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Abstract 

Data in which each observation is a curve occur in many applied problems. This paper 

explores prediction in time series in which the data is generated by a curve-valued 

autoregression process. It develops a novel technique, the predictive factor decomposition, for 

estimation of the autoregression operator, which is designed to be better suited for prediction 

purposes than the principal components method. The technique is based on finding a reduced-

rank approximation to the autoregression operator that minimizes the norm of the expected 

prediction error.  

Implementing this idea, we relate the operator approximation problem to an eigenvalue 

problem for an operator pencil that is formed by the cross-covariance and covariance 

operators of the autoregressive process. We develop an estimation method based on 

regularization of the empirical counterpart of this eigenvalue problem, and prove that with a 

certain choice of parameters, the method consistently estimates the predictive factors. In 

addition, we show that forecasts based on the estimated predictive factors converge in 

probability to the optimal forecasts.  

The new method is illustrated by an analysis of the dynamics of the term structure of 

Eurodollar futures rates. We restrict the sample to the period of normal growth and find that in 

this subsample the predictive factor technique not only outperforms the principal components 

method but also performs on par with the best available prediction methods. 
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1. INTRODUCTION 

The statistical analysis of problems from different disciplines increasingly relies on 

functional data, where each observation is a curve as opposed to a finite-dimensional vector. 

Numerous examples of functional data analysis can be found in the books by Ramsay and 

Silverman (1997 and 2002). In this paper we study the problem of curve forecasting when the 

data generating process is the autoregressive Hilbertian process of order 1 introduced by Bosq 

(1991): 

(1)    [ ] httht ff ++ += ερ . 

Here for each integer t , tf  is an element of a Hilbert space H , ρ  is a linear bounded operator 

on H , tε  is a strong H-white noise, and h  is the lag length. (Appendix A briefly describes the 

formalism of Hilbert space valued random variables.) Model (1) has been successfully used by 

Cavallini et al (1994), Besse and Cardot (1996), Besse et al (2000), Bernard (1997), and Damon 

and Guillas (2002) for forecasting of electricity consumption, traffic, climatic variations, 

electrocardiograms, and ozone concentration respectively.  

Forecasting in the functional autoregression framework calls for estimation of the infinite-

dimensional operator ρ . Since only a finite number of data points is observed, what is needed is 

a dimension reduction technique. All above-mentioned studies use the first few eigenvectors of 

the sample covariance operator as the basis for the dimension reduction. We argue that this 

method is not well suited for forecasting. The reason is that the largest eigenvectors of the 

covariance operator for tf  may have nothing to do with the best predictors of htf + . For 

example, in economics, while it is true that more than 95% percent of the variation in the nominal 

bonds’ yield curve can be explained by the first three principal components, recent research 

(Cochrane and Piazzesi (2002)) suggests that the best predictors of interest rate movements are 

among those components that do not contribute much to the overall interest rate variation. 

This paper develops a novel technique, the predictive factor decomposition, for the 

estimation of the autoregression operator, which is designed to be better suited for prediction 

purposes than the principal components method. The main idea of the predictive factor method is 

to focus on estimation of those linear functionals of the data that can contribute most to the 

reduction of the expected error of prediction. To describe such functionals, we approximate ρ  by 

a reduced-rank operator so that the norm of the expected error from prediction using the 

approximating operator is minimized. We call the functions forming a particular orthogonal basis 
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in the image of the approximating operator predictive factor loadings and the random coordinates 

(in this basis) of the reduced-rank prediction predictive factors. Relative to the forecasting based 

on the principal components dimension reduction, the predictive factors are less likely to miss 

those linear functionals of the data having much predictive power. This creates a potential for the 

predictive factors to work better than the principal components in finite samples.  

The new technique is an equivalent of the simultaneous linear predictions introduced in the 

static finite-dimensional context by Fortier (1966). For the time series data, the method extends 

the reduced-rank autoregression studied by Reinsel (1983) to the infinite-dimensional case. This 

extension parallels in many respects the extension of the classical canonical correlation analysis 

to the functional data performed by Leurgans, Moyeed and Silverman (1993).  

Our main theoretical results are in Theorems 2, 3, and 4. Theorem 2 relates the predictive 

factors to eigenvectors of a certain generalized eigenvalue problem. Since the Courant-Fischer 

theorem characterizes the eigenvectors as solutions of a minimax problem, the results of Theorem 

2 suggest estimating the predictive factors as solutions of a regularized minimax problem. 

Theorem 3 proves that with a certain choice of regularization the minimax estimates of the 

predictive factors are consistent. To the extent that generalized eigenvalue problems often arise in 

different research areas, this consistency result has an independent interest. Finally, Theorem 4 

shows that the forecasts obtained using the estimated predictive factors are also consistent in the 

sense that they converge to the optimal forecasts. 

As an application, we illustrate the method using ten years of data on Eurodollar futures 

contracts. At each particular point in time, the available contracts have different delivery dates 

ranging from one month to 10 years into the future. Plotting the rate of return on the contracts 

against the corresponding delivery days and interpolating by cubic splines, we obtain the term 

structure of Eurodollar futures rates. Making such plots for every day in our sample we get our 

functional data set. 

The futures contracts are interesting because their prices approximate forward interest rates, 

and therefore provide information about the interest rate term structure. Both economists and 

investors believe that the shape of the term structure reflects the market's future expectation for 

interest rates and the conditions for monetary policy. Accurate forecasting of the term structure is, 

therefore, a subject of tremendous practical and theoretical interest. 

We find that model (1) does not provide us with a structurally stable representation of the 

Eurodollar futures price dynamics for the whole sample. Our preliminary analysis indicates that 

there might be a structural break that occurred around the onset of the recent US recession. 

However, restricting the sample to the period of normal growth and forecasting three months into 
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the future, we find that the predictive factor technique not only outperform the principal 

components method but also perform on par with the best available prediction methods. 

Our empirical analysis contributes to the long-standing problem of whether interest rates are 

predictable. Some research – Duffee (2002) and Ang and Piazzesi (2003) – indicates that it is 

hard to predict better than simply by random walk evolution. This means that today’s interest rate 

is the best predictor for tomorrow’s interest rate, or, for that matter, for the interest rate three 

months from now. The subject, however, is rife with controversy. Cochrane and Piazzesi (2002) 

and Diebold and Li (2003) report, for example, that their methods outperform the random walk 

prediction. We confirm that, for our sample, the Diebold and Li outperforms the random walk and 

find that our predictive factors outperform the random walk for maturities larger than 4 years. 

Meant to be an illustration of the predictive factors technique, our empirical analysis has 

several limitations. We do not attempt to use non-interest rate macroeconomic variables for 

interest rate forecasting. We do not aim to derive implications of interest rate predictability for the 

control of the economy by interest rate targeting. We also do not address the question whether 

financial portfolios that correspond to the predictable combinations of interest rates generate 

excess returns that cannot be explained by traditional risk factors. Overcoming these limitations 

would be a separate research effort.  

The rest of the paper is organized as follows. The principal component method of 

estimation of the functional autoregression operator ρ  is described in section 2. The predictive 

factor analysis is in Section 3. The data are described in Section 4. The results of estimation of the 

predictive factors for the interest rate curve are in Section 5. And Section 6 concludes. Proofs of 

three main theorems are relegated to Appendices B, C, and D, respectively. 

2. THE ESTIMATION PROBLEM 

In this paper, we focus on the prediction of curves )(xft  that belong to the Hilbert space of the 

square-summable functions of ],0[ Xx ∈ . We assume that the curve dynamics is governed by a 

stationary functional autoregression (1). According to Theorem 3.1 of Bosq (2000), the 

stationarity is guaranteed by the following: 

Assumption 1 There exists an integer 1≥j  such that 12 <
L

jρ . 

Here 2L
⋅  denotes the operator norm induced by the 2L  norm. 
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To forecast htf +  we need to estimate ρ . Let 11Γ  be the covariance operator of random 

curve tf  and 21Γ  be the cross-covariance operator for curves tf  and htf + . It is easy to see that 

the following useful operator relationship holds: 

(2)     1112 Γ=Γ ρ . 

To estimate ρ , it is tempting to substitute the covariance and cross-covariance operators 

with their estimates in (2) and solve the resulting equation for ρ . Unfortunately, this will not 

work. Indeed, the empirical covariance and cross-covariance operators are  

,,1:ˆ,,1:ˆ
1

12
1

11 ∑∑
−

=
+

= −
→Γ→Γ

hn

i
hii

n

i
ii fgf

hn
gfgf

n
g  

where >⋅⋅< ,  denotes the scalar product in 2L , and n  is the number of available curves. 

Consequently, the empirical covariance operator 11Γ̂  has a finite rank, and therefore is singular 

and cannot be inverted. Intuitively, the estimation problem that we are trying to handle is ill-

posed: we estimate a functional dependence using a discrete set of data. As a consequence, 

obtaining a consistent estimate of ρ  requires a regularization of the problem.  

One possible regularization method has been suggested by several researchers including 

Ramsay and Silverman (1997) and Bosq (2000), and consists of projecting on principal 

components of 11Γ̂ . The idea is to determine how the operator ρ  acts on those linear 

combinations of tf  that have the largest variation. In more detail, denote the span of nk  

eigenvectors of 11Γ̂  associated with the largest eigenvalues as 
nkH , and let 

nkπ be the orthogonal 

projector on this subspace. Define the regularized covariance and cross-covariance estimates as 

follows: '
1111

ˆ~
nn kk ππ Γ=Γ  and '

1212
ˆ~

nn kk ππ Γ=Γ . These are simply the empirical covariance and 

cross-covariance operators restricted to 
nkH . Then define  

nn kk ππρ 1
1112

' ~~~ −ΓΓ= . 

Note that ρ~  is 1
1112

~~ −ΓΓ  on 
nkH , and zero on the orthogonal complement to 

nkH . The claim is 

that under certain assumptions on the covariance operator, this estimator is consistent. Here is the 

precise result: 

Assumption 2 All eigenvalues of 11Γ  are positive and distinct. 

Assumption 3 The first nk  eigenvalues of 11Γ̂  are almost surely positive for any n . 
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Let 1
211 )( −−= λλa , and { }11

1
1 )(,)(max −

+
−

− −−= iiiiia λλλλ  for 1>i , where iλ  are 

eigenvalues of the covariance operator 11Γ  ordered in the decreasing order. 

Theorem 1 Suppose that assumptions 1, 2, and 3 hold, that process tf  has a finite fourth 

unconditional moment, and that ρ  is Hilbert-Schmidt. If for some 1>β  

( ),)(log
1

4/11∑ −− =
n

n

k

jk nnOa βλ  

then we have: 

0~
2 →−

Ln ρρ  

almost surely. 

Remark: The conditions of the theorem require that the eigenvalues of the covariance matrix do 

not approach zero too fast, and that the eigenvalues be not too close to each other. 

Proof: This is a restatement of Theorem 8.7 in Bosq (2000). 

While consistent, the principal component estimation method may perform very badly in 

small samples if the best predictors of future evolution have little to do with the largest principal 

components. To see why, consider a k -factor version of the Vasicek (1977) model of the term 

structure of interest rates. The term structure of interest rates refers to the relationship between 

bonds of different maturities. It can be used to compute forward interest rates, that is, interest 

rates which are specified now for loans that will occur at a specified future date. A plot of the 

forward rates against the maturities of the corresponding loans is called the forward rate curve. 

Economists agree that the shape of the forward rate curve reflects the market's future expectation 

for interest rates and the conditions for monetary policy, which makes it an interesting object of 

study.  

We chose the Vasicek model as an example with two goals in mind. First, we demonstrate 

that functional autoregression (1) is consistent with a classical and widely used financial model. 

Second, the example prepares a background for the application of the predictive factors technique 

in Section 4.  

Our k -factor version of the Vasicek (1977) model begins by postulating that the short-term 

interest rate (spot rate) process tr  can be represented as a sum of k  independent factors itz  that 

follow an Ornstein-Uhlenbeck process: 

.,...,1,)(

,
1

kidwdtzdz

zr

iiiiii

k

i itt

=+−=

=∑ =

σγα
 



 7

The original model considers the case 1=k . Using an arbitrage argument, Vasicek (1977) shows 

that the entire term structure dynamics is determined by the dynamics of tr , and gives a formula 

for the forward rate curve. 

As explained by Dybvig (1997), the forward rate curve in a multifactor Vasicek model will 

be simply a sum of the forward rate curves implied by the single-factor models based on itz . 

Therefore, for the forward rate curves (net of their means) we have (see formula (29) of Vasicek 

(1977)): 

(3)    ( )( )∑ =
−−−= k

i
x

iitt
iezxf

1
1)( αγ , 

where x  denotes time to maturity of the forward contract. 

Since the discrete time sampling of itz  follows an autoregression: 
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the model falls in the functional autoregression framework. We can, for example, define the 

Hilbert space H  as the space of functions on the positive semi-axis that are square integrable 

with respect to the exponential density xe−  so that the norm of an element of H  has the 

following form: 

∫
∞ −=
0

22 )( dxxfef x . 

The functional autoregression operator ρ  is then equal to the composition of a projection on and 

scaling along the subspace S  spanned by kie xi ,...,1,1 =− −α , and the strong H -white noise tε  

has a singular covariance operator with eigenvectors that span S .  

In this example we will ignore estimation issues and simply assume that we observe all the 

factors and are able to estimate well the parameters of the corresponding Ornstein-Uhlenbeck 

processes. However, to illustrate problems with the principal components method we assume that 

we can use only kr <  factors for prediction and set the rest of the factors equal to their mean. 

Which factors should we use? 
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Let the loss from predicting 1+tf  by 1
ˆ

+tf  be 
2

11
ˆ

++ −= ttt ffEL . Formula (3) implies that 

forecasting of the factor iz  leads to the reduction in tL  equal to the explained portion of variance 

of iz , ( ) ( )ii VarzVar η− , times the squared norm of xie α−−1 . A simple calculation reveals: 

(4)                ( )( )121

22

++
=∆

−

ii

h
ii

t

ie
L

αα
ασ α

. 

Consequently, the optimal choice of the factors to be used for forecasting should be based on the 

ranking of the loss reductions computed in (4). The first factor to be included should correspond 

to the largest value of tL∆ , the second one should correspond to the second largest value of tL∆ , 

and so on. 

For comparison, let us check how the principal components method would rank the factors. 

In this example, 11Γ  acts as follows: 

( ) ( )∑ =
−− −−→Γ k

i
xu

i
ii eugezVarxg

111 1)(,1)(: αα , 

Therefore, eigenvectors corresponding to non-zero eigenvalues of 11Γ  are equal to ,1 xie α−−  

where ki ,...,1=  and the eigenvalues are equal to ( ) 2
1 x

i
iezVar α−−  respectively. The explicit 

formula for the eigenvalues is: 

(5)     ( )( )121

2

++
=

ii

ii
i αα

ασλ . 

Hence, the principal components method chooses the factors according to the ranking induced by 

(5).  

Clearly, the choice of the factors made by the principal components method may be very 

different from the optimal choice based on the ranking of (4). For example, if factor iz  has a 

huge instantaneous variance 2
iσ  and a large mean reversion parameter iα , it may well happen 

that the principal components method would rank iz  first to include, and the optimal method 

would rank it last to include. In such a case, although iz  would explain almost all variation in the 

forward curve, its predictive power would be miniscule because iz  lacks persistence. Factors that 

better predict the curve would be hidden among more distant principal components. 

Note that the optimal choice of factors depends on the horizon h  of our forecasting 

problem. When the horizon goes to infinity, the first factor becomes equal to the most persistent 
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factor. If the most persistent factor has a small instantaneous variance then it is unlikely to be 

captured by a few largest principal components of the curve variation.  

The above example suggests that we might be better off by searching for good predictors 

directly without first projecting a curve on the largest principal components. The next section 

develops a method for this search.  

3. PREDICTIVE FACTORS 
To start with, note that the principal components method is a particular way to approximate a 

full-ranked ρ  by a reduced-rank operator. In general, a rank k  approximation to ρ  has form 

,'
kk BA≈ρ  

where 2: LRA k
k →  and k

k RLB →2' :  are linear operators. We can think about kB  as a 

vector of k  functionals on 2L , which we can represent by the Riesz theorem as k  square 

summable functions )(),...,(1 xbxb k . Similarly we can think about kA  as a vector of k  square 

summable functions )(),...,(1 xaxa k . The operator '
kk BA  acts in the following way: 

   [ ] .)()()()(:
1

' ∑ ∫
=

→
k

i
iikk xadttftbxfBA  

In section 2 we argued that the principal components method would not choose the 

approximation optimally from the forecasting point of view. We would like, therefore, to find an 

kA  and a '
kB  that minimize the mean squared error of the prediction 

(6)    min
2'

1 →−+ tkkt fBAfE , 

subject to the following normalizing constraints: i) elements of the vector kB  are orthogonal in 

the metric 11Γ , that is to say, ijji bb δ=Γ11
' , where δ is the Kronecker delta, and ii) kk AA '  is 

diagonal with non-increasing elements on the diagonal. This particular form of normalization is 

chosen for its analytical convenience.  

Fortier (1966) considers such problem in the static context, when predictors are not the 

lagged values of the forecasted series, and calls the corresponding variables tk fB '  simultaneous 

linear predictions. In what follows, we will call tk fB '  the first k  predictive factors and kA  the 

corresponding predictive factor loadings.  

Similar to principal components, the predictive factors can be defined recursively.  The first 

predictive factor, tfb '1 , and the first predictive factor loading, 1a , correspond to solution of (6) 
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for 1=k . (In what follows, we write gf '  to denote scalar products like ∫
X

dxxgxf
0

)()( .) The 

second predictive factor and factor loading are defined as solving the same problem subject to an 

additional constraint, that 2b  must be orthogonal to 1b  in the metric 11Γ , that is to say, 

0' 1112 =Γ bb . And so on for the third, fourth, etc., factors and factor loadings. 

Let us define an operator 2/1
11

2/1
11 ' ΓΓ=Φ ρρ . We will make the following assumption: 

Assumption 2a All eigenvalues of Φ  are positive and distinct. 

Note that since 1112 Γ=Γ ρ , operator Φ  has an alternative representation, 

2/1
111221

2/1
11

−− ΓΓΓΓ=Φ , reminiscent of the cross-correlation operator 2/12/1 −− ΓΓΓ YYXYXX  playing the 

key role in He et al. (2003) study of the existence of functional canonical correlations for 

functional processes X  and Y . He et al. (2003) argue that a natural condition for the existence 

of the canonical correlations is compactness of the cross-correlation operator and derive 

conditions on X  and Y  under which the operator is well-defined and compact. In our study, the 

functional autoregression relationship between tf  and htf +  insures compactness of Φ  and 

problems analogous to those addressed by He et al. (2003) do not arise. The existence and the 

structure of solution to (5) are described by the following theorem. Its proof is relegated to 

Appendix B. 

Theorem 2 Under assumptions 1 and 2a we have: 

i) For any integer 1≥k , there exist kA  and kB , solving (6). This solution is unique up to 

a simultaneous change in sign of kA  and kB . Vector kB  consists of the first k eigenfunctions of 

111221 Γ−ΓΓ λ , where eigenfunctions arranged in the order of declining eigenvalues. Vector kA  

is equal to kB12Γ , where 12Γ  acts component-wise. 

ii) The thi  eigenvalue of 111221 Γ−ΓΓ λ  is equal to the reduction in the mean squared error 

of forecasting due to the i-th predictive factor.  

iii) If ρ  is compact, 02

' →−
Lkk BAρ  as ∞→k . 

Remark: For kA  and kB  to be well defined for a given k ,  it is enough to require that the first 

k  eigenvalues of Φ  are positive and distinct. 

For illustration, let us return to the example of the multifactor Vasicek model. In this 

example, the cross-covariance operator 12Γ  acts as follows: 
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( ) ( )∑ =
−−

+ −−→Γ k

i
xu

htiit
ii eugezzCovxg

1 ,12 1)(,1,)(: αα . 

The non-zero eigenvalues of 111221 Γ−ΓΓ λ  are equal to  

( )
( )

2,
2

1
, u

it

htiit ie
zVar

zzCov α−+ − ,  

which is exactly equal to the ratio in (4) that optimally ranks the factors. 

The significance of Theorem 2 is twofold. First, it relates the problem of optimal prediction 

to a well studied area of generalized eigenvalue problems. Second, it suggests a method for 

estimation of the optimal predictive factors that proceeds by solving a regularized version of the 

eigenvalue problem. 

It seems natural to estimate kA  and kB  by computing the eigenvectors of 111221
ˆˆˆ Γ−ΓΓ λ  

and using Theorem 2. Unfortunately, similar to the situation with the canonical covariates studied 

by Leurgans, Moyeed and Silverman (1993), such a method of estimation would be inconsistent 

and the corresponding estimators meaningless. That is because the predictive factors are designed 

to extract those linear combinations of the data that have small variance relative to their 

covariance with the next period’s data. Linear combinations with small variance are poorly 

estimated and a seemingly strong covariance (in relative terms) with the next period’s data may 

easily be an artifact of the sample.  

Leurgans, Moyeed and Silverman (1993) deal with this problem of the canonical correlation 

analysis by introducing a penalty for roughness of the estimated canonical covariates. We use the 

same idea to obtain a consistent estimate of the predictive factors.  

Let us denote the j -th eigenvalue and eigenvector of the operator pencils 

( )Iαλλ +Γ−ΓΓΓ−ΓΓ 111221111221 ,  and ( )Iαλ +Γ−ΓΓ 111221
ˆˆˆ  as jjj αα λλλ ˆ,,  and jjj bbb αα

ˆ,,  

respectively. Here 0>α  is a regularization parameter.  We assume that the eigenvectors are 

normalized so that  

( )
( ) jiij

jiij

jiij

bIb

bIb

bb

δα

δα
δ

αα

αα

=+Γ

=+Γ

=Γ

ˆˆ'ˆand

,'

,'

11

11

11

 

where jiδ  is the Kronecker delta.  

Further, for any integer 1≥j , define  

bb
bb

jbbspbj '
'min 11

),...,( 1

Γ
=

∈
µ , 
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and  
1

11 )(8 −
+−= iiig λλλ . 

In Appendix C we prove the following theorem: 

Theorem 3 Suppose that assumptions 1 and 2a hold and that process tf  has bounded support.  

If  nα  approaches zero sufficiently slowly, so that 0→nα  and ( ) ∞→nnn α2/1log/  as 

∞→n , and if nk  increases sufficiently slowly, so that ∞→nk  and 01 →−
nkn µα  as ∞→n , 

then  

i) 0ˆsup →−
≤

jj
kj

n
n

λλα  almost surely as ∞→n . 

If in addition nk  is chosen so that  

( ) 01log 1

1

1
2/1

1 →+









+






 ∏

−

=

−−
n

nn

k

i
ikknn gg

n
n µαα , 

 then 

ii) ( ) ( ) 0ˆ'ˆsup 11 →−Γ−
≤

jjjj
kj

bbbb
nn

n

αα   

almost surely as ∞→n . 

Remarks:  

1) When tf  does not have a bounded support but its fourth moment is finite, the theorem remains 

true if ( ) 2/1log/ nn  is replaced by ( ) ( ) 4/1log/log nnn β  for some 4/1−<β .  

2) Of course, what can be consistently estimated is not the eigenvector itself, but the subspace 

generated by this eigenvector. For this reason, statement ii) holds for a particular choice of the 

sign of the eigenvectors jbα̂  and jb .  

3) Accurate estimation of a fixed finite number of the predictive factors seems to have more 

practical relevance than the ability to estimate well ever-increasing number of factors. Clearly, 

Theorem 3 can be relaxed to have the following form: 
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Corollary 1 Suppose that assumptions 1 and 2a hold and that process tf  has bounded support.  

If ( ) ∞→nnn α2/1log/  and 0→nα  as ∞→n , then for any integer 1≥k  

i) 0ˆ →− kkn
λλα  almost surely as ∞→n . 

ii) ( ) ( ) 0ˆ'ˆ
11 →−Γ− kkkk bbbb

nn αα  almost surely as ∞→n . 

Corollary 2 Under assumptions of Corollary 1, estimates tj fb 'α̂  and jbα̂
ˆ

12Γ  are consistent 

estimates of the predictive factor tj fb '  and the predictive factor loadings jb12Γ . 

Proof is in Appendix C.  

In sum, Theorem 2 and its two corollaries say that by maximizing a regularized Rayleigh 

criterion we can consistently estimate the factors, the corresponding factor loadings, and the 

reduction in the mean squared error achievable by using the factors. Hence, the concept of 

predictive factors can be effectively used for data exploration purposes and may be a better tool 

for the finite-dimensional approximation than the principal components.   

Moreover, when the number of the observed curves and the number of the estimated 

predictive factors simultaneously go to infinity, the predictive power of the autoregressive 

operator estimate converges to the theoretical maximum achieved by the true autoregressive 

operator. We formulate this precisely in Theorem 4. Suppose that tf  is chosen at random from its 

unconditional distribution and the task is to forecast htf + , given tf . The best, but infeasible, 

forecast is tfρ . We approximate this forecast by tfBA 'ˆˆ , where ]ˆ,...,ˆ[ˆ
1 nkbbB αα=  and 

BA ˆˆˆ
12Γ= . 

Theorem 4 Suppose that assumptions 1 and 2a hold, the process tf  has bounded support, and 

ρ  is compact . If   ( ) ∞→nnn α2/1log/ , 0→nα , and nk  increases to infinity slowly, so that  

( ) ( )( ) 0log/1 12/11
1

1

→++ −−−
−

=
∏ n

n

n knn

k

i
ikn nnggk µαα  as ∞→n , 

 then for any 0>ε , 

( ) 0ˆ,ˆ|ˆˆPr →>− BAfBAf tt ερ  

almost surely as ∞→n . 

Proof is in Appendix D. 

The need for regularization of the Rayleigh criterion makes estimation of the predictive 

factors a harder problem than estimation of the principal components. Consequently, despite the 
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theoretical appeal of the predictive factors technique, its performance should be judged on the 

basis of empirical investigations. It could conceivably happen that with a realistic amount of data 

theoretical advantages are washed out by estimation problems. In the rest of the paper, we use the 

data on the term structure of Eurodollar futures prices to illustrate the predictive factors method 

and to compare its predictive performance with several alternatives.  

4. EMPIRICAL APPLICATION 
4.1 Description of Data 

We use daily settlement data on Eurodollar futures contracts that we obtained from the 

Commodity Research Bureau. Each Eurodollar futures contract is an obligation to deliver a 3-

month deposit of $1,000,000 to a bank account outside of the United States at a specified time. 

The available contracts have monthly delivery dates for the first six months after the current date, 

and then the delivery dates become quarterly up to 10 years into the future.  

The available data start in 1982; however, we use only the data starting in 1994 when the 

trading in the 10-year contract appeared. We interpolated available data points by cubic splines to 

obtain smooth contract rate curves. To speed up the estimation, we restricted each curve to points 

that are 30 days apart. (This is essentially equivalent to approximating the “true” data by step 

functions.) We also removed datapoints with fewer than 90 or more than 3,480 days to 

expirations. That left us with 114 points per curve and 2,507 valid dates. Figure 1 illustrates the 

evolution of Eurodollar futures rate curves. 

The futures contracts are interesting because they provide information about interest forward 

rates. The main difference of the futures contract from the forward contract is that it settles during 

the entire life of the contract, while the forward contract settles only on the settlement date. This 

difference and variability of short-term interest rates make the values of the forward and futures 

contracts different. While the difference is small for short maturities, it can be significant for long 

maturities. 

4.2 Three-Months-Ahead Prediction of Futures Rates 
We first investigate whether the data can be sensibly represented by the functional 

autoregression model (1) with lag length h  equal to three months. To this goal, we estimate the 

autoregressive operator ρ  on a rolling basis using daily data. We start from the subsample that 

extends from 3-Jan-94 to 2-Jan-96 and increase this subsample to the full sample. We restrict the 

estimates to the subspace spanned by the basis of the three principal components of the sample 

covariance operator. In this basis, our estimate of the autoregressive operator ρ  can be 

represented by a 3 by 3 matrix. Figure 2 presents the results of the estimation as the amount of 

data increases. 
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Figure 1 Eurodollar Futures Rates Evolution 

 
Note: The time to maturity (in months) is on the left axis.  

Figure 2 Evolution of Matrix Entries of the Estimate of Operator ρ  
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Note: The operator ρ  is estimated using the daily data on Eurodollar futures rates. The estimation is on a 

rolling basis so it uses all the information available at the time of estimation. 

The dashed vertical line on the chart corresponds to the NBER’s beginning date of the last 

US recession. The coefficients’ estimates are visibly unstable between the normal growth and the 
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recession period. In the rest of the paper, therefore, we restrict our attention to the subsample 

corresponding to the normal growth period from 3-Jan-94 to 28-Feb-01. We hope that for this 

period, the functional autoregression describes the term structure dynamics reasonably well.  

4.3 Comparison of Predictive Factors with Other Methods 
Using this subsample, we compare the predictive performance of our method with four 

different methods. The first one is the same functional autoregression but estimated using the 

principal components dimension reduction technique as discussed in Section 2. The second 

method is the random walk. The third method is the mean forecast, when the term structure three 

months ahead is predicted to be equal to the average term structure so far. Finally, we consider 

the Diebold-Li forecasting procedure.  

Diebold and Li’s (2003) procedure consists of the following steps. First, we regress the term 

structure on three deterministic curves, the components of the Nelson and Siegel (1987) forward 

rate curve:  
T

t
T

ttt TeeTf λλ λβββ −− ++= 321)( . 

(We fix parameter λ  so it does not depend on time, as Diebold and Li do.) This regression is run 

for each day in a subsample. Then, the time series for the coefficients of the regression are 

modeled as three separate autoregressive processes of order 1 (each of the current coefficients is 

regressed on the corresponding coefficient from three months before). A three-months-ahead 

forecast of the coefficients is made, and the corresponding Nelson-Siegel forward curve is taken 

as the three-months-ahead forecast of the term structure. 

Before making predictions we have to choose the value of the regularization parameter α  

and the number of the predictive factors PFN  for the predictive factor method, the number of the 

principal components PCN  for the principal components method, and the parameter λ  for the 

Diebold-Li method. We used the following cross-validation procedure to optimize our choice of 

these parameters. The first half of the subsample, that is the period from 3-Jan-94 to 25-Jul-97, 

was considered as a learning subset. The optimal parameter values, α =0.73, PFN =3, PCN =2, 

λ =0.0147, minimized the mean squared error of three months ahead pseudo-out-of-sample 

prediction for the next year, from 28-Jul-97 to 28-Jul-98.  

Table 1 shows the first 5 eigenvalues of the operator pencil ( )I73.0ˆˆˆ
111221 +Γ−ΓΓ λ , where 

the sample covariance and cross-covariance operators correspond to the entire normal growth 

subsample. Recall that eigenvalues of the pencil can be interpreted as estimates of the reductions 

in the mean squared error of forecasting due to the corresponding predictive factors. We see that 

the error reduction due to the first predictive factor is much larger than the reductions 
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corresponding to the other factors. The contribution of the fourth factor is essentially zero which 

agrees well with our cross-validation choice PFN =3. 

Table 1 Eigenvalues of ( )I73.0ˆˆˆ
111221 +Γ−ΓΓ λ . 

Eigenvalue 
1,73.0λ̂  2,73.0λ̂  3,73.0λ̂  4,73.0λ̂  5,73.0λ̂  

 37.12 0.93 0.04 0.00 0.00 

 

Figure 3 shows the estimate of the first predictive factor weight 1b  when no regularization 

is performed, 0=α . As expected, the non-regularized estimate makes no sense. 

Figure 3 Weights of the First Predictive Factor, 0=α . 
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Figure 4 shows the regularized estimates of the weights of the first three predictive factors 

and the corresponding factor loadings, that is to say, we show functions ib ,73.0
ˆ , 3,2,1=i and 

ia ,73.0ˆ , 3,2,1=i  respectively, in the terminology of Section 3. (The entire normal growth 

subsample is used for these estimates.) The shapes of the predictive factor loadings roughly 

correspond to the “level”, “slope”, and “curvature” shapes of the factor loadings typically found 

in the literature using the classical factor analysis to study the term structure (see for example 

Bliss (1997)). The weights of the predictive factors correspond to the functions representing the 

linear functionals having the best predictive power for the entire curve. We see that the first 

predictive factor is essentially a linear combination of the futures contracts rates with most of the 

weights close to zero but relatively large weights on the rates for the contracts of short maturities. 

This fact is not surprising as the short-term interest rates are typically associated with the 

monetary policy stance, which strongly affects rates on the contracts of all maturities. 
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Figure 4 Weights and Loadings of the First Three Predictive Factors 
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To assess the predictive performance of the alternative methods considered above, we run 

the following experiment. We first estimate the functional autoregression and the Diebold-Li 

model (using the optimized parameter values) on the pooled learning and cross-validation sample, 

from 3-Jan-94 to 28-Jul-98, and make forecasts of the term structure three months ahead. The 

next step is to extend the first subsample to include one more day, re-estimate the models, and 

forecast the term structure three months ahead. We continue adding data to the first sample until 

we add the day three months before the end of the normal growth subsample. After that, our 

forecasting would correspond to the term structures beyond the normal growth period, and 

therefore we stop the exercise.  

Our measure of the predictive performance is the root mean squared error based on the 

difference between the actual term structure and the forecasted one. This measure will be 

different for different maturities. Therefore, in figure 5 we report whole curves of the root mean 

squared errors of the alternative methods considered. 
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Figure 5 Predictive Performances of Different Forecasting Methods 
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The thick dashed line on the above graph corresponds to the Diebold and Li method. It 

outperforms all the other methods. The thick solid line is for our predictive factors method. It is 

the second best for the contracts of maturities longer than 4 years and the third best, losing to the 

random walk (thick dotted line), for the shorter maturities. The thin solid and dashed lines 

correspond to the principal components method with 2=PCN  and 3=PCN  respectively. We 

include the case 3=PCN  even though our optimized parameter is 2=PCN  to be sure that the 

poor performance of the principal components method relative to the predictive factors method is 

not caused by the fact that PFPC NN < . For our sample, three principal components work worse 

than 2 principal components in accordance to the cross-validation result. Note that the root mean 

squared error forecast error for the principal components method is uniformly worse than that for 

the predictive factor method. We do not report the results for the mean prediction method because 

it worked much worse than the rest of the methods. 

5. CONCLUSION 
We have shown that prediction of function-valued autoregressive processes can benefit from 

a novel dimension-reduction technique, the predictive factor decomposition. The technique 

differs from the usual principal components method by focusing on the estimation of those linear 
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combinations of variables that matter most for the prediction, as opposed to those that matter 

most for describing the variance. It turns out that the predictive factors can be consistently 

estimated using a regularization of a generalized eigenvalue problem. To the extent that such 

problems often arise in different research areas, our theoretical results on consistency of the 

estimation procedure have an independent interest. 

In an empirical illustration we applied the new method to the interest rate curve dynamics. 

The results demonstrate that the new method is easy to estimate numerically and performs 

reasonably well. The predictive factors method not only outperforms the principal components 

method but also performs on par with the best of the other prediction methods. 

The possible direction for further developing the new method is to investigate whether it can 

help in making inferences about the autoregressive operator. 

APPENDIX A 

Consider an abstract real Hilbert space H . Let function nf  map a probability space (Ω,A,P) to H . 

We call this function an H-valued random variable if the scalar product nfg,  is a standard random 

variable for every g  from H . The definitions that follow are slight modifications of those in Chapters 2 

and 3 of Bosq (2000). 

Definition 1. If ∞<fE , then there exists an element of H , denoted as Ef  and called the 

expectation of f , such that  

HgEfgfgE ∈= any for ,,, . 

Definition 2. Let f  be an H-valued random variable, such that ∞<2fE  and 0=Ef . The 

covariance operator of f  is the bounded linear operator on H , defined by 

[ ] HgffgEgC f ∈= ,,)( . 

If 0≠Ef , one sets Efff CC −= . 

Definition 3. Let 1f  and 2f  be two H-valued random variables, such that 

∞<∞< 2
2

2
1 , fEfE  and 021 == EfEf . Then the cross-covariance operators of 1f  and 2f  are 

bounded linear operators on H  defined by 

[ ]
[ ] .,,)(

and,,,)(

12,

21,

12

21

HgffgEgC

HgffgEgC

ff

ff

∈=

∈=
 

If 01 ≠Ef  or 02 ≠Ef , one sets  



 21

.

and,

112212

221121

,,

,,

EffEffff

EffEffff

CC

CC

−−

−−

=

=
 

Definition 4. A sequence { }Znn ∈,η  of H-valued random variables is said to be H-white noise if 

1) 
n

CEE nn ηηση ;0;0 22 =∞<=<  do not depend on n , and 

2) nη  is orthogonal to mη , where mnZmn ≠∈ ,, ; that is, 

{ } .,any for ,0,, HyxyxE mn ∈=ηη  

{ }Znn ∈,η  is said to be a strong H-white noise if it satisfies 1), and 

2’) { }Znn ∈,η  is a sequence of i.i.d. H-valued random variables. 

APPENDIX B 

Recall that 2/1
11

2/1
11 ' ΓΓ=Φ ρρ . We first prove the following Lemma: 

Lemma 1 If Assumptions 1 and 2a hold, then iλ  is an eigenvalue of the operator Φ  if and only if it 

is an eigenvalue of the pencil 111221 Γ−ΓΓ λ . The corresponding eigenvectors of Φ  and 111221 Γ−ΓΓ λ , 

ix  and ib   respectively, normalized so that 1=ix  and 12/1
11 =Γ ib , are unique up to a change in sign 

and related by the formula ii bx 2/1
11Γ= . 

Proof: Suppose that iλ  is an eigenvalue of Φ .  Assumption 2a guarantees that the corresponding 

normalized eigenvector ix  is unique and satisfies equation iii xx 2/1
11

2/1
11

1 ' ΓΓ= − ρρλ  . Using relationship 

1112 Γ=Γ ρ , it is straightforward to check that ii x2/1
11

1 ' Γ− ρρλ  is an eigenvector of 111221 Γ−ΓΓ λ  

associated with eigenvalue iλ . Now let iλ  be an eigenvalue of 111221 Γ−ΓΓ λ , and ib  a corresponding 

normalized eigenvector. We have ( ) 02/1
11

2/1
11

2/1
11 =Γ−ΦΓΓ iii bb λ . Assumption 2a implies that 

Ker 02/1
11 =Γ , and , therefore, 02/1

11
2/1

11 =Γ−ΦΓ iii bb λ , which proves that iλ  is an eigenvalue of Φ , 

and ii bx 2/1
11Γ=  is the corresponding normalized eigenvector. Since ix  is unique and Ker 02/1

11 =Γ , the 

eigenvector ib  is unique.□ 

Proof of Theorem 2:  Transform the objective function in problem (6) as: 

( )
( ) ( ) ( )
( ) ( ) ( ),''2

'''
'''''

2111

122111

11122111
2

1

AAtrABtrtr
AAtrBAABtrtr

BAABBAABtrfABfE tt

+Γ−Γ=
+Γ+Γ−Γ=
Γ+Γ−Γ−Γ=−+

 

where the first equality follows from the fact that the expectation of the squared norm of an 2L -valued 

random variable is equal to the trace of its covariance operator (see Bosq (2000) p.37), and the second 
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equality follows from the constraint kIBB =Γ11'  imposed on B . (We omit subscript k  on kA  and kB  

whenever convenient to make our notations more concise.) To see that the third equality holds, write 

( ) ∑∞

=
=

1
'''

i ii eAAeAAtr  and ( ) ∑∞

=
Γ=Γ

1 2121 '''
i ii eABeABtr , where { }ie  is an arbitrary basis in 

2L . Then use the fact that A  and 21'ΓB  are finite-dimensional vectors of functions from 2L , and apply 

Parceval’s equality.  

We will first minimize the transformed objective function with respect to A , taking B  as given. A 

necessary condition for the optimal A  to exist is that the Fréchet derivative of the objective function with 

respect to A  is equal to zero (see, for example, Proposition 2 in §7.2 and Theorem 1 in §7.4 of Luenberger 

(1969)). That is, 022 12 =+Γ− AB  and we have BA 12Γ=  in accordance with Statement i) of the 

theorem. 

Substituting BA 12Γ=  into the objective function, we get 

( ) ( ) ( ) ( )BBtrtrBBtrtrfABfE tt
2/1

11
2/1

1111122111
2

1 ''' ΦΓΓ−Γ=ΓΓ−Γ=−+ . 

We can, therefore, reformulate Problem (6) as ( ) max' 2/1
11

2/1
11 →ΦΓΓ BBtr , subject to constraint 

kIBB =ΓΓ 2/1
11

2/1
11'  and a requirement that BB 2/1

11
2/1

11' ΦΓΓ  is a diagonal matrix with non-increasing 

elements along the diagonal.   

Assumption 2a implies that there exists a unique solution, X , to the related problem:  

(B1)    ( ) max' →ΦXXtr   

subject to kIXX ='  and a requirement that XX Φ'  is a diagonal matrix with non-increasing elements 

along the diagonal (see the proof of Theorem III.5.1 in Gohberg and Gohberg (1981)). The maximum is 

equal to the sum of the k  largest eigenvalues of Φ , and the solution, X , consists of the corresponding 

normalized eigenvectors. By Lemma 1, XB 2/1
11
−Γ=  is well defined and consists of the first k  

eigenvectors of 111221 Γ−ΓΓ λ . It is obviously a unique solution to (5), for if B~  is another solution, then 

( ) 0~2/1
11 =−Γ BB , which implies BB ~=  because there are no zero eigenvalues of Φ . 

Statement ii) of the theorem follows from the facts that, by Lemma 1, the eigenvalues of Φ  and 

111221 Γ−ΓΓ λ  coincide, the maxima in (B1) and (5) are equal, and the maximum in (B1) is equal to the 

sum of the k  largest eigenvalues of Φ . 

To prove iii) note that 22/1
11Im L=Γ  because Ker 02/1

11 =Γ , and therefore: 

(B2)  ( ) ( ) xBAzBABA kk
x

kk
z

kk
2/1

11
'

1

'

1

'

2/1
11

supsup Γ−=−=−
≤Γ≤

ρρρ  
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Let ix  be the i -th normalized eigenvector of Φ , and let 2/1
11

'2/1
11 ΓΓ= kkk BBπ . Note that { }ix  forms an 

orthonormal basis in 2L  and i
k

i ik xx∑ =
⋅=

1
,π  by Lemma 1. We can write: 

(B3)    

.2/1
11

'

2/1
11

'
12

2/1
11

'2/1
11

2/1
11

2/1
11

Γ=

ΓΓ=

ΓΓΓ=Γ

kk

kk

kkk

BA

BB

BBρπρ
 

Substituting (B3) into (B2), we have:  

( )xIBA k
x

kk πρρ −Γ=−
≤Γ

2/1
11

1

'

2/1
11

sup . 

Suppose that '
kk BA−ρ  does not converge to zero. Then there exists a sequence { }kz  such that 

{ }kz2/1
11Γ  is bounded and ( ) kk zI πρ −Γ 2/1

11  does not converge to zero. Without loss of generality, we 

can assume that  

(B4)    ( ) 02/1
11 >>−Γ επρ kk zI  

for any k.  

Note that since, by assumption, ρ  is a compact operator and { }kz2/1
11Γ  is a bounded sequence, the 

sequence { }kz2/1
11Γρ  must have a converging subsequence. Without loss of generality, let us assume that  

(B5)     zzk →Γ 2/1
11ρ   

for some 2Lz ∈ . 

Since ix  are the eigenvectors of 2/1
11

2/1
11 ' ΓΓ=Φ ρρ , the compact operator 2/1

11Γρ  has a 

representation ii ii yx∑ ∞

=
⋅=Γ

1
2/12/1

11 ,λρ , where { }iy  is an orthonormal basis in 2L . Let us 

denote ki zx ,  as ikα  and zyi ,  as iβ . Then ( ) ∑
∞

+=

=−
1ki

iikkk xzI απ , and we can rewrite (B4) and 

(B5) as: 

(B6)    ( ) εαλπρ >=−Γ ∑
∞

+= 1

2/12/1
11

ki
iikikk yzI  

and 

(B7)    ∑∑ ∞

=

∞

=
→

11
2/1

i iii iiki yy βαλ . 

 

Now let 1K  be so large that 2/
11

2/1 εβλα <−∑∑ ∞

=

∞

= i iii iiik yy  for any 1Kk > . Since { }iy  

is an orthonormal basis in 2L ,  
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∑∑∑∑ ∞

=

∞

=>>
−≤−

11
2/12/1

i iii iiikki iiki iiik yyyy βλαβλα  

and hence 

(B8)    2/2/1 εβλα <−∑∑ >> ki iiki iiik yy  

for any 1Kk > . 

Let 2K  be so large that  

(B9)     2/εβ <∑ >ki ii y   

for any 2Kk > .  

Combining (B8) and (B9), we have 

εββλα

ββλαλα

<+−≤

+−=

∑∑∑
∑∑∑∑

>>>

>>>>

ki iiki iiki iiik

ki iiki iiki iiikiiki ik

yyy

yyyy
2/1

2/12/1

 

for any { }21 ,max KKk > .  But this contradicts (B6). Hence our assumption that '
kk BA−ρ  does not 

converge to zero is wrong and Statement iii) of the theorem is established.□ 

APPENDIX C 
Proof of Theorem 3: We first prove an extension of Lemma 1 in Leurgans et al. (1993). Let us define 

1111
)(

1
ˆ Γ−Γ=∆ n , 1212

)(
2

ˆ Γ−Γ=∆ n , 12211221
)(

3
ˆˆ ΓΓ−ΓΓ=∆ n , and ( ))(

3,2,1
max n

iin ∆=
=

δ . We have: 

Lemma 2 If Assumption 1 holds and tf  has bounded support, then ( )( )2/1/log nnn Ο=δ  almost 

surely. 

Proof: Corollary 4.1 and Theorem 4.8 of Bosq (2000) imply that for 1=i  and 2=i , 

( )( )2/1)( /log nnn
i Ο=∆  almost surely. We can also write 

( )( )2/1

121221122121

122112211221122112211221

/log

ˆˆˆ

ˆˆˆˆˆˆ

nnΟ=

Γ−ΓΓ+ΓΓ−Γ≤

ΓΓ−ΓΓ+ΓΓ−ΓΓ≤ΓΓ−ΓΓ

  

almost surely, which completes the proof.□ 

Consider the Rayleigh functionals: 

bb
bbb

11

1221

'
')(

Γ
ΓΓ

=γ , ( )bIb
bbb

α
γα +Γ

ΓΓ
=

11

1221

'
')( , and  ( )bIb

bb
b

α
γα +Γ

ΓΓ
=

11

1221

ˆ'

ˆˆ'
)(ˆ  
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for operator pencils 111221 Γ−ΓΓ λ , ( )Iαλ +Γ−ΓΓ 111221 , and  ( )Iαλ +Γ−ΓΓ 111221
ˆˆˆ , respectively. 

According to the maxmin principle (see Eschwé and Langer (2004)), the eigenvalues of the above operator 

pencils solves the following problems: 

),(minmax),(minmax
dimdim

bb
MbjMjMbjMj αα γλγλ

∈=∈=
==  and ).(ˆminmaxˆ

dim
b

MbjMj αα γλ
∈=

=  

The proof of the consistency of the eigenvalue estimates consists of two parts. The first is to prove 

that the estimates almost surely converge to eigenvalues of the regularized problem. The second part is to 

prove that the eigenvalues of the regularized and the initial problem converge. The proof of the first part of 

the plan is based on the following proposition about the Rayleigh functionals: 

Proposition 1.  Suppose that 0→nα  and ( ) ∞→nnn α2/1log/  as ∞→n . Then 

( ) 0)1()()(ˆsup 11
1

2
→++≤− −−

∈
nnnn

Lb
obb

nn
δαδαλγγ αα  

almost surely as ∞→n . 

Proposition 1 says that almost surely the estimate of the regularized Rayleigh functional uniformly 

converges to the true value of the regularized Rayleigh functional. The proof is based on Lemma 2. Since it 

is essentially the same as that of Proposition 3 in Leurgans et al. (1993), we omit it here.  

Proposition 1 implies that  

(C1)  
..0)(ˆ)(sup

)(ˆminmax)(minmaxsupˆsup

2

dimdim

sabb

bb

Lb

MbjMMbjMkj
jj

kj nn

→−≤

−=−

∈

∈=∈=≤≤

αα

αααα

γγ

γγλλ
 

So the convergence of the estimates to the eigenvalues of the regularized problem is established.  

Next, we prove the convergence of the eigenvalues of the regularized problem to the eigenvalues of 

the non-regularized problem. To this end note that since )()( bb αγγ ≥  for any 2Lb ∈ , we have:  

)(minmax)(minmax
dimdim

bb
MbjMjMbjMj αα γλγλ

∈=∈=
=≥= .  

Indeed, if it were not the case then for a certain j -dimensional subspace M we would have  

  
),(min

)(min

b

b

Mb

Mbjj

γ

γλλ αα

∈

∈

≤

=<
 

and this would contradict the maxmin property of jλ . On the other hand, if we take the subspace spanned 

by eigenvalues of the pencil 111221 Γ−ΓΓ λ , we have the following inequality: 



 26

( )

( )
( )

),1/(

'
'/

'
'min

)(min

1
11

11

11

1221

,...,

,...,

1

1

−

∈

∈

+≥

Γ
+Γ

Γ
ΓΓ

=

≥

jj

bbspb

bbspbj

bb
bIb

bb
bb

b

j

j

αµλ

α

γλ αα

 

where 
bb

bb
jbbspbj '

'min 11

),...,( 1

Γ
=

∈
µ . Therefore, 

(C2)  
( )

( ) 0)1/(11

)1/(supsup

1
1

1

→+−<

+−≤−

−

−

≤≤

n

nn

k

jjj
kj

jj
kj

αµλ

αµλλλλ α
,  

where the last step is by the assumption of convergence of 1−
nkαµ  to zero. This establishes convergence of 

the eigenvalues of the regularized and non-regularized problems. 

Joining the two parts of the proof together, we have  

(C3)  0ˆsupsupˆsup →−+−≤−
≤≤≤

jj
kj

jj
kj

jj
kj nnn

αααα λλλλλλ  a.s., 

which proves Part i) of the theorem. 

Let us now turn to Part ii) of the theorem. Denote ( ) ( )jjjj bbbb −Γ− αα
ˆ'ˆ

11  as jd  and jj bb ααα ˆ'ˆ  as 

jm . Below, we are going to find an upper bound on ( )jj
kj

md
n

+
≤

sup  and show that this bound tends to 

zero almost surely. This implies that 
nkj

jd
≤

sup  tends to 0 and therefore Part ii) of the theorem. 

Consider the least squares regression of jbα̂  on eigenvectors on the non-regularized problem 

jbb ,...,1  in metric 11Γ : 

ji
j

i jij sbb +=∑ =1
ˆ βα .  

Here for any ji ≤ ,  

,'ˆ
'ˆ)'(

11

11
1

11

ij

ijjjji

bb

bbBB

Γ=

ΓΓ= −

α

αβ
 

where jB  is the matrix with columns jbb ,...,1  and the last equality follows because of the normalization 

of jbb ,...,1 . The residuals js  are orthogonal to ib  in metric 11Γ  and have the following properties. 

First, 

(C4)  0'' 111221
1 =Γ=ΓΓ−

ijiji bsbsλ .  

Second, 
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( ) ( ) ( )
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Subtracting the normalization equation ( ) 1ˆˆ'ˆ0 11 −+Γ= jj bIb αα α , we get: 

(C5)  ( ) 1...ˆˆ'ˆ' 22
1111111 +−−−−Γ−Γ=Γ jjjjajajjj mbbss ββ , 

where jjj bbm ααα ˆ'ˆ= . 

Another expression for jj ss 11'Γ  follows from the following equation: 

( ) ( )
( ) ( ) ,12ˆ'ˆ

ˆ'2ˆ'ˆˆ'ˆ
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11111111

−+−Γ−=
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which implies that: 

(C6)   22
1,

2
111 )1(...' jjjjjjjj dss βββ −−−−−=Γ − , 

where ( ) ( )jjjjj bbbbd −Γ−= αα
ˆ'ˆ

11 . 

Subtracting (C5) from (C6), rearranging, and using the fact that  

( )
( )

,
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we obtain: 
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From this expression it is clear that we can show that jj md +  is small if we show that jjβ  is close to 1. 

The following is devoted to the proof of this property of jjβ . 

We can write an expression for the norm of the residual in the metric given by 1221ΓΓ : 
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where the second equality use (C4), and the fourth holds by subtraction of the normalization equality 

0ˆˆˆˆˆ
1221 =−ΓΓ jjj bb ααα λ . 

We also have: 

(C9)   0'' 1111221 ≤Γ−ΓΓ + jjjjj ssss λ .  

This follows because js  is orthogonal in metric 11Γ  to the first j eigenvectors of pencil 111221 Γ−ΓΓ λ  

and because the )1( +j st eigenvalue of the pencil can be characterized by the following rule: 

( ) ).(max
,...,1

111

b
jbbspbj γλ

Γ⊥+ =  Consequently, 

.
'

'
1

11

1221
+≤

Γ
ΓΓ

j
jj

jj

ss
ss

λ  

Expanding (C9) using (C5) and (C8) we get: 
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Or, after a rearrangement: 
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Recalling that  

( )
( ) ,ˆˆˆ'ˆ

,ˆˆ'ˆ

1
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1
1111

njj

njj

bb

bb

δα
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αα

αα

−

−

≤ΓΓ−ΓΓ

≤Γ−Γ
 

that 0>jm , and that, from (C3), (C2), (C1), and Proposition 1: 

( ) )()1()(ˆ 11
1

11
nnjjjjj oo δαδαλαµαµλλλ α

−−−− ++++≤− , 

we have, for all n  large enough: 

(C10) ( ) ( )2
1

1

1
11

11
1

1
2 )(2)3(1 jiji

j

ijjnjjjjj βλλαµλδαλλλλβ +
−

=
−−

+
−

+ −++++−≤− ∑ . 

We would like to write this inequality with jjβ−1  instead of 21 jjβ− . Note that the right-hand side 

of (C10) is positive and therefore the desired inequality holds automatically if 01 ≤− jjβ . In the case of 

01 >− jjβ , we use the freedom in the choice of the sign of the eigenvector jbα̂ , and choose it so that the 
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coefficient jjβ  is positive. This choice implies that 211 jjjj ββ −≤−  and the desired inequality holds. 

Therefore, we can write: 

(C10a) ( ) ( )2
1

1

1
11

11
1

1 )(2)3(1 jiji
j

ijjnjjjjj βλλαµλδαλλλλβ +
−

=
−−

+
−

+ −++++−≤− ∑ . 

Combining this inequality with (C7) and using the fact that 10 λλ ≤< j , we get for large enough n : 

(C11) ( ) ( )∑ −

=
−−−

+ +++−≤+ 1

1
2

1
11

1
1

1 2)1(32 j

i jijjnjjjj md βλαµλδαλλλ . 

Now, we analyze the behavior of the least squares regression coefficients jiji <,β  as ∞→n . 

First, note that the normalization ( ) jiij bIb δα αα =+Γ ˆˆ'ˆ
11  implies: 

(C12)   ( ) 1ˆˆ'ˆˆˆ'ˆˆ'ˆ 1
11111111 +≤Γ+Γ−Γ=Γ −

njjjjjj bbbbbb δααααααα . 

Second, we can write: 
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where the first inequality holds by the inequality )(2)( 222 baba +≤− ,  the second inequality uses the 

Cauchy-Schwarz inequality, and the third inequality uses the fact that ( ) 1ˆ'ˆˆ'ˆ
11 =+Γ≤ jjjj bIbbb αααα αα . 

Using (C12) and (C13), we have: 
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for large enough n . Substituting (C14) into (C11), rearranging, and using the fact that, for nkj ≤ , 

11 −− ≤
nkj µµ , we obtain for large enough n : 
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=
−−−−

+ ++++−≤+ 1

1
111

1
1

11 )1(8 j

i iiknjjjj mdmd
n

αµδαλλλλ . 



 30

It is straightforward to check that, if a sequence of real numbers{ }jx  satisfies recursive inequalities 

fgx 11 ≤  and ( )∑ −

=
+≤ 1

1

j

i ijj xfgx  for 2≥j , then ( )∏ −

=
+≤ 1

1
1j

i ijj gfgx . Applying this 

observation to (C15), we get: 
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1
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1 1)1(sup n

nn
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k

i ikknjj
kj

ggmd αµδαλ , 

where 1
11 )(8 −

+−= iiig λλλ . The right-hand side of (C16) tends to zero almost surely as ∞→n  by 

Lemma 2, which says that ( ) )/log( 2/1nnOn =δ , and by the assumptions of the theorem. This 

completes our proof of Statement ii). □ 

Proof of Corollary 2:. Suppose that we estimate a predictive factor, tj fb ' , where tf  is chosen at 

random from its unconditional distribution, by tj fb 'α̂ . We can bound the probability that the difference 

between the factor and its estimate is greater by absolute value than ε  as follows:  
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According to Statement ii) of Corollary 1, this bound tends to zero almost surely as ∞→n . 

Statement ii) of Corollary 1 also implies convergence in probability of our estimates of the predictive 

factor loadings, jaαˆ . Indeed, we have:  
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121212

1212

jjj

jjjj

bbb

bbaa

−Γ+Γ−Γ≤

Γ−Γ=−

αα

αα
 

Lemma 2 from Appendix C implies that the first term in the above expression tends in probability to 0. For 

the second term we have:  
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1111
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which tends to zero almost surely according to Statement ii) of Corollary 1. 

APPENDIX D 
Proof of Theorem 4: First, note that 

4321'ˆˆ aaaafBAf tt +++≤−ρ , 

where ( ) ( ) ( ) ,'ˆˆ,'ˆ,' 121231221 ttt fBBafBBBafABa Γ−Γ=−Γ=−= ρ and 

( ) tfBBBa 'ˆˆˆ
124 −Γ= .  
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Let 
4
εξ = . We have ( ) ( )∑ =

>≤>− 4

1
ˆ,ˆ|Prˆ,ˆ|'ˆˆPr

i itt BAaBAfBAf ξερ . 

Below we will show that each of the terms in the latter expression converges to zero almost surely. 

Since ,∞<tf Statement iii) of theorem 2 implies that 01 →a  and ( ) 0ˆ,ˆ|Pr →> BAai ξ  a.s.  

Further, using (C13), we have: 
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For 3a  and 4a  we have: 
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and  
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This completes the proof of theorem 4. □ 
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