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Abstract

I present a fully-rational symmetric-information model of an IPO, as well as a dy-
namic imperfectly competitive model of the aftermarket trading that follows. The
model helps explain why IPO share allocations favor large institutional investors. It
also helps to explain IPO underpricing, and underperformance, and the large fees
charged by underwriters. The critical assumption in the model is that underwriters
need to sell a fixed number of shares at the IPO or soon thereafter in the aftermarket,
but they want to avoid selling in the aftermarket because there are some aftermarket
investors who have market power and can affect the prices received by the underwriter.
To maximize revenue and avoid unnecessary aftermarket sales, the underwriter distorts
share allocations toward those those investors who have market power, and he sets the
offer price at the IPO below the aftermarket price that will prevail shortly after the
IPO. In the aftermarket model, I show that there are share allocations that can gener-
ate arbitrarily high levels of return underperformance for very long periods of time. In
some simulations, the distorted share allocations at the IPO generate return underper-
formance that persists for more than one year. The underwriter can dilute investor’s
market power by participating for longer periods of time in aftermarket trading. By
doing so, he sometimes substantially increase the revenue that is raised by the IPO
issuer.
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1 Introduction

Two of the principle functions of a well performing financial system are to facilitate risk
sharing among investors, and capital formation by firms. The initial public offering (IPO)
process serves both of these functions by allowing the initial owners of a firm to raise capital
while simultaneously transferring and sharing some of the firm’s risk with the wider investing
public.

IPOs are special events in capital markets because the amounts of risk that are transferred
during the share allocation process of an IPO dwarfs the amount of risk that is transferred
during the regular trading process for individual stocks. If the IPO risk transfer process
was fully efficient, then the investors who place the most value on the shares should receive
them, and they should pay a high price. Additionally, in the absence of firm specific news
or private information, there should be little trading volume after the shares are initially
allocated. Relative to this efficient benchmark, IPOs appear to be highly inefficient: share
trading is very heavy on the first day after a share has been allocated.1 Additionally, shares
are apparently allocated at too low a price: the closing share price on the first trading day
of U.S. IPO’s is on average about 17 percent higher than the price at which the shares were
allocated earlier in the day. This phenomenon, known as IPO underpricing, represents a loss
of revenue to the issuer who could presumably do better by selling directly at the high prices
that occur in the aftermarket following the IPO.

In addition to underpricing and frequent trading, the returns on newly issued shares
underperform; that is, following the first day of trading, the returns on new issues underper-
form the return on the market and underperform the returns of shares of firms that have the
same risk characteristics, but are not new issues. Moreover, this underperformance appears
to persist for periods of time as long as five years [Loughran and Ritter (1991), Ritter and
Welch (2002)]. An additional source of inefficiency is that underwriters charge and receive
very high fees for their services; these fees are equal to about 7% of the revenues raised in
the new issue.

In this paper I present a fully-rational, symmetric information, theoretical model of the
IPO share allocation and price-setting process, and of the aftermarket trading that follows
the IPO. The theoretical model helps to explain IPO underpricing and underperformance,
and very preliminary results suggest it may help to rationalize the high fees charged by
underwriters.2 The theory is also consistent with the stylized facts that investors are often
rationed at the IPO offer price, and that IPO share allocations are biased towards institu-
tional investors.

1In Ellis, Michaely, and O’Hara’s (2000) study of NASDAQ IPO’s, they report that a stock’s daily
turnover (measured as a percentage of shares traded) on its first trading day following its IPO is equal to
about 1/3rd of the turnover that a typical NASDAQ stock experiences over an entire year.

2The results on underwriters are still highly preliminary, but encouraging. I find that in some circum-
stances the underwriters trading activities in the aftermarket were found to add 25% to the total proceeds
raised by the issue.
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The IPO process is modeled as a simple bargaining game between the underwriter and
investors: The underwriter has a fixed number of shares that must be sold at the IPO or
shortly afterwards in aftermarket trading. At the IPO, the underwriter sets a uniform IPO
offer price and makes take it or leave it share allocations to the investors. Any shares that
are not sold in the IPO, are sold by the underwriter in the aftermarket.

The IPO aftermarket is modeled using a dynamic imperfect competition framework in
which investors trade multiple risky assets over a total of T time periods. The imperfect
competition takes the form that there are large investors who have market power in the sense
that their trades move prices; and take their price impact into account when trading. Large
investors market power provides them with bargaining power at the IPO because each large
investor knows that if he turns down his share allocation, the underwriter will be forced to
sell those shares in the aftermarket, where large investors can influence (and lower) the price
received by the underwriter. To avoid this outcome, the underwriter optimally distorts the
IPO asset allocations towards investors with market power, and he sets the IPO offer price
below the aftermarket price that will prevail shortly after the IPO.

An important feature of the aftermarket is that the more a large investor buys or sells, the
more he moves prices. Because large investors cannot buy or sell all of the shares that they
want at current prices, the market is not perfectly liquid; and this illiquidity causes them to
break up their desired trades through time to reduce its price impact. This illiquidity also
affects the pattern of equilibrium returns in the aftermarket. More specifically, in aftermarket
trading investors asset holdings and returns adjust towards those associated with efficient risk
sharing, but to minimize the price impact of large investors trades, the adjustment occurs over
time. That is, from any inefficient asset allocation, the model generates a unique equilibrium
adjustment path of trades and expected asset returns. Because of the slow adjustment in
positions, one can always find asset allocations that generate adjustment paths along which
returns underperform the market by arbitrary amounts for all T trading periods. Whether
underperformance actually results and persists depends on how assets are allocated at the
IPO. The preliminary results on underpricing are encouraging. In some circumstances, the
equilibrium allocations at the IPO generates post-IPO underpricing relative to the market
portfolio that persists for longer than one year. This suggests illiquidity and allocation
distortions at the IPO could help to explain post-IPO return underperformance.

If the underwriter did not have to sell shortly after the IPO, but could instead sell shares
not allocated at the IPO over a longer period following the IPO, then doing so, as well as
the threat of doing so, dilute the market power of large investors. In some circumstances
these aftermarket “stabilization” activities were found to substantially increase the revenues
received by the issuer.

There is a voluminous literature on IPO underpricing and underperformance.3 One
strand of the underpricing literature is based on information-asymmetries. In Rock (1986),
uninformed investors face an adverse selection problem at the IPO: they are allocated too
many shares of bad firms and too few shares of good firms. Equilibrium underpricing results

3Recent reviews of this literature are provided by Ritter and Welch (2002) and Ljungvist (2004).

2



in order to compensate uninformed investors for their adverse selection costs. In the IPO
bookbuilding literature, that begins with Benveniste and Spindt (1989) and has since been
refined by many others, some investors have private information about the value of the IPO
firm. The IPO share allocation and price setting process is a mechanism that is designed
to raise money for the issuer while simultaneously eliciting information from the informed
investors. To compensate investors for revealing their information, share allocations are
tilted towards informed investors, and the offer price is set below the price in aftermarket
trading.4

This paper is the most closely related to a small theoretical literature on IPO under-
pricing and liquidity.5 In Booth and Chua (1996), IPO underpricing is used to encourage
investors to gather costly information and to participate in the IPO; it is assumed that such
participation increases liquidity in aftermarket trading and increases the value of the firm.6

A key prediction of the Booth and Chua model is that more underpricing is associated with
more liquidity. In Ellul and Pagano (2003), some investors that participate in the IPO may
need to sell their share holdings soon thereafter into an illiquid IPO aftermarket. These
investors require a liquidity premium to participate in the IPO. The liquidity premium takes
the form of IPO underpricing.7 In contrast with Booth and Chua, the Ellul and Pagano
model predicts that more underpricing is associated with less liquidity in the aftermarket.

This paper makes two contributions to the theoretical literature on underpricing. First,
this paper is one of a handful of papers that studies underpricing and underperformance
within the same framework. In much of the underpricing literature modeling both is not
possible because many of the theoretical models are essentially two or three-period models
that contain too few periods to study underperformance in aftermarket trading.8 By contrast,
my model of aftermarket trading is fully dynamic, and allows me to study aftermarket trade
over thousands of time periods. A second contribution of this paper is that it highlights
how the strategic environment in aftermarket trading can generate IPO underpricing. This
represents a departure from most theoretical models of underpricing, because many of them
do not model the aftermarket trading environment all, and those that do so, usually model
it competitively [Booth and Chua (1996) and Ellul and Pagano (2003)].

4Other rational theories of underpricing are based on the underwriter deliberately underpricing in order to
generate trading revenue for himself in the IPO aftermarket (Boehmer and Fishe, 2000), or the underwriter
colluding with other investors against the issuer (Bias et. al. 2002).

5To date, I am aware of only two theoretical papers on this subject.
6Westerfield (2003) is similar to Booth and Chua in that underpricing is used to change the base of

investors in the IPO aftermarket. In Westerfield, there are irrational noise traders, and their presence in
the investor base reduces the value of the new issue because a risk premium is required for noise-trader
risk. Underpricing is assumed to reduce the relative share of noise traders in the investor-base, and hence
enhances the value of the firm.

7The Ellul and Pagano model is essentially a three period model, but it is very rich in some dimensions.
For example, it incorporates asymmetric information, illiquidity, and risk averse investors within the same
framework. Additionally, their paper contains a substantial empirical section where they show that more
illiquidity after the IPO is associated with more IPO underpricing.

8For example, see Rock(1986), Benveniste and Spindt(1989), Booth and Chua (1996), and Ellul and
Pagano(2003)
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There is a small theoretical literature on underperformance. Ritter and Welch (2002)
claim that there are no rational theoretical models of IPO underperformance. If so, then
a rational theory of underperformance is a unique contribution of this paper. In a very
interesting paper, Ljungqvist, Nanda, and Singh (2003) present a behavioral model of IPO
underpricing and underperformance. Their key behavioral assumption is that there are
irrationally exuberant sentiment investors in the aftermarket whose presence causes long-
run return underperformance. They also assume the demand of sentiment investors will
grow through time, or end abruptly, causing a price collapse. Their paper shows if legal
constraints prevent the underwriter from selling above the offer price in the aftermarket
to sentiment investors, then the next best strategy for the underwriter is to sell to rational
investors at the IPO, who in turn sell to sentiment investors in the aftermarket. The rational
investors require a premium for the risk that sentiment will end before they can sell. This
risk premium takes the form of underpricing at the IPO.

My model shares some elements in common with Ljungqvist, Nanda, and Singh. In both
models, the underwriter optimally distorts share allocations towards one class of investors
at the IPO, and those investors slowly sell their assets to other investors through time in the
aftermarket. Additionally, the strength of the results in both models depends on strategic
considerations as measured by the competitiveness of aftermarket trading.9 Despite the
similarities, the two models are very different. The main contribution of my approach is
that I show that a fully rational model can generate underpricing and underperformance.

The rest of the paper proceeds in six parts. Sections 2, 3, and 4, provide a model overview
followed by details on the IPO aftermarket, and on the process for share allocation and
price setting at the IPO. Section 5 uses simulations to study whether the model generates
underpricing and underperformance; section 6 discusses the empirical implications of the
model and provides a brief review of the most closely related empirical literature; a final
section concludes.

2 Model Overview

The basic model is a stylized IPO in which a firm that wishes to raise capital by selling
XIPO shares of stock enlists a single underwriting firm to market the issue. To abstract from
agency issues, the underwriter is assumed to act on behalf of the issuer.10 The underwriter
sells the issue to an investor base that consists of M risk-averse investors who participate in
the IPO and trade in the aftermarket. Investor 1 represents a continuum of small investors
who each take prices as given. Investors 2 through M are large investors whose desired
aftermarket trades are large enough to move asset prices. Because of differences in their size,
the small investors can be viewed as representing the demands of retail investors, while the

9Ljungqvist, Nanda, and Singh assume the aftermarket is not perfectly competitive because they assume
that their rational investors coordinate their trades in the aftermarket.

10Some of the research in the IPO literature attributes underpricing to agency problems between the
underwriter and the issuer [Biais, Bossaerts, and Rochet (2002); Boehmer and Fishe (2000)].
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large investors represent the demands of institutional investors. The process for setting the
IPO offer price and share allocations is modeled as a two-stage game. In the first stage, the
underwriter assesses the demand for the new issue by learning about the characteristics of
the investor base, and about aftermarket trading conditions. Based on his information, the
underwriter sets a uniform IPO offer price and offers take-it or leave-it share allocations to
the investors.11 In the second stage, investors decide whether to accept their allocations.
Any shares that are turned down at the IPO are sold by the underwriter in the aftermarket.

To rule out the possibility that the results are driven by informational differences between
the underwriter and investors, or between the investors themselves, I assume that information
on investors risk preferences, asset holdings, and the entire model of aftermarket trading is
publicly available at all points of time and is common knowledge. The next section formally
models the IPO aftermarket; and the following section models the share allocation and
price-setting process at the IPO.

3 The IPO aftermarket

The model of trading in the IPO aftermarket is a partial equilibrium extension of Pritsker’s
(2004) multiple-asset heterogeneous agent model of imperfect competition in asset markets.12

Investors trade a riskfree asset and two distinct sets of risky assets. The first set are shares
of firms that belong to a particular market segment or group (for example manufacturers of
semi-conductor parts); the new issue is one of the assets within the segment. I will refer to
these assets as the segment-assets, and I will refer to the vector of their returns as the segment
returns. The second set of assets are proxies for systematic risk factors. For simplicity, the
only systematic risk factor is the market portfolio. Additionally, in order to focus on the
liquidity of the segment-assets, I abstract from other sources of illiquidity by assuming that
the traded proxy for the market portfolio is perfectly liquid.

I assume there is market segmentation which takes the form that, for informational or
other reasons, the continuum of small investors and investors 2 through M are the only
investors that trade the segment-assets and participate in the IPO. These investors are so
small relative to the economy that their collective trades have no effect on interest rates or
on the market return; but their actions do affect the returns of the segment-assets.

The investors are modeled as being infinitely lived, but the segment-assets are only traded
for a large but finite number of periods T . After period T investors continue to hold their
segment shares; they continue to trade all other assets; they continue to receive dividends;
and they continue to consume. The requirement that there is a final period of trade facilitates

11The first stage share allocation process resembles IPO bookbuilding: in both processes the underwriter
collects information about market demand, and then allocates shares and sets an offer price based on the
information that he collects.

12Closely related models of imperfect competition in asset markets include Urosevic (2002a & b), DeMarzo
and Urosevic (2000), and Vayanos (2001).

5



solution of the model through backwards induction. The requirement can also be understood
as an an assumption that market liquidity for the segment-assets eventually dries up. The
time until the liquidity dries up influences the dynamic behavior of the model.

The Assets

Investors trade a risk-free asset, the segment assets, and the market proxy. The gross per-
period risk free rate is fixed at r > 1. There are N1 segment assets whose total supply is
denoted the by N1 × 1 vector X1.13 The time t prices of the segment-assets and the market
are denoted P 1(t) and P 2(t) respectively. P (t) denotes the stacked vector of risky asset
prices at time t. Similar naming conventions will be followed throughout the rest of the
paper. The risky assets pay i.i.d. dividends D(t) in each period:

D(t) ∼ i.i.d. N (D̄,Ω) (1)

where

Ω =

(
Ω11 Ω12

Ω21 Ω22

)
is the partitioned variance-covariance matrix of the assets’ returns.

Because dividends are normally distributed, the risky assets are not limited liability
instruments; and hence their share price can drop below zero. Because of this possibility, the
returns in excess of the risk free rate are best expressed in units of return per share instead
of units of return per dollar invested. This means that assets excess return over the riskless
rate per share are given by the vector:

Z(t) = P (t) +D(t) − rP (t− 1) (2)

Because the model is partial equilibrium, I assume that P 2(t) is exogenous, and for simplicity,
fixed for all t = 1, . . .∞. This implies that excess returns on the market portfolio are i.i.d.
through time with mean Z̄2 and variance Ω22.

It is useful to decompose the vector of segment-assets returns into a vector of components
that are perfectly correlated with the market and into a residual return vector e(t):

Z1(t) = β12Z
2(t) + e(t) (3)

where β12 = Cov[Z1(t),Z2(t)]
Var[Z2(t)]

= Ω21Ω
−1
22 , has the same interpretation as β in the CAPM.

The market component of the segment-assets returns can be hedged by trading the market
portfolio. The residual component is not hedgeable, but it can usually be diversified under
the assumption that a very large number of investors can each take a very small piece of the

13The supply of assets for the market proxy does not play a role in the analysis because the segment-
investors are such a small part of the economy that collectively their asset demands do not affect the return
on the market portfolio.
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residual risk. In the current setting, the residual risk is not diversifiable because it is only
shared by M investors. Therefore, the expected return for holding the residual risk will not
necessarily be equal to 0. The variance of e(t) is denoted Ωe; in equilibrium it turns out to
be constant through time and is given by:

Ωe = Ω11 − Ω21Ω
−1
22 Ω12.

Note: Ωe will not be diagonal if the dividends of the segment-firms have a common component
that is uncorrelated with the market.

Investors

There areM investors in the model. With great loss of generality, each investor m has a time-
separable per period utility of consumption that takes the CARA form with absolute risk
aversion parameter Am. Investors choose their consumption and asset holdings to maximize
their discounted expected CARA utility of consumption:

Um(Cm(1), ...Cm(∞)) =

∞∑
t=1

−δte−AmCm(t). (4)

Investor m′s holdings of risky assets at the beginning of time t is denoted by Qm(t) which
is the stacked vector of his holdings of the segment-assets and the market. The change in his
risky asset holdings during period t is denoted by ∆Qm(t) (= Qm(t+ 1)−Qm(t)). Investors
choose their consumption and asset holdings subject to the standard set of intertemporal
budget constraints:

Wm(t) = Qm(t− 1)′Z(t) + r[Wm(t− 1) − Cm(t− 1)] t = 1, . . . T, (5)

where Wm(t) denotes total wealth at the beginning of time t.

Although the budget constraint will be formally satisfied for all investors, the interpre-
tation of Wm(t) is different for large and small investors. For small investors, Wm(t) is the
liquidation value of their wealth because each small investor is infinitesimal and hence his
sales have no effect on prices. By contrast, Wm(t) is not the liquidation value of a large
investors wealth because her attempts to sell the segment-assets would depress their prices.
Large investors liquid wealth (which can be sold without loss of value) appears as a separate
argument in their value functions; therefore, it is useful to express large investors intertem-
poral budget constraints in terms of the evolution of their liquid wealth. Investor m′s liquid
wealth at the beginning of time t, denoted by Wml(t), consists of dividends on their begin-
ning of time t share holdings plus the value of their bond portfolio plus the value of their
holdings of the market portfolio. Their intertemporal budget constraints expressed in terms
of liquid wealth have form:

Wml(t) = Q1
m(t)′D1(t) +Q2

m(t)′Z2(t)

+ r
[
Wml(t− 1) − ∆Q1

m(t− 1)′P 1(t− 1) − Cm(t− 1)
]

t = 1, . . . T.
(6)
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It will turn out that when there is imperfect competition, the stacked vector of investors
segment-asset holdings is a crucial state variable. This state variable is denoted by denoted
by Q1(t) = vech(Q1

1(t)
′, . . . , Q1

M(t)′)′.

Trading Dynamics

In each time period t ≤ T , investors enter the period with with their holdings Qm(t), m =
1, . . .M . They receive dividends on their risky asset holdings; they choose their risky asset
trades ∆Qm(t), and these trades determine risky asset prices P (t); investors then make their
consumption choices, and then the period ends.

The process of trade for the segment-assets is modeled as a dynamic Cournot-Stackelberg
game of full information. In each period t ≤ T , each small investor computes his demand
for the segment assets is conditional on (Q1(t), t). The aggregated demands of the small
investors form a schedule of prices at which they are willing to absorb all possible quantities
of the large investors demand for the segment assets. Given this price schedule, during
period t large investors play a Cournot game in which they choose their trades while taking
the price schedule and other large investors trades as given. The equilibrium trades are
those for which each large investors trade is a best response to the trades of all of the other
large investors. Within the period, the price schedule and the set of equilibrium trades is a
Stackelberg Cournot Nash equilibrium. The entire model of trading is solved by backwards
induction from period T ; therefore investors optimal trading strategies are fully rational and
subgame perfect.

For ease of exposition, the above discussion only focuses on the investors demand for
the segment-assets. It should be understood that as investors alter their holdings of the
segment assets they also alter their holdings of the market portfolio. The appendix solves
for investors demand for the market portfolio and for the segment assets together.

To illustrate the derivation of the price schedule for the segment-assets at period t,
without loss of generality assume that an equilibrium price function has been derived for
time t+1 that maps investors holdings of the segment-assets at the beginning of period t+1
into equilibrium prices during time t+1.14 The presence of such a price function is necessary
so that small investors can compute their expected future wealth at time t + 1. Given the
price function, and state variable Q1(t), large investors submit risky-asset orderflow ∆Q1

m(t),
m = 2, . . .M . Based on this orderflow, there exists a market clearing price P 1(., t), for which
the risky asset trade vector ∆Qs(t), of each infinitesimal investor s, s ∈ [0, 1] , solves the
maximization problem:

max
Cs(t),∆Qs(t)

−e−AsCs(t) + δEt{Vs(Ws(t+ 1);Q1(t) + ∆Q1(t), t+ 1)}, (7)

14This is without loss of generality because I derive equilibrium price functions for all trading periods using
dynamic programming from time infinity until the last period of trade, and then use backwards induction
from the last period of trade.
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subject to the budget constraint,

Ws(t+ 1) = Qs(t+ 1)′Z(t+ 1) + r[Ws(t) − Cs(t)]

where, Qs(t+ 1) = Qs(t) + ∆Qs(t).

Equation (7) represents the portfolio choice and consumption problem of each small
investor in its dynamic programming form. The arguments of small investors value function
are time, their future wealth, and the state variable Q1(t+ 1) = Q1(t) + ∆Q1(t). The state
variable Q1(t+1) affects the demand of each small investor, but because each small investor
is infinitesimal, his asset demands do not affect the state variable.

The equilibrium price schedule P 1(., t) enters equation (7) because it affects Z1(t + 1)
in the budget constraint. For the price schedule P 1(., t) to be market clearing, each small
investors net purchases of the segment-assets, denoted by ∆Q1

s(t) must satisfy equation (7)
and prices must be set so that the net orderflow of the small and large investors sums to 0:

∫ 1

0

∆Q1
s(t) ds+

M∑
m=2

∆Q1
m(t) = 0. (8)

The price schedule must also be consistent with an additional internal consistency condi-
tion for small investors orderflow. Recall that small investors are infinitesimal. This means
that they take the orderflow of the other small investors as given and treat it as a state-
variable. For small investors beliefs about the state variable to be internally consistent,
∆Q1

1(t), their beliefs about the net trades of all small investors in equation (7), must be con-
sistent with the optimal behavior of small investors conditional on their beliefs; i.e. internal
consistency requires that15:

∆Q1
1(t) =

∫ 1

0

∆Q1
s(t)ds (9)

For any given set of trades by the large investors, I solve for equilibrium prices which
satisfy the market clearing and internal consistency conditions. Each such price P 1(., t) =
P 1(∆Q1(t), Q1(t), t) is one point on the price schedule which is faced by the large investors.
The full price schedule is found by solving the above problem for all possible Q1(t) and all
possible ∆Q1(t). The resulting price schedule turns out to a linear function of the state
variable Q1(t) and large investors trades for the segment assets ∆Q1

m(t), m = 2, . . .M :

P 1(., t) =
1

r

(
β0(t) − βQ1(t)Q1(t) −

M∑
m=2

βm(t)∆Q1
m(t)

)
. (10)

15∆Q1
1(t) corresponds to the first row of the Q1(t)+∆Q1(t) argument of the small investors value function

in equation (7).
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Given the demand curve in equation (10), large investors choose trades and consumption
to solve the maximization problem:

max
Cm(t),
∆Qm(t)

−e−AmCm(t) − δEt Vm(Wml(t+ 1), Q1(t) + ∆Q1(t), t+ 1) (11)

subject to the budget constraint:

Wml(t+ 1) = Q1
m(t+ 1)′D1(t+ 1) +Q2

m(t+ 1)′Z2(t+ 1) + r
[
Wml(t) − ∆Q1

m(t)′P 1(., t) − Cm(t)
]
.

(12)

In equation (11), the arguments of large investors value function include time, liquid wealth
Wml(t + 1), and the state variable Q1(t + 1). Each large investors trades affect the state
variable and prices. Large investors account for both of these effects when trading.

The trade and consumption choices of large and small investors are an equilibrium, if
small investors demand and consumption choices satisfy equation (7), large investors trades
are a Nash Equilibrium of the Cournot game, and their trade and consumption choices
satisfy equation (11), investors choices satisfy the market clearing and internal consistency
conditions given in equations (8) and(9). Finally, large and small investors value functions
in every time must be subgame perfect. Because they are solved by backwards induction,
they are subgame perfect by construction.

The form of investors value functions, and the form of the equilibrium price function in
each period is given in the following proposition:

Proposition 1 At time t < T when the state vector of segment-asset holdings is Q1, small
investors value function of entering period t with wealth Ws is given by:

Vs(Ws, Q
1, t) = −K1(t) F (Q1, t) e−As(t)Ws ,

where F (Q1, t) = e−Q1(t)′v̄s(t)−Q1(t)′θs(t)Q1(t).
(13)

Additionally, large investor m’s value function for entering period t with liquid wealth is Wml

is given by:

Vm(Wml, Q
1, t) = −Km(t)e−Am(t)Wml−Am(t)Q1 ′Λm(t)+.5Am(t)2Q1′Ξm(t)Q1

m = 2, . . .M, (14)

and the price function for segment-assets has the functional form:

P 1(t) =
1

r
(α(t) − Γ(t)Q1) (15)

Proof: See section B of the appendix.
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In the small investors value function, the parameters As(t), v̄s(t) and θs(t) are a scalar, an
N1M × 1 vector, and an N1M ×N1M matrix respectively.16 The parameters Am(t), Λm(t),
and Ξm(t) from large investors value functions are similarly dimensioned. The parameters
of the value functions in each time period are the solution of a system of nonlinear Riccati
difference equations that are solved backwards from date T. The details are in the appendix.

An important property of the model is that investors value functions depend on how the
segment assets are distributed among the investors. This suggests that how the segment
assets are distributed among investors just after the IPO will influence asset demands and
equilibrium asset returns. This topic is addressed in the next section when I discuss how the
assets are priced.

3.1 Asset Pricing

In order to interpret the main results on asset pricing when there is imperfect competition,
it is useful to first consider a competitive benchmark model that is the same as the model
in all respects except that all of the investors are price-takers. The competitive benchmark
is examined below.

Asset Pricing with Perfect Competition

The results on asset pricing in a competitive framework are provided in the next proposition:

Proposition 2 If the segment-assets are traded in a perfectly competitive environment in
which all investors take asset prices as given, then the equilibrium expected excess return for
the segment-assets has a 2-factor structure:

Z̄1(t) = β12Z̄
2(t) + λ[X1]ΩeX

1, (16)

with market price of risk for the second factor given by

λ[X1] =
1 − (1/r)∑M

m=1 1/Am

. (17)

Investors equilibrium holdings of the segment assets are constant in all periods. The
equilibrium segment-asset holdings of investor m are denoted Q1W

m and given by:

Q1W
m =

(1/Am)X1∑M
m=1(1/Am)

. (18)

16Recall that there are N1 segment assets.
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Proof: See section D.1 of the appendix.

Equation (16) shows that the expected excess return of the segment-assets consists of a
reward for its systematic risk plus an additional reward for its residual risk. The reward for
the market risk is standard. To interpret the reward for residual risk, note that the investors
can hedge the systematic component of the segment-assets returns but have to share their
residual risk. Therefore, one can view the investors as trading in a submarket for the residual
risk. Recall X1 is the N1 × 1 supply vector of the segment-assets. The quantity X1′e(t) can
be interpreted as the “market portfolio” of the segment-assets’ residual-returns; and ΩeX

1

denotes the vector of covariances of the segment-assets’ residual returns with this “market
portfolio”. Because the residual returns are normally distributed and shared by investors
who have CARA utility, intuition suggests there should be a CAPM-like pricing relationship
in which the reward for bearing each segment-assets residual-risk should be based on its
covariances with the “market portfolio” of the segment-assets residual-risk.17 This intuition
is confirmed by the second term on the right hand side of equation (16). In the equation, the
price for bearing a segment-assets residual-risk, Λ[X1], depends on the sum-total of investors
risk tolerances (1/Am). I refer to this sum as the risk bearing capacity of the investors in
the segment.

Because the segment is perfectly competitive, risk sharing among market participants is
efficient; and investors efficient risky asset holdings are intuitive: the proportion of the asset
supply that each investor holds is equal to his risk bearing capacity (1/Am) as a proportion
of the segments total risk bearing capacity.

Because of market segmentation, it might be more appropriate to label the risk sharing
among investor as constrained efficient. If instead of market segmentation, all investors in
the economy could freely trade the segment-assets, they would drive the reward for residual
risk to 0.

Asset Pricing with Imperfect Competition

When there is imperfect competition in asset markets, examination of equation (10) shows
that the more segment assets that a large investor attempts to buy or sell within a period,
the more he moves their price. This suggests if large investors holdings of the segment-assets
are not efficient, then they will tend to trade slowly towards efficient asset holdings in order
to minimize the price impact of their trades. This slow trading affects how risks are shared
along an equilibrium adjustment path, and may affect how the segment assets are priced.
This intuition is confirmed in the next proposition:

Proposition 3 When investors holdings of the segment assets are not efficient, then the
segment-assets equilibrium excess expected returns satisfy a linear factor model in which the

17Stapleton and Subrahmanyam (1978) derive circumstances in which the CAPM holds dynamically
through time when investors have CARA utility and trade risky assets whose dividend payments are normally
distributed.
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first factor is the market portfolio, the second factor is the “market portfolio” of segment-
asset residual risk, and the remaining factors correspond to the deviations of large investors
asset holdings from those associated with efficient sharing of the residual risk:

Z̄1(t) = β12Z̄
2(t) + λ[X1]ΩeX

1 +
M∑

m=2

λ(m, t)Ωe(Q
1
m(t) −Q1W

m ) (19)

Proof: See section D of the appendix.

The proposition shows that if investors asset holdings are the same as in the competitive
benchmark of the model, then the segment-assets’ returns will also be the same. However, if a
large investors segment asset holdings deviate from those associated with efficient risksharing,
then the deviation, measured as [Q1

m(t) − Q1W
m (t)]′e(t) for large investor m, behaves like a

priced factor.18 In equation (19), the scalars λ(m, t) represents the prices of risk for these
additional factors at time t. These prices of risk are negative because if a large investor
holds more than his efficient amount of risky assets, then because he will only sell it slowly
through time, the marginal investor, in this case the small investors, expect to hold less and
hence require a smaller premium for holding the residual risk.

The theoretical results on asset pricing generate potential explanations for post-IPO
return underperformance.

Potential Explanations for Underperformance

A segment-assets return underperforms the market when its expected excess return is
less than its market beta times the expected return on the market. Examination of equation
(19) shows that an assets excess return can underperform the market when the sum of
the second and third terms on the right hand side of the equation is less than zero. The
imperfect competition model provides two potential channels for underperformance. The
first channel is that a segment-asset’s residual risk could be negatively correlated with the
“market portfolio” of the segment-assets’ residual-risk. Under this condition, if sharing of
the segment residual-risk is efficient (which makes the third term 0), then the asset will
underperform the market. This channel for underperformance is not as far-fetched as it
might seem; and it might explain underperformance for some firms.19 This channel also
admits the more plausible possibility of an IPO outperforming the market if its residual
returns are positively correlated with the “market-portfolio” of the segment-assets residual
returns.

The second channel for underperformance comes from the third term in equation (19),
which represents inefficient risk sharing among the investors. I want to study whether there

18That is, each segment-assets’ expected excess return depends on its covariances with these factors.
19For example, if the firm that does the IPO competes with other firms in its segment, then good news

for it might mean bad news for its competitors. More specifically, good news about the residual component
of the IPO firm’s business might be associated with bad news for the residual component of its competitors
businesses.
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are initial inefficient segment-asset holdings that can cause the returns of a newly issued asset
to underperform the market for long periods of time. To analyze this question, pretend for a
moment that all investors holdings of all assets in the segment are efficient. Without loss of
generality, assume the first asset in the segment is the new issue. If I perturb asset holdings
away from efficiency by increasing investor 2’s holdings of the new issue, while holding the
supply of the risky assets constant, I need to change the asset holdings of another investor;
because the holdings of the other large investors are constant, it is the holdings of the
small investors that are being implicitly changed when I do such a perturbation in equation
(19). Because λm,t is nonzero, it is clear from the equation that for any target amount of
return underperformance at time t, there is a perturbation of investor 2’s holdings of the
IPO firm away from efficient asset holdings such that the model generates that amount of
underperformance. In other words, the imperfect competition model makes arbitrarily large
amounts of underperformance theoretically possible over a single period. A corollary of
proposition 3 shows that inefficient risk sharing at period t affects equilibrium excess returns
at future time periods as well:

Corollary 1 When segment-asset holdings are not efficient at time t, then the expected value
of τ period ahead 1-period excess returns follow a factor model in which the market portfolio,
the “market portfolio” of segment-asset residual-risk, and the deviation of large investors
time t segment asset holdings from efficient segment-asset holdings are factors:

Et[Z
1(t+ τ + 1)] = β12Z̄

2 + λ[X1]ΩeX
1 +

M∑
m=2

λm(t, τ)Ωe(Q
1
m(t) −Q1W

m )

Proof: See section D of the appendix.

Provided that the risk prices λm(t, τ) are nonzero for all τ , then using the same reasoning
as for 1-period returns, the corollary shows that there are initial asset allocations in the im-
perfect competition model that can generate arbitrary amounts of return underperformance
over the time horizon from periods 1 to T .

The corollary shows that underperformance relative to the market for long periods of time
is a theoretical possibility in the model, but the result is not intuitive. To provide intuition,
pretend for a moment that there is only 1 large investor and a continuum of small investors
and that the large investor has a very large long position and the small investors have a very
large short position. In the appendix I show that because all risky assets are liquid from the
perspective of each small investor, small investors demand for risky assets only depend on
the assets 1 period return and variance-covariance matrix. As a result, when small investors
take a short position on assets in a segment, they require the expected return on the assets to
underperform the market. Standard intuition suggests that return underperformance cannot
represent an equilibrium because the large investor who has a long position should sell and
this will cause returns to equilibrate. This intuition is largely correct; with one addendum:
because of imperfect competition the large investor sells slowly to reduce his price impact,
and thus the equilibration takes time. As a result, the segment asset holdings and trades
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follow an equilibrium adjustment path; along this path small investors initially have a very
short position and require a very negative rate of return to justify holding it; over time
large investors sell to the small investors, this reduces their short position, and it reduces
the amount of return underperformance that is required over the next period. Eventually,
the large investors sell enough to eliminate much if not all of the return underperformance,
but along large portions of the adjustment path, the returns of the segment assets can
underperform the market.

Although I have shown that in theory the model can generate segment-asset returns
that underperform by an arbitrary magnitude for long periods of time, whether there is
underperformance following an IPO depends on the competitiveness of the aftermarket.20 If
the aftermarket is sufficiently competitive, then large investors trades will not have much
price impact, and they will be able to trade more quickly towards efficient risk sharing.
Therefore, when the aftermarket is very competitive, the asset allocations that are needed to
generate large amounts of underperformance will be very extreme—and the IPO might not
generate such asset allocations. If the aftermarket is not very competitive, whether there is
underpricing due to imperfect risk-sharing will also depend on which investors receive the
assets at the IPO, and it will depend on the quantities they receive. To see why it matters
which investors receive the assets, note that the λm(t, τ) coefficients that determine how
imperfect risk sharing today affects future excess returns, and underpricing, varies by large
investor, and is greater in magnitude for those large investors who have more market power,
where market power measures an investors ability to influence asset prices. In the model,
large investors have more market power the greater is their risk tolerance as a share of all
investors risk tolerances.21 Therefore, the question that needs to be answered is whether the
asset allocations at the IPO are sufficiently distorted towards investors with market power,

20There are many possible methods to measure the competitiveness of the aftermarket. In the empirical
analysis I use the Herfindahl index, which is a measure of the concentration of risk bearing capacity among
the investors.

21As intuition for why large investors who are more risk tolerant have more market power suppose that
a syndicate of M investors with CARA utility who differ in their absolute risk aversion bid the syndicate’s
reservation price for a pool of segment assets that have a 1-period residual risky expected payoff D̄ with
variance σ2. If all syndicate members participate the reservation price is D̄/r

σ2
�M

m=1(1/Am)
and if investor j does

not participate the reservation price is D̄/r

σ2[
�M

m=1(1/Am)−(1/Aj)]
. It is straightforward to show that syndicate

members with greater risk tolerance have more ability to influence the syndicate’s reservation price by not
participating.
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that return underperformance results.22 This question is examined as part of the simulations.
Before turning to the simulations, the next section describes how the IPO offer price is set,
and how the shares are allocated.

4 IPO Share Allocation and Price Setting

The motivation for the analysis in this section is based on Pritsker (2004). Pritsker studies a
situation in which a distressed seller has a given number of shares to sell into an imperfectly
competitive market. Because the seller is essentially selling to the equivalent of an oligopoly
in financial markets, it is not surprising that the seller receives a price that is worse than
the competitive price. The size of the price discount depends on the intensity of competition
for the distressed sellers orderflow; and it depends on the amount of impatience that the
distressed seller has when selling his shares. Regarding the intensity of competition, it
turns out that it depends on cross-sectional dispersion of large investors risk tolerances. If
one large investor is far more risk tolerant than the others, then that large investor has
significant market power because if he purchases a smaller amount in the distressed sale,
then the asset sales will have to be absorbed by investors with greater risk aversion who will
require a large price discount in order to hold the assets. By contrast, if the risk tolerances
are spread more evenly among large investors, then the competition for the distressed sales
is more intense and the drop in price due to the distressed sales is consequently smaller.23

The distressed seller may be able to sell at better prices if he is more patient and breaks
up his trades through time instead of selling all at once. This forces the large investors to
compete for the distressed sales through time and dilutes their market power.

Pritsker’s distressed seller analysis is applicable to the IPO setting. In the IPO, the
distressed seller is the issuing firm. For simplicity, in this version of the paper I abstract

22 Which investors receive the assets at the IPO also influences their initial aftermarket price. To illustrate
this point, recall from from proposition 1 that the price for the segment assets in period t will be equal to

P 1(t) =
1
r
(α(t) − Γ(t)Q1)

=
1
r
(α(t) −

M∑
m=1

γm(t)ΩeQ
1
m),

where the scalars γm(t) differ by investor. Because the γm(t) coefficients differ by investor, how shares are
allocated at the IPO affects the equilibrium price in aftermarket trading. It turns out that when the asset
holdings are distorted towards investors with more market power this raises the price at time 1 above the
long-run equilibrium price of the issue.

23In Pritsker (2004) large investors can be interpreted as trading on behalf of identical small investors.
Under this interpretation, large investors are agents who purchase risk and then spread it to their base of
small investors. The large investors absolute risk tolerance is equal to the small investors risk tolerance
multiplied by the mass of small investors that the large investor represents. This result is intuitive because
the large investor should be more risk tolerant if he can spread a given amount of risk that he purchases
among a larger base of investors.
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away from how the size of the issue is chosen, and simply assume the issuer needs to sell
XIPO shares. The underwriter acts on his behalf by lining up investors to buy the issue,
and by supporting the issue in the aftermarket. For his efforts, the underwriter receives a
fee. I assume that the investors that seek shares in the IPO are the same investors that
are modeled as trading in the IPO aftermarket. The IPO process resembles bookbuilding
as practiced in the United States. The underwriter gathers demand information on the
issue. In the model this information consists of knowledge about the other risky assets in
the segment; the investors holdings of the segment-assets; the investors risk preferences; and
whether there are investors who have market power in aftermarket trading. Based on this
information, the underwriter sets an IPO offer price P IPO and makes take it or leave offers
of share allocations to the large and small investors. The large investors allocations’ are
denoted by XIPO

m , m = 2, . . .M . I assume that the small investors that are offered share
allocations are offered identical amounts of shares. The fraction of small investors that are
offered share allocations is denoted by φ.

The relevance of the distressed seller analysis is that if a large or small investor turns
down the share allocation that he is offered, then I assume that the unallocated shares are
sold immediately by the underwriter in the IPO aftermarket. The possibility that an investor
can force distressed sales in the aftermarket serves as a threat that constrains how the issuer
allocates shares and chooses the IPO offer price.24 In particular, if an investor receive shares,
the allocations and offer price must be set so that it cannot be in the interest of the investor
to refuse their allocation and instead force the shares to be sold by the underwriter in the
aftermarket. Of course, it is possible in theory that the underwriter might find it optimal
to sell some shares in the aftermarket; denote these shares as XIPO

U and the aftermarket
price on the first day of trading as P IPO

A .25 This suggests that the underwriter chooses share
allocations and the IPO offer price to maximize:

P IPO × (φXIPO
1 +

M∑
m=2

XIPO
m ) + P IPO

A XIPO
U , (20)

where the first term measures revenues raised at the IPO, and the second represents revenues
raised by distressed sales in the IPO aftermarket.

This maximization takes place subject to the constraints that the total issue is allocated:

φXIPO
1 +

M∑
m=2

XIPO
m +XIPO

U = XIPO, (21)

that there are no short-sales26:

XIPO
U ≥ 0, and XIPO

m ≥ 0, m = 1, . . .M, (22)

24There are many other possible ways to model the threats that available to the large investors and the
threats that are available to the underwriter.

25The aftermarket price on the first day of trading is equal to the equilibrium price function for time
period 1 in the aftermarket.

26This constraint will be eventually relaxed to examine how underwriter short-selling affects the results.
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and subject to incentive compatibility constraints that those who receive allocations in the
IPO will accept the allocations. For small investors who receive allocations this condition
takes the form that the value associated with participating in the IPO is greater than the
value from not participating:

Vs[Q
IPO
s ;QIPO, tIPO + 1] ≥ Vs[Qs;Q

IPO, tIPO + 1], (23)

where the IPO occurs at time tIPO and investors decide whether or not to participate based
on the effect that the IPO has on their time tIPO + 1 value functions. The value functions
that large and small investors use to evaluate whether to participate in the IPO are value
functions that were derived for time 1 post-IPO trading in the aftermarket. For convenience,
I have suppressed most, but not all, of the notation in the value functions. Specifically, small
investors that participate have post IPO risky asset holdings QIPO

s . The post-IPO risky asset
holdings of all investors is denoted QIPO. If a small investor chooses not to participate in
the IPO, his post IPO risky asset holdings are Qs. Note: that the above expression is for a
multiple-asset context in which I assume that the shares of one of the assets is an IPO and
the others are not. Note also that whether or not a small investor participates in the IPO
has no effect on the state vector QIPO because each small investor is infinitesimal.

For large investors who receive share allocations, the incentive compatibility constraints
take the form:

For every m > 1 such that QIPO
m > 0

Vm[QIPO, tIPO + 1] ≥ Vm[QIPO
−m , tIPO + 1] (24)

where large investor m’s share allocation in the IPO is QIPO
m and QIPO

−m is the post-IPO share
allocation if large investor m chooses not to accept his allocation.27

The assumption that the distressed sales occur immediately following the IPO is very
strong. A more reasonable assumption is that any shares that the underwriter fails to sell at
the IPO will instead be sold over τS periods following the IPO. This modeling assumption
is consistent with empirical evidence, reported in Ellis et. al. (2000), that IPO underwriters
engage in price support activities in the IPO aftermarket, and with evidence reported by Ellis
et. al. (2002) which shows that underwriters are active participants in the IPO aftermarket
for long periods of time.28.

I assume that when the underwriter sells shares over τs time periods he will sell them
optimally. By optimality I mean that the underwriter buys shares at the IPO offer price,

27When there is the possibility of distressed sales, as there is here, the equilibrium value functions and
equilibrium price that that is associated with entering period t + 1 have a similar form to those given in
equations (13), (14), and (15), but with the state vector supplemented by an additional argument, which is
the amount of distressed sales.

28In Ellis et. al.́s (2002) sample of 313 NASDAQ IPOs, the lead underwriter participated in an average
of more than 90 percent of post IPO NASDAQ trades during the first day of the IPO; this amount tapers
down over the next 140 days, but remained above 40 percent on average on the 140th day
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and then trades his shares over the following τS time periods in order to maximize his own
utility subject to the constraint that by time τS the underwriter holds no shares of the
issue. It is assumed that the certainty equivalent value of the underwriters utility from
buying and trading the shares is turned over to the issuing firm at the time of the IPO. For
tractability I assume that the underwriter has CARA utility like the other large investors. Let
CEU(QIPO, τs) denote the underwriters certainty equivalent. Then, under the less restrictive
assumption, the underwriter maximizes:

P IPO × (φXIPO
1 +

M∑
m=2

XIPO
m ) + CEU(QIPO, τs), (25)

subject to the constraints that the total issue is allocated [equation (21)], that there are no
short sales [equation (22)], and subject to a new set of participation constraints that account
for the new behavior of the underwriter:

Vs[Q
IPO
s ;QIPO, U(τs), t

IPO + 1] ≥ Vs[Qs;Q
IPO, U(τs), t

IPO + 1], (26)

and

Vm[QIPO, U(τs), t
IPO + 1] ≥ Vm[QIPO

−m , , U(τs), t
IPO + 1]. (27)

The addition of the argument U(τs), which denotes the possibility that an underwriter
optimally liquidates over τs periods differentiates the incentive compatibility constraints in
equations (26) and (27) from those when the underwriter must sell his holdings immediately
after the IPO (equations (23) and (24)). Because the underwriter is modeled as selling any
unallocated shares over a longer amount of time, it alters large investors market power after
the IPO. I expect that this will raise the IPO offer price and revenues raised through the
IPO. Below I investigate whether it actually does so in the simulations that follow.29

5 Simulation Analysis

To study whether imperfect competition in the aftermarket can help explain underpricing
and underperformance, I studied the behavior of the model when only a single risky asset, the
new issue, is traded in the aftermarket. Liquidity in the aftermarket depends on two state-
variables. The first is the distribution of risk tolerances across investors, which was alluded
to above, and the second is the number of post-IPO trading periods. When the number of
post IPO trading periods is small, there is little opportunity to spread risks across investors

29The solution for the model with distressed sales is closely based on Pritsker (2004). To save space, it is
not presented in the appendix.
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through time. Consequently, investors who take on positions require more compensation for
doing so and the market becomes more illiquid. The market is most illiquid when no trading
periods remain. Conversely, as the number of remaining time periods gets large, the market
becomes increasingly liquid and in the limit becomes perfectly competitive.30 I believe that
in reality financial markets are not perfectly competitive; the only way to accommodate
this within the present model is through a finite number of trading periods. I study the
behavior of the model when the number of trading periods after the IPO ranges from a high
of 2000 trading periods, to a low of 200. Each trading period is interpreted as 1-business
day. To date, I have solved the model for 4 configurations of investors. In all configurations,
large investors are labeled as “Institutional Investors” and the small investors as “Retail
Investors”. Results are presented when there is a continuum of small investors and 5 large
investors who differ in their risk aversion. Recall that when risk-sharing is efficient, the
proportion of each risky asset’s supply that should be held by each large investor is equal to
his risk tolerance as a fraction of the sum total of all investor’s risk tolerances. I refer to this
quantity as the investor’s share of risk bearing capacity. Intuitively, an investor with a higher
share of risk bearing capacity has more market power. One gauge of the competitiveness of
trading in this segment is the concentration of risk bearing capacity among the investors.
The concentration of risk bearing is measured by using the Herfindahl index from Industrial
Organization. The Herfindahl index is equal to 10,000 times the sum of the squares of
each investors share of risk bearing capacity.31 The maximum size of the index is 10,000
which corresponds to the extreme case in which all of the risk bearing capacity is held by
one investor; the minimum size of the index is 0 which corresponds to perfect competition,
which formally requires that all investors are infinitesimal.32

Before presenting the simulation results, it is important to emphasize that solving the
model is numerically challenging. The parameters of investors value functions are solved
backwards for thousands of periods using a system of nonlinear Riccati difference equations;
and each step backward in the solution involves a matrix inversion. The parameters of
investors value functions are then used as inputs to solve the pricing and allocation problem in
the IPO. The constraints in the IPO allocation and pricing problem are themselves nonlinear;
and it is not certain that my optimization routines are finding global maxima. Given the
numerical difficulties, the simulation results should be treated as preliminary.

The results from the simulations are provided in Tables 1 through 4; and are sorted
by Herfindahl indices with the results for the least competitive cases presented first. The

30Recall that in my model, the concepts of illiquidity is that trades move prices, which is the same as the
concept of market power. Additional intuition for the relationship between illiquidity and the number of
post-IPO trading periods is based on Coasian analysis of the market power of a durable goods monopolist.
Coase argues that the monopolist can get a higher price if he can commit to selling over a single time
period; the possibility that he will sell over several periods erodes his market power. Kihlstrom argues that
the Coasian analysis applies to stocks because stocks are durable goods; and he too shows that additional
periods of retrade erode the monopolists market power. In the model of aftermarket trading, I suspect that
the Coasian argument also holds; and that a larger number of periods of retrade erodes the oligopolists’
(large investors) market power.

31Each small investors ideal percentage share of the market is 0.
32When each investor is infinitesimal, and indexed on s ∈ [0, 1] then his risk bearing capacity is 1/As ds;

and the Herfindahl index is 0 because the integral of the investors squared risk bearing capacities is 0.
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simulations shed light on five questions. First, how does imperfect competition in the IPO
aftermarket affect asset allocations at the IPO.

Asset Allocations

The distorting influence of imperfect competition on allocations at the IPO is measured in
terms of percentage deviations from each investors efficient asset holdings. For example,
Table 1, Panel B, shows that retail investors should receive 10 percent of shares in the IPO
if the assets at the IPO are allocated to ensure efficient risk-sharing. Panel C, shows that
retail investors were distorted by -100 percent from their optimal holdings; which means
that in the optimal IPO allocations in the simulations, retail investors receive nothing and
institutional investors receive everything. This pattern of allocation distortion away from
retail investors is repeated in all of the results ( Tables 1 - 4, panel C) and is consistent
with stylized empirical evidence that retail investors perceive that they are cut out of IPO
allocations, and that institutional investors benefit at their expense.

The fact that retail investors are cut out and institutional investors receive more allo-
cations raises the question of which institutional investors receive the allocations, and how
does this depend on the institutions’ risk bearing capacities. The simulations suggest that
the relationship is complicated. Intuition suggests that asset holdings should be distorted
towards those investors with the greatest risk bearing capacity because risk bearing capacity
is a proxy for market power. The results are partially consistent with this intuition: for a
given Herfindahl index, when the number of Post-IPO trading periods is small enough, then
asset holdings are distorted towards those institutional investors with the greatest amounts
of risk bearing capacity (Tables 1-3, panel C). However, the simulations show that the in-
tuition is incomplete because when there are a large enough number of post-IPO trading
periods, asset holdings can be distorted away from large investors with the most risk bearing
capacity and towards large investors that have less risk bearing capacity (Table 2 and 3,
panel C).

Aftermarket trading

The second question is can the model rationalize the large amounts of trading volume after
the IPO? The results on asset allocation distortions provide one potential explanation. Re-
call, that if the assets were allocated to those investors who valued them most, and if there
was no private information, then there should be no trade. However, if asset allocations
at the IPO are distorted away from efficient allocations and towards investors with market
power, then trading volume will be generated in the aftermarket as investors adjust their
asset holdings towards those associated with optimal risk sharing. I plan to present more
detailed results on whether the model matches the time series pattern of post-IPO trading
volume in future revisions.
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Underperformance

The third question is can imperfect competition lead to return underperformance after the
IPO. At the outset, it is important to note that because the new issue is the sole risky asset
in the segment, in the long-run, when its share holdings become efficient, its excess return
will outperform the market (equation (19) ). The relevant questions are whether there is
short-term underperformance, and whether the underperformance persists for a fairly long
period of time.

The intuition that was provided earlier suggested that when asset allocations after the
IPO are sufficiently distorted toward large investors, the returns would underperform and
persist for a time. There are two notions of return underperformance: the first is relative
to the market portfolio, and the second is short-term underperformance, which occurs if the
returns on the new issue following the IPO are lower than the returns will be in the long run.
The tables report results on the expected component of the new issue’s residual returns.
Return underperformance relative to the market occurs if the expected residual return is
negative. Examination of Tables 1 through 3 shows that return underperformance relative
to the market occurs when the Herfindahl index is high, or the number of trading periods
following the IPO is sufficiently small. This result confirms that the model can generate un-
derperformance relative to the market. Additionally, the second type of underperformance
is present in all market configurations (Tables 1 - 4, panel C). An important question that
is not answered by these simulation results is how long does the underperformance per-
sist. Unfortunately, for these configurations, I did not compute the answer to this question.
However, although I have not yet computed a full set of results, experiments with other
market configurations have generated underperformance relative to the market that persists
for periods of more than one year. I view these results on underperformance as encouraging.

Underpricing

The fourth question is whether imperfect competition generates underpricing in the IPO.
The answer is a qualified yes: when the Herfindahl index is high enough, and the number of
remaining trading periods is small enough, then underpricing does result (Panel A of Tables
1 - 3); and the amount of underpricing increases when the number of post-IPO trading
periods is small. As the market becomes more competitive, the underpricing vanishes, but
overpricing does not result. Hence, when averaging across different market configurations,
it is clear that the model produces underpricing on average.

Can the underwriter’s fees be rationalized?

Finally, the fifth question is whether the fees that are received by underwriters can be
rationalized. I have attempted to provide an answer by simulating equilibrium offer prices
when the underwriter can trade over many periods in the aftermarket, but I have encountered
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some numerical difficulties. Nevertheless, I but do have some very preliminary results. The
first set of results were computed for the configurations in tables 1 through 4. In Table 1,
results were computed for the case of 1000 Post-IPO trading periods. For this case, the
presence of an underwriter who sells over 200 trading periods has essentially no effect on
the revenues of the issuer; and little effect on the allocations or underpricing in the IPO.
For the results in Table 2, the underwriter generates more revenue, but the allocations are
little changed. By contrast, for the results in Tables 3 and 4, the optimum involves the
underwriter allocating none of the issue in the IPO; instead he sells it over 200 periods in
the aftermarket — and this increases the revenues received by the issuer. Although these
preliminary findings are discouraging, in a set of additional recent simulations that are not
fully reported here, I sometimes found circumstances when the underwriter keeps a large (33
percent) but not 100 percent stake in the issue and then sells it through time. By doing so,
he increases the proceeds that the issuer receives by 25%. This suggests that the underwriter
can sometimes provide very significant value to the seller by trading in the aftermarket. It
is important to reiterate that this finding is a result of a purely strategic setting that does
not contain any informational asymmetries. Although some of the most recent results on
the underwriter are very encouraging, it is important to stress again that the results on the
underwriter are preliminary and the numerical optimizations need to be carefully checked.

Interpretations

The simulation results provide qualitative evidence that imperfect competition in the after-
market might help to explain observed patterns of IPO underpricing and underperformance.
Closer examination of the tables shows that the reported percentage underpricing and under-
performance are not quantitatively close to the amounts reported in the empirical literature.
This is true, but caution is needed in interpreting the reported magnitudes, because the
model’s parameters can be altered to much more closely match the empirically observed
patterns of percentage underpricing and underperformance, but doing so would probably
give an unrealistic view of the model’s true explanatory power. Alternatively, the model’s
parameters could be tied down through calibration, but that too would would be misleading
because the model is highly stylized. A much better method for assessing the quantitative
importance of the theory is through testing the empirical predictions of the model. That
topic is addressed in the next section.

6 Empirical Implications

6.1 Testable predictions

The key features of the theoretical model are the assumptions that participation in the IPO
and the aftermarket is limited, and the assumption that there are large investors that have
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market power in the IPO and in the aftermarket. These features of the model generate three
testable predictions.

1. Participation limits: The theory predicts that underpricing and underperformance
should be more prevalent among new issues for which there are greater barriers to
participating in the IPO and trading in the aftermarket. Therefore, cross-sectional
differences in participation costs should be positively correlated with cross-sectional
differences in underpricing and underperformance.

2. Market power: Simulations based on the theoretical model show that cross-sectional
differences in summary measures of investors market power across market-segments are
positively related to cross-sectional differences in observed levels of IPO underpricing
and underperformance.33

3. Correlations: The theory predicts that underpricing, and underperformance are pos-
itively related cross-sectionally, and both are positively related to the magnitude of
allocation distortions at the IPO.

The most novel of these predictions is that the paper predicts that there is a theoretical
relationship between investors market power and the magnitudes of IPO underpricing, and
underperformance. Hopefully, this paper will stimulate additional research that studies the
role of market power. To close this section, it is useful to briefly review the most closely
related empirical literature on underpricing and underperformance.

6.2 Related literature

The empirical literature that is most closely related to this paper studies the relationship
between after-market liquidity and underpricing or underperformance. The relationship be-
tween IPO underpricing and illiquidity has been empirically studied by Booth and Chua
(1996), Hahn and Ligon (2004), and Ellul and Pagano (2003).34 Although the Booth and
Chua model makes predictions about the relationship between underpricing and aftermar-
ket liquidity, they don’t test this implication of their model; instead their tests focus on
underpricing as compensation for costs of information gathering. Because such costs could
generate underpricing irrespective of illiquidity, the implications of their tests for the relation-
ship between underpricing and aftermarket liquidity are unclear. Hahn and Ligon attempt to

33Measures of market power could include measures of concentration in risk-bearing capacity (for example
size of mutual funds), as used in this paper, but could also include informational notions of market power.
For example, a firm might have significant market power in an IPO if other firms decision about whether
to participate in the IPO and trade in the aftermarket is predicated on that firms decision to trade and
participate.

34In related research that does not address asset pricing per se, Corwin, etȧlṡtudy the evolution of market
microstructure measures of liquidity through time following an IPO. A special aspect of their research is
that they observe the limit order book, and hence can study the evolution of liquidity measures such as the
depth of the limit order book, and the depth of the book relative to trading volume.
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directly test the Booth and Chua hypothesis that underpricing is used to increase liquidity by
running OLS regressions of market microstructure measures of aftermarket liquidity on IPO
underpricing. In regressions that account for other determinants of illiquidity, their results
are mixed; with coefficients on underpricing sometimes statistically significant and positive,
sometimes statistically significant and negative, and sometimes not statistically significant
at all. A potential difficulty with the Hahn and Ligon methodology is that causality may
run from underpricing to illiquidity (as in Booth and Chua) as well as from illiquidity to
underpricing (as in Ellul and Pagano). The possibility that causality runs in both directions
suggests that an instrumental variable approach is needed. In Ellul and Pagano, they regress
underpricing on a set of determinants for underpricing, including measures of aftermarket
liquidity. Additionally, they recognize the potential for simultaneity bias and instrument for
it in some of their regressions.35 In all of Ellul and Pagano’s regressions they find that more
aftermarket illiquidity increases the amount of IPO underpricing. This finding is consistent
with both their theory and my theory of IPO underpricing.

Although Ellul and Pagano’s findings are favorable for liquidity-based theories of IPO
underpricing, there is reason for caution in interpreting their results. One reason for caution
is if underpricing is a risk premium for aftermarket illiquidity, then the logical extension
of Ellul and Pagano’s theory would suggest that in the aftermarket, IPO’s should earn a
positive and significant risk premium for aftermarket illiquidity. The fact that IPO returns
underperform in the aftermarket, suggests that the mechanism driving aftermarket returns
is more complicated than the theory of illiquidity considered by Ellul and Pagano.36 Eckbo
and Norli (2002) take this argument one step further; they claim that newly issued stocks are
more liquid than other stocks with similar risk characteristics; and thus their returns should
underperform. To establish this point empirically, Eckbo and Norli compare the returns of a
rolling portfolio of newly issued stocks that are held for up to five years against the returns
a portfolio of more seasoned issues that are matched on size and book to market. They find
that after adjusting for these factors, and controlling for differences in liquidity, new issues
do not underperform.

The Eckbo and Norli analysis highlights an important empirical question: what is the
appropriate method to risk-adjust the returns on new issues. The theory in this paper
suggests that adjusting returns for book-to-market is problematic. The reason is that the
theory shows that the allocation distortions at the IPO biases the price of the new issue
upward in aftermarket trading; that is, the prices will be higher just after the IPO than
they will be in the long-run.37 The temporarily high stock price will cause new issues
to initially have a low book to market. At the same time the theory also predicts there
will be return underperformance following the IPO. Because the theory’s predictions of
low returns and low book-to-market are consistent with the empirical evidence on how the
Fama-French“book-to-market” factor affects returns, tests that adjust for book-to-market

35They do not report any results on tests for the strength of the instruments, nor do they report any
results of tests for instrument validity.

36This critique does not rule out my theory that underperformance is caused by how imperfect competition
in the aftermarket distorts share allocations at the IPO.

37See footnote 22 for details.
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will remove the predictions of my liquidity/imperfect competition theory from the data
being analyzed. Such tests will then have low power to detect underperformance due to
illiquidity even when such underperformance is present.

6.3 Summary

In summary, it remains an open empirical question whether imperfect competition and illiq-
uidity play a significant role in explaining IPO underpricing and underperformance. The
theory in this paper suggests a new direction for empirical research on IPOs that uses dif-
ferences in investors market power across market segments to help explain cross-sectional
differences in IPO underpricing and underperformance.

7 Conclusions

In this paper I have presented a fully-rational symmetric information model of IPO book-
building that is followed by imperfect competition and illiquidity in a dynamic post-IPO
trading environment. For some parameter values the model generates IPO allocations and
offer prices that are consistent with underpricing at the IPO, return underperformance fol-
lowing the IPO, and a tilt in share allocations toward institutional investors and away from
retail investors. I have also begun a highly preliminary analysis of the behavior of the un-
derwriter in the IPO aftermarket; and have found that for some model parameterizations
the underwriter, by trading in the IPO aftermarket, can dilute other investors market power
and substantially increase the revenues raised by the issuer.

An important question going forward is determining the percentages of underpricing,
underperformance, and underwriter fees, that can plausibly be attributed to imperfect com-
petition and illiquidity in aftermarket trading. The best way to answer the question is
through empirical research that studies the relationship between aftermarket competitive-
ness and the inefficiencies that are associated with the IPO process. Hopefully the results
in this paper will stimulate further research along these lines.

26



Appendix

A Notation

There are M investors and N = N1 +N2 risky assets. The first N1 assets are illiquid. The
next N2 assets are perfectly liquid. The risky asset holdings of investor m at time t are
denoted by

Qm(t) =

(
Q1

m(t)
Q2

m(t)

)
where Q1

m(t) and Q2
m(t) are investor m′s holdings of illiquid and liquid risky assets respec-

tively. Q1(t) denote the N1M × 1 vector of all investors illiquid asset holdings at time t
where

Q1(t) =




Q1
1(t)
...

Q1
M(t)


 .

Q1
1(t) represents the net asset holdings of a continuum of infinitesimal small investors

indexed by s:

Q1
1(t) =

∫ 1

0

Q1
s(t)µ(s)ds.

The small investors are often collectively referred to as the competitive fringe. Q1
2(t) through

Q1
M(t) denotes the net illiquid risky asset holdings of large investors, and is denoted by the

N1 × (M − 1) vector Q1
B(t). The change in investors illiquid risky asset holdings from the

beginning of time period t to the beginning of time period t+ 1 is denoted by the N1M × 1
vector ∆Q1(t). Similarly, ∆Q1

1(t) and ∆Q1
B(t) denote the change in the competitive fringe’s

illiquid asset holdings, and the change in the illiquid asset holdings of the large investors.

The algebra which follows requires many matrix summations and the use of selection
matrices. Rather than write summations explicitly, I use the matrix S = ι′M ⊗IN to perform
summations where ιM is an M by 1 vector of ones, and IN is the N ×N identity matrix.38

In some cases, the matrix S may have different dimensions to conform to the vector whose
elements are being added. In all such cases, S will always have N , or N1 rows. The matrix
Si is used for selecting submatrices of a larger matrix. Si has form

Si = ι′i,M ⊗ IN ,

where ιi,M is an M vector has a 1 in its i’th element, and has zeros elsewhere.39 As above Si

will sometimes have different dimensions to conform with the matrices being summed, but
it will always have N or N1 rows.

In the rest of the exposition, I will occasionally suppress time subscripts to save space.

38For example, SQ(t) =
∑M

m=1 Qm(t)
39To illustrate the use of the selection matrix, Qm(t) = SmQ(t).
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B Proof of Proposition 1

Proposition 1: Small investors value functions for entering period t with liquid wealth Ws,
when investors’ state vector of illiquid asset holdings is given by Q1 is given by:

Vs(Ws, Q
1, t) = −K1(t) F (Q1, t) e−As(t)Ws ,

where F (Q1, t) = e−Q1(t)′v̄s(t)−Q1(t)′θs(t)Q1(t).
(13)

Large investor m’s value function for entering period t when the state vector of illiquid asset
holdings is Q and his holdings of liquid wealth is Wm is given by:

Vm(Wm, Q
1, t) = −Km(t)e−Am(t)Wm−Am(t)Q1 ′Λm(t)+.5Am(t)2Q1′Ξm(t)Q1

m = 2, . . .M, (14)

and the price function for illiquid assets has the functional form:

P 1(t) =
1

r
(α(t) − Γ(t)Q1) (A1)

Proof: The proof is by induction. Part I of the proof establishes that if the value
function has this form at time t, then it has the same form at time t−1. Part II of the proof
establishes the result for time T , the first period in which trade cannot occur.

B.1 Part I:

Suppose the form of the value function is correct for time t. Then, to establish the form
of the value function at time t − 1, I first solve for the competitive fringe’s demand curve
for absorbing the net order flow of the large investors. I then solve the large investors and
competitive fringe’s equilibrium portfolio and consumption choices, and then solve for the
value function at time t− 1.

The competitive fringe’s demand curve

The competitive fringe represents a continuum of infinitesimal investors that are distributed
uniformly on the unit interval with total measure 1, i.e. µ(s) = 1 for s ∈ [0, 1]. At time
t− 1, each participant s of the competitive fringe solves:
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max
Cs(t− 1),

Qs,
qs

−e−AsCs(t−1) − δ E[Ks(t)F (Q1, t)e−As(t)Ws(t)] (A2)

where, Qs is the stacked vector of small investor s’s holdings of illiquid (Q1
s) and perfectly

liquid (Q2
s) risky assets:

Qs =

(
Q1

s

Q2
s

)
;

Z(t) is the stacked vector of excess returns for the illiquid and liquid assets:

Z(t) =

(
Z1(t)
Z2(t)

)
=

(
P 1(t) +D1(t) − rP 1(t)
P 2(t) +D2(t) − rP 2(t)

)
; (A3)

and small investors liquid wealth is given by

Ws(t) = Q′
sZ(t) + r[Ws(t− 1) − Cs(t− 1)].

Note: Although I refer to the first set of assets as illiquid, they are only illiquid for large
investors whose trades have price impact. Because each small investor is infinitesimal, their
trades do not have price impact and hence both assets are perfectly liquid from their per-
spective.

In equation (A3),

EZ(t) ≡ Z̄(t) ≡
(
Z̄1(t)
Z̄2(t)

)
,

and

VarZ(t) ≡ Ω ≡
(

Ω11 Ω12

Ω21 Ω22

)
.

Substituting the expression for Ws in (A2) and taking expectations shows that small
investors maximization becomes:

max
Cs(t− 1),

Qs

−e−AsCs(t−1) − δF (Q1, t)e−As(t)r[Ws(t−1)−Cs(t−1)]−As(t)Q′
sZ̄(t)+.5As(t)2Q′

sΩQs (A4)

In solving the model, it is useful to break small investors maximization into pieces by
first solving for optimal Q2

s as a function of Q1
s, and then solving for optimal Q1

s. For given
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Q1
s, the first order condition for optimal Q2

s shows that optimal Q2
s is given by

Q2
s =

1

As(t)
Ω−1

22 Z̄2(t) − β ′
12Q

1
s, (A5)

where β12 = Ω12Ω
−1
22 .

Plugging the solution for Q2
s into the small investors value function and simplifying then

shows that the small investors maximization problem reduces to:

max
Cs(t− 1),

Q1
s

−e−AsCs(t−1)−δF (Q1, t)Ks(t) Exp
{−.5Z̄ ′

2Ω
−1
22 Z̄2 − As(t)r[Ws(t− 1) − Cs(t− 1)]

}

× Exp
{−As(t)Q

1
s
′[Z̄1(t) − β12Z̄2(t)] + .5As(t)

2Q1
s
′ΩeQ

1
s

}
(A6)

where Ωe is given by
Ωe = Ω11 − Ω12Ω

−1
22 Ω21.

To gain intuition for the above expression, note that the excess return on each illiquid
asset can be decomposed into a component that is correlated with the liquid assets and into
a second idiosyncratic component.

Z1(t) = β12Z2(t) + ε1(t)

Z̄1 −β12Z̄2(t) is the vector of expected returns on the idiosyncratic components at time t
and Ωe is the variance covariance matrix of the idiosyncratic returns. The expression shows
that small investors portfolio maximization problem can equivalently be written in terms of
choosing an exposure to the returns of the liquid assets, and to the idiosyncratic component
of returns of the illiquid assets.

Solving for optimal Q1
s(t) then shows

Q1
s(t) =

1

As(t)
Ω−1

e [Z̄1(t) − β12Z̄2(t)] (A7)

The aggregate demand for Q1 at time t by all small investors can be found by integrating
both sides of equation (A7) with respect to µs, the density of small investors, yielding:

Q1
1(t) =

∫ 1

0
Q1

s(t)µsds

=
[∫ 1

0
1

As(t)
µsds

]
Ω−1

e [Z̄1(t) − β12Z̄2(t)]

= 1
A1(t)

Ω−1
e [Z̄1(t) − β12Z̄2(t)]

(A8)
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The Price Schedule Faced by Large Investors

The price schedule faced by large investors at time t−1 maps large investors desired orderflow
of the illiquid assets into the time t − 1 prices at which the competitive fringe is willing to
absorb the net orderflow. To solve for the price schedule, I solve for prices P (., t − 1) in
equation (A8) such that when the large investors choose trade ∆Q1

B(t− 1) at time t-1, then
the competitive fringe chooses trade −S∆Q1

B(t− 1).

Rearranging, equation (A8) while making the substitutions

Q1(t) = Q1(t− 1) + ∆Q1(t− 1),

Q1
1(t) = S1[Q

1(t− 1) + ∆Q1(t− 1)],

∆Q1(t− 1) =

( −S∆Q1
B(t− 1)

I∆Q1
B(t− 1)

)

and

Z̄1(t) = P 1(t) + D̄1 − rP 1(t− 1, .)

P 1(t) =
1

r

(
α(t) − Γ(t)[Q1(t− 1) + ∆Q1(t− 1)]

)
then produces the price schedule faced by large investors at time t− 1:

P 1(., t− 1) =
1

r

(
β0(t− 1) − βQ1(t− 1)Q1(t− 1) − βQ1

B
(t− 1)∆Q1

B(t− 1)
)
, (A9)

where,

β0(t− 1) = D̄1 + (1/r)α(t) − β12Z̄
2 (A10)

βQ1(t− 1) = (1/r)(Γ(t) + rA1(t)ΩeS1) (A11)

βQ1
B
(t− 1) = (1/r)Γ(t)

( −S
I

)
− A1(t)ΩeS (A12)

Given the price schedule in equation (A9), large investors at time t − 1 solve the maxi-
mization problem:

Large Investors Maximization Problem

max
Cm(t− 1),

Qm

−e−AmCm(t−1) − E
{
δKm(t) Exp

(−Am(t)Wm − Am(t)Q1′Λm(t) + .5Am(t)2Q1′Ξm(t)Q1
)}

(A13)
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where, substituting in the budget constraint, liquid wealth at the beginning of time t is
given by

Wm(t) =Q1
m(t)′D1(t) +Q2

m(t)′Z2(t)

+ r(Wm(t− 1) − ∆Q1
m(t− 1)′P 1(t− 1, .) − Cm(t− 1))

(A14)

Note: Because dividends are paid in cash, the dividend payments received for holdings of
illiquid asset are counted as part of liquid wealth even though the illiquid assets themselves
are not counted.

Note that in equation (A13), Λm(t) and Ξm(t) are deterministic functions of time that are
parameters of the value function. Keeping this in mind, large investors holdings of the liquid
assets are solved in the same way as for small investors. Taking expectations in equation
(A13), solving for optimal Q2

m given Q1, and substituting the optimal choice back into the
large investor’s value function, transforms the large investors maximization problem so that
it has the following form:

max
Cm(t− 1),

Q1
m

− e−AmCm(t−1)

− δKm(t)
{
Exp(−.5Z̄2′Ω−1

22 Z̄2 − Am(t)r[Wm(t− 1) − ∆Qm(t− 1)′P 1(t− 1, .) − Cm(t− 1)]

×Exp(−Am(t)Q1′v̄m(t) + .5Am(t)2Q1′θm(t)Q1)
}

(A15)

where,

v̄m(t) = S ′
m(D̄1 − β12Z̄2) + Λm(t) (A16)

θm(t) = S ′
mΩeSm + Ξm(t) (A17)

The large investors play a Cournot game in which each choose his time t − 1 trade
∆Qm(t − 1) in the illiquid assets to solve the maximization problem in (A15) while taking
the trades of the other large investors as given, but while taking into account the effect that
his own trades have on the prices of the illiquid assets. Recall the price impact function for
the illiquid assets at time t− 1 is given by equation (A9).

The first order condition for large investors illiquid asset choices is given by:

0 = −Am(t)[(−S1+Sm)v̄m(t)] + Am(t)2(−S1 + Sm)[(θm(t) + θm(t)′)/2](Q1 + ∆Q1)

+ Am(t)
[
rP 1(., t− 1) − SmβQ1

B
(t− 1)′Sm∆Q1

B

]
,

(A18)

After substituting for P 1(., t−1) from equation (A9), writingQ1+∆Q1 asQ1+

( −S∆Q1
B

∆Q1
B

)
and simplifying, this produces the following reaction function for large investor m:
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πm(t− 1)∆Q1
B = χm(t− 1) + ξm(t− 1)Q1, (A19)

where,

πm(t− 1) =Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2]

( −S
I

)
− βQ1

B
(t− 1) − SmβQ1

B
(t− 1)′Sm

(A20)

χm(t− 1) = (−S1 + Sm)v̄m(t) − β0(t− 1) (A21)

ξm(t− 1) = βQ1(t− 1) −Am(t)(−S1 + Sm)[(θm(t) + θm(t)′)/2] (A22)

Stacking the (M-1) reaction functions produces a system of (M − 1)N linear equations
in (M − 1)N unknowns:

Π(t− 1)∆Q1
B(t− 1) = χ(t− 1) + ξ(t− 1)Q1(t− 1) (A23)

Assume that Π(t−1) is invertible. Then the solution for ∆Q1
B(t−1) is unique, and given

by

∆Q1
B(t− 1) = Π(t− 1)−1χ(t− 1) + Π(t− 1)−1ξ(t− 1)Q1(t− 1) (A24)

Equilibrium Asset Holdings

The solution for ∆Q1
1(t − 1) is −S∆Q1

B(t − 1). Therefore, the solution for ∆Q1(t − 1) =
(∆Q1

1(t− 1)′,∆Q1
B(t− 1)′)′ can be written as:

∆Q1(t− 1) = H0(t− 1) +H1(t− 1)Q1(t− 1). (A25)

where,

H0(t− 1) =

( −SΠ(t− 1)−1χ(t− 1)
Π(t− 1)−1χ(t− 1)

)
, and H1(t− 1) =

( −SΠ(t− 1)−1ξ(t− 1)
Π(t− 1)−1ξ(t− 1)

)
.

(A26)

With the above notation, the equilibrium purchases by large participant m in period t−1
are given by

∆Q1
m(t− 1) = Sm[H0(t− 1) +H1(t− 1)Q1(t− 1)] (A27)

Additionally, the equilibrium transition dynamics for beginning of period illiquid risky
asset holdings are given by:

Q1(t) = G0(t− 1) +G1(t− 1)Q1(t− 1) (A28)

where G0(t− 1) = H0(t− 1) and G1(t− 1) = H1(t− 1) + I.
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Equilibrium Price Function

Recall that the equilibrium price function in each time period maps investors beginning of
period holdings of risky assets to an equilibrium price after trade. The equilibrium price
function for period t − 1 is found by plugging the solution for large investors equilibrium
trades from equation (A24) into the price schedule faced by large investors (equation (A9)).
The resulting price function for illiquid asset in period t− 1 has form:

P 1(t− 1, Q1) =
1

r

(
α(t− 1) − Γ(t− 1)Q1

)
(A29)

where,

α(t− 1) = β0(t− 1) − βQ1
B
(t− 1)π(t− 1)−1χ(t− 1) (A30)

Γ(t− 1) = βQ(t− 1) + βQ1
B
(t− 1)π(t− 1)−1ξ(t− 1) (A31)

Large Investors Consumption

Large investors optimal time t− 1 consumption depends on optimal time t− 1 trades. After
plugging the expressions for equilibrium prices, and equilibrium trades [equations (A28),
(A29), and (A25)] into equation (A15), large investors consumption choice problem has
form:

max
Cm(t−1)

−e−AmCm(t−1) − δkm(t)erAm(t)Cm(t−1) × ψm(Q1(t− 1),Wm(t− 1), D(t− 1), t− 1),

(A32)

where

ψm(Q1,Wm(t− 1), t− 1) =e−.5Z̄2′Ω−1
22 Z̄2−Am(t)rWm(t−1)

× e+Am(t)r[Sm(H0(t−1)+H1(t−1)Q1(t−1)]′(α(t−1)−Γ(t−1)Q1(t−1))/r

× e−Am(t)(G0(t−1)+G1(t−1)Q1(t−1))′ v̄m(t)

× e.5Am(t)2[G0(t−1)+G1(t−1)Q1(t−1)]′θm(t)[G0(t−1)+G1(t−1)Q1(t−1)]

(A33)

The first order condition for choice of consumption implies that optimal consumption is
given by:

Cm(t− 1) =
−1

Am(t)r + Am
ln

(
δkm(t)Am(t)rψm(Q1(t− 1),Wm(t− 1), t− 1)

Am

)
(A34)
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Large investors value function at time t− 1

Define Vm(t−1, Q1,Wm(t−1)) as the value function to large investor m from entering period
t− 1 when the vector of illiquid risky asset holdings is Q1, and his liquid asset holdings are
Wm(t−1). After substituting the optimal consumption choice in (A34) into equation (A32),
this value function is given by:

Vm(Wm(t− 1), Q1, t− 1) = −
[
1 + r∗m(t)

r∗m(t)

] [
δkm(t)r∗m(t)ψm(Q1,Wm(t− 1), t− 1)

] 1
1+r∗m(t)

(A35)

where,

r∗m(t) = Am(t)r/Am (A36)

Tedious algebra then shows that large investor m’s value function at time t−1 has form:

Vm(t− 1, Q1,Wm(t− 1)) = −km(t− 1) × e−Am(t−1)Wm(t−1)−Am(t−1)Q1 ′Λm(t−1)+.5Am(t−1)2Q1′Ξm(t−1)Q1

(A37)

where the parameters of the value function at time t−1 are given by the following Riccati
difference equations.

Am(t− 1) = Am(t)r/(1 + r∗m(t)) (A38)

km(t− 1) =

[
r∗m(t) + 1

r∗m(t)

]
[δkm(t)r∗m(t)]

1
1+r∗m(t)

× e
−.5Z̄2 ′Ω−1

22
Z̄2

1+r∗m(t)

× eAm(t−1)H0(t−1)′S′
mα(t−1)/r−Am(t−1)G0(t−1)′ v̄m(t)/r+.5Am(t−1)2((1+r∗m(t))/r2)(G0(t−1)′θm(t)G0(t−1))

(A39)

Λm(t− 1) = −H1(t− 1)′S ′
mα(t− 1)/r + Γ(t− 1)′SmH0(t− 1)/r +G1(t− 1)′v̄m(t)/r

− Am(t− 1)(1 + r∗m(t))G1(t− 1)′
(
θm(t) + θm(t)′

2

)
G0(t− 1)/r2

(A40)

Ξm(t− 1) =
−2H1(t− 1)′S ′

mΓ(t− 1)

rAm(t− 1)
+ (1 + r∗m(t))G1(t− 1)′θm(t)G1(t− 1)/r2 (A41)
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Small investors optimal consumption

The solution for each small investors consumption depends on small investors optimal trades.
To solve for optimal consumptions, I first use equation (A7) to substitute out for Q1

s in
equation (A6). I then substitute out for Z̄1(t) − β12Z̄

2(t) with the expression:

Z̄1(t) − β12Z̄
2(t) = a0(t− 1) + a1(t− 1)Q1(t− 1), (A42)

where,

a0(t− 1) =
α(t)

r
− α(t− 1) + D̄1 − β12Z̄

2(t) − Γ(t)G0(t− 1)

r
(A43)

a1(t− 1) = Γ(t− 1) − Γ(t)G1(t− 1)

r
. (A44)

Finally I substitute out Q1(t) with [G0(t−1)+G1(t−1)Q(t−1)]. With these substitutions,
small investors choice of optimal consumptions simplifies to:

max
Cs(t−1)

−e−AsCs(t−1) − δks(t)e
rAs(t)Cs(t−1) × ψs(Q

1(t− 1),Ws(t− 1), t− 1), (A45)

where,

ψs(Q
1(t− 1),Ws(t− 1),t− 1) = e−As(t)rWs(t−1)−.5Z̄′

2Ω−1
22 Z̄2

×e−.5[a0(t−1)+a1(t−1)Q1(t−1)]′Ω−1
e [a0(t−1)+a1(t−1)Q1(t−1)]

×e−[G0(t−1)+G1(t−1)Q1(t−1)]′ v̄s(t)

×e−[G0(t−1)+G1(t−1)Q1(t−1)]′θs(t)[G0(t−1)+G1(t−1)Q1(t−1)]

(A46)

The first order condition for choice of optimal consumption implies that optimal con-
sumption is given by:

Cs(t− 1) =
−1

As(t)r + As
ln

(
δks(t)As(t)rψs(Q

1(t− 1),Ws(t− 1), t− 1)

As

)
(A47)

Small investors value function at time t− 1

Define Vs(Ws(t− 1), Q1(t− 1), t− 1) as the value function to small investor s from entering
period t−1 when the vector of illiquid risky asset holdings is Q1(t−1), and his liquid wealth
is Ws(t − 1). After substituting the optimal consumption choice in (A47) into equation
(A45), this value function is given by:

Vs(Ws(t− 1), Q1(t− 1), t− 1) =

−
[
1 + r∗s(t)
r∗s(t)

] [
δks(t)r

∗
s(t)ψs(Q

1(t− 1),Ws(t− 1), t− 1)
] 1

1+r∗s (t)

(A48)
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where,

r∗s(t) = As(t)r/As (A49)

Simplification then shows that the value function has form:

Vs(Ws(t− 1), Q1(t− 1), t− 1) = −Ks(t− 1) F (Q1, t− 1) e−As(t−1)Ws(t−1),

where F (Q1(t− 1), t− 1) = e−Q1(t−1)′ v̄s(t−1)−Q1(t−1)′θs(t−1)Q1(t−1)
(A50)

The parameters in the small investors value functions at time t−1 are a function of time
t parameters as expressed in the following Riccati equations:

As(t− 1) =
rAs(t)

1 + r∗s(t)
(A51)

ks(t− 1) =

[
r∗s(t) + 1

r∗s(t)

] [
δks(t− 1)r∗s(t)e

−.5Z̄2′Ω−1
22 Z̄2

] 1
1+r∗s (t)

× Exp

{−a0(t− 1)′Ω−1
e a0(t− 1) −G0(t− 1)′v̄s(t) −G0(t− 1)′θs(t)G0(t− 1)

1 + r∗s(t)

}
,

(A52)

v̄s(t− 1) =
a1(t− 1)′Ω−1

e a0(t− 1) +G1(t− 1)′v̄s(t) +G1(t− 1)′(θs(t) + θs(t)
′)G0(t− 1)

1 + r∗s(t)
,

(A53)

θs(t− 1) =
.5a1(t− 1)′Ω−1

e a1(t− 1) +G1(t− 1)′θs(t)G1(t− 1)

1 + r∗s(t)
(A54)

This completes part I of the proof because equations (A37) and (A50) verify that the
value functions at time t− 1 have the same form as at time t.

B.2 Part II

To establish part II of the proof, I need to show that investors value functions for entering
entering period T , the last period of trade, has the same functional form as given in the
proposition. To establish this result, I first need to solve for investors value function at
time T + 1, the first period when investors cannot trade the illiquid assets (recall they can
continue to trade the riskless asset and the liquid assets indefinitely). Then, given this value
function, I use backwards induction to solve for investors value function at time T .
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Investors Value Functions at Time T+1

Recall that investors are infinitely lived but that from time T onwards they cannot alter
their holdings of illiquid assets, but they can continue to alter their consumption, and their
holdings of liquid and riskless assets. Because investors cannot trade in period T + 1 and
after, the distinction between small and large investors after this period is irrelevant. Hence,
the index m used below could be for either a large or small investor. Using the Bellman
principle, the value function Vm(.) of entering period t+1 (t ≥ T ) with illiquid asset holdings
Q1

m and liquid wealth Wm satisfies the functional equation:

Vm(Wm(t+ 1), Q1
m) = max

Cm(t+ 1)
Q2

m(t+ 2)

− exp−AmCm(t+1) +δ E{Vm(Wm(t+ 2), Q1
m)}, t ≥ T,

(A55)

where,

Wm(t+ 2) = Q1
m

′D1(t+ 2) +Q2
m

′Z2(t+ 2) + r[Wm(t+ 1) − Cm(t+ 1)], (A56)

and,
Z2(t+ 2) = P 2(t+ 2) +D2(t+ 2) − rP 2(t+ 1).

Inspection shows that the function

Vm(Wm, Q
1
m) = −Kmexp−Am[1−(1/r)]Wm−Am[1−(1/r)]Q1

m
′ (1/r)[D̄1−β12Z̄2]

1−(1/r)
+ 1

2
A2

m[1−(1/r)]2Q1
m

′ (1/r)Ωe
1−(1/r)

Q1
m

(A57)

with

Km =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22

Z̄2

r−1 ,

satisfies the Bellman equation (A55) for all time periods ≥ T + 1.

Given the value function at time T +1, to solve for investors value functions at time T , I
follow the same steps as in equations (A2) through equation (A54). Therefore, substituting
in from equation (A57), small investors maximization problem at time T has form:

max
Cs(T ),
Qs

−e−AsCs(T ) − δE
{
Ks(T + 1)e−As(T+1)Ws(T+1)−As(T+1)Q1

s
′Λs(T+1)+ 1

2
As(T+1)2Q1

s
′Ξse(T+1)Q1

s

}

(A58)

such that,

Ws(T + 1) = Q1
s
′Z1(T + 1) +Q2

s
′Z2(T + 1) + r[Ws(T ) − Cs(T )], (A59)
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where,

Ks(T + 1) =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22 Z̄2

r−1 , (A60)

As(T + 1) = As[1 − (1/r)], (A61)

Λs(T + 1) =
(1/r)[D̄1 − β12Z̄

2]

1 − (1/r)
, (A62)

Ξse(T + 1) =
(1/r)Ωe

1 − (1/r)
, (A63)

Z1(T + 1) = D1(T + 1) − rP 1(T ), (A64)

Z2(T + 1) = P 2(T + 1) +D2(T + 1) − rP 2(T ). (A65)

Substituting the expression for Ws(T + 1) into the value function, taking expectations,
and then solving for optimal Q2

s given Q1
s, and substituting that into the value function

shows that small investors optimal choice of Q1
s and Cs(T ) problem has form:

max
Cs(T ),
Q1

s

−e−AsCs(T )−δKs(T + 1) Exp
{−.5Z̄ ′

2Ω
−1
22 Z̄2 − As(T )r[Ws(T ) − Cs(T )]

}

× Exp
{−As(T + 1)Q1

s
′[v̄s(T + 1) − rP 1(T )] + .5As(T + 1)2Q1

s
′Ωe(T + 1)Q1

s

}
(A66)

where

v̄s(T + 1) =

[
D̄1(T + 1) − β12Z̄2(T + 1)

1 − (1/r)

]
(A67)

Ωe(T + 1) =

[
Ωe

1 − (1/r)

]
(A68)

Integrating the solution for optimal Q1
s over the set of small investors then reveals that

the net demand for the illiquid assets by the competitive fringe is:

Q1
1(T + 1) =

1

A1(T + 1)
[Ωe(t+ 1)]−1[v̄s(T + 1) − rP (t)] (A69)

Following the approach that was used earlier to solve for the price schedule faced by large
investors in equation (A9), inverting the small investors demand schedule for the illiquid
assets reveals that the price schedule faced by large investors has the form:

P 1(., T ) =
1

r

(
β0(T ) − βQ1(T )Q1(T ) − βQ1

B
(T )∆Q1

B(T )
)
, (A70)
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β0(T ) = v̄s(T + 1) (A71)

βQ1(T ) = A1(T + 1)Ωe(T + 1)S1) (A72)

βQ1
B
(T ) = −A1(T + 1)Ωe(T + 1)S (A73)

Given the price schedule at time T , and the value function in equation (A57), large
investors maximization problem at time T can be written in the form:

max
Cm(T ),
Qm

− e−AmCm(T )

− E
{
δKm(T + 1)e−Am(T+1)Wm(T+1)−Am(T+1)Q1′Λm(T+1)+.5Am(t)2Q1′Ξm(T+1)Q1

}
(A74)

where,

Am(T + 1) = Am[1 − (1/r)] (A75)

Λm(T + 1) = S ′
m

[
(1/r)[D̄1 − β12Z̄

2]

1 − (1/r)

]
, (A76)

Ξm(T + 1) = S ′
m

(
(1/r)Ωe

1 − (1/r)

)
Sm. (A77)

Km(T + 1) =
r

r − 1
× (δr)

1
r−1 × exp−.5

Z̄2′Ω−1
22 Z̄2

r−1 (A78)

Substituting in the budget constraint, liquid wealth at the beginning of time T + 1 is
given by

Wm(T + 1) =Q1
m(T + 1)′D1(T + 1) +Q2

m(T + 1)′Z2(T + 1)

+ r(Wm(T ) − ∆Q1
m(T )′P 1(T, .) − Cm(T ))

(A79)

Large investors maximization problem at time T has exactly the same form as given in
equation (A13). Therefore, the optimal trades and consumption of large investors follow
precisely the same equations as given in Part I of the proof. Large investors value function
at time T also has the same functional form as in part I. The equilibrium price function at
time T also has the same functional form as in part I. Therefore, to complete the proof, it
suffices to solve for small investors consumption and then value function and verify that the
value function has the appropriate functional form.

To do so, note that from equation (A66), it is straightforward to show that the optimal
choice of Q1

s(T + 1) is

Q1
s(T + 1) =

1

As(T + 1)
[Ωe(T + 1)]−1 × [v̄s(T + 1) − rP 1(T )],
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and that after substituting this expression back in the value function, and making the sub-
stitution P 1(T ) = 1

r
(α(t) − Γ(t)Q1(t)), then the maximization in equation (A66) simplifies

to have the form:

max
Cs(T )

−e−AsCs(T ) − δKs(T + 1) Exp{As(T )rCs(T )} × Ψs(T,Q
1) (A80)

where,

Ψs(T,Q
1) = Exp

{−.5Z̄ ′
2Ω

−1
22 Z̄2 − As(T )rWs(T )

}
× Exp

{−.5[v̄s(T + 1) − α(T )]′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]
}

× Exp
{−Q1(T )′Γ(T )′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

}
× Exp

{−.5Q1(T )′Γ(T )′[Ωe(T + 1)]−1Γ(T )Q1(T )
} (A81)

Using the same approach that was used to solve for large investors optimal consumption
and then value function in part I of the proof, tedious algebra shows that small investors
value function at time T has form

−F (Q1, T )Ks(T ) Exp(−As(T )Ws(T ))

where, F (Q1, T ) = e−Q1(T )′v̄s(T )−Q1(T )′θs(T )Q1(T ),

r∗s(T + 1) = As(T + 1)r/As, (A82)

As(T ) = As(T + 1)r/(1 + r∗s(T + 1)), (A83)

Ks(T ) =

[
r∗s(T + 1) + 1

r∗s(T + 1)

]
[δKs(T + 1)r∗s(T + 1)]

1
1+r∗s (T+1)

× Exp

(−.5Z̄2′Ω−1
22 Z̄

2 − .5[v̄s(T + 1) − α(T )]′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

1 + r∗s(T + 1)

)
,

(A84)

v̄s(T ) =
Γ(T )′[Ωe(T + 1)]−1[v̄s(T + 1) − α(T )]

1 + r∗s(T + 1)
, (A85)

θs(T ) =
Γ(T )′[Ωe(T + 1)]−1Γ(T )

1 + r∗s(T + 1)
. (A86)

This completes the proof by establishing that large and small investors value functions
take the hypothesized form in all periods that involve trade. �
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C Solutions for Value Function Parameters

Proposition 4 For all time periods t = 1, . . . , T , and for large investors m = 2, . . .M :

v̄m(t) =
S ′

m(D̄1 − β12Z̄
2)

1 − (1/r)
(A87)

α(t) = (D̄1 − β12Z̄
2) (A88)

Am(t) = Am[1 − (1/r)] (A89)

r∗(t) = r − 1 (A90)

km(t) =

(
r

r − 1

)
× (δr)

1
r−1e−.5

Z̄2′Ω−1
22

Z̄2

r−1 (A91)

Proof:

For v̄m(t) and α(t):

The proof is by induction. First, suppose that the results for v̄m(t) and α(t) are true
at time t. Then, from equation (A10), β0(t − 1) = α(t). This implies that from equation
(A21) that(−S1 + Sm)v̄m(t) − β0(t − 1) = 0. As a result χ(t − 1) = 0, which implies
from equation (A30) that α(t − 1) = β0(t − 1) and from equations (A26) and (A28) that
H0(t− 1) = G0(t− 1) = 0. Substituting for H0(t− 1) and G0(t− 1) in equation (A40) and
simplifying then shows:

Λm(t− 1) = S ′
mα(t)/r. (A92)

Finally, substituting this result in equation (A16) proves the result for v̄m(t−1). To complete
the induction, I use equations (A76) and (A16) to solve for v̄m(T + 1); I then substitute the
resulting expression as well as the one for β0(T ) (equation (A71)) in equation (A21) and use
it to show that χ(T ) = 0, which implies G0(T ) = H0(T ) = 0. Substituting into equation
(A30), then shows that α(T ) = β0(T ) = S ′

m(D̄1 − β12Z̄
2)/[1 − (1/r)], which confirms the

result for α(T ). Finally, given the solutions for α(T ) and v̄m(T+1), substitution in equations
(A76) and (A16) confirms the result for v̄m(T ) and completes the induction.

For Am(t) and r∗(t):

The proof is by backwards induction. We know Am(T +1) = Am[1−(1/r)] from equation
(A75). Using this expression, and iterating on equations (A38) and (A36) proves the result
for all times t = 1, . . . T.

For km(t):

The proof is by backwards induction. Equation (A78) establishes that it is true at time
T + 1. Plugging the solution for Km(T + 1) into equation (A39) while using the solutions
for r∗m(t) and the result H0(t− 1) = G0(t− 1) = 0 confirms the result for periods 1, . . . T . �

The next proposition provides information on the value functions of the small investors:
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Proposition 5 For all time periods t = 1, . . . , T , and for each small investor s

a0(t) = 0 (A93)

v̄s(t) = 0 (A94)

As(t) = As[1 − (1/r)] (A95)

r∗s(t) = r − 1 (A96)

ks(t) =

(
r

r − 1

)
× (δr)

1
r−1e−.5

Z̄2′Ω−1
22

Z̄2

r−1 (A97)

Proof:

For a0(t) and v̄s(t): Plugging the solutions for α(t) and G0(t− 1) from proposition 4 into
equation (A43) shows that a0(t) = 0 for all times t. Since G0(t − 1) = 0 for all times t,
it then follows from equation (A53) that if v̄s(t) = 0, then so does v̄s(t − 1). To complete
the induction, note that substituting the solutions for v̄s(T + 1) (equation (A67)) and α(T )
(proposition 4) into equation (A85) confirms the result.

For As(t), r
∗
s(t), and ks(t):

The form of the proof is identical to that given in proposition 4.�

Proposition 6 Assume that for t ≤ T , conditional on state variable Q1(t) the Nash Equi-
librium trades of the large investors exists and is unique. Then for all m = 2, . . . ,M and
t = 1, . . . , T , θm(t) has form:

ϑm(t) ⊗ Ωe, (A98)

where, ϑm(t) is M ×M ; and

Γ(t) = γ(t) ⊗ Ωe, (A99)

where, γ(t) is 1 ×M .

Proof: The proof is by induction. First, assume that the theorem is true at time t. Then,
from equations (A12) and (A11) βQB

(t−1) = BQB
(t−1)⊗Ωe, and βQ(t−1) = BQ(t−1)⊗Ωe,

where BQB
(t− 1) is 1×M − 1 and βQ(t− 1) is 1×M . Applying these substitutions in large

investors reaction functions and then stacking the results reveals that in equation (A23),
π(t − 1) = P(t − 1) ⊗ Ωe and ξ(t − 1) = Z(t − 1) ⊗ Ωe. The assumption that the Nash
Equilibrium trades in each period are unique implies that P(t− 1) is invertible. Solving for
H0(t− 1) and H1(t− 1) then shows that H0(t− 1) = 0 and

H1(t− 1) =

( −S[P (t− 1)−1Z(t− 1)] ⊗ IN1

(P (t− 1)−1Z(t− 1)) ⊗ IN1

)
(A100)

=

(
[−ι′MP(t− 1)−1Z(t− 1)] ⊗ IN1

(P(t− 1)−1Z(t− 1)) ⊗ IN1

)
(A101)

= H1(t− 1) ⊗ IN1 (A102)
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where ιM is a 1×M vector of ones, and H1(t−1) isM×M . Since G1(t−1) = H1(t−1)+IN1M ,
it follows thatG1(t−1) = G1(t−1)⊗IN1 for G1(t−1) = H1(t−1)+IM . From here, substitution
in equation (A31) shows that Γ(t−1) = γ(t−1)⊗Ω and substitution in equation (A41) and
(A17) shows that θm(t − 1) = ϑm(t − 1) ⊗ Ω. To complete the induction, I substitute the
expression for ξm(T + 1) (equation (A77)) into equation (A17) and show that the result is
true for θm(T + 1). Then, following steps similar to those in the first part of the induction,
it is straightforward to show that the result holds for Γ(T ) and θm(T ), which completes the
induction. �.

Corollary 2 For each small investors, and for each time period t = 1, . . . T ,

θs(t) = ϑs ⊗ Ωe,

where ϑs is M ×M .

Proof: Straightforward induction involving application of the results from proposition 6.

D Proofs of Asset Pricing Propositions

Proposition 7 When asset markets are imperfectly competitive as specified in section 2 of
the text, then if market participants initial asset holdings are Q1W , then investors will hold
Q1W forever, and asset prices and expected returns will be the same as when there is perfect
competition.

Proof: When investors risky asset holdings are Q1W , then investors asset holdings are identi-
cal to those associated with a competitive equilibrium and complete markets in which trading
is restricted to the set of market participants that has been modeled. Hence, when trade in
the first set of assets is restricted to be among the market participants, asset holdings are
pareto optimal in all time periods; and investors asset holdings will remain at Q1W because
investors have no basis to trade away from asset holdings that are associated with perfect
risk sharing. Because Q1W is the vector of asset holdings from a competitive equilibrium, the
resulting prices and expected returns which support QW are the same as in the competitive
equilibrium. �

Corollary 3 For all t ≥ T ,

[Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

1W = λ[X1]ΩeX
1.

Proof: Algebra shows that when asset holdings of asset 1 at time t are Q1W , then excess
returns of asset 1 are equal to:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + [Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

1W .
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Proposition 7 shows that when asset holdings are Q1W then the excess returns of asset 1 are
β12Z̄

2 + λ[X1]ΩeX
1. Equating the two expressions confirms the claim in the corollary. �.

Proposition 3: When investors asset holdings of the first asset are not Q1W , then equilib-
rium expected asset returns satisfy a linear factor model in which one factor is the returns
on asset 2, another factor corresponds to perfect risk-sharing, but imperfect diversification
of the idiosyncratic risk of asset 1, and the remaining factors correspond to the deviation of
large investors asset holdings from those associated with the large investors perfectly sharing
the idiosyncratic risk of asset 1.

Proof: Let Q1W denote the vector of asset holdings of asset 1 that is associated with perfect
risk sharing among the investors that trade in asset 1. Manipulation of the equation for
equilibrium prices given in proposition 1, and substitution of G0(t) +G(t)Q(t) for Q(t+ 1)
shows:

P 1(t+1)+D̄1−rP 1(t) = [
1

r
α(t+1)+D̄1−α(t)]−[

1

r
Γ(t+1)G0(t)]+[Γ(t)−1

r
Γ(t+1)G1(t)]Q

1(t)

Plugging in the solution for α(t) = α(t − 1) = [D̄1 − β12Z̄
2]/[1 − (1/r)] shows the first

term in braces on the right hand side of the equation is equal to β12Z̄
2. The second term

in braces is zero since proposition 4 shows that G0(t) = 0. Adding and subtracting Q1W to
Q1(t), the above equation can be rewritten as:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + [Γ(t) − 1

r
Γ(t+ 1)G1(t)](Q(t) −QW ) + [Γ(t) − 1

r
Γ(t+ 1)G1(t)]Q

1W

(A103)

Using the fact that Q1
1 = X1 − SQ1

B, the vector Q1(t) − Q1W can be expressed in terms of
the deviations of large investors asset holdings from pareto optimal asset holdings:

Q1(t) −Q1W =

[
(X1 − SQ1

B) − (X1 − SQ1W
B )

Q1
B −Q1W

B

]

=

[ −S
I

]
(Q1

B −Q1W
B )

Applying the substitution for Q1(t) − Q1W , and the result of corollary 3 in equation
(A103) shows

P 1(t+1)+D̄1−rP 1(t) = β12Z̄
2+λ[X1]ΩeX

1+[Γ(t)− 1

r
Γ(t+1)G1(t)]

( −S
I

)
(Q1

B(t)−Q1W
B )

Finally, applying the algebra used in the derivation of proposition 6 shows

[Γ(t) − 1

r
Γ(t+ 1)G1(t)]

( −S
I

)
= λ(t) ⊗ Ωe (A104)
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where λ(t) is 1 ×M − 1. Making this substitution then shows:

P 1(t+ 1) + D̄1 − rP 1(t) = β12Z̄
2 + λ[X1]ΩeX

1 + [λ(t) ⊗ Ωe](Q
1
B(t) −Q1W

B )

= β12Z̄
2 + λ[X1]ΩeX

1 +
∑M

m=2 λ(m, t)Ωe(Q
1
m(t) −Q1W

m )

(A105)

where λ(m, t) = λ(t)s′m−1. �.

Corollary 1: When asset holdings at time t are not efficient, then asset returns at time
t + τ follow a factor model in which the market portfolio, the portfolio of segment residual
risk, and the deviation of large investors time t asset holdings from efficient asset holdings
are factors.

Proof: Iterating equation (A103), by τ periods shows:

P 1(t+ τ + 1) + D̄1 − rP 1(t+ τ) = β12Z̄
2 + [Γ(t+ τ) − 1

r
Γ(t+ 1 + τ)G1(t+ τ)](Q1(t+ τ) −Q1W )

+ [Γ(t+ τ) − 1

r
Γ(t+ τ + 1)G1(t+ τ)]Q1W .

(A106)

Iterating the equation for equilibrium trades in each period shows

Q1(t+ τ) = [
τ−1∏
j=0

G1(t+ j)]Q1(t).

Additionally, because the investors will not trade away from efficient asset holdings, it also
follows that

[

τ−1∏
j=0

G1(t+ j)]Q1W = Q1W .

Making both of these substitutions in equation (A106) shows that:

P 1(t+ τ + 1) + D̄1 − rP 1(t+ τ) = β12Z̄
2 + λ[X1]ΩeX

1 + [λ(t, τ) ⊗ Ωe](Q
1(t) −Q1W )

= β12Z̄
2 + λ[X1]ΩeX

1 +
M∑

m=2

λm(t, τ)Ωe(Q
1
m(t) −Q1W

m )

where,

λ(t, τ) ⊗ Ωe = [Γ(t+ τ) − 1

r
Γ(t+ 1 + τ)G1(t+ τ)]

τ−1∏
j=0

G1(t+ j),

and λm(t, τ) = λ(t, τ)S ′
m−1 �.

D.1 Competitive Benchmark Model

It is useful to contrast the behavior in the multi-market model with large investors with the
behavior of asset prices and trades in the same model when all investors are price takers and
can trade forever.
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In this infinite period set-up with competitive markets, the equilibrium risk-premium
should be time invariant. Denote this risk premium by ρ, where,

ρ =

(
ρ1

ρ2

)
=

(
Z̄1

Z̄2

)
=

(
P 1(t+ 1) + D̄1 − rP 1(t)
P 2(t+ 1) + D̄2 − rP 2(t)

)
(A107)

Note that Z̄2 is taken as exogenous. The goal is to solve for Z̄1 and P 1 that makes the
prices of the first group of assets (the ones that are illiquid in the imperfect competition
model) consistent with equilibrium in all time periods.

Solving the equation for P 1(t) forward while imposing the transversality condition limt→∞ r−tP 1(t) =
0, shows that

P 1(t) =
D̄1 − ρ1

r − 1

for all time periods t.

Given the hypothesized behavior of prices, it remains to solve for ρ1 and then to show
that the hypothesized behavior of prices is consistent with equilibrium.

The function,

Vm(W, t) = − r

r − 1
(r δ)

−1
r−1 exp−Am(1−(1/r))W− .5Z̄2 ′Ω−1

22 Z̄2

r−1
− .5ρ1′Ω−1

e ρ1

r−1

and the risk premium solution

ρ1 = Z̄1 = β12Z̄
2 + λ[X1]ΩeX

1, (A108)

where,

λ[X1] =
(1 − (1/r))∑M

m=1(1/Am)
(A109)

satisfies the Bellman equation,

Vm(W, t) = max
Cm(t),
Q1

m(t),
Q2

m(t)

−e−AmCm(t) + Et{δVm(W (t+ 1), t+ 1)},

such that,
W (t+ 1) = Q1

m(t)′Z1(t) +Q2
m(t)′Z2(t) + r[W (t) − Cm(t)].

In addition, in the competitive equilibrium, investors optimal choices of Q1
m are constant

through time, and are market clearing for the hypothesized ρ1. Investor m′s competitive
equilibrium holdings of Q1

m is denoted by Q1W
m and is equal to
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Q1W
m =

(1/Am)X1∑M
m=1(1/Am)

, m = 1, . . .M. (A110)

Substituting the hypothesized ρ1 into the expression for equilibrium P 1, it follows that
in a competitive equilibrium, the equilibrium price is given by

P 1(t) =
D̄1 − β12Z̄

2

r − 1
− ΩeX

1

r
∑M

m=1
1

Am

, t = 1, . . .∞ (A111)
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Table 1: IPO Under-Pricing and Under-Performance by Competitiveness: I.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

3543.26 2000 43.94 44.61 -0.67 -0.01 0.13
3543.26 1800 43.93 44.70 -0.78 -0.01 0.13
3543.26 1600 43.92 44.80 -0.88 -0.01 0.13
3543.26 1400 43.91 44.90 -0.99 -0.01 0.13
3543.26 1200 43.90 45.00 -1.10 -0.01 0.13
3543.26 1000 43.89 45.10 -1.21 -0.01 0.13
3543.26 800 43.88 45.20 -1.33 -0.01 0.13
3543.26 600 43.87 45.31 -1.45 -0.01 0.13
3543.26 400 43.85 45.42 -1.56 -0.01 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 54.56
3 Institutional 21.82
4 Institutional 8.73
5 Institutional 3.49
6 Institutional 1.40

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1800 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1600 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1400 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1200 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
1000 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
800 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
600 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
400 -100.00 83.29 -100.00 -100.00 -100.00 -100.00
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Table 2: IPO Under-Pricing and Under-Performance by Competitiveness II.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

2225.00 2000 44.00 44.00 0.00 0.12 0.13
2225.00 1800 44.00 44.00 0.00 0.12 0.13
2225.00 1600 44.00 44.03 -0.03 0.00 0.13
2225.00 1400 44.03 44.18 -0.16 -0.01 0.13
2225.00 1200 44.05 44.34 -0.29 -0.01 0.13
2225.00 1000 44.08 44.50 -0.42 -0.01 0.13
2225.00 800 44.11 44.67 -0.56 -0.01 0.13
2225.00 600 44.14 44.83 -0.70 -0.01 0.13
2225.00 400 44.16 45.00 -0.84 -0.01 0.13
2225.00 200 44.19 45.17 -0.98 -0.01 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 40.00
3 Institutional 12.50
4 Institutional 12.50
5 Institutional 12.50
6 Institutional 12.50

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 -19.50 35.60 35.60 35.60 35.60
1800 -100.00 -19.44 35.55 35.55 35.55 35.55
1600 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
1400 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
1200 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
1000 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
800 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
600 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
400 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
200 -100.00 150.00 -100.00 -100.00 -100.00 -100.00
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Table 3: IPO Under-Pricing and Under-Performance by Market Competitiveness III.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

2100.00 2000 44.00 44.00 0.00 0.11 0.13
2100.00 1800 44.00 44.00 0.00 0.11 0.13
2100.00 1600 44.00 44.00 0.00 0.11 0.13
2100.00 1400 44.00 44.00 0.00 0.11 0.13
2100.00 1200 44.00 44.00 0.00 0.11 0.13
2100.00 1000 44.00 44.00 0.00 0.11 0.13
2100.00 800 44.00 44.00 0.00 0.11 0.13
2100.00 600 44.00 44.00 0.00 0.11 0.13
2100.00 400 44.00 44.00 0.00 0.04 0.13
2100.00 200 44.13 44.36 -0.23 -0.01 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 30.00
3 Institutional 30.00
4 Institutional 10.00
5 Institutional 10.00
6 Institutional 10.00

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000.00 -100.00 0.46 0.46 32.42 32.42 32.42
1800.00 -100.00 0.46 0.46 32.42 32.42 32.42
1600.00 -100.00 -0.13 -0.13 33.58 33.58 33.58
1400.00 -100.00 0.46 0.46 32.42 32.42 32.42
1200.00 -100.00 0.46 0.46 32.42 32.42 32.42
1000.00 -99.99 0.46 0.46 32.42 32.42 32.42
800.00 -100.00 0.46 0.46 32.42 32.42 32.42
600.00 -100.00 0.46 0.46 32.42 32.42 32.42
400.00 -100.00 66.67 66.67 -100.00 -100.00 -100.00
200.00 -100.00 66.67 66.67 -100.00 -100.00 -100.00
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Table 4: IPO Under-Pricing and Under-Performance by Market Competitiveness IV.

A. IPO Under-Pricing and Under-Performance
Herf. Periods Liq P Offer P Open Und Price S-T Return L-T Return

1620.00 2000 44.00 44.00 0.00 0.11 0.13
1620.00 1800 44.00 44.00 0.00 0.11 0.13
1620.00 1600 44.00 44.00 0.00 0.11 0.13
1620.00 1400 44.00 44.00 0.00 0.11 0.13
1620.00 1200 44.00 44.00 0.00 0.11 0.13
1620.00 1000 44.00 44.00 0.00 0.11 0.13
1620.00 800 44.00 44.00 0.00 0.11 0.13
1620.00 600 44.00 44.00 0.00 0.11 0.13
1620.00 400 44.00 44.00 0.00 0.11 0.13
1620.00 200 44.00 44.00 0.00 0.11 0.13

B. Investors Risk Bearing Capacity
Investor Number Type Risk Bearing Capacity

1 Retail 10.00
2 Institutional 18.00
3 Institutional 18.00
4 Institutional 18.00
5 Institutional 18.00
6 Institutional 18.00

C. IPO Allocation Distortions (Percent)
Investor Number

Post-IPO Trading Periods 1 2 3 4 5 6
2000 -100.00 11.11 11.11 11.11 11.11 11.11
1800 -100.00 11.11 11.11 11.11 11.11 11.11
1600 -100.00 11.11 11.11 11.11 11.11 11.11
1400 -100.00 11.11 11.11 11.11 11.11 11.11
1200 -100.00 11.11 11.11 11.11 11.11 11.11
1000 -100.00 11.11 11.11 11.11 11.11 11.11
800 -100.00 11.11 11.11 11.11 11.11 11.11
600 -100.00 11.11 11.11 11.11 11.11 11.11
400 -100.00 11.11 11.11 11.11 11.11 11.11
200 -100.00 11.11 11.11 11.11 11.11 11.11
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