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Abstract 
 

An agent-based stock market evolves as agents learn from the past experience and adapt 
their behavior to the evolving market. This paper introduces a learning and adaptation 
mechanism which allows agents to choose one rule among a set of ideas updated through 
both individual and social learning. It then examines how the learning mechanism affects 
the dynamics of the artificial stock market.  
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1. Introduction  
 
An agent-based stock market consists of a set of interacting heterogeneous agents. The 
market evolves as agents learn from the past experience and adapt their behavior to the 
evolving environment. Such learning and adaptive behavior of the agents is usually 
modeled with approaches of an evolutionary computation. Recent research has shown a 
variety of computational techniques to describe the evolution in an artificial stock market. 
One can distinguish the techniques based on at which level the learning of agents is 
modeled. The previous literature describes learning at either individual or social level. The 
learning at individual level is usually called “individual learning” where agents update 
their behavioral rules from their own past performance. The learning at social level is 
called “social learning” where agents update their rules through directly interacting with 
other agents. In the previous literature, the level of learning is exogenously given, and 
agents involve only a particular level of learning when they update their rules. But such a 
setting doesn’t say anything about why agents choose a particular level of learning to 
update their trading rules. This paper introduces a learning mechanism which allows 
agents to choose one rule at each period among a set of ideas updated through both 
individual and social learning. A trading strategy performed well in the past is more likely 
to be selected by agents regardless it is created at individual or social level. This framework 
allows agents to choose a decision rule endogenously among a wider set of ideas. With such 
evolution, the following two questions are examined. 

First, since agents who have a wider set of ideas to choose are more intelligent, a 
question would arise if the time series from such an economy would move around more 
closely to a homogeneous rational expectation equilibrium than in an economy with only 
one level of learning. A convergence property to the rational expectation equilibrium 
(hereafter REE) is investigated in LeBaron (2000) and Arthur et al. (1996). They find when 
agents adapt their forecasts very slowly to new observations the market converges to the 
REE. The more information from the market agents get before updating their rules, the 
more closely they behave rationally. They deal with such a convergence property by looking 
at different time-horizon. But this paper investigates a convergence property by looking at 
different levels of intelligence given a time horizon. Can a market reach the REE if agents 
have many ideas to process the market information although they adapt their behavior 
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quickly to new observations? Would agents be able to behave rationally when they are 
intelligent? However, the result in this paper shows that the economy with more intelligent 
agents cannot reach the REE. Agents don’t behave rationally when they are intelligent. 
Intelligent agents are not rational.  

The second investigates which level of learning is likely to dominate in the market. 
This is analyzed by investigating who chooses which level of learning and what proportion 
of the agents often uses individual or social learning. Agents are allowed to choose 
endogenously a better idea created from individual and social learning. Some agents with 
better ideas would use their own idea more often than the others do, while some with less 
successful ideas would rely on the ideas from other agents. Who has better ideas and who 
doesn’t? In this paper, it is considered as a better idea that could produce higher wealth 
over a particular past time span. Agents are more likely to pick an idea which produces 
higher wealth in the past. So, we would hypothesize that an agent who accumulates more 
wealth in the past is more likely to pick an idea from her own (from individual learning) 
than others do, while some who are poor are more likely to adopt an idea from others (from 
social learning). Then, a question arises what proportion of the agents use their private 
ideas and imitate others. This paper shows that most of the agents follow the herd, and 
only agents with very high wealth would possibly rely on private ideas. So, it concludes that 
the social learning dominates the market. Agents would be better off in an ex ante welfare 
sense by constraining the use of their own ideas. The second part of the paper eventually 
indicates that the agent-based stock market in this paper could possibly explain the 
mechanism of herding behavior in the real world. 

The rest of the paper proceeds as follows. Section 2 describes previous literature. 
Section 3 presents the market structure. Section 4 gives the results from the computer 
experiments, and the last section concludes.  
 

2. Comparing with Previous Literature 
 

In the previous literature about an agent-based market, a variety of computational 
techniques are used for evolution in the market. In particular, agents’ trading or forecasting 
strategies are evolved as agents learn from the past and adapt their behavior to a market. 
Learning and adaptive behavior of the agents is often described at either individual or 
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social level. A market with social learning is considered to be a single population consisting 
of directly interacting heterogeneous agents1 Figure 1 represents a social learning. The 
symbol ‘ ↔ ’ characterizes the direct interaction.  
 
Figure 1: Social Learning: 

 
 In social learning, investors’ behavior is influenced by other investors. Investors 
meet, for example, at some conferences, communicate each other, and exchange their 
opinions about the price prediction. Then based on such interactions, they would update 
their trading strategies.  

In a market with individual learning, each agent has a set of her private ideas. The 
ideas of each agent are not disclosed to other agents so that there is no imitative behavior. 
Agents learn from their own past experience and update their behavioral rules by 
themselves. There are no direct exchanges of the ideas among agents in this learning. 
Reactions to other agents’ behavior only occur indirectly through prices. Figure 2 
represents an individual learning. Again, the symbol ‘ ↔ ’ characterizes the direct 
interaction, and the symbol ‘=’ shows the indirect interaction. So, in this setting, population 
indirectly interacts through the market. 

Mechanisms of learning and adaptive behavior of agents are different in individual 
and social learning. However, most of the previous papers don’t explain why agents choose 

                                                   
1 Chen et al. (2001) clarifies the distinction between individual and social learnings. Here I follow their 
arguments. 

Market  
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a particular level of learning mechanism to update their trading rules. For example, papers 
Figure 2: Individual Learning 

 
related to the Santa Fe Artificial Stock Market Model adopt an individual learning.2 Some 
papers allow direct interaction among agents which is represented as social learning.3 
Only Vriend (2000) and Yeh and Chen (2000) are the papers which clarify the distinction. 
Only Yeh and Chen (2000) motivates why agents choose a particular level of learning. 

Vriend (2000) compares the simulation results of a simple Cournot model with 
individual learning and social learning through the same identical genetic algorithm 
(hereafter GA) for exactly the same identical underlying economic model. The result shows 
that the difference is essential. For example, the GA with individual learning moves close to 
the Cournot-Nash output level, whereas the GA with social learning converges to the 
competitive Walrasian output level. In addition, the social learning GA shows quicker 
convergence to an equilibrium than the individual learning GA does while the social 
learning GA reaches higher output levels than the individual learning GA does. So, since 
the results differ according to the different learning, his result indicates that the choice of 
the computational modeling between individual and social learning algorithms should be 
made carefully. Vriend clarifies the distinction but doesn’t mention why and under what 
condition agents choose a particular level of learning. 

Yeh and Chen (2000) construct an artificial stock market which integrates both 
social learning and individual learning with the genetic programming (GP) framework. 
                                                   
2 These papers include LeBaron, Arthur, and Palmer (1999), Tay and Linn (2001), Arthur, Holland, 
Lebaron, Palmer, and Tayler (1996), LeBaron (2001), LeBaron (2002b). 
3 Those papers include Arifovic (1996), Arifovic and Gencay (2000), Arifovic (2001a), Arifovic (2001b), and 
Arifovic (2002). However, Vriend (2000) and Yeh and Chen (2000) concern the difference of the levels of 
learning. 

Market 
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Since agents in their market have more ideas to create trading strategies than the single 
population GP based market, they ask how the degree of traders’ intelligence influences the 
economy. In particular, first, the econometric properties of time series are examined under 
different degrees of intelligence. Second, their experiment examines which types of traders 
are more likely to survive between prediction accuracy and profit oriented traders. Their 
results show that profit oriented traders are more adaptive and easier to survive while they 
don’t get much difference of the time series properties in different levels of intelligence. 
Their paper is the only one which clarifies the distinction between individual and social 
learning and why agents choose a particular level of learning. 

This paper differs on some points from each of the above two papers. First, this 
paper concerns a model of stock market while Vriend (2000) deals with a Cournot model. 
Second, although Yeh and Chen (2000) integrate individual and social learning into one 
model, the agents choose ideas produced either from individual or social learning. Agents 
select an idea after they go to either level of learning. So, at each stage of decision-making, 
each agent is allowed to pick one idea only from a particular level of learning. But this 
paper allows agents to choose one idea from a set of ideas updated from both levels of 
learning. Each agent has her own ideas and updates them in her mind while she has a set 
of ideas which evolve with other agents. At a time of decision making, she refers to a set of 
ideas evolved at individual and social levels. 

The second experiment of this paper considers more intelligent agents. Then what 
would happen to the time series from such an economy? Does it move around more closely 
to the REE than in an economy with only one level of learning. This investigation differs 
from works of LeBaron (2000) and Arthur et al. (1996). They deal with the REE property by 
looking at different time-horizon, and conclude that a market with more observations about 
the prices can converge to the REE. But this paper asks the convergence property with 
more intelligent economy.  

The last part of the second experiment investigates which level of learning 
dominates the market, and shows that most of the agents often follow the herd, and only 
small portion of agents with very high wealth are more likely to use private ideas. This 
conclusion is consistent with the herding literature4 and the evidence in the actual stock 
market (Graham (1999)). 

  

                                                   
4 Bikhchandani et al. (1998) and Devenow et al. (1996) survey the herding literature. 
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3. Market Structure 
 
This section describes an artificial stock market based on the one outlined in LeBaron et al. 
(1999). In the following sections, the experiments are conducted on an artificial stock 
market with different styles of learning. But the market structure is exactly identical for all 
experiments. It is presented as follows. 
 The artificial stock market has two tradable assets, a risky stock and risk free 

bond. The risk-free bond is in infinite supply and it pays a constant interest rate, fr =10%. 

The risky stock pays a highly persistent and stochastic dividend which follows an AR(1) 
mean-reverting dividend process: 
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The number of shares of the stock is 30, which equals the number of agents in the market. 
The market consists of many heterogeneous interacting agents who have different 

methods of prediction on the stock price and dividend. They make predictions about the 
future stock price and dividend each period based on the market information related to the 
price and dividend. Using predictions, each agent set her demand for shares. Taking the 
overall market demand and supply into account, the stock price is determined. The more 
detailed steps of how events in this artificial market proceed are as follows: 

 
1. Information set:  
At time t, agents observe the past price and dividend, and calculate technical indicators. 
They form a set of information, ‘ tz ’ which is used by agents to predict future prices. 

Following LeBaron (2001), the technical rules are based on exponential moving averages5 
formed as 

tktkktk pmm )1()2( 1,, ρρ −+= −  where k=1 and 2.  

                                                   
5 “Exponential moving average” is a type of moving average that is similar to a Simple Moving Average, 
but it puts more weight to the latest data. 
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1ρ =0.8 for 1,1 −tm  and 2ρ =0.99 for 1,2 −tm . 

The information set, ‘ tz ’, includes: 
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Agents use the price and dividend information to calculate the following two technical 
indicators. 
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At time t, dividend, td , is revealed and paid. 

 
2. Prediction: 
Agents process the past information and make predictions on the future price and dividend. 
In particular, agent i forecasts the future price and dividend according to: 

i
ttt

i
ttt

i
t bdpadpE ++=+ ++ )()(ˆ)3( 11   

i
tÊ denotes the best forecast of agent i at time t. Each agent decides the forecast parameters, 

‘ i
ta ’ and ‘ i

tb ’, according to the past information set, ‘ tz ’. They are expressed with a 

particular function in ‘ tz ’ which is described as follows.6  

 The functional form used to generate the two forecasting parameters is assumed to 
be a feedforward neural network with a single hidden-unit with restricted inputs, which is 
                                                   
6 The linear forecasting model in (3) is optimal when agents believe that prices are a linear function of 
dividends and a homogeneous rational expectation equilibrium obtains. But here there is no such 
restriction. 
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used in LeBaron (2002a) as follows. 
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Neural network is a particular type of functional form often used in the field of biological 
nervous systems. Here since the information set, ‘ tz ’,consists of 5 variables, those are first 
combined with weights ( k0ω and k1ω  for k=1,…,5) and transformed in a hidden layer, 

which is expressed as equation (4), and produce signals, h. Since the information set has 5 
variables, hidden layers produce 5 signals in total ( kh  for k=1,…,5). Those signals are 
connected with weights ( 2ω and k3ω  for k=1,…,5) and produce a signal, λ , which is 

expressed as equation (5). ‘ λ ’ lies between 0 and 1 by construction. We call “feedforward” 
since the direction of the signal is just one way from input, ‘ tz ’, to output, ‘ λ ’. Figure 3 is a 

picture for this neural network, equation (4) to (6).  

Permitting to range ‘λ ’ with the allowable bounds for ‘ i
ta ’ and ‘ i

tb ’ in LeBaron 

(1999), that is, ]2.1,7.0[∈a  and ]19,10[−∈b 7, the forecast parameters ‘ i
ta ’ and ‘ i

tb ’are 

given by 

))(1(*7.0)(*2.1)7( tata
i
t zza λλ −+= .  

))(1(*)10()(*19)8( tbtb
i
t zzb λλ −−+= .8  

Agents are heterogeneous in terms of their expectation since each has different values of 
weights in their own neural net.  
 Here agents build their forecast using the neural network. This is an extension 
from the financial market in LeBaron et al. (1999). The agents in LeBaron et al. (1999) 
forecast using what are called ‘condition-forecast’ rules.9  

                                                   
7 Those ranges are given to be centered around the rational expectation equilibrium values. 
8 Each agent has two neural networks since he has two forecasting parameters. Since each has 16 
parameters in his neural network, he has 32 in total. 
9 In LeBaron et al. (1999), “the basic idea is that the rules will match certain states of the world which are 
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3. Strategy making: 
Based on the prediction, each agent i sets his demand for share as: 
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4. Price determination:  
The new equilibrium price, tp , is determined according to the market equilibrium condition 

as: 
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where N is the number of agents in the 

market (=30). 
 
5. Volume determination and updating variance estimates: 

After revealing the price, forecasting parameters i
ta  and i

tb  are updated according to the 

feedforward neural network, (4)-(6) to get i
ta 1+ and i

tb 1+ , and trading volume is recorded. The 

price at time t is derived by solving equation (10). After the price is set, agents update their 
portfolio and trading volume is recorded.10 Once the equilibrium price tp is revealed, agents 

change their forecasting rule, i
ta  and i

tb . Then the market demand and supply become 

unbalanced. So, tp clears the market only temporally. In this sense tp  is a temporary 

equilibrium price (LeBaron (2002b))11. 
  Here supply and demand are somehow balancing in some unspecified market 
institution (Arthur et al (1996)). Agents calculate their desired holdings and submit their 
decisions to the market specialist who functions as a market maker. The specialist collects 
                                                                                                                                                           
defined endogenously. These states map into a forecast for the future price and dividend which is then 
converted to share demand through the agent’s demand function.” 
10 Since there is one market maker and 30 traders, the trading volume is defined as 

||
2
1||

2
1 30

1
30
1 ∑+∑= == i ii i yyv , where iy is trader i’s trading volume. 

11 This model doesn’t say anything that wealthier people can affect the price. Usually trading by wealthier 
people could affect the price. 
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bids and offers from agents, and announces a price that clears the market. So, this 
institution deals with buying and selling in real time. An investor, who wants to buy stock, 
can always buy stock while seller can always sell the stock in this market. 
 Wealth, w, for individual i is evolved according to: 

))(1()()11( 111
i
tt

i
tftt

i
t

i
t spwrdpsw −+++= +++ . 

Each agent is initially allocated 20,000 units of cash. 
 
6. Genetic Algorithm: 
Steps 1-5 are repeated for S (=25) periods. Then genetic algorithm (GA)12 is invoked to 
update their forecasting parameters. The steps 1-5 with GA are repeated 500 times every 
25 periods. 

The GA manipulates the parameters, ‘ω ’, in the neural network, equation (4)-(6), 
to improve the performance according to a fitness criterion. Here the fitness criterion is 
wealth-based utility of the past 25 periods which is given as: 

∑= =
= +
25
1 1)()12( S

t tii wUV  

)exp()( 11 ++ −−= tt wwUwhere γ 13 
γ is a constant absolute risk aversion coefficient and assumed to be 0.5. 

The variance estimate is updated according to an exponentially weighted average 
of squared forecast error, 
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where τ is fixed at 75. 
All agents involve GA simultaneously. The more detailed steps of the GA are 

introduced next. 
 

Steps of GA Implementation 

                                                   
12 For an introduction to GA, see Mitchell(1996), Haupt and Haupt (1998), Muhlenbein and 
Schlierkamp-Voosen (1993), and Tokinaga (2000). Janikow and Michalewicz (1991) empirically compare 
floating point and binary based GAs using dynamic control problem. Wright (1991) applies genetic 
algorithms to optimization problems over several real parameters. 
13 As simulation proceeds, the wealth is always normalized to be in 5-digit number dividing by 10 if one of 
the wealth exceeds 100,000. When we evaluate the utility, the wealth is divided by 1,000,000 since the 
utility function is negative exponential. 
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GA implements to the parameters, ‘ω ’, in the neural network, equation (4) to (6). This 
paper considers the markets with individual and social learning. So, GA is run at the 
individual and social levels. But the steps to implement GA are exactly the same for exactly 
the identical market structure for social and individual learning. So, the following 
explanation to implement GA can be applied to market structures both with social and 
individual learning. 

A GA consists of a set of operations which manipulate a given population. There is 
one population in a social learning economy which consists of 30 agents while an individual 
learning market has 30 populations each of which represents agent who has 30 ideas in her 
mind. In an individual (social) learning market, each idea (agent) has a set of 32 
parameters in her neural network. In individual learning, “ideas” interact within each of 
the agent’s mind while “agents” interact in social learning. More specific explanations 
about GA are as follows.  
 
1) Initialization of population: 
The initial sets of parameters for each idea (agent) are chosen randomly from the range 
[-1,1]14. Since there are 30 ideas (agents), the matrix of parameters is 30x32. 
 
2) Ranking and Selection: 
In each generation n the agents face 25 (=S) portfolio decisions. The forecasting rules that 
did well according to the fitness measure will be more likely to be copied than a rule with a 
lower fitness. The forecasting rule for idea (agent) i is to be copied with the probability: 

∑=

∑
=

=
= +

=
=

25
1 1

30
1

)(

/1
/1

)14(

S
t tii

N
j j

i
i

wUV
where

V
V

P

. 

 
3) Crossover and Mutation: 
The GA then introduces new rules through two genetic operators that manipulate some 
parameters of the population. These two operations are called crossover and mutation. The 

                                                   
14 This range is defined in LeBaron (2001). 
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algorithm chooses between crossover and mutation with equal probability.  After either of 
crossover and mutation is selected, the algorithm randomly chooses one of the information 
variables. Then all of the parameters related to that information variable are subject to the 
crossover or mutation. For example, in Figure 3, when the algorithm chooses crossover 
(mutation) and information variable, 1−tr , then the parameters, 2310111 ,,, ωωωω , in the 

selected pair of parents are subject to the crossover (mutation).15 
A selected set of the parameters in the neural network, which are related to one of 

the information variables, is crossed over. Intuitively, in social learning, for the crossover on 
forecasting parameters, two investors who have similar prediction skills are more likely to 
meet and exchange their opinions for the stock price prediction. They talk about a 
particular information variable for the prediction. After that, they update their prediction 
rule of that variable based on the discussion with other agents. For the crossover in 
individual learning, agents update their own ideas inside their mind. 

Here the crossover for the real-valued GA is as follows. A new parameter 
(offspring) is produced by combining two parameters (parents) as: 

 
(15)      offspring=parent 1 + α  * (parent 2 – parent 1). 
 
where α  is a scaling factor chosen uniformly at random in the interval [-0.25,1.25]. A new 
‘ α ’ is generated for each pair of parents combined together (Muhlenbein and 
Schlierkamp-Voosen (1993)). 
For mutation on the real-valued GA, a parameter iω is selected with probability mp (=0.08) 

for mutation, and are added a small perturbation.16  
 

                                                   
15 A pair of parameters undergo crossover with a constant probability of 40% as in Lettau (1997). 
16 A value out of an interval ],[ ii rangerange− is added to the selected variable. The ‘range’ is defined as 

0.5 * [-1,1]. The new value *iω is computed according to  

δωω iii range±=* . 

The + or – sign is chosen with probability 0.5. δ is computed from a distribution that prefers small values. 

This is realized as follows: 

∑
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iη =1 with probability 1/m, else 0. Here m=20(Muhlenbein and Schlierkamp-Voosen (1993)). 
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4) Reinsertion: 
After crossover or mutation is conducted, agents do “back-testing”. The fitness function (12) 
is calculated with updated parameters and observed prices. A set of the updated fitness is 
compared with the old fitness. The algorithm conducts insertion of the updated parameters 
into the current set of parameters when the new ones could produce higher fitness than the 
old ones do. Offsprings replace least fit parents.17  
 

4. Experiments with Intelligent Agents 
 
This section consists of two investigations in a market with evolution which allows agents 
to choose one rule at each period among a set of updated ideas produced through individual 
and social learning. First, the convergence property to the REE is examined with an 
intelligent economy, and it concludes that the intelligent economy cannot converge to the 
REE since intelligent agents are not rational. Second, it is examined which level of learning 
dominates the market. It shows that a wealthy agent picks an idea from individual 
learning more often than others do while poor agents imitate others. 
 More details of the evolution are as follows. When agents update their trading 
rules, they evaluate the past performance of a set of the ideas which are created in both 
individual and social learning, and choose one idea from them. Each agent has a set of 30 
ideas which are updated in her mind. In addition, there are 30 agents in the market, each 
of whom has one idea for social learning. So, there are 30 ideas in total for social learning. 
After a GA is conducted, each agent is able to select one idea from 60 ideas by taking two 
steps. At the first stage, an agent picks two ideas, one of which is taken from individual 
learning and another from social learning. The ideas are evaluated according to the 
wealth-based fitness criterion (equation (12)). At the first stage, each agent is more likely to 
choose one idea which performed better in the past. In the second stage, she selects one 
from the selected two by comparing absolute values of the fitness. 

The ideas used in individual and social learning are totally isolated in this setting. 
On the one hand, each agent has her private ideas, and never reveals them to others. These 
ideas are evolved only with individual learning. On the other hand, agents have some ideas, 
and are willing to reveal them, in order to get new information from other agents. So, in 

                                                   
17 This is equivalent to the ‘election operator’ in a series of Arifovic’s papers. 
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this setting, each agent has two types of ideas, one of which is totally private while another 
is for social interaction. 

Under this setting, the choice of the level of learning is not exogenous but 
endogenous. In addition, since each agent has a wider set of idea to choose in this economy, 
they are considered to be more “intelligent” than the agents in the previous sections. This 
section deals with such an economy with intelligent agents. 
 

4.1 Are intelligent agents rational? 
 

Simulations are repeated for 10 times under different random seeds to collect 
cross-sectional statistics. The series of stock price, dividend, and volumes are recorded for 
the last 5,000 periods, and the following statistics for returns and volumes are calculated, 
and compared with the economies which have only one level of learning, i.e., individual or 
social learning. In either individual or social learning economy, each agent can choose one 
rule from 30 rules while an economy with intelligent agents allows them to choose one from 
60 rules created from both levels of learning. The statistics for returns series are the 
standard deviation, excess kurtosis, volatility clustering, and nonlinear dependence while 
for the volume series, the averages are calculated.   

For the return series statistics, the following regression is first conducted with the 
simulated data: 

 
(16)     ttttt dpdp εβα +++=+ ++ )(11 . 

 
Following LeBaron et al. (1999), the estimated residual series tε̂ are analyzed, and the 

results are in Table 1.  
Under the homogeneous rational expectation equilibrium, the residual time series 

follow independent and identical distribution with the standard deviation of 2 (N(0,4)). The 
standard deviations are 4.4295 in an economy with intelligent agents, 3.5494 in individual 
learning and 3.1856 in social learning. These show higher variability than should be in the 
homogeneous rational expectation equilibrium.  

The ARCH test deals with the volatility clustering for the return series (Engle 
(1982)). It tests the null hypothesis that a time series of sample residuals is i.i.d. Gaussian 
disturbances (i.e., no ARCH effects exist). The numbers reported are the means of the test 
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statistics. The numbers in the brackets are the fraction of runs that rejected 'no ARCH' at 
the 95% confidence level.18 When an economy with intelligent agents is in the rational 
expectation equilibrium, there should be no ARCH phenomena. But the no ARCH null 
hypothesis is rejected 8 times in an intelligent agent economy. The result indicates the 
ARCH dependence in the residuals in the economy.  

 
Table 1: Summary statistics 

Description Intelligent Economy Individual Learning Social Learning 

Std. 
 
ARCH(1) 
 
BDS 
 
Trading 
Volume 

4.4295  
(0.9379)  
23.8728  

[0.7] 
11.2948  

[1] 
2.9618  

(0.7159) 

3.5494 
(0.3065) 
0.4115 

[0] 
-0.5029 

[0] 
2.5637 

(0.0943) 

3.1856 
(0.7087) 
51.3185 

[0.8] 
15.0855 

[0.9] 
3.2032 

(0.6610) 
Note for Table 1: Means over 10 runs. Numbers in parenthesis are standard errors estimated using the 10 runs. 

Numbers in brackets are the fraction of tests rejecting the no ARCH, or independent identically distributed null 

hypothesis for the ARCH and BDS tests, respectively, at the 95% confidence level. 

 
Nonlinear dependence asks if the return series are identically and independently 

distributed over time. It is tested with the BDS (Brock, Dechert, and Scheinkman) statistic 
(Brock, Dechert, Scheinkman, and LeBaron (1996)). The BDS test is conducted with the 
null hypothesis that a time series sample comes from an IID data generating process.19 
Under the homogeneous rational expectation equilibrium, the null on BDS test cannot be 
rejected. However, the IID null hypothesis is rejected 9 times in an economy with 
intelligent agents. The result shows that there are some correlated patterns on data 
generating process in the economy with intelligent agents. 

                                                   
18 The test procedure is to run the OLS regression and save the residuals. Then we regress the squared 
residuals on a constant and p lags. The asymptotic test statistic is 2*RM , where M is the number of 
squared residuals included in the regression and 2R  is the sample multiple correlation coefficient. It is 
asymptotically Chi-Square distributed with p degrees of freedom under the null hypothesis. 
19 The alternative hypothesis is not specified. But this test has good power against nonlinear alternatives. 
It is distributed asymptotically standard normal. 
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The fifth row is the results for the trading volume. In standard efficient market 
financial theory, identical investors share rational expectations of an asset’s future price. 
Taking into account all market information, the investors make an investment decision 
which clears the market. So, in the standard financial theory, there is no opportunities left 
open for speculative profit except by luck. In this case, the trading volume is low or zero20. 
The results show that the average trading volumes over the final 5000 periods are not zero 
in all economies.  
 The results are totally opposite to what the homogeneous rational expectation 
equilibrium says. The economy with more intelligent agents cannot reach the REE as in an 
economy with either individual or social learning. Agents don’t behave rationally when they 
are intelligent. Intelligent agents are not rational.  
 Why doesn’t the market with intelligent agents converge to the REE? Each agent 
has 60 ideas, each 30 of which are from individual and social learning. Agents update their 
ideas every 25 periods, and choose one which could achieve higher wealth-based fitness. 
When the stock price moves much higher level than that of the REE during the 25 periods, 
agents take the information of the higher level of the prices into account to update their 
ideas. Agents choose ideas to get higher level of wealth, but those ideas reflect such higher 
price levels in those periods. During the period of higher variation of the stock price than 
the REE series, the ideas would reflect such higher variations. So, as far as the price series 
behave differently from the REE, the ideas are also far from the REE. As a result, the 
economy never converges to the REE. It would be the only way to reach the REE that 
agents adapt their forecasts very slowly to new observations as in LeBaron (2000) and 
Arthur et al. (1996). 
 In the real world, investors in the stock market have become more intelligent than 
those in, for example, 40 years ago. They have now more sophisticated ways in analyzing 
the stock market and forecasting future prices, and so on. However, does that mean that 
the recent stock market behaves rationally? Definitely, it doesn’t. The stock market behaves 
in opposite ways to what the rational expectation theory says. The market with intelligent 
investors is not related to the rationality at all. 
 

4.2 Which Level of Learning Dominates the Market? 
 
                                                   
20 For liquidity purpose, agents may liquidate (trade) some amount of their own assets. In this case, 
trading volume is not zero.  
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Agents in the second experiment can choose ideas from both levels of learning. They 
basically choose an idea which performed well in the past. Since the fitness function is the 
wealth-based utility, it is considered as a better idea that could produce higher wealth over 
a particular past time span. This section investigates a hypothesis that agents who 
accumulate more wealth in the past are more likely to pick an idea from individual learning 
than others do while some who have less wealth are more likely to adopt an idea from social 
learning. Most of the agents follow the herd, and only agents with very high wealth would 
rely on private ideas. The matrix on the choice of learning levels and the matrix on wealth 
in the last 5000 periods of 10 simulations are used for the investigation, both of which are 
described as follows. 
 
Data: 
At each generation in a simulation with 500 generations, the choices of the level of learning 
by agents are stored with 0 if she chose individual learning and 1 if it is social learning. 
There are 200 generations in the last 5000 periods. Since we have 30 agents in a market, 
the matrix on the choices is eventually 30x200. For the matrix on wealth, the wealth of 
each agent over a generation is summed up (the sum of the 25 periods’ wealth). Since we 
have 200 generations in the last 5000 periods, the dimension of the matrix on wealth is 
30x200. At each generation, taking the matrix on the choices as a dependent variable and 
the matrix on wealth as an independent variable, the parameters in the following model 
(equation (17)) is estimated. 
 
Model: 
Since the dependent variable consists of only 0 and 1, it is convenient to use the binary 
choice model which links the decision by agents to the wealth variable. The hypothesis is 
that less wealthy agents are more likely to choose social learning. Using the logistic 
function, the following probability to choose social learning is useful to analyze the 
hypothesis. 
 

(17)          P(y=1|wealth) = WEALTH

WEALTH

e
e

10

10

1 ββ

ββ

+

+

+  . 
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A variable, WEALTH, needs to be standardized to have small numbers for this type of 
probability function.21 The parameters, 0β  and 1β , of this logit model are estimated by the 

maximum likelihood method.  
 
Analyses: 
There are 200 sets of choice and wealth variables for 30 agents. The parameters are 
estimated generation by generation to get 200 sets of 0β  and 1β . With the parameter 

estimates, the estimated probabilities are calculated for each agent and for all generations. 
Our hypothesis which poorer agents are more likely to choose ideas from social learning 
suggests that there is a negative relation between the probability to choose social learning 
and the wealth level. So, the estimated probabilities and the wealth levels are compared for 
all 30 agents and for all 200 generations.  
 As a first investigation, at each generation agents are categorized into the ones 
who have wealth “more than average” at the generation and the ones who have wealth “less 
than average”. The estimated probabilities are categorized into “more than 0.5” and “less 
than 0.5”. If the probabilities are “more than 0.5”, that agent is more likely to pick an idea 
from social learning. The following four cases are investigated. 
 
(Case 1): Agents with ”more than average wealth” are more likely to choose ideas from 
individual learning while agents with “less than average wealth” are more likely to choose 
ideas from individual learning also. 
 
(Case 2): Agents with “more than average wealth” are more likely to choose ideas from 
individual learning while agents with “less than average wealth” are more likely to choose 
ideas from social learning. 
 
 (Case 3): Agents with “more than average wealth” are more likely to choose ideas from 
social learning while agents with “less than average wealth” are more likely to choose ideas 
from individual learning. 
 
 (Case 4): Agents with “more than average wealth” are more likely to choose ideas from 
social learning while agents with “less than average wealth” are more likely to choose ideas 

                                                   
21 The sum of the wealth over 25 periods is divided by 1000000 for the standardization.  
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from social learning also. 
 
The numbers in Table 2 shows the fractions of agents in whole periods corresponding in 
each case. 22  The numbers in parenthesis are the standard deviations across 10 
simulations.  

The number in the upper-left corner is the fraction representing two types of 
agents. Those are the agents, who have more than average wealth and involve individual 
learning, and the ones, who have less than average wealth and associated with individual 
learning. Around 20% of all agents in whole periods correspond to this case. The number in 
down-left corner is the fraction associated with “Case 2” which is about 49% while that in 
upper-right corner represents “Case 3” which is about 51%. The number is down-right 
corner shows the highest. This is the fraction satisfying the following two types of agents. 
Those are the agents who have more than average wealth and involve social learning, and 
those who have less than average wealth with social learning. The result shows that about 
80% of the agents are more likely to choose ideas from social learning over the whole 
periods.   
 The analysis so far categorized the wealth levels into only two, i.e., “more than 
average” and “less than average”. So the behavior of the agents who have really high 
                                                   
22 Each of the fraction is the average across 10 simulations. 

Table 2: Who chooses which level of learning? 

  More than average 

  Individual Learning Social Learning 

Less than average Individual Learning 0.2014 0.5116 

  (0.0587) (0.0243) 

 Social Learning 0.4884 0.7986 

  (0.0243) (0.0587) 
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wealth is not clear from the analysis. The following examines the behavior of agents who 
have highest wealth and are the three highest wealthy at each generation. Two of the 
important results in Table 3 are as follows.  
 
(Result 1): Agents with “high wealth” in each generation are more likely to choose ideas 
from individual learning while other agents are more likely to choose ideas from social 
learning. 
 
(Result 2): Agents who have “high wealth” in each generation are more likely to choose 
ideas from social learning while other agents are more likely to choose ideas from social 
learning also. 

 
For example, about 79% of agents are the ones, some of whom with the highest wealth at a 
particular generation choose ideas from individual learning (or social learning), and some 
of the others involve social learning. For the wealthy agent, the numbers are quite high 
regardless of the levels of learning. But the ideas in individual learning is more frequently 
selected by the wealthy than the others do. So, we would conclude that when agents have 
really high wealth, they are more likely to choose their own ideas than other agents do. The 
other agents are more likely to involve social learning. 

Table 3: Who chooses which level of learning? 

  Individual Learning Social Learning 

  Highest wealth 3 highest wealthy Highest wealth 3 highest wealthy 

Others Individual Learning 0.2014 0.2014 0.2144 0.2440 

  (0.0587) (0.0587) (0.0551) (0.0471) 

 Social Learning 0.7856 0.7560 0.7986 0.7986 

  (0.0551) (0.0471) (0.0587) (0.0587) 
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 These two results are the same for the cases of the three highest wealthy agents. 
But the fraction for the wealthy agents using individual learning is decreasing as taking 
more wealthy agents into account, given that the others choose social learning. Agents use 
their private ideas more often than the others do only when they have really high wealth. 
In other words, most of the agents follow social learning since the social learning would 
possibly produce better ideas. The social learning dominates the market.  

The results indicate that the wealth level of each agent is important for choosing a 
level of learning. It would be because the fitness function in this paper is wealth-based 
utility. However, if the fitness function is based on, for example, “prediction accuracy”, we 
would reach a conclusion that an agent with more accurate forecasting methods is more 
likely to choose individual learning than others do. Regardless of the fitness function we 
specify, it would be concluded that the social learning dominates the market, and most 
agents would be better off by constraining the use of their own ideas. 
 

5. Conclusion 
This paper introduces a learning and adaptation mechanism which allows agents to choose 
one rule among a set of ideas updated through both individual and social learning, and 
mainly showed the following two results. First, the time series from an economy with 
intelligent agents doesn’t show a convergence to a homogeneous rational expectation 
equilibrium. The second investigates which level of learning is likely to dominate in the 
market. It concludes that the social learning dominates the market. Agents would be better 
off in an ex ante welfare sense by constraining the use of their own ideas. 
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