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Abstract

This paper explores the role that recessions play in resource allo-
cation. The conventional cleansing view, advanced by Schumpeter in
1934, argues that recessions promote more efficient resource allocation
by driving out less productive units and freeing up resources for better
uses. However, empirical evidence is at odds with this view: average
labor productivity is procyclical, and jobs created during recessions
tend to be short-lived. This paper posits an additional "scarring" ef-
fect: recessions "scar" the economy by killing off "potentially good
firms". By adding learning to a vintage model, I show that as a reces-
sion arrives and persists, the reduced profitability limits the scope of
learning, makes labor less concentrated on good firms, and thus pulls
down average productivity. Calibrating my model using data on job
flows from the U.S. manufacturing sector, I find that the scarring effect
is likely to dominate the conventional cleansing effect, and can account
for the observed pro-cyclical average labor productivity.
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“[Depressions] are the means to reconstruct each time the eco-
nomic system on a more efficient plan. But they inflict losses
while they last, drive firms into the bankruptcy court...before
the ground is clear and the way paved for new achievement...”
Joseph A. Schumpeter (1934, p. 8)

“You must empty-out the bathing-tub, but not the baby along
with it.” Thomas Carlyle (1904, p. 368)

1 Introduction

How do recessions affect resource allocation? This question has long at-
tracted the attention of economists. As far back as 1934, Schumpeter
advanced the view of “cleansing”: recessions are times when outdated or
relatively unprofitable techniques and products are pruned out of the pro-
ductive system. This view has been revived since the finding of Davis and
Haltiwanger (1992) that job reallocation in the U.S. manufacturing sector is
concentrated during recessions.1 Attempting to explain these cyclical pat-
terns, an assortment of theoretical work has arisen returning to the Schum-
peterian cleansing view.2 In their arguments, production units with different
efficiency levels coexist due to certain reallocation frictions; when recessions
drive down profitability, the least efficient units should cease to be viable and
shut down,3 which frees up resources for more productive uses. Therefore,
setting aside the losses to particular businesses and individuals, reallocation
during recessions leads to greater efficiency in resource allocation.4

Despite solid theoretical reasoning, the cleansing view deviates from em-
pirical evidence in one important aspect – it implies countercyclical pro-
ductivity, while average labor productivity is in fact procyclical. This was
pointed out in Caballero and Hammour (1994), where they suggest that
the cleansing effect may be dwarfed by other factors. Subsequent empirical
work has challenged the cleansing view from the creation side. For example,

1Similar evidence has also been found in the manufacturing sectors of Canada, Den-
mark, Norway and Colombia. See Davis and Haltiwanger (1999).

2See Hall (1992, 2000), Mortensen and Pissarides (1994), Caballero and Hammour
(1994, 1996), and Gomes, Greenwood, and Rebelo (2001).

3These models assume perfectly competitive markets so that, as price takers, less effi-
cient units are also less profitable. However, with market power, a less efficient unit can
be more profitable. See Foster, Haltiwanger and Syverson (2003).

4However, these papers not necessarily suggest that recessions lead to higher welfare.
In other words, it is likely that higher allocation efficiency and lower welfare efficiency
coexist during recessions.
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Bowlus (1993) and Davis, Haltiwanger and Schuh (1996) find that jobs cre-
ated during recessions tend to be short-lived, which inspired Barlevy (2002)
to question whether recessions encourage the creation of the most efficient
units. However, although job destruction has been documented to be more
responsive to business cycles than job creation,5 few have yet asked the ques-
tion, “Are the production units cleared by recessions necessarily inefficient?”
If not, then recessions might exacerbate the inefficiency of resource alloca-
tion instead of alleviating it as the conventional cleansing view suggests.6

In this paper, I propose a “scarring effect” of recessions that plays against
the conventional cleansing effect. I argue that while recessions drive out
some of the least productive firms, they also kill off “potentially good firms”;
the firms that have the potential to be proven efficient in the future are forced
to leave due to reduced profitability. The loss of potentially good firms leaves
“scars” when a recession arrives, and the “scars” deepen as the recession
persists. The presence of the scarring effect revises the conventional view
of recessions as periods of solely healthy reallocation: the overall impact of
recessions on allocative efficiency should depend on the relative magnitude
of two competing effects – cleansing and scarring.

I offer my explanation by combining the vintage model of Caballero and
Hammour (1994) with learning in the spirit of Jovanovic (1982). As in
their model, exogenous technological progress introduces a force of creative
destruction that drives in technologically sophisticated entrants to displace
older, outmoded firms.7 However, in my model, firms of the same vintage
also differ in “type”: some are good and others are bad. Firm type can
represent the talent of the manager, or alternatively, the store location, the
organizational structure of the production process, or its fitness to the em-
bodied technology. More importantly, these types are not observable ex
ante, but can be learned through experience. As information arrives, firms
choose to exit or stay, so that an additional learning force arises to keep
good firms and select out bad firms. Variations in aggregate demand serve

5Davis and Haltiwanger (1999) document that job destruction tends to be more volatile
than job creation in manufacturing sectors. The variance of destruction divided by the
variance of creation is 2.04 for the U.S., 1.49 for Canada, 1.0 for Denmark, 2.68 for the
Netherlands, 1.69 for Germany, 0.68 in Colombia, and 18.19 for the U.K..

6Ramey and Watson (1997) and Caballero and Hammour (1999) argue that job destruc-
tion threshold in recessions can be socially inefficient. However, their cyclical implications
on productivity are the same as in the models of the conventional cleansing effect: average
job quality goes up during recessions.

7The phrase “creative destruction” comes from Schumpeter (1939). It refers to the
birth and death of firms due to the introduction of new technology into the production
process.
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as the source of economic fluctuations. As a negative demand shock strikes
and persists, the intensified creative destruction directs labor to younger,
more productive vintage, causing a cleansing effect that raises average labor
productivity; meanwhile, the limited learning shifts labor toward bad firms,
creating a scarring effect that pulls down average labor productivity. The
question then becomes, which one dominates? In Section 4, I calibrate my
model using data on U.S. manufacturing job flows and study its quantita-
tive implications. My results suggest that the scarring effect dominates the
cleansing effect in the U.S. manufacturing sector from 1972 to 1993, and can
account for the observed procyclical average labor productivity.

My model stresses two frictions that stifle instantaneous labor realloca-
tion. First, entry is costly, which allows different vintages to coexist. Second,
learning takes time, so that good and bad firms both survive. Vintage and
type together can explain the observed heterogeneous firm-level productiv-
ity. The vintage component suggests that entering cohorts are more pro-
ductive than incumbents.8 The type component implies that each vintage
cohort is itself a heterogeneous group. Vintage and type together also lead
to the following productivity dynamics. Creative destruction perpetually
drives in entrants with higher productivity. Learning selects out bad firms
over time so that, as a cohort ages, its average productivity rises but produc-
tivity dispersion declines. Data from the U.S. manufacturing sector provides
large and pervasive empirical evidence to support these predictions.9

The existing empirical literature has advanced learning and creative de-
struction as powerful tools to understand the patterns of firm turnover and
industrial dynamics.10 The significance of their interaction has also been
suggested. Davis and Haltiwanger (1999) note, “vintage effects may be ob-
scured by selection effects; vintage and selection effects may also interact in
important ways...” In my model, the interaction of these two forces generates

8Although this is often true in the data, some authors such as Aw, Chen and Roberts
(1997) find evidence that entrants are no more productive than incumbents. Foster, Halti-
wanger and Syverson (2003) propose an explanation by separating two measures for plant-
level productivity: a revenue-based measure and a quantity-based measure. They find that
entrants are more productive than incumbents in terms of the quantity-based measure,
but not in the revenue-based measure because entrants charge a lower price on average.
Hence, more productive entrants can appear less profitable when prices are not observed.

9For evidence on the cross-cohort and within-cohort productivity distribution, see Bald-
win (1995), Balk and Gort (1993), Foster, Haltiwanger and Syverson (2003). For evidence
on cohort productivity dynamics, see Balk and Gort (1993) and Jensen, McGuckin and
Stiroh (2000).
10See Hall (1987), Evans (1987), Montgomery and Wascher (1988), Dunne, Roberts and

Samuelson (1989), Bresnahan and Raff (1991), Bahk and Gort (1993), Caves (1998), Davis
and Haltiwanger (1999), and Jensen, McGuckin and Stiroh (2000).

4



the scarring effect of recessions.
The rest of the paper is organized as follows. Section 2 lays out a model

combining creative destruction with learning. The cleansing and scarring ef-
fects are motivated in Section 3 by comparative static exercises on the steady
state equilibrium. Section 4 numerically solves the model with stochastic de-
mand fluctuations and studies its quantitative implications for productivity
using data on U.S. manufacturing job flows. I conclude in Section 5.

2 A Renovating Industry with Learning

This section describes a learning industry that experiences exogenous tech-
nological progress. New firms that capture the leading technology are con-
tinuously being created, and outdated firms are being destroyed. Firms enter
with different types. As time passes by, good firms survive and bad firms
leave. Allocative inefficiency comes from costly entry and time-consuming
learning.

2.1 Firms

I consider an industry where labor and capital combine in fixed proportions
to produce a homogenous output. There is a continuum of firms, each hiring
one worker, so that a job is created when a firm enters and a job is destroyed
when a firm exit. Each firm is characterized by two components:

1. Vintage A(t− a).

2. Type θ.

A(t) is the exogenous technological progress that grows at a constant
rate γ > 0. A firm that enters the industry in period t embodies the leading
technology A (t), which becomes its vintage and will affect its production
afterward. Only entrants have access to the leading technology. Incumbents
cannot retool. With a as the firm age, A(t − a) is the vintage of a firm
of age a in period t. Since A(t) grows exogenously, young firms are always
technologically more advanced than old firms.

At the time of entry, a firm is endowed with a type θ. Hence, firms of
the same vintage differ in type. θ can represent the talent of the manager
as in Lucas (1978), or alternatively, the location of the store, the organi-
zational structure of the production process, or its fitness to the embodied
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technology.11 I call θ “the technology adoption type”.
The key assumption regarding θ is that its value, although fixed at the

time of entry, is not directly observable. We can think of some real-world
cases that reflect this assumption. For example, when a firm adopts new
technology or introduces a new product, it needs to make many decisions,
such as picking a manager to take charge of the production or choosing a
location to sell the product. Although all firms try to make the best decisions
possible, the outcome of their choices is uncertain and will be tested via
market performance. Furthermore, their investments are irreversible; once
a manager has signed the contract and a store is built, it becomes costly to
make a new choice. Hence, the value of θ, as the consequence of a firm’s
random decisions, is unobservable and remains constant afterward.

A firm of age a and type θ produces output in period t, given by

qt(a, θ) = A(t− a) · xt = A (t) · (1 + γ)−a · xt, (1)

where

xt = θ + εt.

The shock εt is an i.i.d. random draw from a fixed distribution that
masks the influence of θ on output. I set the operating cost of a firm (in-
cluding wages) to 1 by normalization, and let Pt denote the output price in
period t. Then the profit generated by a firm of age a and type θ in period
t is

πt (a, θ) = Pt ·A (t) · (1 + γ)−a · (θ + εt)− 1. (2)

Both qt(a, θ) and πt (a, θ) are directly observable. Since the firm knows
its vintage, it can infer the value of xt. The firm uses its observations of xt
to learn about θ.

2.2 “All-Or-Nothing” Learning

Firms are price takers and profit maximizers. They attempt to resolve the
uncertainty about θ to decide on whether to continue or terminate the pro-
duction. The random component εt represents transitory factors that are
independent of the type θ. By assuming that εt has mean zero, we know
that

Et(xt) = Et(θ) +Et(εt) = Et(θ).

11Since a firm is identical to a job under this set-up, θ can also be interpreted as “match
quality.” See Pries (2004).
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Given knowledge of the distribution of εt, a sequence of observations of
xt allows the firm to learn about its θ. Although a continuum of potential
values for θ is more realistic, for simplicity it is assumed here that there are
only two values: θg for a good firm and θb for a bad firm. Furthermore,
εt is assumed to be distributed uniformly on [−ω, ω]. Therefore, a good
firm will have xt each period as a random draw from a uniform distribution
over [θg − ω, θg + ω], while the xt of a bad firm is drawn from an uniform
distribution over [θb − ω, θb + w]. Finally, θg, θb and ω satisfy 0 < θb − ω <
θg − ω < θb + ω < θg + ω.

Pries (2004) shows that the above assumptions give rise to an “all-or-
nothing” learning process. With an observation of xt within (θb + ω, θg +
ω], the firm learns with certainty that it is a good type; conversely, an
observation of xt within [θb − ω, θg − ω) indicates that it is a bad type.
However, an xt within [θg − ω, θb + ω] does not reveal anything, since the
probabilities of falling in this range as a good firm and as a bad firm are the
same (both equal to 2ω+θb−θg

2ω ).
This all-or-nothing learning simplifies my model considerably. I let θe

represent the expected θ. Since it is θe instead of θ that affects firms’
decisions, there are three types of firms corresponding to the three values of
θe: firms with θe = θg, firms with θe = θb, and firms with θe = θu ≡ prior
mean of θ. I define “unsure firms” as those with θe = θu. I further assume
that the unconditional probability of θ = θg is ϕ, and let p ≡ θg−θb

2ω denote
the probability of true types being revealed every period. Firms enter the
market as unsure; thereafter, every period they stay unsure with probability
1 − p, learn they are good with probability p · ϕ and they are bad with
probability p · (1−ϕ). Thus, the evolution of θe from the time of entry is a
Markov process with values (θg, θu, θb), an initial probability distribution:¡

0, 1, 0
¢
,

and a transition matrix 1 0 0
p · ϕ , 1− p , p · (1− ϕ)
0 0 1

 .

If firms were to live forever, eventually all uncertainty would be resolved
because the market would provide enough information to reveal each firm’s
type. The limiting probability distribution as a goes to ∞ is¡

ϕ, 0, (1− ϕ)
¢
.
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Figure 1: Dynamics of a Birth Cohort: the distance between the concave curve and the
bottom axis measures the density of firms with θe = θg; the distance between the convex
curve and the top axis measures the firms with θe = θb; the distance between the two
curves measures the density of unsure firms (firms with θe = θu).

Because there is a continuum of firms, it is assumed that the law of large
numbers applies, so that both ϕ and p are not only the probabilities but
also the fractions of unsure firms with θ = θg, and of firms who learn θ each
period, respectively. Hence, ignoring firm exit for now, I have the densities
of three groups of firms in a cohort of age a as¡

ϕ · [1− (1− p)a] , (1− p)a, (1− ϕ) · [1− (1− p)a]
¢
,

which implies an evolution of the cross-type firm distribution within a birth
cohort as shown in Figure 1, with the horizontal axis depicting the age of a
cohort across time. The densities of firms that are certain about their types,
whether good or bad, grow as a cohort ages. Moreover, the two “learning
curves” (depicting the evolution of densities of good firms and bad firms)
are concave. This feature is defined as the decreasing property of marginal
learning in Jovanovic (1982): the marginal learning effect decreases with
firm age, which, in my model, is reflected by the fact that the marginal
number of learners decreases with cohort age. The convenient feature of all-
or-nothing learning is that, on the one hand, it implies that any single firm
learns “suddenly”, which allows us to easily keep track of the cross-section
distribution of beliefs while, on the other hand, it still implies “gradual
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learning” at the cohort level.
However, there is more that Figure 1 can tell. If we let the horizontal

axis depict the cross-sectional distribution of firm ages at any instant, then
Figure 1 can be interpreted as the cross-age and cross-type firm distribution
of an industry that features constant entry but no exit. In this industry,
cohorts continuously enter in the same size and experience the same dy-
namics afterward, so that at any one time, different life-stages of different
birth cohorts overlap, giving rise to the distribution in Figure 1. Under this
interpretation, Figure 1 indicates that at any instant older cohorts contain
fewer unsure firms, because they have lived longer and learned more.

2.3 The Recursive Competitive Equilibrium

The following sequence of events is assumed to occur within a period. First,
entry and exit occur after firms observe the aggregate state. Second, each
surviving firm pays a fixed operation cost to produce. Third, the aggregate
price is realized. Fourth, firms observe revenue and update beliefs. Then,
another period begins.

With the above setup, this subsection considers a recursive competitive
equilibrium definition which includes a key component: the law of motion of
the aggregate state of the industry. The aggregate state is (F,D). F denotes
the distribution (measure) of firms across vintages and types. The part of
F that measures the number of firms with θe and a is denoted f (θe, a). D
is an exogenous demand parameter; it captures aggregate conditions and is
fully observable. The part of the law of motion for D is exogenous, described
by D’s transition matrix. The part of the law of motion for F is denoted H
so that F 0 = H(F,D). The sequence of events implies that H captures the
influence of entry, exit and learning.

Three assumptions characterize the equilibrium: firm rationality, free
entry and competitive pricing.

Firm Rationality: firms are assumed to have rational expectations; their
decisions are forward-looking. In period t, a firm with age a and belief θe

expects its profit in period s ≥ t to equal

A(t− a) ·E(Ps|Ft,Dt) · θe − 1.

Et(Ps|Ft,Dt) implies that firms need to observe (F,D) to predict the se-
quence of prices from today onward. Therefore, the relevant state variables
for a firm are its vintage, its belief, and the aggregate state (F,D). I let
V (θe, a;F,D) be the expected value, for a firm with belief θe and age a, of
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staying in operation for one more period and optimizing afterward, when
the aggregate state is (F,D). Then V satisfies:

V (θe, a;F,D) = E [π (θe, a) |F,D]+βE £max ¡0, V ¡θe0, a+ 1;F 0,D0¢¢ |F,D¤
(3)

subject to
F 0 = H (F,D)

and the exogenous laws of motion for D and θe(suggested by all-or-
nothing learning).

Since firms enter as unsure, firm rationality implies that entry occurs if
and only if V (θu, 0;F,D) > 0. Meanwhile, a firm with belief θe and age a
exits if and only if V (θe, a;F,D) < 0.

Free entry: new firms are free to enter at any instant, each bearing an
entry cost c. The entry cost can be interpreted as the cost of establishing a
particular location or the cost of finding a manager. Assuming f (θu, 0;F,D)
represents the size of the entering cohort when the aggregate state is (F,D),
and letting c represent the entry cost, I have

c = C (f (θu, 0;F,D)) , c > 0 and C 0 ≥ 0. (4)

I let the entry cost depend positively on the entry size to capture the
idea that, for the industry as a whole, fast entry is costly and adjustment
may not take place instantaneously. This can arise from a limited amount of
land available to build production sites or an upward-sloping supply curve
for the industry’s capital stock.12 The free entry condition equates a firm’s
entry cost to its value of entry, and can be written as

V (θu, 0;F,D) = C (f (θu, 0;F,D)) . (5)

As more new firms enter, the entry cost is driven up until it reaches the
value of entry. At this point, entry stops.

Competitive Pricing : the output price is competitive; the price level is
given by

P (F,D) =
D

Q (F,D)
(6)

12See Subsection 3.3.1 for further discussion.
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Q represents aggregate output; it equals the the sum of production over
heterogeneous firms. Given (1), the sequence of events implies that:13

Q (F,D) = Q
¡
F 0
¢
=
X
a

X
θe

A · (1 + γ)−a · θe · f 0 (θe, a) , (7)

where f 0 (θe, a) measure the number of in-operation firms with θe and a after
entry and exit. f 0 (θe, a) belongs to F 0, the updated firm distribution. Since
F 0 = H(F,D), Q is a function of (F,D).

(6) implies that high output drives down the price. (7) implies that
Q depends on not only the number of firms in operation, but also their
distribution. More firms yield higher output and drive down the price; the
more the distribution is skewed toward younger vintages and better types,
the higher the output and the lower the price.

With the above three conditions, I have the following:

Definition: A recursive competitive equilibrium is a law of motion
H, a value function V , and a pricing function P such that (i) V
solves the firm’s problem; (ii) P satisfies (6) and (7); and (iii)
H is generated by the decision rules suggested by V and the
appropriate summing-up of entry, exit and learning.

An additional assumption is made to simplify the model:

Assumption: Given values for other parameters, the value of θb
is so low that V (θb, a;F,D) is negative for any (F,D) and a.

This assumption implies that bad firms always exit, so that at any one
time, there are only two types of firms in operation — unsure and good.

The following proposition characterizes the value function V and the
corresponding exit ages of heterogeneous firms.

Proposition 1: V (θe, a;F,D) is strictly decreasing in a, hold-
ing θe constant, and strictly increasing in θe, holding a constant;
therefore, there is a cut-off age a (θe;F,D) for each type, such
that firms of type θe and age a ≥ a (θe;F,D) exit before produc-
tion takes place; furthermore, a (θg;F,D) ≥ a (θu;F,D).

13Q is the sum of realized output rather than expected output, since the contribution
to aggregate output by each firm depends on its true type θ rather than θe. However,
with a continuum of firms, the law of large numbers implies that the random noises and
the expectation errors cancel out in each cohort, so that the sum of realized output equals
the sum of expected output.
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The proof for Proposition 1 presented in the appendix is not restricted to
all-or-nothing learning. Hence, Proposition 1 holds for any learning process.
It follows from the fact that firms with smaller a and higher θe have higher
expected value of staying. As V is strictly decreasing in a, firms with belief
θe older than a (θe;F,D) exit; as the expected value of staying is strictly
increasing in θe, a good firm stays longer than an unsure firm.

3 Cleansing and Scarring

The firm distribution F enters the model as a state variable, which makes
it difficult to characterize the dynamics generated by demand fluctuations.
However, similar studies find that the effects of temporary changes in aggre-
gate conditions are qualitatively similar to the effects of permanent changes.14

Therefore, I begin in this section with comparative static exercises on the
steady-state equilibrium. The comparative static exercises capture the essence
of industry dynamics as well as how demand can affect the labor allocation,
and thus provide a more rigorous intuition for the scarring and cleansing
effects described in the introduction. In the next section, I will turn to a
numerical analysis of the model’s response to stochastic demand fluctuations
and confirm that the results from the comparative static exercises carry over.

3.1 The Steady State

I consider a steady state a recursive competitive equilibrium with time-
invariant aggregate states.15 It satisfies two additional conditions, (i) D
is and is perceived as time-invariant: D0 = D. (ii) F is time-invariant:
F 0 = H (F,D). Since H is generated by entry, exit and learning, a steady
state must feature time-invariant entry and exit for F = H (F,D) to hold.
Thus, a steady state equilibrium can be summarized by {f(0), ag,au}, with
f (0) as the entry size, ag as the maximum age for good firms, and au as
the maximum age for unsure firms. The next proposition establishes the
existence of a unique steady-state equilibrium. The proof is presented in
the appendix.

Proposition 2: With D constant over time, there exists a unique

14See Mortensen and Pissarides (1994), Caballero and Hammour (1994 and 1996), and
Barlevy (2003).
15 I call it “steady state” following Caballero and Hammour (1994). Although it is called

“steady”, the steady-state price decreases but the steady-state average labor productivity
increases over time driven by technological progress.
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Figure 2: The Steady-state Labor Distribution and Job Flows: the distance between the
lower curve (extended as the horizontal line) and the bottom axis measures the density of
good firms; the distance between the two curves measures the density of unsure firms.

time-invariant {f(0), ag, au} that satisfies the conditions of firm
rationality, free entry and competitive pricing.

The steady-state labor distribution and job flows are illustrated in Fig-
ure 2. Like Figure 1, there are two ways to interpret Figure 2. First, it
displays the steady-state life-cycle dynamics of a representative cohort with
the horizontal axis depicting the cohort age across time. Firms enter in size
f (0) as unsure. As the cohort ages and learns, bad firms are thrown out
so that the cohort size declines; good firms are realized, so that the density
of good firms increases. After age au, all unsure firms exit because their
vintage is too old to survive with θe = θu. However, firms with θe = θg
stay. Since then, the cohort contains only good firms and the number of
good firms remains constant because learning has stopped. Good firms live
until ag. The vintage after ag is too old even for good firms to survive.

Second, Figure 2 also displays the firm distribution across ages and types
at any one time, with the horizontal axis depicting the cohort age across
section. At the steady state, firms of different ages coexist. Since older
cohorts have lived longer and learned more, cohort size declines and the
density of good firms increases with age. Cohorts older than au are of the

13



same size and contain only good firms. No cohort is older than ag.
Despite its time-invariant structure, the industry experiences continuous

entry and exit. With entry, jobs are created; with exit, jobs are destroyed.
From a pure accounting point of view, there are three margins for job flows:
they are the entry margin, the exit margins of good firms and unsure firms,
and the learning margin. Two forces — learning and creative destruction
— interact together to drive the job flows. At the entry margin, creative
destruction drives in new vintages. At the exit margins, it drives out old
vintages. At the learning margin, bad firms are selected out. Because of
creative destruction, average labor productivity grows at the technological
pace γ. Because of learning, the productivity distribution among older co-
horts is more skewed toward good firms. For cohorts older than au, labor is
hired only by good firms.

3.2 Comparative Statics: Cleansing and Scarring

The previous subsection has shown that for a given demand level, there exists
a steady-state equilibrium summarized by {f(0), ag, au}. In this subsection,
I will illustrate that across steady states corresponding to different demand
levels, the model delivers the conventional cleansing effect promoted in the
previous literature, as well as an additional scarring effect. The two effects
are formalized in Propositions 3 and 4.

Proposition 3: In a steady-state equilibrium, the exit age for
firms with a given belief is weakly increasing in the demand level
and the job destruction rate is weakly decreasing in the demand
level.

A detailed proof is included in the appendix. To understand Proposi-
tion 3, compare two steady states with different demand levels, Dh > Dl.
For any time t, (6) suggests that the steady state with Dl features either
a lower price, or a lower output, or both. Now assume initially that the
lower demand is fully reflected as a lower output and the prices of the two
steady states are identical. Then firms’ profitability in the two steady states
would also be identical: Vl (θe, a) = Vh (θ

e, a) for any θe and a. Free entry
and the exit conditions suggest that identical value functions lead to iden-
tical entry size and exit ages, and thus an identical firm distribution. With
firm-level output of a given age and type independent of demand, identical
cross-sectional distributions imply identical aggregate output, which con-
tradicts our assumption. Therefore, we can conclude that the low-demand
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steady state must feature a lower price compared to the high-demand steady
state, so that Vl (θe, a) < Vh (θ

e, a) for any θe and a. Since V (θe, a) strictly
decreases in a, the cut-off age that solves the V (θe, a) = 0 must be lower
for lower demand. Intuitively, lower demand tends to drive down the price
so that some firms that are viable in a high-demand steady state are not
viable when demand is low.

Moreover, the following equation is derived by combining the exit con-
ditions for unsure and good firms:µ

θu
θg
+

pϕβ

1 + γ − β

¶
(1 + γ)ag−au = 1 +

pϕβ

1− β
− pϕβγ

(1− β) (1 + γ − β)
βag−au

(8)
I prove in the appendix that (8) gives an unique solution for ag − au

as long as θg > θu. Since D does not enter (8), ag − au is independent of
demand: d(ag−au)

dD = 0. (8) suggests that the demand level does not affect the
gap between the exit ages of good and unsure firms. They tend to co-move
across steady states with the same magnitude.

The steady-state job destruction rate, denoted jdss, equals the follow-
ing:16

jdss =
1

au · ϕ+ [1−ϕp + (ag − au) · ϕ] · [1− (1− p)au+1]
. (9)

Since (ag − au) is independent of D, demand affects jdss only through its
impact on au:

d(jdss)
d(D) =

d(jdss)
d(au)

· d(au)d(D) . I prove in the appendix that
d(jdss)
d(au)

≤ 0,
which, together with d(au)

d(D) ≥ 0, implies d(jdss)
d(D) ≤ 0. Put intuitively, a high-

demand steady state allows both unsure firms and good firms to live longer,
so that less jobs are destroyed at the exit margins.

To summarize, Proposition 3 argues that the steady state with lower
demand features younger exit ages and a higher job destruction rate. In
other words, it suggests that more firms are cleared out in an environment
that is more difficult for survival.
16According to Davis and Haltiwanger (1992), the job destruction rate at time t is

defined as:

2 ∗ Jobs destroyed in period t

[(number of jobs at the beginning of period t) + (number of jobs at the beginning of period t+ 1)]

. With constant total number of jobs, the steady-state job destruction rate equals the
ratio of jobs destroyed at the learning and exit margins over the total number of jobs. The
expression of jdss applies not only to a steady state, but also to any industry equilibrium
that features time-invariant entry and exit. See Subsection 4.2 for further discussions on
jdss.
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If the above story suggested by comparative statics carries over when D
fluctuates stochastically over time, then my model delivers a conventional
“cleansing” effect, in which average firm age falls during recessions so that
recessions direct resources to younger, more productive vintages. However,
once learning is allowed, we also need to take into account the allocation
of labor across types. With only two true types, good and bad, the type
distribution of labor can be summarized by the fraction of labor at good
firms. A higher fraction suggests a more efficient cross-type allocation of
labor. The next proposition establishes how demand affects this ratio.

Proposition 4: In a steady state equilibrium, the fraction of labor
at good firms is weakly increasing in the demand level.

It can be shown that the steady-state fraction of labor at good firms,
denoted lssg , equals:

lssg = 1− (1− ϕ)
pϕau

1−(1−p)au + (1− ϕ) + pϕ (ag − au)
.

Again, since (ag − au) is independent of D, demand affects lssg only through

its impact on au:
d(lssg )
d(D) =

d(lssg )
d(au)

· d(au)d(D) . I prove
d(lssg )
d(au)

≥ 0 in the appendix,
which, together with d(au)

d(D) ≥ 0, implies
d(lssg )
d(D) ≥ 0.

My analysis suggests that the impact of demand on the fraction of labor
at good firms comes from its impact on the exit age of unsure firms. To
understand this result intuitively, consider Figure 3.

Figure 3 displays the steady-state industry structures corresponding to
two demand levels.17 The cleansing effect formalized in Proposition 3 is
shown as the leftward shift of the two exit margins. The shifted margins
clear out old firms that could be either good or unsure. However, the leftward
shift of the unsure exit margin also reduces the amount of older good firms.
The latter, shown as the shaded area in Figure 3, is the scarring effect of
recessions.

The scarring effect stems from learning. New entrants begin unsure of
their type, although a proportion ϕ are truly good. Over time, more and
more bad firms leave while good firms stay. Since learning takes time, the
number of “potentially good firms” that realize their true types depends on

17The entry sizes of the two steady states, although different, are normalized as 1. Since
the steady state features time-invariant entry and all cohorts are the same size, entry size
matters only as a scale.
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Figure 3: Cleansing and Scarring

how many learning chances they have. If firms could live forever, eventually
all the potentially good firms would get to realize their true types. But
a finite life span of unsure firms implies that if potentially good firms do
not learn before age au, they exit and thus forever lose the chance to learn.
Therefore, au represents not only the exit age of unsure firms, but also the
number of learning opportunities. A low au allows potentially good firms
fewer chances to realize their true types, so that the number of old good
firms in operation after age au are also reduced.

Hence, the industry suffers from uncertainty; it tries to select out bad
firms but the group of firms it clears at age au includes some firms that
are truly good. The number of clearing mistakes the industry makes at au
depends on the size of the unsure exit margin, which in turn depends on the
value of au.18 When a drop in demand reduces the value of au, this reduces
the number of learning opportunities, allows fewer good firms to become old
and thus shifts the labor distribution toward bad firms.

To summarize from Proposition 3 and Proposition 4, a low-demand
steady state features a better average vintage, yet a less efficient cross-
type distribution of labor. If the comparative static results carry over when

18The all-or-nothing learning suggests that the number of truly good firms cleared out
at au equals f (0) (1− p)au ϕ.
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demand fluctuates stochastically, then recessions will have both a conven-
tional cleansing effect, shifting resources to better vintages, and a scarring
effect, shifting resources to bad types. The two effects are directly related
to each other: it is the cleansing effect that significantly reduces learning
opportunities and hence prevents more firms from realizing their potential.

When we move beyond steady states to allow for cyclical fluctuations, the
intuition behind “cleansing and scarring” still carries over. Consider Figure
3. Both exit margins shift as soon as demand drops so that the cleansing
effect takes place immediately.19 However, the scarring effect takes place
gradually. When a recession first arrives, the group of firms already in the
shaded area in Figure 3 will not leave despite the shift in exit margins, since
they know their true types to be good. They leave gradually as the recession
persists. At this point, the scarring effect starts to take place: the reduced
au allows fewer good firms to survive past au. The shaded area would
eventually be left blank, and the “scar” left by recessions would surface.

3.3 Sensitivity Analysis

Two modifications are examined in this subsection to check the robustness
of my results from the comparative static exercises: first, I allow the entry
cost to be independent of entry size; second, I allow the process of learning
to be more complicated than “all-or-nothing”.

3.3.1 Entry Cost Independent of Entry Size

The previous subsection has argued that the shift of the exit margins creates
both a cleansing effect and a scarring effect. Now, focus on the entry side.
How does demand affect entry, and how would this affect my results?

To address these questions, recall that the free entry condition requires
V (θu, 0) = C (f (θu, 0)), and C is assumed to depend positively on entry size.
Since low demand reduces the value of entry by driving down profitability,
C 0 (f (θu, 0)) > 0 implies less entry (smaller f (θu, 0)) for the low-demand
steady state. Hence, an industry in my model has two margins along which
it can accommodate low demand. It can either reduce entry, or increase exit
by shifting the exit margins. The issue is which of these two margins will
respond when demand falls, and by how much. If the drop in demand level

19My numerical exercises with demand fluctuations imply that when demand falls, these
margins initially shift more than suggested by the comparative static exercises. The mar-
gins shift back partially as the recession persists. A detailed discussion of this phenomenon
is discussed in Section 4.
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can be fully incorporated as a decrease in entry size, the exit margins might
not respond.

The extreme case that the entry margin exclusively accommodates de-
mand fluctuations is defined as the “full-insulation” case in Caballero and
Hammour (1994). They argue that creation (entry) “insulates” destruc-
tion (exit), and the extent of the insulation effect depends on the cost
of fast entry, that is, C 0 (f (θu, 0)). The full-insulation case occurs when
C 0 (f (θu, 0)) = 0. The intuition is as follows. If entry cost is independent of
entry size, then fast entry is costless and the adjustment on the entry mar-
gin becomes instantaneous. When demand falls, entry will adjust to such a
level that aggregate output falls by the same proportion, which keeps price
at the same level. Then the value of staying remain unaffected, and the exit
margins do not respond. Hence, with entry cost independent of entry size,
there is neither a cleansing effect nor a scarring effect.

Two remarks can be made. First, in reality, an industry may not be
able to create all the necessary production units instantaneously. Goolsbee
(1998) shows empirically that higher investment demand drives up both
the equipment prices and the wage of workers producing the capital goods.
His findings suggest that as more firms coming in with rising demand for
capital, it becomes increasingly costly to adjust the capital stock. As another
intuitive example, when more new stores are built, land prices and rentals
usually rise. Therefore, C 0 (f (θu, 0)) > 0 seems more reasonable. Second,
data does not support the assumption that C 0 (f (θu, 0)) = 0. In the full-
insulation case, job creation fully accommodates demand fluctuations and
job destruction does not respond. This contradicts the large and robust
evidence that job destruction is more responsive than job creation to the
business cycle.20

3.3.2 More Complicated Learning

As I have argued in subsection 2.2, the all-or-nothing learning with a uni-
form distribution of random noise simplifies the analysis considerably. But
how restrictive is it? Would the scarring effect carry over with a more com-
plicated process of learning?

In general, we can define the scarring effect as a drop in the fraction of
labor at good firms. To look at the scarring effect from a different angle, I
divide firms into two groups, young and old.21 With log denoting the fraction

20See footnote 6.
21The cut-off age to define “young” and “old” is arbitrarily chosen. Changing this

cut-off age does not affect the analysis that follows.
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of labor at good firms among the old, lyg as the fraction among the young, fy

as the density of young firms and fo as the density of old firms, the fraction
of labor at good firms for industry as a whole, lg, can be written as:

lg =
fylyg + folog
fy + fo

=
lyg + log

fo

fy

1 + fo

fy

.

The first order derivative of lg with respect to
fo

fy equals:

d (lg)

d
³
fo

fy

´ = log − lyg

1 + fo

fy

.

which is greater than or equal to zero as long as log − lyg ≥ 0, which should
hold for any learning process, since old firms have experienced more learn-
ing. Hence, the scarring effect of recessions should occur under any type of
learning as long as recessions reduce the ratio of old to young firms ( f

o

fy ),
which by definition will be true in any model in which recessions cleanse
the economy of older vintages. Intuitively, the scarring effect suggests that
recessions shift resources toward younger firms, so that there cannot be as
much learning taking place as in booms.

Now suppose we assume a more complicated learning process with nor-
mally distributed random noise, so that the signals received by good firms
are normally distributed around θg and the signals received by bad firms are
normally distributed around θb. In that case, a firm can never know for cer-
tain that it is good or bad, and posterior beliefs are distributed continuously
between θb and θg. The expected value of staying would still depend posi-
tively on θe and negatively on age. Thus, given the aggregate state, there
would be a cut-off age for each belief, a (θe;F,D), such that firms with belief
θe do not live beyond a (θe;F,D).

With a recession, the value of staying across all ages and types falls, so
that for each belief θe, the cut-off age a(θe;F,D) becomes younger. Hence,
the firm distribution tilts toward younger ages and fo

fy falls. Since
d(lg)

d fo

fy

≥ 0,
a fall in fo

fy drives down the ratio of good firms and creates the scarring effect.
Although this analysis is preliminary,22 we can still argue that recessions
would allow for less firm learning, so the scarring effect would carry over
even with a more complicated process of learning.
22For instance, the analysis cannot address the relative sizes of the cleansing effect on

young firms versus old firms. Whether cleansing affects primarily young or old firms
depends on the specifics of the learning process.
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4 Quantitative Implications with Stochastic De-
mand Fluctuations

I establishe in Section 3 that across steady states, my model delivers two
competing effects — cleansing and scarring. Now the questions are, whether
the two effects carry over when demand fluctuates stochastically, and which
one dominates quantitatively.

This section turns to numerical techniques to analyze a stochastic version
of my model in which the demand level follows a two-state Markov process
with values [Dh,Dl] and transition probability µ. Throughout this section,
firms expect the current demand level to persist for the next period with
probability µ, and to change with probability 1− µ.

I first describe my computational strategy, which follows Krusell and
Smith (1998) by shrinking the state space into a limited set of variables and
showing that these variables’ laws of motion can approximate the equilib-
rium behavior of firms in the simulated time series. Later in this section, I
confirm that the basic insights from the comparative static exercises carry
over with probabilistic business cycles. Then I examine whether the scar-
ring effect is likely to be empirically relevant. Specifically, I calibrate my
model so that its equilibrium job destruction rate mimics the observed pat-
tern in the U.S. manufacturing industry. As I have argued, recessions clear
out old firms, including some good firms that have not yet learned their
type. Therefore, the model allows us to use the job destruction rate to make
inferences on the size of the cleansing and scarring effects.

4.1 Computational Strategy

The definition of the recursive competitive equilibrium in Section 2 implies
that individual decision rules can be generated from the value functions
V ; by summing up the corresponding individual decision rules, we can get
the laws of motion H, then trace out the evolution of industry structure.
Therefore, the key computational task is to map F , the firm distribution
across ages and types, given demand level D, into a set of value functions
V (θe, a;F,D). Unfortunately, the endogenous state variable F is a high-
dimensional object. The numerical solution of dynamic programming prob-
lems becomes increasingly difficult as the size of the state space increases.
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To make the state space tractable, I define a variable X such that23

X (F ) =
X
a

X
θe

(1 + γ)−a · θe · f (θe, a) . (10)

Combining (9) with (6) and (7), I get

P (F,D) ·A = D

X (F 0)
.

A is the leading technology; F 0 is the updated firm distribution after the
entry and exit; X 0 corresponds to F 0; P (F,D) is the equilibrium price in a
period with initial aggregate state (F,D). Since F 0 = H(F,D), the above
equation can be re-written as

P (F,D) ·A = D

X (H (F,D))

Given these definitions, the single-period profitability of a firm of type θe

and age a, given aggregate state (F,D), equals

π (a, θ;F,D) =
D

X (H (F,D))
· (1 + γ)−a · (θ + ε)− 1. (11)

Thus, the aggregate state (F,D) and its law of motion help firms to pre-
dict future profitability by suggesting sequences of X’s from today onward
under different paths of demand realizations. The question then is: what is
the firm’s critical level of knowledge of F that allows it to predict the se-
quence of X 0s over time? Although firms would ideally have full information
about F , this is not computationally feasible. Therefore I need to find an
information set Ω that delivers a good approximation of firms’ equilibrium
behavior, yet is small enough to reduce the computational difficulty.

I look for a Ω through the following procedure. In step 1, I choose a
candidate Ω. In step 2, I choose the laws of motion for all members of Ω,
denoted HΩ, such that Ω0 = HΩ (Ω,D). In step 3, given HΩ, I calculate
firms’ value functions on a grid of points in the state space of Ω applying
value function iteration approach, and obtain the corresponding industry-
level decision rules — entry sizes and exit ages across aggregate states. In
step 4, given such decision rules and an initial firm distribution,24 I simu-
late the behavior of a continuum of firms along a random path of demand
23X can be interpreted as detrended output.
24 I start with a uniform firm distribution across types and ages. My numerical exercises

suggest that the dynamic system of my model is stable and that the initial firm distribution
does not affect the result.
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Ω {X}
HΩ

Hx(X,Dh): logX 0 = 1.2631 + 0.8536 logX
Hx (X,Dl) : logX 0 = 2.4261 + 0.7172 logX

R2
for Dh: 0.9876
for Dl: 0.9421

standard forecast error
for Dh: 0.0000036073%
for Dl: 0.000030068%

maximum forecast error
for Dh: 0.000049895%
for Dl: 0.00074675%

Den Haan & Marcet test statistic (χ27) 0.8007

Table 1: The Estimated Laws of Motion and Measures of Fit

realizations, and derive the implied aggregate behavior – a time series of
Ω. In step 5, I use the stationary region of the simulated series to estimate
the implied laws of motion and compare them with the perceived HΩ; if
different, I update HΩ, return to step 3 and continue until convergence. In
step 6, once HΩ converges, I evaluate the fit of HΩ in terms of tracking the
aggregate behavior. If the fit is satisfactory, I stop; if not, I return to step 1,
make firms more knowledgeable by expanding Ω, and repeat the procedure.

I start with Ω = {X} – firms observe X instead of F . I further as-
sume that firms perceive the sequence of future coming X 0s as depending
on nothing more than the current observed X. The perceived law of motion
for X is denoted Hx so that X 0 = Hx (X,D). I then apply the procedure
described above and simulate the behavior of a continuum of firms over 5000
periods. The results are presented in Table 1. As shown in Table 1, the es-
timated Hx is log-linear. And the fit of Hx is quite good, as suggested by
the high R2, the low standard forecast error, and the low maximum fore-
cast error. The good fit when Ω = {X} implies that firms perceiving these
simple laws of motion make only small mistakes in forecasting future prices.
To explore the extent to which the forecast error can be explained by vari-
ables other than X, I implement Den Haan and Marcet (1994) test using
instruments [1,X, µa, σa, γa, κa, ru], where µa, σa, γa, κa,ru are the mean,
standard deviation, skewness, and kurtosis of the age distribution of firms,
and the fraction of unsure firms, respectively.25 The test statistic is 0.8007,

25Den Haan and Marcet (1994) offer a statistic for computing the accuracy of a simula-
tion. It has an asymptotic χ2 distribution under the null that the simulation is accurate.
The statistic for my industry is given by TB

0
TA

−1
T BT , where BT =

1
T

ut+1 ⊗ h (Gt),

AT =
1
T

u2t+1⊗h (Gt)h (Gt)
0, ut+1 is the expectation error for Xt+1(or logXt+1), and
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Figure 4: Expected Value of Staying: aggregate state variables are D and logX (the log
of detrended output), firm-level state variables are firm age and belief (good or unsure);
applied calibration is summarized in Table 2 and discussed in Subsection 4.2.
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Figure 5: Industry-level Policy Functions: Entry Size and Exit Ages. Aggregate states
are D (booms or recessions) and logX (the log of detrended output).

well below the critical value at the 1% level. This suggests that given the
estimated laws of motion, I do not find much additional forecasting power
contained in other variables. Nevertheless, I expand Ω further to include σa,
the standard deviation of the age distribution of firms. The results when
Ω = {X,σa} are presented in the appendix. The measures of fit do not
change much.26 Furthermore, the impact of changes in σa on the approx-
imated value function is very small (less than 0.5%). This confirms that
the inclusion of information other than X improves the forecast accuracy by
only a very small amount.

Figure 4 displays the value of staying for heterogeneous firms as a func-
tion of a, θe, D and X (logX). Figure 5 displays the corresponding optimal
exit ages and entry sizes. The properties of value functions and exit ages
stated in Proposition 2 are satisfied in both figures: given the aggregate

h (Gt) is some function of variables dated t. I choose h (Gt) = [1,X, µa, σa, γa, κa, ru],
which gives my test statistic 7 degrees of freedom.

26Actually the fit during recessions becomes worse to some extent. Young (2002) adds
an additional moment to the original Krusell & Smith approach, and also gets worse
measure of fit for the bad state (recessions). He attributes this result to numerical error.
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parameters (pre-chosen) value
productivity of bad firms: θb 1

productivity of good firms: θg 3.5

quarterly technological pace: γ 0.007

quarterly discount factor: β 0.99

parameters (calibrated) value
high demand: Dh 2899

low demand: Dl 2464

prior probability of being a good firm: ϕ 0.14

quarterly pace of learning: p 0.08

persistence rate of demand: µ 0.58

entry cost function 0.405 + 0.52 ∗ f(0, θu)
Table 2: Base-line Parameterization of the Model

state, the value of staying is increasing in the expected type θe and decreas-
ing in firm age; and good firms exit at an older age than unsure firms.

To conclude, Table 1, Figures 4 and 5 suggest that my solution using X
to approximate the aggregate state closely replicates optimal firm behavior
at the equilibrium.27 Therefore, I use the solution based on Ω = {X} to
generate all the series in the subsequent analysis.

4.2 Calibration

Table 2 presents the assigned parameter values. Some of the parameter
values are pre-chosen. The most significant in this group are the relative
productivity of good and bad firms. I follow Davis and Haltiwanger (1999),
who assume a ratio of high-to-low productivity of 2.4 for total factor produc-
tivity and 3.5 for labor productivity based on the between-plant productivity
differentials reported by Bartelsman and Doms (1997). Since labor is the
only input in my model, I normalize productivity of bad firms as 1 and set
productivity of good firms as 3.5. I allow a period to represent one quarter
and set the quarterly discount factor β = 0.99. Next, I need to choose γ, the
quarterly pace of technological progress. In a model with only creative de-
struction, Caballero and Hammour (1994) choose the quarterly technological

27Those results were robust when I experimented with different parameterizations of
the model. Although it suggests that the simulation is good, one could say that these are
self-fulfilling equilibria: because everyone perceives a simple law of motion, they behave
correspondingly so that the aggregate states turn out as predicted. However, it has been
difficult to prove theoretically the existence of such self-fulfilling equilibria in my model.
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growth rate as 0.007 by attributing all output growth of US manufacturing
from 1972:2 to 1983:4 to technical progress. To make a convenient compar-
ison with their result in the coming subsections, I also choose γ = 0.007.
Caballero and Hammour (1994) assume a linear entry cost function c0 + c1
f(0, θu) with f(0, θu) denoting the size of entry, which is also applied in my
calibration exercises.

The remaining undetermined parameters are: p, the pace of learning;
ϕ, the probability of being a good firm; Dh and Dl, the demand levels;
µ, the probability with which demand persists; and c0 and c1, the entry
cost parameters. The values of these parameters are chosen so that the job
destruction series in the calibrated model matches properties of the historical
series from the U.S. manufacturing sector. Their values are calibrated in the
following manner.

First, I match the long-run behavior of job destruction. My numerical
simulations suggest that the dynamic system eventually settles down with
constant entry and exit along any path where demand level is unchanging.
The industry structures at the stable points are similar to those at the steady
states, which allows me to use steady state conditions for approximation.28 I
let ag and au represent the maximum ages of good firms and unsure firms at
the high-demand steady state and ag

0 and au0 represent the exit ages at the
low-demand steady state. The steady-state job destruction rate, denoted
jdss, is given by (9).

Secondly, I match the peak in job destruction that occurs at the onset of
a recession. My model suggests that the jump in the job destruction rate at
the beginning of a recession comes from the shift of exit margins to younger
ages. I assume that when demand drops, the exit margins shift from ag and
au to ag 0 and au

0 at once, so that the job destruction rate at the beginning
28However, a stable point is different from a steady state. In a steady state, firms

perceive demand as constant, while in a stable point, firms perceive demand to persist
with probability µ, and to change with probability 1− µ.
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Descriptive Statistics Mean Min. Max. Std.
Value 5.6% 2.96% 11.60% 1.66%

Table 3: Descriptive Statistics of Quarterly Job Destruction in U.S. Manufacturing
(1972:2-1993:4), constructed by Davis and Haltiwanger.

of a recession, denoted as jdmax, is approximately:29

jdmax =

2 ·
ϕ
h
1− (1− p)au+1

i
(ag − ag

0)+h
1
p + ϕ− 1− 1

p (1− p)au−au
0i
(1− p)au

0+1+

(1− ϕ)

ϕ (au + au
0) + (1−ϕ)

p

h
2− (1− p)au+1 − (1− p)au

0+1
i
+

ϕ
h
1− (1− p)au+1

i
(ag − au) + ϕ

h
1− (1− p)au

0+1
i
(ag

0 − au
0)
(12)

Thirdly, I match the trough in job destruction that occurs at the onset
of a boom. My model suggests that when demand goes up, the exit margins
extend to older ages so that for several subsequent periods job destruction
comes only from the learning margin, implying a trough in the job destruc-
tion rate. The job destruction rate at this moment, denoted as jdmin, is
approximately:

jdmin =
(1− ϕ)

h
1− (1− p)au

0+1
i

au0 · ϕ+ [1−ϕp + (ag 0 − au0) · ϕ] · [1− (1− p)au
0+1]

(13)

Now I turn to data for conditions on jdss, jdmax, and jdmin. Table 3 lists
descriptive statistics for the job destruction series of the U.S. manufacturing
sector from 1972:2 to 1993:4 compliled by Davis and Haltiwanger. This data
places three restrictions on the values of p, ϕ, ag, au, ag 0 and au

0. First,
the implied jdss with either (ag, au) or (ag 0, au0) must be around 5.6%.30

Second, the implied jdmax must not exceed 11.6%. Third, the implied jdmin
must be above 3%. Additionally, (ag, au) and (ag 0, au0) must satisfy (8),
the gap between the exit ages of good and unsure firms suggested by the
steady state. There are six equations in total to pin down the values of

29As I have noted earlier, the calibration exercises suggest that when a negative aggre-
gate demand shock strikes, the exit margins shift more than ag 0 and au0. The bigger shift
implies a bigger jump in job destruction, This is why I require negmax to lie below 11.60%.
I experiment with different demand levels to find those that generate the closest fit.
30The one implied by (ag 0, au0) is slightly higher since I assume ag 0 < ag and au

0 < au.
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these six parameters. Using a search algorithm, I find that these conditions
are satisfied for the following combination of parameter values: p = 0.06,
ϕ = 0.18, ag = 78, au = 62, ag 0 = 73, au0 = 57. By applying these ag, au,
ag
0 and au

0 to the steady state industry structure, I find Dh = 2899 and
Dl = 2464.

The value of µ is calibrated to match the observed standard deviation
1.66. In my model, the job destruction rate jumps above its mean when
demand drops and falls below when demand rises. Thus, the frequency of
demand switches between Dh and Dl determines the frequency with which
the job destruction rate fluctuates between 11.6% and 3%, which in turn
affects the standard deviation of the simulated job destruction series. My
calibration exercises suggest µ = 0.58. Finally, the entry cost parameters
are adjusted to match the observed mean job creation rate 5.19%.

4.3 Response to a Negative Demand Shock and Simulations
of U.S. Manufacturing Job Flows

With all of the parameter values assigned, I approximate firms’ value func-
tions applying the computational strategy described in subsection 4.1. With
the approximated value functions, the corresponding decision rules and an
initial firm distribution, I can investigate the dynamics of my model’s key
variables along any particular path of demand realizations, and study the
model’s quantitative implications.

4.3.1 Scarring and Cleansing over the Cycle

To assess the effect of a negative demand shock, I start with a random firm
distribution and simulate my model with demand level equal to Dh for the
first 200 quarters. Regardless of the initial firm distributions, I find that the
exit age of good firms settles down to 76, the exit age of unsure firms settles
down to 62, the job destruction rate converges to 5.38%, and the fraction
of good firms converges to 49.8%. This suggests that my model is globally
stable. Once the key variables converge, I simulate the effects of a negative
demand shock that persists for the next 87 quarters.

The dynamics of the job destruction rate and the job creation rate are
illustrated in Panel 1 of Figure 6, with the quarter labeled 0 denoting the
onset of a recession. The job destruction rate goes up from 5.38% to 10.84%
on impact. Thus, the immediate effect of a negative demand shock is to
clear out some firms that would have stayed in if demand had remained high.
After 70 quarters, the job destruction rate converges to 5.63%, still above its
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original value. Hence, the conventional cleansing effect on job destruction
from the comparative static exercises carries over with probabilistic cycles.

Unlike the job destruction rate, the job creation rate drops from 4.69%
to 4.32% when a recession strikes, rises gradually and converges later. This
matches the finding of Davis and Haltiwanger (1992) that the job creation
rate falls during recessions and co-moves negatively with the job destruction
rate over the cycle.31

The analysis of the steady state also suggests that recessions will bring
a scarring effect by shifting labor resources toward bad firms. As shown in
Panel 2 of Figure 6, the fraction of labor at good firms drops from 49.8%
to 48.07% when the negative demand shock strikes and converges to 47.87%
after 70 quarters. This implies that the negative demand shock shifts the
cross-type firm distribution toward bad firms. Hence, the scarring effect
suggested by the steady-state analysis also carries over with probabilistic
business cycles.

Two remarks are in order regarding the response of the fraction of labor
at good firms to a negative demand shock. First, the initial drop in lg at
the onset of a recession contradicts my argument in Section 2.2 that the
scarring effect takes time to work. My calibration exercises suggest that
this feature is robust and can be understood as follows. Recessions shift
both exit margins to younger ages. While the shift of the exit margin for
unsure firms clears out both bad firms and good firms, the shift of the exit
margin for good firms clears out only good firms, so that in total more good
firms are cleared out than bad firms initially and lg drops at the onset of a
recession. Since lg eventually converges to a value below the initial drop, and
the initial drop in lg also stems from learning, this result does not hurt my
argument that in a model with learning, recessions create a scarring effect
by shifting resources toward bad firms.

Second, the response of lg shown in Panel 2 is hump-shaped: it drops
initially, increases gradually, then declines again. This feature is mainly due
to the response of the exit margins over the cycle. When a recession first
strikes, the exit margins over-shift to the left, and shift back gradually as the
recession persists. As the exit margin for unsure firms shifts back, more good
firms are allowed to reach their potential; meanwhile, as the exit margin for
good firms shifts back, no old good firms exit for several quarters. Hence, lg
increases after the initial drop. The exit margins reach their stable points
after about 20 quarters. From then on, lg starts to fall, with old good firms

31Davis and Haltiwanger (1999) report a correlation coefficient of −0.17 of job destruc-
tion and job creation for the U.S. Manufacturing from 1947:1-1993:4.
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Figure 6: Response to a Negative Demand Shock: vin is the detrended average labor
productivity driven only by the cleansing effect, prod is the detrended average labor pro-
ductivity driven by both the cleansing effect and the scarring effect. Scar = prod− vin.
The horizontal axis denotes quarters, with the quarter labeled 0 denoting the onset of a
recession.
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gradually being cleared out but not enough new good firms being realized.
Another part of this hump-shaped response comes from the entry margin.
Because they have had no time to learn, newly entered cohorts have the least
efficient cross-type firm distribution in the industry, so that entry tends to
drive down lg. When entry falls in a recession, the negative impact of entry
on lg is also reduced, which contributes to part of the increase in lg after the
initial drop.

To summarize, despite some transitory dynamics, Panel 1 and Panel 2
of Figure 6 suggest that both the conventional cleansing effect established
in Proposition 2, and the scarring effect established in Proposition 3, carry
over with probabilistic business cycles.

4.3.2 Implications for Productivity

Next, I turn to the quantitative implications of the model for the cyclical
behavior of average labor productivity. With one worker per firm setup and
firm-level productivity given by A·θ

(1+γ)a
, average labor productivity is affected

by A, the level of the leading technology, and the firm distribution across
a and θ. While technological progress drives A, and thus average labor
productivity, to grow at a trend rate γ (the technological pace), demand
shocks add fluctuations around this trend by affecting the labor distribution
across a and θ.

To analyze the fluctuations of average labor productivity over the cycle,
I define de-trended average labor productivity as the average of θ

(1+γ)a
over

heterogeneous firms. In evaluating this measure, recall that there are two
competing effects. On the one hand, the cleansing effect drives down the
average a by lowering the cut-off ages for each type, causing average labor
productivity to rise. On the other hand, the scarring effect drives down the
average θ by shifting resources away from good firms, causing average labor
productivity to fall. To separate the two effects, I generate two indexes for
average labor productivity. The first index is the average of θ

(1+γ)a across
all firms in operation, defined as the following:

prod =

P
f

³
θe

(1+γ)a

´
· f (θe, a)P

f

f (θe, a)
.

This measure is affected by both cleansing and scarring effects. The other
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index is the average of 1
(1+γ)a

across all existing firms, defined as:

vin =

P
f

³
1

(1+γ)a

´
· f (θe, a)P

f

f (θe, a)
.

This measure is affected only by the cleansing effect. To compare the relative
magnitude of these two effects, their initial levels are both normalized as 1.
Since only the cleansing effect drives the dynamics of vin but both cleansing
and scarring effects drive the dynamics of prod, the gap between vin and
prod reflects the magnitude of the scarring effect. A scarring index measures
this gap. It is defined as:

scar = prod− vin.

Panel 3 in Figure 6 traces the evolution of vin and prod in response
to a negative demand shock. As the negative demand shock strikes, the
cleansing effect alone raises the average labor productivity to 1.013 while
the scarring effect brings the average labor productivity down to 0.9974.
After 70 quarters, prod converges to 0.9947 while vin converges to 1.0126.
The dynamics of the scarring index in response to a negative demand shock
is plotted in Panel 4 of Figure 6. The scarring index remains negative fol-
lowing a negative demand shock and eventually converges to −0.0179. This
matches the predictions of my model that the scarring effect plays against
the conventional cleansing effect during recessions by shifting resources away
from good firms, driving down the average labor productivity.

4.3.3 Simulation of U.S. Manufacturing Job Flows

To gauge whether the scarring effect is likely to be relevant at business cycle
frequencies, I simulate my model’s response to random demand realizations
generated by the model’s Markov chain. I perform 1000 simulations of 87
quarters each. Results are presented in Table 4. The reported statistics are
means (standard deviations) based on 1000 simulated samples. Sample sta-
tistics for U.S. Manufacturing data for the 87 quarters from 1972:2 to1993:4
are included for comparison. In the table, jd and jc represent the job de-
struction and job creation rate; prod and q represent de-trended average
labor productivity and de-trended output.

Table 4 suggests that my calibrated model can replicate the observed
patterns of job flows; moreover, the positive correlation coefficient of 0.1675
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simulation statistics data
jdmean 5.29%(0.0100%) 5.6%

jdstd 1.65%(0.3100%) 1.66%

jcmean 4.72%(0.0581%) 5.19%

jcstd 0.37%(0.0535%) 0.95%

corr(prod, q) 0.1675(0.7504) 0.5537∗

Table 4: Means (std errors) of 1000 Simulated 87-quarter Samples: jd is the job destruc-
tion rate, jc is the job creation rate, prod is detrended average labor productivity, q is
detrended aggregate output. Data comes from the U.S. Manufacturing job flow series for
1972:2-1993:4, compiled by Davis and Haltiwanger. *Detrended average labor productiv-
ity is calculated as output per production worker, with output measured by industrial
production index. The quarterly series of industrial production index of U.S. manufac-
turing sector for 1972:2-1993:4 comes from the Federal Reserve and the series of total
production workers comes from the Bureau of Labor Statistics.

between prod and q implies that my model generates procyclical average
labor productivity for the U.S. manufacturing sector in the relevant period.
Put differently, under my benchmark calibration the scarring effect on cycli-
cal productivity dominates the cleansing effect.

4.4 Sensitivity Analysis of the Dominance of Scarring over
Cleansing

In the baseline parameterization of subsection 4.2, I followed Caballero and
Hammour (1994) in setting the quarterly technological pace γ equal to 0.007.
The value was estimated by attributing all output growth of the U.S. man-
ufacturing sector to technological progress, which may exaggerate the tech-
nological pace in the relevant period. An alternative estimate of γ, has been
provided by Basu, Fernald and Shapiro (2001), who estimate TFP growth
for different industries in the U.S. from 1965 to 1996 after controlling for
employment growth, factor utilization, capital adjustment costs, quality of
inputs and deviations from constant returns and perfect competition. Table
5 presents their results for the period 1979-1990: a quarterly technological
pace of 0.0037 for durable manufacturing, a pace of 0.0027 for non-durable
manufacturing and an even slower pace for other sectors.

How would a slow pace of technological progress affect the magnitudes
of the scarring and cleansing effects? To address this question, I re-calibrate
my model assuming γ = 0.003, matching the same moments of job creation
and destruction as before, and simulate responses to a negative demand
shock. The results are presented in Table 6 together with results from the
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1979-1990 (quarterly)
Durable Manufacturing 0.0037

Non-durable Manufacturing 0.0027

Non-manufacturing −0.0005
Private Sector 0.0005

Table 5: Estimated Growth in TFP (Basu, Fernald and Shapiro 2001)

Calibration Results γ = 0.003 γ = 0.007

calibrated p 0.0830 0.0800

calibrated ϕ 0.1200 0.1420

Response to a Negative
Demand Shock
vin (when a recession strikes) 1.0052 1.0130

vin (70 quarters after a reces-
sion strikes)

1.0029 1.0126

prod (when a recession strikes) 0.9866 0.9974

prod (70 quarters after a reces-
sion strikes)

0.9820 0.9947

scar (when a recession strikes) −0.0186 −0.0156
scar (70 quarters after a reces-
sion strikes)

−0.0209 −0.0179

Table 6: Sensitivity Analysis to a Slower Technological Pace (I): prod is detrended aver-
age labor productivity, driven by both the cleansing and the scarring effects, vin is the
component of detrended average labor productivity driven only by the cleansing effect,
scar = prod - vin. Other parameter values are as shown in Table 2.

baseline parameterization.
The calibration results in Table 6 suggest that the model with γ = 0.003

needs a faster learning pace (p = 0.083 compared to 0.08) and a smaller
prior probability of firms’ being good (ϕ = 0.120 compared to 0.142) to
match the observed moments of job flows.32 The simulated responses suggest

32Consider (9), the expression of jdss, for intuition. My calibration exercises look for
parameter values that satisfy three moment conditions on job flows, one of which is that
jdss ≈ 5.6%. Proposition 3 establishes that jdss decreases with the exit ages (ag and au).
It can be further shown that it increases in p but decreases in ϕ. A slower technological
pace weakens the technical disadvantage of old firms and extends their life span so that
both ag and au tend to increase. Hence, the job destruction rate would decrease if p and
ϕ remain the same. A faster learning pace and a lower prior probability of being good are
thus needed to match the observed mean job destruction. Thus, the paramerization of
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simulation statistics
with γ = 0.003

simulation statistics
with γ = 0.007

data

jdmean 5.73%(0.0799%) 5.29%(0.0100%) 5.6%

jdstd 1.42%(0.2800%) 1.65%(0.3100%) 1.66%

jcmean 5.14%(0.0565%) 4.72%(0.0581%) 5.19%

jcstd 0.34%(0.0059%) 0.37%(0.0535%) 0.95%

corr(prod, q) 0.4819(0.5212) 0.1675(0.7504) 0.5537

Table 7: Sensitivity to A Slower Technological Pace (II): Means (std errors) of 1000
Simulated 87-quarter Samples. Definitions, measures and data sources are the same as
Table 4.

that slower technological progress magnifies the scarring effect, weakens the
cleansing effect, and magnifies the procyclical behavior of productivity.

This result can be explained as follows. First, slower technological
progress implies that the force of creative destruction is weak. A lower γ
weakens the technical disadvantage of old firms and allows both good firms
and unsure firms to live longer, so that less job destruction occurs at the
exit margins. A lower γ also implies a smaller cleansing effect on average
labor productivity. A recession clears out marginal firms by shifting the
exit margins toward younger ages. The size of the shift is pinned down in
my calibration exercises by matching jdmax ≈ 11.6%. Given the shift of
exit margins, a slower technological pace shrinks the difference between the
vintages that have been killed and the ones that have survived, so that the
impact of the cleansing effect on average labor productivity declines.

Second, when I assume a lower γ, I must also assume a higher p and a
lower ϕ to match the moments of job destruction. This re-calibration implies
a larger role for learning in job destruction: firms not only learn faster, but
also every period they learn, more learners exit as bad firms. It also gives
a larger scarring effect on average labor productivity: a faster learning pace
implies a higher opportunity cost of not learning; a smaller prior probability
of being good suggests that learning has a greater marginal impact on cross-
type efficiency.

Table 7 reports the simulation statistics of 1000 simulated 87-quarter
samples when γ = 0.003. Results when γ = 0.007 and sample statistics
from data are included for comparison. My model with γ = 0.003 gen-
erates a correlation coefficient of 0.4819 between detrended average labor
productivity and detrended output. This is a strong procyclical behavior of

my model with γ = 0.003 suggests that more job destruction comes from learning rather
than creative destruction.
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productivity and is close to the one suggested by data.

5 Conclusion

How do recessions affect resource allocation? My paper suggests learning
has important consequences for this question. I posit that in addition to
the cleansing effect argued by previous authors, recessions create a scar-
ring effect by interrupting the learning process. They kill off potentially
good firms, shift resources toward bad firms and exacerbate the allocative
inefficiency in an industry. The empirical relevance of the scarring effect is
examined in Section 4. Using data on U.S. manufacturing job flows, I find
that the scarring effect dominates the cleansing effect in the U.S. manufac-
turing sector from 1972 to 1993, and can account for the observed procyclical
productivity.

The scarring effect stems from learning. Recessions bring a scarring effect
by limiting the learning scope. Figure 3 of the paper provides intuition.
Recessions force firms to exit at earlier ages. The shortened firm life allows
less learning time, so that fewer truly good firms get to realize their potential
and the shaded area in Figure 3 would disappear. The decrease in the
fraction of labor at good firms implies a less efficient allocation of labor
during recessions.

My paper highlights firm age as an indicator for the number of learning
opportunities. The existing empirical literature documents that firm age has
important explanatory power for micro-level job flow patterns.33 My model
predicts that the mean and the dispersion of firm age both decline during
recessions, while the productivity dispersion within an age cohort goes up
on average. These are testable hypotheses with detailed data on the age
distribution of firms over the cycle.

The empirical relevance of the scarring effect remains to be explored in a
wider framework. My calibration exercises have focused on the U.S. manu-
facturing sector, where job destruction is more responsive to business cycles
than job creation. However, Foote (1997) documents that in sectors of ser-
vices, fire, transportation and communications, retail trade, and wholesale
trade, job creation is more volatile than job destruction. Would relatively
more responsive job creation hurt the dominance of the scarring effect? It
could, since recessions leave “scars” by killing off potentially good firms on
the destruction side. It may not, because a larger decline in job creation also

33See Caves (1998) for an extensive review of recent findings on firm turnover and
industrial dynamics.
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introduces fewer potentially good firms on the creation side. Whether “scar-
ring” dominates “cleansing” in sectors other than manufacturing remains an
interesting question.

APPENDIX

Proof of Proposition 1 (three steps):

Step1: to prove that V (θe,a;F,D)
∂a < 0:

Proof. Compare two firms with same belief θe, but different ages a1 >
a2. To prove

V (θe,a;F,D)
∂a < 0, I need to show that

V (θe, a1;F,D) < V (θe, a2;F,D) .

Suppose that the aggregate state is (F,D) at the beginning of period t0.
I assume there are n different possible paths of demand realizations from
t0 onward, each with probability pi, where i = 1, ..., n. I also assume that
under the i’th path of demand realizations, the firm with a1 expects itself
to exit at the end of period ti1 ≥ t0 and the firm with a2 expects itself to
exit at the end of period ti2 ≥ t0, then:

V (θe, a1;F,D) =
nX
i=1

ti1X
t=t0

©
βt−t0E

£
πit (θ

e, a1 + t− t0) |F,D
¤ª · pi,

and

V (θe, a2;F,D) =
nX
i=1

ti2X
t=t0

©
βt−t0E

£
πit (θ

e, a2 + t− t0) |F,D
¤ª · pi,

where πit (θ
e, a1 + t− t0) is the expected profit (of a firm with current

age a1 and current belief θe) at period t ≥ t0 under demand path i. Firms
have rational expectations and expect a price sequence

©
P i
t (F,D)

ª
t≥t0 con-

ditional on the realization of path i. Since price is competitive and firms are
price takers, I must have:

V (θe, a1;F,D) =
nX
i=1

ti1X
t=t0

©
βt−t0

£
A (t0 − a1) θ

eP i
t (F,D)− 1

¤ª · pi
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and

V (θe, a2;F,D) =
nX
i=1

ti2X
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª · pi.
There are three possibilities for any i.
Possibility 1, if ti1 = ti2 = ti:
since A (t0 − a1) < A (t0 − a2),

(t0 − a1) θ
eP i

t (F,D)− 1 < A (t0 − a2) θ
eP i

t (F,D)− 1
holds for any t. Hence,

tiX
t=t0

©
βt−t0

£
A (t0 − a1) θ

eP i
t (F,D)− 1

¤ª
<

tiX
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
Possibility 2, if ti1 < ti2:
then it must be true that,

ti2X
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
=

ti1X
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
+

ti2X
t=ti1+1

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
,

and hence,

ti1X
t=t0

©
βt−t0

£
A (t0 − a1) θ

eP i
t (F,D)− 1

¤ª
<

ti2X
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
,

Possibility 3, if ti1 > ti2:
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when it comes to period ti2 under path i, the firm aged a1+t
i
2−t0 chooses

to stay and the firm aged a2 + ti2 − t0 decides to leave. Based on the exit
condition, it must be true that,

V
¡
θe, a1 + ti2 − t0;F

0,D0¢ > 0andV ¡θe, a2 + ti2 − t0;F
0,D0¢ < 0.

The firm aged a1 + ti2 − t0 chooses to stay to capture the potential profit

ti1X
t=ti2+1

n
βt−t

i
2 · £A (t0 − a1) θ

eP i
t (F,D)− 1

¤o
and he expects those future profits can cover any possible cost if demand
path does not goes as expected. Since

ti1X
t=ti2+1

n
βt−t

i
2 · £A (t0 − a1) θ

eP i
t (F,D)− 1

¤o

<

ti1X
t=ti2+1

n
βt−t

i
2 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤o
,

the firm aged a2+ ti2− t0 should have expected even higher potential profits
in the future which is worth waiting for. Hence, it must not choose to leave
at period ti2. Therefore, t

i
1 > ti2 cannot be true.

1), 2) and 3) help me conclude that:

ti1X
t=t0

©
βt−t0

£
A (t0 − a1) θ

eP i
t (F,D)− 1

¤ª
<

ti2X
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
holds for any i. Then it must be true that,

nX
i=1

ti1X
t=t0

©
βt−t0

£
A (t0 − a1) θ

eP i
t (F,D)− 1

¤ª
pi

<
nX
i=1

ti2X
t=t0

©
βt−t0 · £A (t0 − a2) θ

eP i
t (F,D)− 1

¤ª
pi
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or
V (θe, a1;F,D) < V (θe, a2;F,D) .

Step 2: to prove V (θe,a;F,D)
∂θe > 0.

Proof. It is similar to the proof of V (θe,a;F,D)
∂a > 0.

Step 3: to prove the existence of cut-off age a (θe;F,D) and a
¡
θe0;F,D

¢ ≥
a (θe;F,D), for θe0 > θe.

Proof. The existence of a (θe;F,D) is straightforward. Holding θe con-
stant, V (θe, a;F,D) is monotonically decreasing in a, then there must be
a (θe;F,D) such that

V (θe, a (θe;F,D) ;F,D) > 0

but
V (θe, a (θe;F,D) + 1;F,D) ≤ 0.

And since V (θe,a;F,D)
∂θe > 0, I have:

V
³
θe

0
, a (θe;F,D) ;F,D

´
> V (θe, a (θe;F,D) ;F,D) = 0 holds for any θe0 > θe.

Therefore, it must be true that a
¡
θe0;F,D

¢ ≥ a (θe;F,D).

PROOF OF PROPOSITION 2 (three steps):

Proof. Step 1: to show that a steady state features time-invariant PtAt,
such that PtAt = PA, ∀ t, where Pt represents the equilibrium price and At

represents the leading technology in period t.
The condition of competitive pricing tells that:

Dt = Pt ·Qt.

Qt is the aggregate output over heterogeneous firms.

Qt =
X
a

X
θe

Atθ
eft (θ

e, a) (1 + γ)−a.

so that:
Dt = PtAt ·

X
a

X
θe

θeft (θ
e, a) (1 + γ)−a. (14)

By definition, a steady state features constant level of demand, Dt = D (∀
t). and time-invariant firm distribution. Let f (θe, a) denote the number of
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firms with (θe, a) and ag , au denote the maximum ages for good firms and
unsure firms in operation, respectively. The above equation can be rewritten
as:

D = PtAt ·
(

auP
a=0

£
θuf (θu, a) (1 + γ)−a

¤
+

agP
a=1

£
θgf (θg, a) (1 + γ)−a

¤)
so that

PtAt =
D(

auP
a=0

[θuf (θu, a) (1 + γ)−a] +
agP
a=1

[θgf (θg, a) (1 + γ)−a]

) .
Hence, PtAt must be time-invariant. I let PtAt = PA.

Step 2: solve for ag − au by firms’ exit conditions.
At a steady state, the aggregate state {D,F} is perceived to be time-

invariant. Thus, good firms know they will live until ag, and unsure firms
know they will live until au. The time-invariant decision rules at the steady
state imply time-invariant value functions. Let V (θe, a) represent the steady-
state expected value of staying of a firm with belief θe and age a.

Since ag denote the maximum age of good firms in operation, and V (θg, a)
decreases in a monotonically, the condition of firm rationality suggests it
must be true for ag that:

V (θg, ag) = 0

θgPA (1 + γ)−ag − 1 = 0

so that

PA =
(1 + γ)ag

θg
. (15)

Similarly, exit condition for unsure firms suggest:

V (θu, au) = 0

θuPA (1 + γ)−au − 1 + βpϕV (θg, au + 1) = 0

θuPA (1 + γ)−au − 1 + βpϕ

agX
a=au+1

βa−au−1
£
θgPA (1 + γ)−a − 1¤ = 0

With (15) plugged in, I have (8):µ
θu
θg
+

pϕβ

1 + γ − β

¶
(1 + γ)ag−au = 1 +

pϕβ

1− β
− pϕβγ

(1− β) (1 + γ − β)
βag−au

(8)
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which can be re-written as:

F (ag − au) = G (ag − au)

Proposition 1 suggests that ag − au ≥ 0. To establish the existence of
ag − au ≥ 0 that satisfies the above equation, I need to show that F and G
cross each other at a positive value of ag − au.

G0 = − pϕβγ

(1− β) (1 + γ − β)
βag−au lnβ > 0, but

G00 = − pϕβγ

(1− β) (1 + γ − β)
βag−au (lnβ)2 < 0

moreover,

F (0) =
θu
θg
+

pϕβ

1 + γ − β
, and

G (0) = 1 +
pϕβ

1 + γ − β
.

and:
F (0) < G (0)

because θu
θg

< 1 by definition (θu = ϕθg + (1− ϕ) θb and θg > θb).
F (0) < G (0) suggests that the curve of F starts at ag − au = 0 below
the curve of G. F 0 > 0 and G0 > 0 imply that both of F and G increase
monotonically in ag − au. F 00 > 0 suggests that F is convex but G00 < 0
suggests that G is concave. Hence, F and G must cross once at a positive
value of ag − au, as shown in the following figure:

a ag u−0

( )F a ag u−

( )G a ag u−

( )F 0

( )G 0

a ag u−0

( )F a ag u−

( )G a ag u−

( )F 0

( )G 0

Therefore, (8) alone determines a unique value for ag − au.
Step 3, solve for f (0) and ag by combining the free entry condition and

the competitive pricing condition:

V (θu, 0) = C (f (0))
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where f (0) represents the size of the entering cohort. With time-invariant
life-cycle dynamics for each cohort shown in Figure 2, I have:

V (θu, 0) =
auX
a=1

βa
·

PAθu
(1 + γ)a

− 1
¸
λ (θu, a) +

agX
a=1

βa
·

PAθg
(1 + γ)a

− 1
¸
λ (θg, a)

where λ (θu, a) denotes the probability of staying in operation at age a as
an unsure firm, and π (θg, a) denotes the probability of staying in operation
at age a as a good firm. All-or-nothing learning suggests that:

λ (θu, a) = (1− p)a for 0 ≤ a ≤ au,

λ (θg, a) = ϕ [1− (1− p)a] for 0 ≤ a ≤ au,

λ (θg, a) = ϕ
h
1− (1− p)au+1

i
for au + 1 ≤ a ≤ ag

Plugging λ (θu, a), λ (θg, a) and PA = (1+γ)ag

θg
into V (θu, 0), I have:

(1 + γ)ag

θg



auP
a=1

βa

 (1− p)a
³

θu
(1+γ)a

− 1
´
+

ϕ (1− (1− p)a)
³

θg
(1+γ)a

− 1
´ +

ϕ
³
1− (1− p)au+1

´ agP
a=au+1

βa
³

θg
(1+γ)a − 1

´
+

θu − 1


= C (f (0))

(16)

Plugging PA = (1+γ)ag

θg
back into (14) and applying the steady state

industry structure suggested by all-or-nothing learning and exit ages, I have:

f(0) · (1 + γ)ag

θg


(θu − ϕθg)

auP
a=1

³
1−p
1+γ

´a
+ ϕθg

agP
a=1

³
1
1+γ

´a
+

ϕθg (1− p)
au+1

agP
a=au+1

³
1
1+γ

´a
 = D (17)

ag − au has been given by (8). The left-hand sides of (16) and (17)
are both monotonically increasing in ag; The left-hand side and the right-
hand side of (16) are both monotonically increasing in f (0). Hence, with
au replaced by ag − (ag − au), (16) and (17) jointly determine ag and f (0).

Therefore, for any D, there exists a steady state that can be captured
by {f (0) , ag, au}.

PROOF OF PROPOSITION 3:
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Proof. To prove that d(ag)
dD ≥ 0 and d(au)

dD ≥ 0 at the steady state,
combining (16 ) with (17) and replacing au by ag − (ag − au) gives the
following:

(1 + γ)ag

θg


(θu − ϕθg)

auP
a=1

³
1−p
1+γ

´a
+ ϕθg

agP
a=1

³
1
1+γ

´a
+

ϕθg (1− p)
au+1

agP
a=au+1

³
1
1+γ

´a
 ·

c−1


(1 + γ)ag

θg



auP
a=1

βa

 (1− p)a
³

θu
(1+γ)a − 1

´
+

ϕ (1− (1− p)a)
³

θg
(1+γ)a − 1

´ +
ϕ
³
1− (1− p)au+1

´ agP
a=au+1

βa
³

θg
(1+γ)a − 1

´
+

θu − 1




= D

The left-hand is monotonically increasing in ag. Hence,
d(ag)
dD ≥ 0. With

ag − au independent of D as suggested by (8), d(au)
dD =

d(ag−(ag−au))
dD ≥ 0.

PROOF OF PROPOSITION 4:

Proof. Since rg = 1− (1−ϕ)
pϕau

1−(1−p)au +(1−ϕ)+pϕ(ag−au)
and ag − au is indepen-

dent of D,
d (rg)

d (D)
=

d (rg)

d (au)
· d (au)
d (D)

Proposition 2 has established that d(au)
d(D) ≥ 0. Therefore, d(rg)d(D) ≥ 0 if and

only if d(rg)
d(au)

≥ 0.
With au

1−(1−p)au = x, d(rg)
d(au)

=
d(rg)
d(x) · d(x)

d(au)
. Since d(rg)

d(x) > 0, d(rg)
d(au)

≥ 0 if
and only if d(x)

d(au)
≥ 0.

Hence, I need to prove that d(x)
d(au)

≥ 0.
1− (1− p)au is plotted in the following graph as a function of au. Since

d
³
1− (1− p)au

´
d (au)

= − (1− p)au · ln (1− p) > 0

but
d2
³
1− (1− p)au

´
d (au)

2 = − (1− p)au · (ln (1− p))2 < 0,
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the curve is concave.

au

1 1− −( )p au

θ

au

1 1− −( )p au

au

1 1− −( )p au

θ

au

1 1− −( )p au

Clearly, it indicates that x = au
1−(1−p)au = cot (θ) .The concavity of the

curve suggests that as au increases, the angle of θ shrinks and cot (θ) in-
creases. Therefore, x increases in au.

Results from two-moment Krusell-Smith approach:

Ω {X,σa}

HΩ

booms ( logX):
logX 0 = 0.1261 + 0.9653 logX + 0.3246σa
recessions( logX):
σ0a = 0.0079 + 0.0076 logX + 0.8988σa
booms (σa):
logX 0 = −0.1485 + 0.9291 logX + 1.0317σa
recessions(σa):

σ0a = 0.0789 + 0.0166 logX + 0.6924σa

R2

booms ( logX): 0.9940
recessions( logX): 0.9287
booms (σa): 0.9571
recessions(σa): 0.5812

standard forecast
error

booms ( logX): 0.0000069741%
recessions( logX): 0.000068307%
booms (σa): 0.00012513%
recessions(σa):0.00097406%

maximum forecast
error

booms ( logX): 0.000087730%
recessions( logX):0.0016626%
booms (σa):0.0014396%
recessions(σa):0.028074%

Den Haan &
Marcet test statis-
tic
¡
χ27
¢ 0.9216

46



REFERENCES

Aghion, Philippe and Howitt, Peter. “Growth and Unemployment.” Re-
view of Economic Studies, July 1994, 61(3), pp. 477-494.

Aghion, Philippe and Saint-Paul, Gilles. “Virtues of Bad Times.” Macro-
economic Dynamics, September 1998, 2(3), pp. 322-44.

Aruoba, S. Boragan; Rubio-Ramirez, Juan F. and Fernandez-Villaverde,
Jesus. “Comparing Solution Methods for Dynamic Equilibrium Economies.”
Working Paper 2003-27, Federal Reserve Bank of Atlanta, 2003.

Aw, Bee Yan; Chen, Xiaomin and Roberts, Mark J. “Firm-level Evidence
on Productivity Differentials, Turnover, and Exports in Taiwanese
Manufacturing.” Journal of Development Economics, October 2001,
66(1), pp. 51-86.

Baily, Martin Neil; Bartelsman, Eric J. and Haltiwanger, John. “Labor
Productivity: Structural Change and Cyclical Dynamics.” Review of
Economics and Statistics, August 2001, 83(3), pp. 420-433.

Baldwin, John R. The Dynamics of Industrial Competition. Cambridge
University Press, 1995.

Barlevy, Gadi. “The Sullying Effect of Recessions.” Review of Economic
Studies, January 2002, 69(1), p65-96.

Basu, Sustanto. “Procyclical Productivity: Increasing Returns or Cyclical
Utilization?” Quarterly Journal of Economics, August 1996, 111(3),
pp. 719-51.

Basu, Susanto; Fernald, John G. and Shapiro, Matthew D. “Productivity
Growth in the 1990s: Technology, Utilization, or Adjustment?” NBER
Working paper 8359, 2001.

Bowlus, Audra J. “Job Match Quality over the Business Cycle.” Panel Data
and Labour Market Dynamics, Amsterdam: North Holland, 1993, pp.
21-41.

Brsnahan, Timothy F. and Raff, Daniel M.G. “Intra-industry Heterogene-
ity and the Great Depression: the American Motor Vehicles Industry,
1929-1935.” Journal of Economic History, June 1991, 51(2), pp. 317-
31.

47



Caballero, Ricardo J. and Hammour, Mohamad L. “The Cleansing Effect
of Recessions.” American Economic Review, December 1994, 84(5),
pp. 1350-68.

Caballero, Ricardo J. and Hammour, Mohamad L. “On the timing and
Efficiency of Creative Destruction.” Quarterly Journal of Economics,
August 1996, 111(3), pp. 805-52.

Caballero, Ricardo J. and Hammour, Mohamad L. “The Cost of Reces-
sions Revisited: a Reverse-Liquidationist View.” NBER Working Pa-
per #7355, 1999.

Campbell, Jeffrey R. and Fisher, Jonas D.M. “Technology Choice and Em-
ployment Dynamics at Young and Old Plants.” Working Paper Series-
98-24, Federal Reserve Bank of Chicago, 1998.

Campbell, Jeffrey R. and Fisher, Jonas D.M. “Idiosyncratic Risk and Ag-
gregate Employment Dynamics.” NBER Working Paper #7936, 2001.

Carlyle, Thomas. Critical and Miscellaneous Essays. New York, 1904, vol.
4, pp. 368-369.

Cooley, Thomas and Prescott, Edward. “Economic Growth and Business
Cycles” (pp. 1-38), in Thomas Cooley, (Ed.), Frontiers of Business
Cycle Research, Princeton, Princeton University Press, 1994.

Davis, Steven J. and Haltiwanger, John. “Gross Job Flows.” Handbook of
Labor Economics, Amsterdam: North-Holland, 1999.

Davis, Steven J.; Haltiwanger, John and Schuh, Scott. Job Creation and
Job Destruction, Cambridge, MIT Press,1996.

Davis, Steven J. and Haltiwanger, John. “Gross Job Creation, Gross
Job Destruction, and Employment Reallocation.” Quarterly Journal
of Economics, August 1992, 107(3), pp. 818-63.

Den Haan, Wouter J. and Marcet, Albert. “Accuracy in Simulations.”
Review of Economic Studies, 1994, 61, pp. 3-18.

Dickens, William T. “The Productivity Crisis: Secular or Cyclical?” Eco-
nomic Letters, 1982, 9(1), pp. 37-42.

Dunne, Timothy; Roberts, Mark J. and Samuelson, Larry. “The Growth
and Failure of U.S. Manufacturing Plants.” Quarterly Journal of Eco-
nomics, November 1989, 104(4), pp. 671-98.

48



Ericson, Richard and Pakes, Ariel. “Markov-Perfect Industry Dynamics:
A Framework for Empirical Work.” Review of Economic Studies, Jan-
uary 1995, 62(1), pp. 53-82.

Foote, Christopher L. “Trend Employment Growth and the Bunching of
firm Creation and Destruction.” Quarterly Journal of Economics. Au-
gust 1998, 113(3), pp. 809-834.

Foster, Lucia; Haltiwanger, John and Krizan, C. J. “The Link Between Ag-
gregate and Micro Productivity Growth: Evidence from Retail Trade.”
NBER working paper 9120, 2002.

Gomes, Joao, Jeremy Greenwood, and Sergio Rebelo. “Equilibrium Unem-
ployment.” Journal of Monetary Economics, August 2001, 48(1), pp.
109-52.

Goolsbee, Austan. “Investment Tax Incentives, Prices, and the Supply
of Capital Goods.” Quarterly Journal of Economics, February 1998,
113(1), pp. 121-148.

Hall, Robert E. “Labor Demand, Labor Supply, and Employment Volatil-
ity.” in Olivier J. Blanchard and Stanley Fischer, NBER Macroeco-
nomics Annual. Cambridge, MA: MIT Press, 1991.

Hall, Robert E. “Lost Jobs.” Brookings Papers on Economic Activity, 1995:1,
pp. 221-256.

Hall, Robert E. “Reorganization.” Carnegie-Rochester Conference Series
on Public Policy, June 2000, pp. 1-22.

Lucas, Robert, E. “On the Size Distribution of Business Firms." The Bell
Journal of Economics, Autumn1978, 9(2), pp. 508-523.

Jensen, J. Bradford; McGuckin, Robert H. and Stiroh, Kevin J. “The Im-
pact of Vintage and Survival on Productivity: Evidence from Cohorts
of U.S. Manufacturing Plants.” Economic Studies Series Working pa-
per 00-06, Census of Bureau, May 2000.

Jovanovic, Boyan. “Selection and the Evolution of Industry.” Economet-
rica, May 1982, 50(3), pp. 649-70.

Krusell, Per. and Smith, Anthony A. Jr. “Income and Wealth Heterogene-
ity in the Macroeconomy.” Journal of Political Economy, 1998, 106(5),
pp. 867-895.

49



Mortensen, Dale and Pissarides,Christopher. “Job Creation and Job De-
struction in the Theory of Unemployment.” Review of Economic Stud-
ies, July 1994, 61(3), pp. 397-415.

Montgomery, Edward and Wascher, William. “Creative Destruction and
the Behavior of Productivity over the Business Cycle.” Review of Eco-
nomics and Statistics, February 1998, 70(1), pp. 168-172.

Pries, Michael J. “Persistence of Employment Fluctuations: a Model of
Recurring Firm Loss.” Review of Economic Studies, January 2004,
71(1), pp. 193-215.

Ramey, Garey and Watson, Joel. “Contractual Fragility, Job Destruction,
and Business Cycles.” Quarterly Journal of Economics, August 1997,
112(3), pp. 873-911.

Rust, John. “Using Randomization to Break the Curse of Dimensionality.”
Econometrica, May 1997, 65(3), pp. 487-516.

Rust, John. “Structural Estimation of Markov Decision Processes.” Hand-
book of Econometrics, 1994, V IV.

Schumpeter, Joseph A. “Depressions.” in Douglas Brown et al., Economics
of the Recovery Program, New York, 1934, pp. 3-12.

Young, Eric R. “Approximate Aggregation: an Obstacle Course for the
Krusell-Smith Algorithm.” Florida University, 2002.

50


