz

]2

dx

But applying Jensen’s Inequality and Fubini’s Theorem respectively
∫ [∫

J(x + z, j)f(z)dz

]2

dx ≤
∫ ∫

J2(x + z, j)f(z)dzdx

=
∫ [∫

J2(x + z, j)dx

]
f(z)dz
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Now conditioning on z,
∫

J2(x + z, j)dx =
∫

J2(x, j)dx and hence

∫ [∫
J(x + z, j)f(z)dz

]2

dx ≤
∫
‖J‖2f(z)dz

= ‖J‖2

Thus,

‖PJ‖2 ≤ ‖J‖2.

Now, we are ready to show that our operator T j is a contraction. Take any two arbitrary value functions J

and J̃ . We have that:

‖T jJ − T j J̃‖2 =
∫ [

max
{

g(x, j), α
∫

J(x + z, j)f(z)dz

}
−max

{
g(x, j), α

∫
J̃(x + z, j)f(z)dz

}]2

dx

But note that |max {a, b} −max {a, c}| ≤ |b− c| so that the previous expression becomes:

‖T jJ − T j J̃‖2 ≤
∫ [

α

∫ (
J(x + z, j)− J̃(x + z, j)

)
f(z)dz

]2

dx = α2‖P (J − J̃)‖2

Now, since we have just shown that ‖PJ‖2 ≤ ‖J‖2 for any J this implies that: ‖T jJ − T j J̃‖ ≤ α‖J − J̃‖
completing our proof.

Since T j is a contraction then the sequence T j
mJ converges to a unique fixed point as m goes to infinity.

This unique fixed point is the solution to Bellman equation: J = T jJ = max{g(., j), αPJ}, which is nothing

more than equation (17), and it is equal to the value function V (kt, j) at step j. However, since the space

L2 is infinite dimensional we need to resort to an approximation of the value function. In this paper, we

parameterize the value function in the following form :

V̂ (x, j, r) =
q∑

k=1

rj,kφk (x)

where Φ = (φ1, φ2,..., φq) ∈ L2(<d, B(<d), λ) is the vector of “basis functions” and rj = (rj,1, ..., rj,q) is

a vector of scalar weights. We perform the iteration over the subspace of L2 generated by the linearly

independent basis.

We now define Π to be the operator that projects any function in L2(<d, B(<d), λ) onto the subspace spanned

by Φ. For each value function J , we define ΠJ = r̂.Φ to be the projection of J over the space generated by

the basis functions Φ, where r̂ is the q -dimensional vector of coefficients of the q linearly independent basis

functions that solves:

r̂ = arg min
r∈<q

‖J − r.Φ‖2
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Let Ψj be the approximate operator for the value function with j stages to go. It is defined recursively as :

Ψ1J = ΠT 1J for j = 1 (19)

ΨjJ = ΠT̂ jJ for j > 1 (20)

with T̂ j for j > 1 given by

T̂ jJ(kt, j) = max
{
−I + αE[V̂ (kj,I

t+∆T , j − 1)], αE[J(kj,0
t+∆T , j)]

}

Note that in defining T̂ j for j > 1 we are not using the previous true value function, but its approximation

value, which we denote by V̂ (., j − 1). Since the value function is known at the expiration date, we use the

“true” T 1 for the definition of the approximate operator at the first stage. We are now ready to prove the

following proposition.

Proposition 2 Given J(kt, j − 1), Ψj is a contraction under the λ -norm, i.e., ‖ΨjJ −Ψj J̃‖ ≤ α‖J − J̃‖
for any J and J̃ ∈ L2. Moreover, starting from any basis approximation r0

j Φ the sequence rm
j Φ generated by

using the approximate iterator converges to a fixed point V̂ (., j) = r?
j .Φ as m → +∞.

Proof. First note that we can mimic the proof of Proposition 1 to show that the operator T̂ j is a contraction

under the introduced λ-norm. All the steps given there will go through using a different deterministic function

ĝ(kt, j) that will now be defined by the approximate value function V̂ (kt, j − 1) instead of the true value

V (kt, j − 1). Thus, for any J and J̃ ∈ L2, ‖T̂ jJ − T̂ j J̃‖ ≤ α‖J − J̃‖ with α ∈ (0, 1). On the Hilbert Space

defined on L2, we know that for any J ∈ L2, ΠJ and J −ΠJ are orthogonal. By the Pythagorean theorem:

‖J‖2 = ‖ΠJ‖2 + ‖J −ΠJ‖2

so that ‖ΠJ‖2 ≤ ‖J‖2. For any J , J̃ ∈ L2 and j > 1 we have:

‖ΨjJ −Ψj J̃‖2 = ‖Π(T̂ jJ − T̂ j J̃)‖2 ≤ ‖T̂ jJ − T̂ j J̃‖2 ≤ α2‖J − J̃‖2

where the last inequality is the result of T̂ j being also a contraction. Since Ψj
m = rm

j Φ then the sequence

rm
j Φ converges to a unique fixed point as m goes to infinity.

We have shown above that the approximate value iteration will converge to a fixed point, which will give us

the approximate value function. However, it is important to provide bounds on the errors obtained and see

how these errors compound as we increase the number of stages. This is provided by following proposition.

Proposition 3 Let V̂ (kt, j) = r?
j .Φ(kt) be the approximate value function obtained at each given stage j.

Then, the approximation error at any stage j is bounded by:
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‖V j − V̂ j‖2 ≤
j−1∑

i=0

α2i

(1− α2)i+1
‖V j−i −ΠV j−i‖2 (21)

Proof. : First for notational simplicity let V (., j) = V j and V̂ (., j) = V̂ j . Decomposing the error difference

in two components, one parallel and one orthogonal to Φ, we get by the Pythagorean Theorem:

‖V j − V̂ j‖2 = ‖V j −ΠT jV j‖2 + ‖ΠT jV j − V̂ j‖2 (22)

Adding and substracting ΠT̂ jV j , and using the fact that the approximated value function is a fixed point of

the approximate operator Ψj , i.e., V̂ j = Ψj V̂ j = ΠT̂ j V̂ j , we can, by means of the triangle inequality, bound

the second sum of the previous expression:

‖ΠT jV j − V̂ j‖2 ≤ ‖ΠT jV j −ΠT̂ jV j‖2 + ‖ΠT̂ jV j −ΠT̂ j V̂ j‖2 (23)

Since T̂ j is a contraction and Π is non-expanding the second term is trivially bounded by α2‖V j − V̂ j‖2.
The proof is complete if we can provide a bound on the first term. Going back to our definitions we have :

‖TV j(x)−T̂ jV j(x)‖2 =
∫ [

max
{

g(x, j), α
∫

V (x + z, j)f(z)dz

}
−max

{
ĝ(x, j), α

∫
V (x + z, j)f(z)dz

}]2

dx

Note again that the only difference lies on the first term of the max operator. For the true T operator we use

a deterministic g(kt, j) based on the correct value function at the previous stage V j−1 whereas for T̂ we used

a different function g(kt, j) based on its approximate value function V j−1. In other words: g(kt, j) = −I +

αE[V (kt+∆T )] and ĝ(kt, j) = −I +αE[V̂ (kt+∆T )]. Using the fact that |max {a, b} −max {a, c}| ≤ |b− c|, as

in the proof for Proposition 1, we can simplify the following expression to:

‖T jV j(x)− T̂ jV j(x)‖2 ≤ ‖g(x, j)− ĝ(x, j)‖2 ≤
∫ [

α

(∫
V j−1(x + z)− V̂ j−1(x + z)

)
f(z)dz

]2

dx

≤
∫ [

α

(∫
V j−1(x + z)− V̂ j−1(x + z)

)2

f(z)dz

]
dx

≤
∫

α2

[∫ (
V j−1(x + z)− V̂ j−1(x + z)

)2

dx

]
f(z)dz

≤ α2

∫
‖V j−1(x)− V̂ j−1(x)‖2f(z)dz ≤ α2‖V j−1(x)− V̂ j−1(x)‖2

where we have used the definitions of g(., j) and ĝ(., j), Jensen’s Inequality and conditioning over a fix z

respectively. Thus, as Π is non-expansive this implies ‖ΠT jV j −ΠT̂ jV j‖2 ≤ α2‖V j−1 − V̂ j−1‖2. Replacing

this result together with (23) in (22) we get:

‖V j − V̂ j‖2 ≤ ‖V j −ΠV j‖2 + α2‖V j−1 − V̂ j−1‖2 + α2‖V j − V̂ j‖2

Rearranging the terms we can get a bound for the approximation error at any stage j at a function of the

error at the previous stage.

‖V j − V̂ j‖2 ≤ 1
1− α2

‖V j −ΠV j‖2 +
α2

1− α2
‖V j−1 − V̂ j−1‖2
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However, we know the correct value function when j = 0 and hence we can expand the previous recursive

inequality until we reach the stage 0 and obtain expression (21).

3.2 The Algorithm

Recall that the Bellman equation we would like to solve is given by :

V (kt, j) = max
{
−I + αE[V (kj,I

t+∆T , j − 1)], αE[V (kj,0
t+∆T , j)]

}

To ease the notation it is useful to introduce two Q-functions, the exercise value Qe(kt, j) and the continuation

value Qc(kt, j) for any j, kt ≥ 0. They are defined respectively as:

Qe(kt, j) = −I + αE[V (kj,I
t+∆T , j − 1)]

Qc(kt, j) = αE[V (kj,0
t+∆T , j)]

Notice that in implementing the algorithm, we immediately face with the problem of the unboundedness of

the state space. In order to work in a bounded space while maintaining the theoretical properties shown

above, we must work with basis functions that vanish outside the bounded interval [−D,D] for D > 0 large

enough that guarantees a good approximation for the value function in our range of interest. In general, the

initial choice of D should depend on the parameters k0, the number of pilot steps and the diffusion and drift

terms for the process of kt in the risk neutral measure.

To solve this Bellman equation, we start by computing the value function at the end of the pilot stage (when

j = 0) and then compute the current value function by backward induction as described below.

• At the end of the pilot project period, depending on the value of kT (recall that T is the arbitrary time

required to complete the N steps of the pilot stage), the company needs to decide whether to launch

the commercial project immediately or wait for better market conditions, i.e., lower implementation

costs. Therefore, the value function at the end of the pilot stage, V (kt, 0), is found by replacing KT

for exp(kt) in (9).

We generate an n-dimensional uniform vector kT =
(
k1

T , ..., kn
T

)
with each component uniformly dis-

tributed on the grid [−D, +D]. The higher the number of simulated points the best the value func-

tion approximation obtained. Now, recall that in the previous section, we assumed the following

parametrization of the value function

V̂ (kt, j) =
q∑

i=1

rj,iφi (kt)

To find the vector of scalar weights r0 = (r0,1, ..., r0,q), we compute the vector V (kT , 0) using equation

(9) and then regress this vector on the basis functions Φ = (φ1, φ2,..., φq).
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• After obtaining the vector of scalar weights r0, the exercise value function with one step to go is trivially

computed as

Qe (kT−∆T , 1) = −I + α

q∑

k=1

r0,iE [φi (kT )]

Note that the value functions vanish at any sample path in which kT falls outside the range [−D, +D].

As in step (1), the vector kT−∆T =
(
k1

T−∆T , ..., kn
T−∆T

)
is obtained by simulating an n-dimensional

vector, with each component uniformly distributed along the grid [−D, +D]. Also, for the continuation

value Qc (kT−∆T , 1), we assume that it is parameterized as :

Qc(kT−∆T , 1) =
q∑

i=1

αr1,iET−∆T [φi (kT )]

where ET−∆T is the risk neutral expected value conditional on the information available at T −∆T ,

which, since our process is Markovian, is equivalent to the expectation conditional on knowing kT−∆T .

To compute the value of the vector of scalar weights r1, we start by assuming that it is equal to some

arbitrary vector r0
1 =

(
r0
1,1, ..., r

0
1,q

)
and then compute Qc(kT−∆T , 1, r0

1) = α
q∑

k=1

r0
1,iET−∆T [φi (kT )].

Note that a third argument in the Q-function continuation value is used to stress that it is dependent

on the choice of vector r0
1. Hence the value function is now given by :

V̂ (kT−∆T , 1, r0
1) = max

{
Qe (kT−∆T , 0) , Qc(kT−∆T , 1, r0

1)
}

Now that we have the value function, the vector coefficient r1
1 =

(
r1
1,1, ..., r

1
1,q

)
is found by regressing

V̂ (kT−∆T , 1, r0
1) on the vector Φ (kT−∆T ) = (φ1 (kT−∆T ), φ2 (kT−∆T ),..., φq (kT−∆T )). We then replace

these coefficients in the continuation value to obtain Qc(kT−∆T , 1, r1
1) =

q∑
k=1

αr1
1,iE [φi (kT )] and find

the vector coefficient r2
1 through a further regression. The procedure is repeated until ‖rl+1

1 − rl
1‖ < ε

for l ≥ 0 where ε is a criteria of maximal error.

• In the general case for any j > 0 investment opportunities, the two steps are repeated as follows. At

this point of the algorithm we have already computed the vector coefficients rj−1, therefore the exercise

value is given by :

Qe (kt, j) = −I + α

q∑

i=1

rj−1,iE [φi (kt+∆T )]

Again kt =
(
k1

t , ..., kn
t

)
is obtained by generating an n-dimensional uniform vector on [−D, +D]. Also

to compute the continuation value Qc (kt, j), we assume that it is parameterized as following

Qc(kt, j) =
q∑

i=1

αrj,iE [φi (kt+∆T )]

In a similar manner to the second step of the algorithm, the coefficients vector rj are found by iteration

as follows: We start with an initial arbitrary value r0
j and then compute the approximated continuation
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value:

Qc(kt, j, r
0
j ) =

q∑

k=1

αr0
j,iEt [φi (kt+∆T )]

We then compute the approximate value function:

V̂ (kt, j, r
0
j ) = max

{
Qe (kt, j − 1) , Qc(kt, j, r

0
j )

}

and find the vector of coefficients r1
j by regressing V̂ (kt, j, r

0
j ) on the vector Φ (kt) = (φ1 (kt), φ2 (kt),...,

φq (kt)). Finally, we compute Qc(kt, j, r
1
j ) and V̂ (kt, j, r

1
j ) by replacing the vector r0

j by the vector r1
j in

the expressions above and regress again to find the next iterate r2
j . We continue this iterative procedure

until ‖rl+1
j − rl

j‖ < ε for l ≥ 0 where ε is a criteria of maximal error.

• The above procedure is repeated until j = N . At this point we have found all (N + 1) q-dimensional

vector of coefficients rj = (rj,1, rj,2, ..., rj,q) for j = 0, .., N . This provides an approximate value function

V̂ (kt, j) at any given number of steps for completion and for any given value of the cost process.

4 Numerical Solution and Economic Analysis

4.1 Approximate Value Function and Investment Thresholds

We present in this section a simple example and give some interpretations of the obtained results. In this

example we set the parameters to the following values : N = 5, S̄ = 100, ∆T = .5, σM = 0.2, rf = 0.05,

I = 5, γ = 1, σz = 0.008, β = 0.009, λz = 0.1. More explicitly, the firm makes semiannual funding decision

and the pilot stage requires 5 steps for completion, each of them requiring an investment of 5 units of money

(UM). After the pilot stage is completed a fixed payment of 100 UM could be received. By setting γ = 1 the

learning coefficient is taken to be greater than 0 implying higher learning at earlier steps of the pilot stage.

Since the total technical uncertainty is given by Ijγσz we make choose σz such that the overall technical

volatility at the first step, i.e., j = 5 is around 20%.

Table (3) shows the values of the investment opportunity at each step j and for a range of costs going from

40 to 110. The value functions as a function of Kt are plotted in figure (1) for each given j.

We could immediately verify that the investment opportunity is decreasing in Kt at all stages. This effect

does not deserve further explanation. Another fairly intuitive effect is that for fixed costs the value of the

investment opportunity is decreasing in the number of stages remaining for completion, since there is an

extra fixed payment required to receive the final payoff. Moreover, we can also verify that for fixed Kt the

difference of the values of the option at two consecutive steps, i.e., V (Kt, j−1)−V (Kt, j), is decreasing in j.

This could be explained by the fact that the extra payment of I that has to made in V (Kt, j) is discounted
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Table 1: Value of investment opportunity V (Kt, j) as a function of expected costs and number of steps
remaining for completion

K — j 0 1 2 3 4 5
40 60 52.7591 46.0756 39.67684 33.79725 28.44393
45 55 47.64556 40.95205 34.61529 28.90278 23.80467
50 50 42.53202 35.8285 29.55373 24.0083 19.16541
55 45 37.41848 30.70494 24.49216 19.11381 14.52614
60 40 32.30493 25.58137 19.43059 14.21932 9.886861
65 35.00013 28.99098 22.80878 17.13183 12.37619 8.665299
70 30.51426 25.19435 19.81973 14.88551 10.7538 7.52747
75 26.85638 22.0985 17.38238 13.05381 9.430863 6.599658
80 23.83266 19.53937 15.36759 11.53967 8.33728 5.832697
85 21.30313 17.3985 13.6821 10.27299 7.422431 5.191088
90 19.16463 15.58858 12.25716 9.202125 6.649005 4.648662
95 17.33972 14.04406 11.04117 8.288292 5.988994 4.185778
100 15.76933 12.71496 9.994777 7.501913 5.421036 3.787453
105 14.40776 11.5626 9.087526 6.8201 4.9286 3.442094
110 13.21918 10.55664 8.295541 6.224911 4.498728 3.140612
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Figure 1: Plot of Value function with respect to number of investments to go

with a larger time horizon as we increase the number of steps (move away from completion). However, for

an unusually high level of technical volatility, strongly decreasing learning with respect to investment across

pilot steps and low I, this property may break down, as the difference between technical learning at two

consecutive steps may counteract the previous effect.

Let us denote by K̄j the optimal exercise threshold with j stages to go, i.e., the value for expected costs

such that if Kt > K̄j the firm will decide not to fund the pilot project and if Kt < K̄j the firm will proceed

with the required investment and advance to the following stage. This threshold value is found by solving :
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−I + αE[V̂ (Kt+∆T , j − 1) = αE[V̂ (Kt+∆T , j)] (24)

Table (2) shows the threshold below which investment is optimal as a function of the number of stages

remaining for completion.

Table 2: Thresholds for each step
j 1 2 3 4 5

K̄j 74.32293 73.30621 71.14852 66.7037 62.25501

We can verify that, as our intuition suggests, the exercise threshold decreases with the number of stages for

completion. This has an appealing explanation that we can related to the fact that V (Kt, j − 1)− V (Kt, j)

is decreasing in j. Investing at step j−1 one will acquire the option V (., j−2) in ∆T years from now. Doing

so at step j one will acquire V (., j − 1). The option to invest is decreasing in j, implying a higher incentive

to invest at j − 1. However, by not investing at j − 1 one keeps the option V (., j − 1) at t + ∆T and, by

doing so at j − 2 one keeps V (., j − 2). Thus, one has also more incentive not to invest in j with respect

to j − 1. Nevertheless, if the difference of the option value at two consecutive stages is decreasing in j, the

higher incentive to invest at step j − 1 with respect to j will be relatively more important than the higher

incentive to continue. Thus, at step j − 1, the firm can afford to have a higher indifference threshold than

at a previous step.

4.2 Comparative Statics

In this section, we provide additional economic insights, by studying how changes in the main parameters

driving our model affect the value of the investment opportunity and the decision to invest.

As the distinction between market and technical uncertainty is one of the key features of our setting it will

be useful to compare how they affect the solution to our model.

Figure (2) shows the joint impact of market and technical risk by plotting together for the case j = 1

four different combinations corresponding to scenarios of high and low market uncertainty, as well as high

and low technical uncertainty. Table (3) shows the investment threshold as a function of j for each of

these combinations. The market uncertainty is taken to be 10% and 25% for the low and high scenarios

respectively. σz is taken so that the technical uncertainty resolved at the last stage (j = 5) is around 25%

and 40% for the low and high scenarios respectively.

From the figure, we can see that the value of the option to invest increases in both market and technical

uncertainty. This a basic property of any option, consequence of the convexity of its payoff function. More
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Figure 2: Sensitivity of The Value function with One investment to go with respect to Market Risk (MR) and

Technical Risk (TR).

Table 3: Thresholds for each step and different market and technical risks
MR-TR — j 1 2 3 4 5

Low-Low 89.88019 87.71959 87.0693 87.16034 86.80213
Low-High 90.21455 89.31893 89.88441 90.74021 89.76489
High-Low 77.90904 76.62582 71.46393 64.3008 58.39973
High-High 78.82331 77.71367 73.43698 69.00896 67.78572

interestingly, this effect is much stronger for market than for technical uncertainty, since market uncertainty

will always be present, while technical uncertainty requires an investment to be resolved. The table of

thresholds complements our intuition. At any given stage j we can verify that the investment threshold

is decreasing in market uncertainty and increasing in technical uncertainty. For a risk averse firm, market

uncertainty makes a firm more reluctant to undertake irreversible investment. Thus, it requires a higher

incentive to do so. This results in a lower indifference threshold. As for technical uncertainty, the history is

dramatically different. Technical uncertainty benefits the firm only if it can invest to take advantage of it.

Thus, higher technical uncertainty results in a higher incentive to invest and a higher indifference threshold.

This results are consistent with those obtained by Pindyck (1993) in a slightly different setting that did not

differentiate between a pilot and a commercial stage.

Figure (3) shows the effect of the intrinsic reduction in expected costs due to technical investment (the

parameter β) in the value of the option and optimal investment threshold. A higher β implies that each

additional monetary unit invested in a given pilot step will result in a greater reduction in expected cost.
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Thus, the value of the investment opportunity and the threshold value at which is optimal to start investment,

are both increasing in β.
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Figure 3: Sensitivity of The Value function with One investment to go with respect to Market Risk (MR) and

Technical Risk (TR).

Finally, we analyze the effects of changing the time between funding decisions, ∆T in our result. Figures (4)

and (5) draw the optimal solution as a function of ∆T for one and three steps to go respectively.
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Figure 4: Sensitivity of The Value function with One investment to go with respect to change of time step
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Figure 5: Sensitivity of The Value function with One investment to go with respect to change of time step

Speeding up time to completion, by reducing up the time between pilot increases the value of the option, as

it puts the final payoff closer in time. This increase is more dramatic when Kt is low and the commercial

stage has a high probability of being undertaken. Even when costs are high and investment is not currently

optimal a decrease in ∆T increases the value of the investment opportunity by allowing the firm to monitor

market information more frequently. Of course, decreasing this time interval may not be feasible for the

firm beyond certain point, as technical considerations will put a limit on the minimum time that a pilot step

could take to be completed.
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5 Conclusions

We have proposed a general modeling approach to value sequential investments where the underlying assets

are subject to two types of risk: market and technical uncertainty. Each affect the value of our underlying

in different ways. Market uncertainty is generally related to economic fundamentals and always driving the

value of a project. Technical uncertainty is generally private to the firm and only affects the value of a project

when the firm invests in activities whose purpose is to reduce this technical risk, i.e., pilot projects. We

frame the problem as a perpetual compound option. Spanning assumptions are made on market uncertainty

and technical uncertainty is parameterized with a ”market price” of technical risk that allows for different

risk specifications to value the non tradable payoffs. In our model technical uncertainty only affects costs,

while market risk influences both, the revenues and costs of the underlying commercial stage. The technical

volatility and drift terms of the stochastic process for costs are assumed to satisfy some restrictions that we

relate with economic assumptions governing the learning process.

We work in an equivalent risk neutral measure that is uniquely characterized by the market price of technical

risk, and thus, are able to draw on financial engineering techniques to solve our problem. Using Approximate

Dynamic Programming we solve the Bellman Equation resulting from a simplified version of our general

setting. To solve for the value function at each state we define a fix point operator, which in turn depends

on the approximate value function at the previous stage. By adapting a set up suggested by Van Roy (1998)

to handle problems in an infinitely dimensional state space with independent increments, we prove that our

operators are contractions. This guarantees the convergence of our algorithm. We provide bounds on the

maximum permissible errors at a given stage, showing how the maximum approximation errors compound

as we add stages in the compound option. This last result might be new to the literature.

Interesting economic insights are obtained from our model. Among the most important ones is that market

and technical have different effects over our results. Although both increase the value of the option to

invest (the former more significantly than the latter), they have opposite effects on the investment decisions:

higher technical uncertainty results in an incentive to invest, while the contrary occurs for higher market

uncertainty. This is consistent with results previously obtained in the literature.

Solving for the general setup with a variable investment level at each stage, may yield additional economic

insights about the tradeoff between the benefits of investing to reduce technical uncertainty and its cost.

Allowing for a more general range of learning diffusion coefficients may also do so. However, tractability

may be greatly sacrificed on the way. Focusing on learning in the commercial stage, i.e., ”learning by do-

ing”, might be a natural complement of the work presented here. All of the above are left for further research.
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