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Abstract

We consider a finite horizon discrete time model for bond market where bond prices are
functions of the short rate process. We use a variant of the Ito’s formula to decompose
the bond price process into unique drift and martingale processes. We then apply the
Girsanov’s Theorem for finding a change of measure under which the discounted bond
price processes are martingales, thereby implying the existence of an arbitrage-free bond
market. We next show that under a particular martingale measure given by a specific
form of the Radon Nikodym derivative, the bond price process of exponentially quadratic
form reduces to the well known exponentially linear form. We further prove that the
bond market is incomplete and and the set of martingale measures is not a singleton.
The analytical formulation of all martingale measures is difficult to obtain. A finite
discretization of the state space of the rate process and subsequent solution of a set of
martingale equations generates the set of all martingale measures in an incomplete bond
market. A suitable cost function is then minimized to obtain a particular martingale
measure. Linear programming and Dynamic programming approaches for solving the
minimization problem are discussed. Assuming compactness of the bond price process,
we further prove the convergence of the optimal solution of the discretized problem to the
optimal solution of the original problem.

1 Introduction

Interest rate modeling lays the foundation for pricing, hedging and trading the whole class of
interest rate contingent securities from bonds to fixed income derivatives. The fundamental
question is to model the law of the rate process under the risk neutral measure. The theory
of bond pricing assumes the bond prices to be functions of the short rate process, and the
affine class turns out to be the most commonly used one, primarily due to their easy analytical
solutions. The momentum gained from its popularity and extensive research led analysts to
migrate to the next obvious function on the hierarchy, namely the quadratic class. An explicit
method of pricing for bond options for the quadratic class is given by Jamshidian [1]. Recently,
Leippold and Wu [2] have constructed a quadratic class of bond prices and have shown their

∗Part of this work was done when AS was a student of Mechanical Engg. at IIT Bombay
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existence. First, these works deal with the continuous time formulation. Furthermore, in
these recent works the bond prices are still considered exponentially quadratic function of a
state vector, not of short rate. An introductory work on discrete-time affine bond pricing was
presented by Backus, Foresi and Telmer [3]. However, the question of “Completeness” of the
bond market was not addressed to while giving a pricing methodology. We formulate a version
in which we discuss the nonlinearity in the bond prices by making the prices to be exponentially
quadratic function of the rate process. In this paper we show the existence of an arbitrage-free
market for the quadratic model and conclude that such markets are incomplete in most cases.
Nevertheless, a trader can hedge any final payoff in the mean square deviation sense as opposed
to hedge the payoff faithfully.

2 Discrete-time Itô’s formula for decomposing the bond

price process

Consider the interest rate model given by:

rn − rn−1 = µ(rn−1) + σ(rn−1)εn (1)

where µ and σ are bounded polynomial functions of the short rate process and ε = (ε1, ε2, ....)
is a sequence of independent standard normally distributed random variables, εn ∼ N(0, 1). We
assume that the value of a bond which matures at time N is a function of the short rate. Let
the price of a bond at time n be Fn = F (rn, n, N) := F (rn) with the terminal condition
FN = F (rN , N, N) = 1. Let T (rn) ( := Tn) be the discounted price of a bond at time n. We
would like to discuss the properties of T (rp) where T : R → R be a function of class C∞.
We assume without loss of generality that T has a compact support, and so T , DT , D2T are
bounded. For n > 0, the discrete Itô’s formula yields:

T (rn)

= T (r0) +
n

∑

p=1

[DT (rp−1)(rp − rp−1)] +
n

∑

p=1

[
D2

2
T (rηp

)(rp − rp−1)
2]

= T (r0) +

n
∑

p=1

[DT (rp−1)(rp − rp−1)] +

n
∑

p=1

[
D2

2
T (rp−1)(rp − rp−1)

2]

+

n
∑

p=1

[
D2

2
[T (rηp

) − T (rp−1)]](rp − rp−1)
2 (2)

where rηp
(w) = rp−1(w) + θp(w)(rp(w)− rp−1(w)) for some θp(w) satisfying 0 ≤ θp < 1, w ∈ Ω.

(In the continuous time Itô’s formula, the last term in (2) becomes zero due to the continuity
of the function T . However, in the discrete-time situation, the Itô’s formula has a modification
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where the last term does not vanish.) Now,

T (rn) = T (r0) +

n
∑

p=1

[DT (rp−1)(µ(rp−1) + σ(rp−1))]

+

n
∑

p=1

[
D2

2
T (rp−1 + θp(rp − rp−1))(rp − rp−1)

2]

= T (r0) +
n

∑

p=1

DT (rp−1)µ(rp−1) +
n

∑

p=1

DT (rp−1)σ(rp−1)εp

+
n

∑

p=1

D2

2
T (rp−1 + θp(rp − rp−1))(rp − rp−1)

2

=: TI + TII + TIII + TIV . (3)

2.1 Decomposing the terms of the bond price process

Note that we have three types of terms - predictable drift term (TI + TII), a martingale (TIII)
and an adapted term (TIV ). Since, TIV has finite absolute first moments, i.e., E[|TIV |] < ∞
for n ≤ N , we have by Doob decomposition,

TIV = A1
n (predictable term) + M 1

n (martingale term)

Also, TI + TII = A2
n (predictable term), TIII = M2

n (martingale)

Thus, Tn = T (rn) = A1
n + M1

n + A2
n + M2

n

Define, A1
n + A2

n := An, & M1
n + M2

n := Mn

Thus, Tn = T (rn) = An + Mn.

2.2 The condition for no-arbitrage in the bond market

Let P̃ be locally absolutely continuous with P . Then there exists Radon-Nikodym derivative
(density processes) Zn with E(αp|Mp − Mp−1||=p−1) < ∞, ∀p, αn = Zn

Zn−1

I{Zn−1>0} and |Mn| <

∞, ∀n such that the sequence T̃n has a representation T̃n = Ãn + M̃n where

Ãn = An +

n
∑

p=1

E(αp∆Mp|=p−1); M̃n = Mn −
n

∑

p=1

E(αp∆Mp|=p−1)

are the drift and martingale terms with respect to the new measure P̃ . The no-arbitrage
condition demands the discounted price processes to be martingales. This implies that under a
change of measure the drift term should vanish and we are left with only the martingale term:

Ãn = An +
n

∑

p=1

E(αp∆Mp|=p−1) = 0.

3 Exponentially quadratic bond price process

We consider that the price of a bond at time n, maturing at time N(< ∞) is a function of the
short rate and given as

F (rn, n, N) = F (rn) = exp(−an′ − bn′rn − cn′r2
n) (4)
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where n′ = N − n. F (rN , N, N) = 1 implies that a0 = b0 = c0 = 0. We name this class of
bond pricing models as Exponentially Quadratic class. Note that we let interest rates assume
a continuous range of real values.

In an arbitrge-free bond market the conditional expectation (under a martingale measure)
of the discounted value of the future bond price is equal to the current value of the bond:

e
Pn−1

k=0
−rkF (rn−1) = Ẽ[e

Pn
k=0

−rkF (rn)|=n−1] (5)

F (rn−1) = E[
Zn

Zn−1
exp(−rn)F (rn)|=n−1]. (6)

We are in search of a process Zn such that (6) holds.

We guess Zn = exp[−∑n
k=1(dkεk +

d2

k

2
)] where dk is =k−1 measurable. The variable dk is

also known as the market price of risk. This form of Zn is motivated from the discrete version
of the Girsanov’s theorem. We can now show that Zn is a valid density process; we do not
present details here.

3.1 Pricing bonds in the arbitrage-free situation

We denote our interest rate model to have a form given by:

rn − rn−1 = µ(rn−1) + σ(rn−1)εn. (7)

For pricing zero coupon bonds in an arbitrage-free situation we compute the values of an′ , bn′

and cn′ such that the bond prices follow (6). Thus,

Ẽ[F (rn)|=n−1]

= E[e−
d2
n
2
−an′−bn′µ(rn−1)−bn′ rn−1−cn′µ(rn−1)2−cn′r2

n−1
−2µ(rn−1)rn−1

e[−bn′σ(rn−1)−2µ(rn−1)σ(rn−1)cn′−2cn′σ(rn−1)rn−1−dn]εn+σ(rn−1)2ε2n|=n−1]

= ern−1F (rn−1) (8)

We denote

− an′ − bn′µ(rn−1) − cn′µ(rn−1)
2 − cn′r2

n−1 − (2µ(rn−1) + bn′)rn−1 := Kn

− bn′σ(rn−1) − 2µ(rn−1)σ(rn−1)cn′ − 2cn′σ(rn−1)rn−1 := Ln

Further by using E[exp(aε + bε2)] = exp( a2

2(1−2b)
)(1 − 2b)−1/2 for (8) we arrive at our Pricing

Equation under the Arbitrage-free condition:

−2(1 + 2cn′σ(rn−1)
2) ln((1 + 2cn′σ(rn−1)

2)1/2F (rn−1))

−2cn′σ(rn−1)
2d2

n − 2Lndn + L2
n + 2Kn + 4Kncn′σ(rn−1)

2 = 0 (9)

3.2 Computing the coefficients of the price processes with Vasicek’s

interest rate model

For the Vasicek’s model we have: rn − rn−1 = k1 + (k2 − 1)rn−1 + σεn
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where k1, σ and k2 are constants. The Pricing Equation (9) gives us the following recursions:

cn′−1 =
2cn′k2

2

2(1 + 2cn′σ2)

bn′−1 =
2bn′k2 + 4cn′k1k2 + 2(1 + 2cn′σ2) − 4dnk2σcn′

2(1 + 2cn′σ2)
(10)

an′−1 =
Jn′

2(1 + 2cn′σ2)

where Jn′ = −2cn′σ2d2
n + 2dnbn′σ + 4dnσk1cn′ + b2

n′σ
2 − 2an′

− 2bn′k1 − 2cn′k2
1 − 4cn′σ2an′ − (1 + 2cn′σ2) ln(1 + 2cn′σ2)

with a0 = b0 = c0 = 0.
The co-efficients an′, bn′ & cn′ computed recursively in the above manner will thus lead to

an Arbitrage-free bond market.

Estimation of the parameters of the Vasicek’s model

The data are the monthly estimates of annualized continuously-compounded zero coupon US
government bond yields computed by Mc Culloch and Kwon (1993), January 1952 to February
1991 (470 observations). We choose the parameter values to approximate some of the salient
features of the bond yields. We consider our estimation horizon to be evenly distributed with
monthly observations from January 1952 to December 1981. By considering the modeling
period as a month we actually consider the continuously-compounded zero coupon yield of a
bond with 1 month maturity as the prevailing short rate.

Properties of US Government 1-month maturity bond yields:

Mean St. Dev Skewness Kurtosis Autocorrelation

4.65081 3.06 1.434 2.239 0.976

k1

1−k2

is the unconditional mean of the short rate process and we set it equal to the sample
mean of the one-month yield as given in the table above. The factor 1200 converts an annual
percentage rate to a monthly rate.

k1

1 − k2
=

4.65081

1200
= 0.003876

The mean reversion parameter k2 is the first autocorrelation of the short rate and hence
k2 = 0.976. Thus, k1 = 0.000093024. We choose the volatility parameter σ to equate the
unconditional variance of the short rate process:

σ2

1 − k2
2

= (
3.06

1200
)2.

With k2 = 0.976, the implied value of σ = 0.0005553.
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3.3 Computing coefficients for Cox-Ingersoll-Ross’s interest model

We take the CIR model given by,

rn = (1 − φ)θ + φrn−1 + σ
√

rn−1εn.

An important point to make at this moment is that the market price of risk dn in this case is
taken to be proportional to

√
rn−1. It is evident that a simple additional adjustment to the form

of the market price of risk helps us to get affine bond prices. Now considering dn = λn
√

rn−1,
for an arbitrage-free market, we compute the co-efficients recursively:

an′−1 = an′ + bn′(1 − φ)θ; bn′−1 = 1 + bn′φ − b2
n′σ2

2
− 2bn′σλn (11)

with a0 = b0 = cn′ = 0.
We thus see that the bond prices under the CIR model also reduces to the affine model.

However, it would even have not retained the affine structure, had we not introduced the
dependence of dn on rn. Thus, there is a strong relation between the market price of risk and
the instantaneous rate process for various term structure models.

Estimation of the parameters of the CIR model

We set the autocorrelation parameter φ equal to the autocorrelation of the short rate: φ = 0.976.
We set θ equal to the mean short rate, which implies θ = 0.003876. We choose σ to reproduce
the variance of the short rate:

θσ2

1 − φ2
= (

3.06

1200
)2,

which implies σ = 0.00627.

3.4 Reduction to the linear structure from the quadratic model

We observe that the terminal condition c0 = 0 makes all subsequent values of cn′ = 0 thereby
reducing the exponentially quadratic model to the well known exponentially linear structure.
This leads to the following two propositions.

Proposition 1 Assume that the price of a bond is a function of the short rate process having
the Vasicek’s structure. Let the price of a zero coupon bond F (rn, n, N), having maturity date
N at time n (≤ N < ∞) be given by,

F (rn, n, N) = F (rn) = exp(−an′ − bn′rn − cn′r2
n), where n′ = N − n.

Then, under a martingale measure given by Zn = exp[
∑n

p=1(−
d2

p

2
− εpdp)], we have cn′ ≡ 0, ∀n′.

Proposition 2 Assume that the price of a bond is a function of the short rate process where
the “drift” and “diffusion” terms of the short rate process are polynomial functions of the short
rate itself. Let the price of a zero coupon bond F (rn, n, N), having maturity date N at time n
(≤ N < ∞) be given by,

F (rn, n, N) = F (rn) = exp(−an′ − bn′rn − cn′r2
n), where n′ = N − n.

Then, under a martingale measure given by Zn = exp[
∑n

p=1(−
d2

p

2
− εpdp)], we have cn′ ≡

0, ∀n′.
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4 Incompleteness of the Bond Market

We present here a proof for the incompleteness of our discrete-time bond market model. This
suggests that the set of martingale measures is not a singleton. It further motivates the use of
Linear and Dynamic programming for finding the Minimum Variance Martingale Measure.

4.1 Proof for Incompleteness

To show that the proposed discrete-time model is incomplete, we will prove that it is impossible
to find a replicating portfolio for an =N -measurable contingent claim (An European Option in
this case)1.

Consider a (B, F )-market formed by a bank account B and a bond F . We first construct a
portfolio with the Value process V and a strategy π = (β, γ). Observe, that β = (βn)n≥0 and
γ = (γn)n≥0 are predictable processes (By definition).

The value process is given by,
Vn = βnBn + γnFn

Further, for a self-financed portfolio we have,

βn =
Vn−1 − γnFn−1

Bn−1

Thus, we have,

Vn = (Vn−1 − γnFn−1)
Bn

Bn−1
+ γnFn

so that this holds for both (ωn−1, ωn) and (ωn−1, ω̂n).

Vn(ωn−1, ωn) = (Vn−1 − γnFn−1)(ωn−1)
Bn

Bn−1
+ γn(ωn−1)Fn(ωn−1, ωn).

Vn(ωn−1, ω̂n) = (Vn−1 − γnFn−1)(ωn−1)
Bn

Bn−1

+ γn(ωn−1)Fn(ωn−1, ω̂n).

At each ωn−1,

γn(ωn−1) =
Vn(ωn−1, ωn) − Vn(ωn−1, ω̂n)

Fn(ωn−1, ωn) − Fn(ωn−1, ω̂n)

Recall that for the Europen call option, a replicating portfolio satisfies VN = (FN − K)+, and
under this constraint the portfolio will not satisfy the previous equation for n = N .

In particular, γN(ωN−1) = 0 since for some (ωn−1, ωn),

FN−1e
rN (ωN ) − K ≤ 0, FN−1e

rN (ω̂N ) − K ≤ 0,

but also γN(ωN−1) = 1 since for some (ωn−1, ωn)

FN−1e
rN (ωN ) − K > 0, FN−1e

rN (ω̂N ) − K > 0,

with the impossibility that 0 = γN(ωN−1) = 1. Thus, for the discrete-time exponentially
quadratic model has no replicating portfolio.

1The proof is a bit unorthodox in nature since we prove Incompleteness by showing the impossibility of
constructing a replicating portfolio. An orthodox way of showing incompleteness would be to show the ana-
lytical formulation of a martingale measure other than the Esscher Transformation that satisfies our pricing
methodology. We however, were unable to analytically construct one.
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4.2 The EMM set

It is well known that in the case of a complete bond market situation the set of martingale
measures is a singleton. We will restrict our attention to martingale measures such that the
Radon-Nikodym derivative ( Zn = dQ

dP
|=n, 0 ≤ n ≤ N) is a P -square integrable martingale,

i.e., supn∈[0,N ] E[Z2
n] < ∞. Recall that we have assumed that the price process F (rn) follow

F (rn) = exn+ynεn+gnε2n, ∀n ≤ N . Let M be the set of all martingale measures equivalent
to the original subjective measure. We next find one such measure given by the Esscher
transformation.

Proposition 3 The set Ψ of equivalent martingale measures given by the Esscher transform

is the set of probability measures Qd such that dQd

dP
|=n = Zd

n where

Zn = exp(

n
∑

p=1

[−
a2

py
2
p

2(1 − 2apgp)
+ apypεp + apgpε

2
p)]

n
∏

p=1

√

1 − 2apgp.

We thus point out that the martingale measure P̃, is not unique in general (the measure corre-
sponding to the Esscher transformation is just one of the many possible martingale measures).
Further, the different possible solutions of an’s which satisfy (3.2) for a given set of xns, yns and
gns. We thus explore other conditions [8] which would help us to next select a unique pricing
strategy for the bond issuer.

Definition 1 Let Q be an equivalent martingale measure with respect to the subjective measure
P. The minimal variance criteria for an EMM is defined by:

V (Q∗, P ) = inf
Q∈Ψ

V (Q, P ) = inf
Q∈Ψ

V arQ[e
PN

k=0
−rk − F0] (12)

where Q∗ is the minimum variance Martingale Measure (MVMM).

We have,

V (Q, P ) = V arQ[e
PN

k=0
−rk − F0] = EQ[(e

PN
k=0

−rk − F0)
2] + (EQ[e

PN
k=0

−rk − F0])
2 (13)

= EQ[(e
PN

k=0
−rk − F0)

2] (14)

Remark 1 Note that the cost function is linear in Z since EQ[(e
PN

k=0
−rk−F0)

2] = E[ZN(e
PN

k=0
−rk

−F0)
2]. In fact EQ[f(e

PN
k=0

−rk)] is linear in Z for any well behaved f since EQ[f(e
PN

k=0
−rk)] =

E[ZNf(e
PN

k=0
−rk)]. We will discuss the solution of such cost function through the LP and DP

method in later sections.

5 Construction of Radon-Nikodym derivatives

The construction of a martingale measure based on the conditional Esscher transformation
gives us only one particular measure, although the class of martingale measures equivalent to
the subjective measure P can be more rich. We discuss the construction of martingale measures
in the following section. We first characterize the density process Z = (Zn)n≥1. Let Q <<loc P .

The density process Zn = dP̃n

dPn
is then a non-negative (P, (=n))-martingale with E[Zn] = 1. We
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would next like to characterize the set of densities such that the discounted price processes are
martingales. For E[|e

Pp

k=1
−rkF (rp)|] < ∞, ∀p, 0 ≤ p ≤ N , the no-arbitrage condition gives:

EQ[e
Pn

k=0
−rkF (rn)|=n−1] = e

Pn−1

k=0
−rkF (rn−1), (15)

EQ[e−rnF (rn)|=n−1] = F (rn−1),

E[
Zn

Zn−1

e−rnF (rn)|=n−1] = F (rn−1),
∫

A

Zne−rnF (rn)dP =

∫

A

Zn−1F (rn−1)dP, for each A ∈ =n−1. (16)

The set of martingale measures is thus characterized by the non-negative density processes
that are P -martingales with expectation one and satisfying (16). However, it is difficult to
guess a functional form for the density process from the above conditions.

Consider, a process h = (hn)n≥1 = e
Pn

k=0
−rkF (rn) such that E[|hn|] < ∞, ∀n, 1 ≤ n ≤ N .

For h to be a martingale under a measure Q ∼ P it should satisfy:

E[Znhn|=n−1] = Zn−1hn−1, (17)
∫

A

ZnhndP =

∫

A

Zn−1hn−1dP, for each A ∈ =n−1, (18)
∫

A

(Znhn − Zn−1hn−1)dP = 0, for each A ∈ =n−1, (19)
∫

A

Zn−1(
Zn

Zn−1

hn − hn−1)dP = 0, for each A ∈ =n−1 (20)

5.1 The finite state space model

We discretize the sample space of possible values of the short rate process r. We have assumed
the discounted price process h to be a function of the process r. In practice, we have to assume
that r has a finite/countable state space as against our earlier assumption of continuous state
space. Let Ω = {w1, w2, w3, ....., wm}, thereby restricting our state space to cardinality of m.
Thus, (17) translates to:

E[Znhn|=n−1] = Zn−1hn−1, (21)
m

∑

k=1

Zk
nhk

nP (hn = hk
n|h1, h2, ..., hn−1) = Zn−1hn−1. (22)

For n = 1,

m
∑

k=1

Zk
1 hk

1P (h1 = hk
n|h0) = Z0h0, (23)

m
∑

k=1

Zk
1hk

1P (h1 = hk
n) = Z0h0. (24)

Also note that we have the normalizing condition, E[Z1] = 1:

m
∑

k=1

Zk
1 P (Z1 = Zk

1 ) = 1 (25)
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and the property that Zn is a P -martingale:

E[Zn|=n−1] = Zn−1. (26)

Note that (24), (25) and (26) are the governing equations from which the density process at
n = 1 has to calculated. We now show the calculations for n = 2.

For n = 2,
m

∑

k=1

Zk
2hk

2P (h2 = hk
n|h1) = Z1h1,

(27)

with the additional constrains,

m
∑

k=1

Zk
1P (Z2 = Zk

2 ) = 1 (28)

and E[Z2|=1] = Z1, (29)

E[Z2] = 1. (30)

5.2 The two states case, m = 2

We define the two states of the process r as r1 and r2 and h1 and h2 as the respective discounted
prices. We associate probabilities P (hn = h1

n) = p and P (hn = h2
n) = q.

For n = 1,

2
∑

k=1

Zk
1hk

1P (h1 = hk
n|h0) = h0, (31)

Z1
1h

1
1P (h1 = h1

n) + Z2
1h

2
1P (h1 = h2

n) = h0, (32)

with the additional constraint,

Z1
1P (Z1 = Z1

1 ) + Z2
1P (Z1 = Z2

1) = 1. (33)

Assume h1
1 > h0 > h2

1 > −1. From (32) and (33) we get:

Z1
1 =

h0 − h2
1

h1
1 − h2

1

1

P (h1 = h1
n)

(34)

Z2
1 =

h1
1 − h0

h1
1 − h2

1

1

P (h1 = h2
n)

. (35)

Observe finally that the values are unique and hence the martingale measure given by (34)
& (35) is the only one. The above model is an extension of the CRR model associated with
stocks.

5.3 The Incomplete Bond Market

We observe that equations (21) and (26) are the only equations that are to be satisfied for a
price process hn to be a martingale. Further, it suggests that for any model which has more
than two possible states for the price process at any time t is incomplete, since the values of
corresponding Radon Nikodym derivatives are not unique as in the CRR model.

Since, the choice of martingale measure is not unique and any martingale measure doesn’t
ensure faithful replication of final payoff, from now onwards, we mean square deviation as
criteria to choose a martingale measure from the set of measures available.

We thus are interested in finding the value of Z which minimizes

EQ[(e
PN

k=0
−rk − F0)

2] = E[ZN(hN − h0)
2].
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5.4 The m state model

minimize JN,π(Z0) =
N−1
∑

k=0

{E[Zk+1(hk+1 − h0)
2 − Zk(hk − h0)

2]} (36)

subject to E[Znhn|=n−1] = Zn−1hn−1, ∀n, 0 ≤ n ≤ N, (37)

E[Zn|=n−1] = Zn−1, ∀n, 0 ≤ n ≤ N, (38)

E[Zn] = 1, ∀n, 0 ≤ n ≤ N, (39)

Zn > 0, ∀n, 0 ≤ n ≤ N. (40)

Let the number of states be m and let pi be the probability of occurrence of ith state.
The problem then simplifies to:

For n = 1, we have

minimize J1,π(Z0) =

m
∑

i=1

piZ
i
1(h

i
1 − h0)

2 (41)

subject to
m

∑

i=1

piZ
i
1h

i
1 = h0, (42)

m
∑

i=1

piZ
i
1 = Z0 = 1, (43)

Zi
1 > 0, ∀i, i = 1, .., m. (44)

For n = 2, we have

minimize J2,π(Z0) = {
m

∑

j=1

m
∑

i=1

[pipjZ
ij
2 (hj

2 − h0)
2] −

m
∑

i=1

piZ
i
1(h

i
1 − h0)

2} +

m
∑

i=1

piZ
i
1(h

i
1 − h0)

2

(45)

subject to

m
∑

j=1

piZ
ij
2 h

j
2 = Zi

1h
i
1, ∀i, i = 1, 2, ...m, (46)

m
∑

j=1

pjZ
ij
2 = Zi

1, ∀i, i = 1, 2, ...m, (47)

m
∑

i=1

pjZ
i
1h

i = h0, (48)

m
∑

i=1

pjZ
i
1 = Z0 = 1, (49)

m
∑

j=1

m
∑

i=1

pipjZ
ij
2 = 1, (50)

Zi
1 > 0, ∀i, i = 1, .., m &Z

ij
2 > 0, ∀i, ∀j, i = 1, .., m, j = 1, .., m. (51)

Observe that the (50) is a linear combination of (47) .
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For n = t, we have

minimize Jt,π(Z0) =

t
∑

n=1

{(
n

∏

k=1

m
∑

ik=1

)[(

n
∏

k=1

pik)Z
i1i2...in

n (hin

n − h0)
2] (52)

− (
n−1
∏

k=1

m
∑

ik=1

)[(
n−1
∏

k=1

pik)Z
i1i2...in−1

n−1 (hin−1

n−1 − h0)
2]}

subject to
m

∑

ik=1

pikZ
i1i2...ik

k hik

k = Zi1i2...ik−1

k−1 hik−1

k−1 , ∀ik, ik = 1, 2...., m, ∀k, k = 1, 2..., t,

(53)
m

∑

ik=1

pikZ
i1i2...ik

k = Zi1i2...ik−1

k−1 , ∀ik, ik = 1, 2...., m, ∀k, k = 1, 2..., t, (54)

(
n

∏

k=1

m
∑

ik=1

)[(
n

∏

k=1

pik)Z
i1i2...in

n ] = 1, ∀n, n = 1, 2, .., t, (55)

Zi1i2...ik

k > 0, ∀ik, ik = 1, 2...., m, ∀k, k = 1, 2..., t. (56)

Observe that (55) is a linear combination of (54) .

6 LP formulation

For n = t, we have

minimize Jt,π(Z0) =

t
∑

n=1

{(
n

∏

k=1

m
∑

ik=1

)[(

n
∏

k=1

pik)Z
i1i2...in

n (hin

n − h0)
2] (57)

− (

n−1
∏

k=1

m
∑

ik=1

)[(

n−1
∏

k=1

pik)Z
i1i2...in−1

n−1 (hin−1

n−1 − h0)
2]}

subject to
m

∑

ik=1

pikZ
i1i2...ik

k hik

k = Zi1i2...ik−1

k−1 hik−1

k−1 , ∀ik, ik = 1, 2...., m, ∀k, k = 1, 2..., t,

(58)
m

∑

ik=1

pikZ
i1i2...ik

k = Zi1i2...ik−1

k−1 , ∀ik, ik = 1, 2...., m, ∀k, k = 1, 2..., t, (59)

(
n

∏

k=1

m
∑

ik=1

)[(
n

∏

k=1

pik)Z
i1i2...in

n ] = 1, ∀n, n = 1, 2, .., t, (60)

Zi1i2...ik

k ≥ δ, ∀ik, ik = 1, 2...., m, ∀k, k = 1, 2..., t. (61)

For a given δ, the problem can be solved by Linear Programming. However, the number of

variables to be found at time t is very large ( = m(mt−1)
m−1

) and hence the method becomes com-

putationally tedious. Observe that (60) is a linear combination of (59) ik = 1, 2...., m, ∀k, k =
1, 2..., t − 1.
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7 DP formulation

We explore the dynamic programming approach to find the minimal variance martingale mea-
sure in a finite horizon market model. The stochastic optimal control problem is characterized
by:

1. An underlying discrete-time dynamic system, and
2. a cost function that is additive over time.

The stochastic optimal control problem can be written as:

minimize JN,π(Z0) =
N−1
∑

k=0

{E[Zk+1(hk+1 − h0)
2 − Zk(hk − h0)

2]}

subject to E[Znhn|=n−1] = Zn−1hn−1, ∀n, 0 ≤ n ≤ N

E[Zn|=n−1] = Zn−1, ∀n, 0 ≤ n ≤ N

E[Zn] = 1, ∀n, 0 ≤ n ≤ N

Zn > 0, ∀n, 0 ≤ n ≤ N.

We first analyze the case where the discounted price process h can assume three values (3
state space problem). Let p, q&r be the respective probabilities of associated with the three
values. The control problem can be written as:

For n = 1, we have

minimize J1,π(Z0) = pZ1
1(h

1
1 − h0)

2 + qZ2
1 (h2

1 − h0)
2 + rZ3

1(h
3
1 − h0)

2

subject to pZ1
1h

1 + qZ2
1h

2 + rZ3
1h

3 = h0

pZ1
1 + qZ2

1 + rZ3
1 = 1

For n = 2, we have

minimize J2,π(Z0) = [ppZ11
2 (h1

2 − h0)
2 − Z1

1(h
1
1 − h0)

2] + [pqZ21
2 (h1

2 − h0)
2 − Z2

1(h
2
1 − h0)

2]

+ [prZ31
2 (h1

2 − h0)
2 − Z3

1 (h3
1 − h0)

2] + [qpZ12
2 (h2

2 − h0)
2 − Z1

1(h
1
1 − h0)

2]

+ [qqZ22
2 (h2

2 − h0)
2 − Z2

1 (h2
1 − h0)

2] + [qrZ23
2 (h2

2 − h0)
2 − Z3

1 (h3
1 − h0)

2]

+ [rpZ31
2 (h3

2 − h0)
2 − Z

(
1h

1
1 − h0)

2] + [rqZ32
2 (h3

2 − h0)
2 − Z2

1 (h2
1 − h0)

2]

+ [rrZ33
2 (h3

2 − h0)
2 − Z3

1(h
3
1 − h0)

2] + pZ1
1(h

1
1 − h0)

2

+ qZ2
1(h

2
1 − h0)

2 + rZ3
1(h

3
1 − h0)

2

subject to pZ11
2 h1

2 + qZ12
2 h2

2 + rZ13
2 h3

2 = Z1
1h

1
1

pZ21
2 h1

2 + qZ22
2 h2

2 + rZ23
2 h3

2 = Z2
1h

2
1

pZ31
2 h1

2 + qZ32
2 h2

2 + rZ33
2 h3

2 = Z3
1h

3
1

pZ11
2 + qZ12

2 + rZ13
2 = Z1

1

pZ21
2 + qZ22

2 + rZ23
2 = Z2

1

pZ31
2 + qZ32

2 + rZ33
2 = Z3

1

pZ1
1h

1
1 + qZ2

1h
2
1 + rZ3

1h
3
1 = h0

pZ1
1 + qZ2

1 + rZ3
1 = 1

ppZ11
2 + pqZ21

2 + prZ31
2 + qpZ12

2 + qqZ22
2 + qrZ23

2 + rpZ31
2 + rqZ32

2 + rrZ33
2 = 1
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Observe that the set of possible values of Z is uncountable when the state space of the rate
process is greater than or equal to 3. Since our state parameter Z is also the control parameter,
uncountability of the control parameter results in uncountability of the state parameter. In
particular, it is necessary that admissible policies consist of Borel measurable functions µk. An
alternate solution to the uncountable state space problem may be resolved by discretizing the
space and considering only a finite number of elements of that set. The deterministic finite-

state optimal problem is equivalent to the shortest path problem the optimal solution of which
can be easily found by the forward DP algorithm.

7.1 Formulation of the 3 state DP Problem

We will first discuss the above case where the state space of the rate process is restricted to
three states. We consider a part of Z1 as the state variable denoted by Zs

1 and the other part
as control variable.

For n = 1, we have

minimize J1,π(Z0) = pZ1
1(h

1
1 − h0)

2 + qZ2
1(h

2
1 − h0)

2 + rZ3
1(h

3
1 − h0)

2

subject to

[

ph1
1 qh2

1

p q

] [

Z1
1

Z2
1

]

=

[

Z0h0 − rZ3
1h

3
1

Z0 − rZ3
1

]

[

Z1
1

Z2
1

]

=

[

ph1
1 qh2

1

p q

]−1 [

Z0h0 − rZ3
1h

3
1

Z0 − rZ3
1

]

Zs
1 =

[

Z1
1

Z2
1

]

=

[

ph1
1 qh2

1

p q

]−1 [

h0 −rh3
1

1 −r

] [

Z0

Z3
1

]

Zs
1 =

[

Z1
1

Z2
1

]

= A−1

[

h0 −rh3
1

1 −r

] [

Z0

Z3
1

]

Zs
1 = f(Z0, u0, h1) where u0 = Z3

1

The control parameter Z3
1 ∈ (0, 1

r
). The state parameter Z1 is thus a function of the state at a

previous time Z0 and the control parameter Z3
1 , and the stochastic variable h1. The problem

can hence be formulated in the DP format provided the inverse of A exists. The inverse of A

exists when h1
1 6= h2

1. As we have already assumed a much stronger condition i.e., h1
1 6= h2

1 6= h3
1,

we can formulate it as a DP problem.

For n = 2, we have

minimize J2,π(Z0)

subject to

















ph1
2 qh2

2 0 0 0 0
0 0 ph1

2 qh2
2 0 0

0 0 0 0 ph1
2 qh2

2

p q 0 0 0 0
0 0 p q 0 0
0 0 0 0 p q

































Z11
2

Z12
2

Z21
2

Z22
2

Z31
2

Z32
2

















=

















Z1
1h

1
2 − rZ13

2 h3
2

Z2
1h

2
2 − rZ23

2 h3
2

Z3
1h

3
2 − rZ33

2 h3
2

Z1
1 − rZ13

2

Z2
1 − rZ23

2

Z3
1 − rZ33

2
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We consider a part of Z2 as the state variable denoted by Zs
2 and the other part as control

variable.

Zs
2 =

















Z11
2

Z12
2

Z21
2

Z22
2

Z31
2

Z32
2

















=

















ph1
2 qh2

2 0 0 0 0
0 0 ph1

2 qh2
2 0 0

0 0 0 0 ph1
2 qh2

2

p q 0 0 0 0
0 0 p q 0 0
0 0 0 0 p q

















−1 















Z1
1h

1
2 − rZ13

2 h3
2

Z2
1h

2
2 − rZ23

2 h3
2

Z3
1h

3
2 − rZ33

2 h3
2

Z1
1 − rZ13

2

Z2
1 − rZ23

2

Z3
1 − rZ33

2

















Zs
2 = g(Z1, u1, h2) where u1 = {Z13

2 , Z23
2 , Z33

2 }

Thus the problem can be formulated as a DP problem given that

p3q3(h1
2 − h2

2)
3 6= 0,

which is assured as h1
2 6= h2

2 6= h3
2. The control parameter u1 = {Z13

2 ∈ (0, 1
pr

), Z23
2 ∈

(0, 1
qr

), Z33
2 ∈ (0, 1

rr
)}.

n Equations Unknowns Variables to be fixed Condition for DP

1 2 3 1 pq(h1

2
− h2

2
) 6= 0

2 6 9 3 p3q3(h1

2
− h2

2
)3 6= 0

3 18 27 9 p9q9(h1

2
− h2

2
)9 6= 0

4 54 81 27 p27q27(h1

2
− h2

2
)27 6= 0

k 3k−1 × 2 3k 3k−1 p3
k−1

q3
k−1

(h1

2
− h2

2
)3

k−1 6= 0

7.2 m state DP problem

We consider a part of Zt as the state variable denoted by Zs
t and the other part as control

variable. We first discuss the discretization of the control space.

7.2.1 Discretizing the Control Space

Zt = f(Zt−1, ut−1),

where ut−1 = {Z i1i2...it−1it

t : ik = 1, 2, .., m, k = 1, 2, .., t − 1 & it = 3, ..., m},

Zi1i2...it−1it

t ∈ (0,
1

pi1pi1...pit−1pit−1

), ik = 1, 2, .., m, k = 1, 2, .., t − 1 & it = 3, ..., m.

The minimization problem can easily be solved by the Backward DP algorithm if we have a
finite control state space. The control space associated with each control parameter Z i1i2...it−1it

t

can thus be partitioned into g discrete points ∀ik = 1, 2, .., m, k = 1, 2, .., t − 1 & it = 3, ..., m
and the Minimum variance measure according to the quadratic cost criterion can be found.
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For n = t, we have

minimize Jt,π(Z0) =

t
∑

n=1

{(
n

∏

k=1

m
∑

ik=1

)[(

n
∏

k=1

pik )Zi1i2...in

n (hin

n − h0)
2 − (

n−1
∏

k=1

pik )Zi1i2...in−1

n−1 (hin−1

n−1 − h0)
2]}

subject to

Zk
t =

































































Z11...1
t

Z11...2
t

Z21...1
t

Z21...2
t

..

..

Zm1...1
t

Zm1...2
t

..

..

Z12...1
t

Z12...2
t

Z22...1
t

Z22...2
t

..

..

Zmm...1
t

Zmm...2
t

































































=

































p1h
1

t p2h
2

t 0 0 .. .. 0 0
0 0 p1h

1

t p2h
2

t 0 0 0 0
....

....

0 0 .. .. 0 0 p1h
1

t p2h
2

t

p1 p2 0 0 .. .. 0 0
0 0 p1 p2 0 0 0 0
....

....

0 0 .. .. 0 0 p1 p2

































−1

































































































Z1..1
t−1h

1

t−1 −
∑m

i=3
piZ

1..1i
t hi

t

Z1..2
t−1

h2

t−1
− ∑m

i=3
piZ

1..2i
t hi

t

..

..

Z1..m
t−1

hm
t−1

− ∑m

i=3
piZ

1..mi
t hi

t

Z1.11
t−1 h1

t−1 −
∑m

i=3
piZ

1.11i
t hi

t

Z1.21
t−1

h1

t−1
− ∑m

i=3
piZ

1.21i
t hi

t

..

..

Z1.m1

t−1
h1

t−1
− ∑m

i=3
piZ

1.m1i
t hi

t

..

..

Zm...m
t−1

hm
t−1

− ∑m

i=3
piZ

m..mi
t hi

t

Z1..1
t−1 −

∑m

i=3
piZ

1..1i
t

Z1..2
t−1

− ∑m

i=3
piZ

1..2i
t

..

..

Z1..m
t−1

− ∑m

i=3
piZ

1..mi
t

Z1.11
t−1 − ∑m

i=3
piZ

1.11i
t

Z1.21
t−1

− ∑m

i=3
piZ

1.21i
t

..

..

Z1.m1

t−1
− ∑m

i=3
piZ

1.m1i
t

..

..

Zm...m
t−1

− ∑m

i=3
piZ

m..mi
t

































































































Zs
t = [A]2mt−1

×2mt−1 [B]2mt−1
×1,

Zs
t = f(Zt−1, ut−1, ht).

Let, A =

































p1h
1

t p2h
2

t 0 0 .. .. 0 0
0 0 p1h

1

t p2h
2

t 0 0 0 0
....

....

0 0 .. .. 0 0 p1h
1

t p2h
2

t

p1 p2 0 0 .. .. 0 0
0 0 p1 p2 0 0 0 0
....

....

0 0 .. .. 0 0 p1 p2

































2mt−1
×2mt−1

.

A has a non-zero determinant since,

Determinant(A) = pmk−1

1
pmk−1

2
(h1

t − h2

t )
mk−1 6= 0 for h1

t 6= h2

t .

Thus, the above problem can be formulated as a DP problem.

n Equations Unknowns Variables to be fixed Condition for DP

1 2 m m-2 p1p2(h
1 − h2) 6= 0

2 2m m2 m(m-2) pm
1 pm

2 (h1
t − h2

t )
m 6= 0

3 2m2 m3 m2(m − 2) pm2

1 pm2

2 (h1
t − h2

t )
m2 6= 0

4 2m3 m4 m3(m − 2) pm3

1
pm3

2
(h1

t − h2
t )

m3 6= 0

k 2mk−1 mk mk−1(m − 2) pmk−1

1
pmk−1

2
(h1

t − h2

t )
mk−1 6= 0
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8 Discretizing the Bond Price process

We have assumed that the price of a zero coupon bond is a function of the rate process:
hn = e

Pn
k=0

−rkF (rn) endowed with a probability density function. We consider finite partitions
of the the pdf such that the discretized pdf converges to the the given pdf. We show the
convergence of the discretization method for lognormal bond price process. Observe that the
rate process is stationary under the Vasicek’s model as shown below:

rn − rn−1 = k1 + (k2 − 1)rn−1 + σεn

If |k2 − 1| < 1 and E|r0| < ∞, then

E[rn] = kn
1 E[r0] +

k1(1 − kn
2 )

1 − k2
→ k1

1 − k2
as n → ∞

and if V ar[r0] < ∞

V ar[rn] = k2n
2 V ar[r0] +

σ2(1 − k2n
2 )2

1 − k2
2

→ σ2

1 − k2
2

;

Cov(rn, rn−m) → σ2km
2

1 − k2
2

.

Moreover, if the initial distribution (the distribution of r0) is normal, i.e., r0 ∼ N( k1

1−k2

, σ2

1−k2

2

),

then r = (rn)n≥0 is a stationary Gaussian sequence (both in wide and the strict sense) with

E[rn] =
k1

1 − k2
; V ar[rn] =

σ2

1 − k2
2

.

8.1 Moment matching method

Representative values are assigned so that the first several moments of the distribution match
the moments of the continuous distribution. Such approximations work because a density
function is a limit of discrete mass functions. A distribution function is, in general, uniquely
characterized by its moments. So, if we are progressively able to match all higher moments of
a discrete distribution to the moments of a continuous distribution, then the two distributions
converge in the limiting case. In general, n points of the discrete distribution can match 2n− 1
moments [4].

The intuition is that as more and more number of moments are matched, the neat structure
of the optimization problems will lead to a closer and closer approximate solution that could
be justified by variants of weak convergence results.

8.2 Calculating the Approximating Probabilities

We want to find a set of values and probabilities such that:

< xk >:=

∫ ∞

−∞

xkf(x)dx =

N
∑

i=1

pix
k
i , for k = 1, 2, ....

A discrete approximation with N probability-value pairs can match the first (2N −1) moments
exactly by finding pi and xi that satisfy the following equations:

17



p1 + p2 + p3 + .................. + pN =< x0 >= 1,

p1x1 + p2x2 + p3x3 + .......... + pNxN =< x >

p1x
2
1 + p2x

2
2 + p3x

2
3 + .......... + pNx2

N =< x2 >, (62)

.

.

.

p1x
2N−1
1 + p2x

2N−1
2 + p3x

2N−1
3 + ..... + pNx2N−1

N =< x2N−1 > .

(63)

There is a well-known method for solving these equations. First, define the polynomial:

π(x) = (x − x1)(x − x2)(x − x3)....(x − xN) =

N
∑

k=0

ckx
k.

It follows from this definition that cN = 1 and π(xi) = 0 for i = 1, 2, .., N . Taking the first N

equations we multiply the first equation by c0, the next by c1, etc., and then add them to get:

N
∑

i=i

piπ(xi) = 0 =

N
∑

k=0

c0x
k.

Now taking the second equation through (N +1)th equation and multiplying by the coefficients
of the polynomial again we get:

∑

i=1

pixiπ(xi) = 0 =
N

∑

k=0

ckx
k+1

This process is repeated N times to yield the following set of linear equations.

< x0 > c0+ < x > c1+ < x2 > c2 + ..........+ < xN−1 > cN−1 = − < xN >,

< x > c0+ < x2 > c1+ < x3 > c2 + ..........+ < xN > cN−1 = − < xN+1 >,

< x2 > c0+ < x3 > c1+ < x4 > c2 + ..........+ < xN+1 > cN−1 = − < xN+2 >,

.

.

.

< xN−1 > c0+ < xN > c1+ < xN+1 > c2 + ..........+ < x2N−2 > cN−1 = − < x2N−1 >,

These equations can be solved for the coefficients of the polynomial, and then the xi can
be determined by finding the zeroes of the polynomial. Finally, the pi can be determined
by substituting the xi into the original set of equations for the moments of the approximate
distributions. (The pis can be determined without solving another set of N linear equations.)
It can be shown that if the original moments are finite and are derived from a probability
distribution, this procedure must yield N real, distinct values, xi, which all lie within the interval
spanned by the original distribution. It must also produce positive probabilities.
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8.3 Error of Approximation

minimize JN,π(Z0) = E[ZN(hN − h0)
2] =

∫

A

ZN(hN − h0)
2dP (64)

subject to E[Znhn|=n−1] = Zn−1hn−1, ∀n, 0 ≤ n ≤ N, (65)

E[Zn|=n−1] = Zn−1, ∀n, 0 ≤ n ≤ N, (66)

E[Zn] = 1, ∀n, 0 ≤ n ≤ N, (67)

Zn > 0, ∀n, 0 ≤ n ≤ N. (68)

The above problem can be written as:

minimize JN,π(Z0) = E[ZN(hN − h0)
2] =

∫

A

ZN(hN − h0)
2dP (69)

ZN ∈ MR ⊂ [δ,∞), (70)

where MR is the set of Radon Nikodym derivatives (RNDs) generating Equivalent Martin-
gale Measures.

Remark 2 The framework is similar to the Finite Horizon Problem by Ferretti [5], where an
upper bound on the error estimate is calculated.

Here, ZN(hN − h0)
2 is the cost function, P is some continuous distribution function on R and

ZN ∈ M is the feasible set (the set of Radon Nikodym derivatives that generate an Equivalent
Martingale Measure). Denote by Z∗ = arg minZ

∫

A
ZN(hN −h0)

2dP , (We suppose for simplicity
that it is unique, Quadratic cost function!). Let Pm be the approximate discrete distribution,
i.e., we minimize

JN,π(Z0)m =
∑

Am

ZN(hN − h0)
2dPm; ZN ∈ MRm.

We define the approximate error e(J, Jm) := J(arg minZm
Jm) − J(arg minZ J). Notice that

e(J, Jm) ≥ 0. The error however is difficult to calculate. It is in fact easier to find an upper
bound.

Proposition 4 e(J, Jm) ≤ 2 supZ |J − Jm|.

Proof: Let Z∗ arg min J and Z∗
m = arg min Jm.

Set ε = supZ |J(Z) − Jm(Z)|. Let M = {Z : J(Z) ≤ J(Z∗) + 2ε}. Suppose that Z∗
m 6∈ M .

Then,
J(Z∗) + 2ε ≤ J(Z∗

m) ≤ Jm(Z∗
m) + ε ≤ Jm(Z∗) + ε ≤ J(Z∗) + 2ε.

This contradiction establishes Z∗
m ∈ M , i.e.

e(J, Jm) = J(Z∗
m) − J(Z∗) ≤ 2ε.

Remark 3 The steady decrease of the error term for large values of m and subsequently to
zero is discussed by Ferretti [5] for non-quadratic cost functions.
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9 Convergence of optimal solution in the one period

problem

Let Z∗
m be the value of the Z1 obtained by approximating the distribution of h1 with m random

variables and minimizing the
∑m

k=1 Z1m(h1m − h0)
2pm subject to martingale constraints. Let

the probability measure Q∗
m be given by Q∗

m(A) =
∫

A
Z∗

mdPm, A ∈ =m ⊆ =. Assuming h1 has
a compact support, let Q∗

m converge weakly to Q∗, i.e., Q∗
m →d Q∗.

Remark 4 Observe that Pm →d P (by construction).

Claim 1 Q∗ is an EMM.

Proof: Q∗
m is absolutely continuous with respect to Pm and Z∗

m = dQ∗

m

dPm
is a Pm martingale.

Further, EPm [Z∗
m] = 1 makes Q∗

m a probability measure (specifically an equivalent martingale
measure). Thus, we have Q∗

m << Pm.

Suppose, Q∗ is not absolutely continuous with P .
Thus, for some Aφ ∈ =, ∃ρ > 0, such that ∀φ > 0, for P (Aφ) < φ, we have Q∗(Aφ) ≥ ρ.
Q∗

m →d Q∗ and P ∗
m →d P ∗ further implies that ∃m0, s.t. for all m ≥ m0, we have, for

Pm(Aφ) < φ
2

implies Q∗
m(Aφ) ≥ ρ

2
, ∀φ contradicting the absolute continuity of Q∗

m with respect
to Pm. Hence Q∗ << P .

Let Z∗ := dQ∗

dP
.

Moreover, we have, E[Z∗] = 1 and E[Z∗|=0] = E[Z∗] = 1 making Q∗ an equivalent martingale
measure.

Claim 2 EQ∗

[(h1 − h0)
2] ≤ EQ[(h1 − h0)

2], ∀Q ∈ M.

Proof: For any Qm, Qm ∈ M , we have

EQ∗

m[(h1 − h0)
2] ≤ EQm [(h1 − h0)

2].

We first consider the case when h1 has a compact support. Taking limits on both sides,

lim
m→∞

EQ∗

m[(h1 − h0)
2] ≤ lim

m→∞
EQm [(h1 − h0)

2];

implies EQ∗

[(h1 − h0)
2] ≤ lim

m→∞
EQ[(h1 − h0)

2].

10 Numerical Solution of the ’one’ period problem

10.1 MVMM for Lognormal bond prices

We consider the bond price process h to be lognormal with parameters µ and σ. For a lognormal
variable X ∼ LN(µ, σ), the n-th moment is given by [6]:

E[xn] = exp(nµ +
n2σ2

2
).

An important observation while approximating a lognormal random variable is the moments
grow exponentially for larger n’s. Further, when solving for the co-efficients c0, c1, c2, ... by using
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MATLAB for higher n’s the values we get are highly unreliable. If A is a square matrix, A\B
is roughly the same as inv(A) ∗ B, except it is computed in a different way. If A is an n-by-n
matrix and B is a column vector with n components, or a matrix with several such columns,
then X = A\B is the solution to the equation AX = B computed by Gaussian elimination. A
warning message gets printed if A is badly scaled or nearly singular.

The Table below shows the minimum value of the cost function Z1E[(h1 − h0)
2] when the

lognormal distribution is approximated with N random variables, thereby matching its first
2N − 1 moments. We consider Z1 ≥ δ, δ = 0.01.

N Minimum Cost

4 0.01023659729930
5 0.03260498418877
6 0.03755310515767
7 0.03419657511033
8 0.02676107361828
9 0.01738206877951
10 0.00719783570787

Remark 5 Observe that the minimum cost steadily decreases after we increase the number of
approximating random variables (N) beyond 6.

The Radon Nikodym Derivative Z1 corresponding to the MVMM for N = 7 is given by:

Z1 Minimum Z1

Z1
1 0.01053570010757

Z2
1 0.01000004744816

Z3
1 0.01000000161230

Z4
1 0.01000000031368

Z5
1 0.01000000035239

Z6
1 1.40434853801986

Z7
1 9.74146229882888

Remark 6 We observe that the values of Z1
1 , Z

2
1 , Z

3
1 , Z

4
1 ' 0.01.

Remark 7 The primal is infeasible for N = 3. This is because both E[Z1h1|=0] = Z0h0 = 1
and E[Z1] = 1 cannot be satisfied for Z1 ≥ δ. In MATLAB, once the preprocessing has finished,
the iterative part of the algorithm begins until the stopping criteria are met. If the residuals are
growing instead of getting smaller, or the residuals are neither growing nor shrinking, then the
problem is usually infeasible.

10.2 MVMM for bond prices with triangular distribution

The probability distribution function f of the bond price process h is given by:

f(h) =
2(h − a)

(b − a)(c − a)
for a ≤ h ≤ c;

=
2(b − h)

(b − a)(b − c)
for c ≤ h ≤ b

We consider a = 0.01, b = 3, c = 1.
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The Table below shows the minimum value of the cost function Z1E[(h1 − h0)
2] when the

triangular distribution is approximated with N random variables, thereby matching its first
2N − 1 moments. We consider Z1 ≥ δ, δ = 0.01.

N Minimum Cost

5 0.0939
6 0.0639
7 0.0304
8 0.0512
9 0.0183

Remark 8 The minimum cost increases when the price process is approximated by 8 random
variables. For higher of order discretization, calculating the random variables and their corre-
sponding probabilities becomes computationally difficult. This is because the calculation involves
inverting some nearly singular matrices in the moment matching method.

11 Multi-period Problems

We show numerical solutions for the two and three period problems respectively. The follow-
ing observations are for lognormal bond prices, the parameters of which were estimated from
historical data. We can observe that the minimum cost decreases as we increase the number of
random variables for approximating the bond price process.

11.1 Two period model

N Minimum Cost

4 0.65995110654808
5 0.88906263588492
6 0.22928906886193
7 0.14774246209004
8 0.03428916742700
9 0.00626970588837
10 0.00369256412862

Remark 9 Observe that the minimum cost steadily decreases after we increase the number of
approximating random variables (N) beyond 5.

11.2 Three period model

N Minimum Cost

4 0.68609629492469
5 0.59977289393892
6 0.35861641706338
7 0.11466908485029
8 0.07380469227943
9 0.07828389730531
10 0.01118382079643

Remark 10 Observe that the minimum cost steadily decreases after we increase the number of
approximating random variables (N) except from step 8 to 9.
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12 Conclusions

The exponentially quadratic form reduces to the exponentially linear form in an arbitrage-
free market given by a specific form of the Radon-Nikodym derivative. We have shown that
a discrete-time bond market with uncountable state space for the short rate is Incomplete.
Further, the analytical solution for Radon Nikodym derivatives were difficult to obtain and
hence an approximation of the subjective measure by a discrete measure by Moment matching
approach is used. The approximate distribution converges to the original distribution in the
limiting case. Pricing of bonds can thus be seen as a minimization problem in an Incomplete
market setup. Further, both the Linear Programming and Dynamic Programming approaches
to solve the minimization problem were dicussed.
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