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Abstract

This paper introduces model uncertainty into a simple Lucas-type monetary
model. Inflation depends on agents’ expectations and a vector of exogenous
random variables. Following (Branch and Evans 2004) agents are assumed to
underparameterize their forecasting models. A Misspecification Equilibrium
arises when beliefs are optimal given the misspecification and predictor pro-
portions are based on relative forecast performance. We show that there may
exist multiple Misspecification Equilibria, a subset of which are stable under
least squares learning and dynamic predictor selection. Using this as a basis,
we identify two channels through which the economy can generate endogenous
inflation and output volatility, an empirical regularity. The dual channels of
least squares parameter updating and dynamic predictor selection combine to
generate regime switching and endogenous volatility.

JEL Classifications: C53; C62; D83; D84; E40
Key Words: Lucas model, model uncertainty, adaptive learning, rational

expectations, volatility.

1 Introduction

Time-varying volatility in inflation and GDP growth is an empirical regularity of
the U.S. economy. This observation is often described in the applied literature as a
regime shift during the 1980’s which resulted in a simultaneous decline in inflation and
output volatility. The ‘Great Moderation’, econometrically identified by (Stock and
Watson 2003) and (McConnel and Quiros 2000), among others, is often associated
with a change in the stance of monetary policy (e.g. Branch, Carlson, Evans and
McGough 2004).
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However, recent studies by (Cogley and Sargent 2003) and (Sims and Zha 2004)
present evidence that drifting and regime switching inflation and output volatility
characterizes much of the post-war period. Since the Great Moderation consists of
a one-time simultaneous decline in volatility, and its timing coexists with changes in
Federal Reserve policy, it seems natural to seek policy explanations of this particular
event. However, persistently evolving inflation volatility may not always go hand in
hand with changes in Federal Reserve policy. In this paper, we demonstrate that drift
and regime switching in volatility may arise endogenously through model uncertainty.

Private sector expectations of future economic variables plays a key role in most
monetary models (e.g. (Woodford 2003)). In these self-referential models, agents’
beliefs feedback positively onto the underlying stochastic process. Yet, there is no
consensus among economists on how agents actually form their expectations. Many
models continue to assume Rational Expectations despite the theoretical grounds to
question the assumption. Instead, (Evans and Honkapohja 2001) replace rational
expectations with statistical learning rules. This alternative approach, it is argued,
is a reasonable description of agents’ actual forecasting acumen because it assumes
behavior consistent with econometric practice.

(Branch and Evans 2004), though, note that with computational costs and de-
gree of freedom limitations, econometricians often underparameterize their forecast-
ing models. That paper, developed in the context of the cobweb model, derived
heterogeneity as an equilibrium outcome when agents choose the dimension in which
to underparameterize. This paper revisits that approach instead framing the analysis
in a Lucas-type monetary model along the lines of (Evans and Ramey 2003). We fol-
low (Branch and Evans 2004) by confronting agents with a list of underparameterized
predictor functions. The economic model is self-referential in the sense that agents’
expectations, a function of their underparameterization choice, depends on the under-
lying stochastic process which, in turn, depends on these beliefs. A Misspecification
Equilibrium (ME) is a fixed point of this self-reinforcing process. There are two pri-
mary results in the current paper: first, when there are multiple underparameterized
models from which agents must choose one, there may exist multiple stable equilibria
each with distinct stochastic properties; second, when agents must adaptively learn
the forecast accuracy of these models the economy will generate endogenous variation
in inflation and output volatility.

This paper specifies a simple monetary model in which aggregate supply and ag-
gregate demand depend on a vector of autoregressive exogenous disturbances and
supply additionally depends on unanticipated price level changes. Motivated by the
idea that cognitive and computing time constraints and degrees of freedom limitations
lead agents to adopt parsimonious models, we impose that agents only incorporate a
subset of these variables into their forecasting model. Following (Branch and Evans
2004) we require that these expectations are optimal linear projections given the un-
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derparameterization restriction and that agents only choose best performing statisti-
cal models. Despite the bounded rationality assumption, this remains in the spirit
of (Muth 1961) in the sense that for each statistical model the parameters are chosen
optimally. An equilibrium in beliefs and the stochastic process is a Misspecification
Equilibrium. An ME extends the notion of a Restricted Perceptions Equilibrium,
which arise in the models of (Evans, Honkapohja, and Sargent 1993), (Evans and
Honkapohja 2001), and (Sargent 1999), to settings in which agents must choose their
models. We show that in the Lucas model there exist multiple ME and, moreover,
the ME with homogeneous expectations are stable under least squares learning.

One implication of our theoretical model is that in a real-time dynamic version
of the model agents must simultaneously estimate the parameters of their forecasting
model and choose the best model based on past experience. We show that when
agents use least squares to estimate the parameters of their statistical model, and
base forecast performance on average mean-square forecast error of the competing
models, different Misspecification Equilibria, in each of which agents coordinate on
one forecasting model, can be stable.

Most interestingly, “constant gain” dynamics lead to new and distinct results.
Constant gain least squares algorithms place a greater (time-invariant) weight on
recent than distant observations. Constant gain, or ‘perpetual learning’, has been
studied by (Orphanides and Williams 2003) and (Sargent 1999) who argue in favor of
this type of estimation strategy to allow for possible structural change. In this paper
we extend this idea in an important way: learning jointly about model parameters
and model fitness. Model uncertainty arises via constant gain learning and dynamic
predictor selection.

Extending constant gain learning to incorporate dynamic predictor selection, we
identify two channels through which inflation and output volatility may evolve over
time. The first channel is from the parameter drift induced by constant gain updating
of the forecasting model parameters. Under constant gain learning, the parameters
vary around their mean values, even if the economy remains at a single equilibrium.
In addition, regime switching in inflation and output volatility can arise when the
economy switches endogenously between high and low volatility equilibria. Thus,
the second channel is through dynamic predictor selection when agents react more
strongly to recent forecast errors than distant ones when assessing the fitness of
a forecasting model. Through numerical simulations, we show that when there is
dynamic predictor selection and parameter drift the dynamic paths of inflation and
output are consistent with the empirical regularities identified by (Cogley and Sargent
2003) and (Sims and Zha 2004).

Our paper is related to others. (Brock and Hommes 1997, 1998) study dynamic
predictor selection in deterministic models which share a similar reduced form as
the model in this paper. In particular, (Brock and Hommes 1998) consider a case
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where agents place a constant weight on past forecast errors and show that complex
dynamics may arise. (Branch and Evans 2004) extend (Brock and Hommes 1997) to a
stochastic environment in which, in equilibrium, both the choice of forecasting model
and the parameters of each predictor are determined simultaneously. In that paper,
we show that an equilibrium may arise where agents are distributed heterogeneously
across forecasting models. Moreover, under least squares learning the equilibrium
may be stable under dual learning of the type described above.

The current paper departs from each of these other models in two important ways.
First, Brock and Hommes focus on models with a unique steady-state while in this
paper we prove the possibility of multiple equilibria. Learning and dynamic predictor
selection in a model with multiple equilibria produce distinct results from (Brock and
Hommes 1997). Second, in our earlier paper, there was also a unique equilibrium and
so the focus of the paper was on the properties of that equilibrium. With multiple
equilibria, as in this paper, dual learning leads to dynamics not present in (Branch
and Evans 2004).

This paper proceeds as follows. Section 2 presents evidence of time-varying volatil-
ity in the U.S. economy. Section 3 presents the Lucas model with model uncertainty.
Sections 4 and 5 consider the model under real-time learning. Section 6 concludes.

2 Inflation and Output Volatility in the U.S.

2.1 An Empirical Overview

In the applied literature there is widespread consensus that during the 1980’s there
was a decline in economic volatility. An array of econometric techniques to identify
the regime shift have been employed by (Bernanke and Mihov 1998),(Kim and Nelson
1999), (Kim, Nelson, and Piger 2004), (McConnell and Quiros 2000), (Sensier and van
Dijk 2004), and (Stock and Watson 2003). Recently, though, (Cogley and Sargent
2003) and (Sims and Zha 2004) have identified repeated regime shifting economic
volatility in U.S. inflation and GDP growth. While Cogley-Sargent and Sims-Zha are
interested in characterizing changing monetary policy over the period they make a
striking finding: during the post-war period there is persistent stochastic volatility in
the economy.

Conventional macroeconomic models, however, are unable to generate persistent
stochastic volatility without directly assuming the exogenous disturbances follow a
Markov chain or an exogenous change in policy. In this paper, we present a model ca-
pable of generating such volatility endogenously via an adaptive learning and dynamic
predictor selection process in a setting where agents may choose between competing
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underparameterized forecasting models. First, though, this section presents an infor-
mal accounting of the nature of stochastic volatility in the economy.

We present a series of plots, each some variant on quarterly inflation computed
from the GDP deflator and quarterly GDP, which suggests the presence of stochastic
volatility rigorously documented by (Cogley and Sargent 2003) and (Sims and Zha
2004). Our purpose in this paper is motivation and overview; we refer the reader to
these other papers for formal econometric analysis. We detrend the log of real GDP
using the Hodrick-Prescott filter since in the Lucas model below output is expressed
as a log deviation from its trend value. Figure 1 plots inflation and (detrended) GDP
for the period 1947:1-2002:2.

INSERT FIGURE 1 HERE

Inspection of Figure 1 demonstrates the ‘Great Moderation’ emphasized by (Mc-
Connell and Quiros 2000) and (Stock and Watson 2003). About 1984 there was a
simultaneous decline in the volatility of inflation and GDP. This empirical feature
has led to an explosion of research into monetary policy’s role in bringing about the
observed economic stability.1 Broader inspection of the data, though, suggests that
this was not the only simultaneous change in economic volatility. GDP appears to be
slowly stabilizing throughout the sample with the exception of a period in the late
1970’s. Inflation, on the other hand, seems to persistently change between high and
low volatility states.

To further inspect the time-varying volatility of inflation and GDP suggested by
Figure 1, Figure 2 calculates moving average estimates of the unconditional variance of
inflation and GDP using a rolling window of 8 quarters. These calculations provide
a rough estimate of how actual volatility changed over time. The axis on the left
measures the variance of inflation and the right axis measures GDP variance. Figure
2 demonstrates, as Figure 1 suggested, that the volatility of GDP and inflation varies
over time. In particular, each series appears to move in tandem and alternate between
high and low variance regimes. (Sims and Zha 2004) find that 9 separate regimes fit
the data best. This plot resembles the posterior mean estimates for the standard
errors of the VAR innovations in (Cogley and Sargent 2003) over the period 1960-
2000.

INSERT FIGURE 2 HERE

(Owyang 2001) presents evidence that inflation follows an ARCH process. Figure
3 plots the conditional variances from an ARCH specification for inflation and GDP to

1See, for example, (Branch, Carlson, Evans, and McGough 2004) and the references therein.
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demonstrate the robustness of the finding that there is persistent stochastic volatility
in both inflation and GDP. To compute the conditional variances in Figure 3 we
estimated a GARCH(1,1) for an AR(4) model of inflation and GDP. This follows
exactly (Owyang 2001) though we also estimate a GARCH model for the volatility
of GDP. Figure 3 then plots the conditional variances from the GARCH models.

INSERT FIGURE 3 HERE

Figure 3 demonstrates that the persistent and changing volatility is a hallmark of
the data. In particular, the regime switching volatility is seen in both data series and
not just at the time of the Great Moderation. Figure 4 plots the same conditional
variance series as Figure 3, except that it focuses on the period 1955:1-2002:4. Figure
3 shows that there was particular high volatility in 1950. In order to more clearly
see how the volatility changes, even on a small scale, Figure 4 plots the more stable
period.

INSERT FIGURE 4 HERE

2.2 Discussion

Despite the attention given the Great Moderation, there seems to be little emphasis
in the theoretical literature on accounting for the persistent stochastic volatility of
the economy. (Sims and Zha 2004) seek evidence in a change in the stance of mone-
tary policy repeatedly across time. (Sargent 1999) presents a theory of the rise and
fall in inflation that is the result of drifting beliefs on the part of the government.2

(Orphanides and Williams 2003) account for the decline in volatility as a change in
the stance of policy which pins down agents’ drifting beliefs.

In this paper, we present an alternative explanation that does not require policy
changes. We present a model in which agents must choose between two alternative
underparameterized models. We demonstrate the possibility of multiple coordinating
equilibria with distinct stochastic properties across equilibria. We introduce model
uncertainty by assuming that agents use constant gain least squares to estimate the
parameters of their forecasting model. This introduces drifts into their beliefs as in
(Sargent 1999) and (Orphanides and Williams 2003). We also augment the model
to allow agents to choose their forecasting model in real time based on a geometric
weighted average of recent forecast performance. In this version of the model, agents
switch persistently and endogenously between forecasting models. This induces the

2Over a long stretch of time this would be expected to lead to periodic regime changes due to
the ‘escape’ dynamics. For further discussion see (Cho, Williams, and Sargent 2003).
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economy to switch between high and low inflation variance equilibria. Thus, we
provide two possible sources of stochastic volatility: drifting beliefs and endogenous
predictor selection.

3 Model

This section extends the cobweb model with misspecification of (Branch and Evans
2004) to a Lucas-type monetary model. In (Branch and Evans 2004) firms choose
prices based on a misspecified forecasting model of the market price. Misspecification
is modeled by confronting agents with a list of underparameterized models. Agents,
though, forecast optimally in the sense that they only choose the best performing
statistical model. That paper establishes that, under appropriate joint conditions on
the self-referential feature of the model and the exogenous disturbances, agents will
be distributed heterogeneously across misspecified models.

Here we establish the existence of misspecification equilibria in a closely related
Lucas-type monetary model and later sections will address dynamics of learning and
predictor selection. Although the reduced form of the Lucas model is similar to the
cobweb model, the slopes of the two models have opposite signs. The negative feed-
back of the cobweb model plays a central role in the existence of Intrinsic Heterogene-
ity. In the Lucas model the feedback from expectations is positive. The reinforcing
aspect of expectations induces coordination by agents and raises the possibility of
multiple equilibria.

3.1 Set-up

Following (Evans and Ramey 1992, 2003) we assume the economy is represented by
equations for aggregate supply (AS) and aggregate demand (AD):

AS : qt = φ (pt − pe
t ) + β1zt

AD : qt = mt − pt + β2zt + wt

where pt is the log of the price level, pe
t is the log of expected price formed in t − 1,

mt is the log of the money supply, qt is the deviation of the log of real GDP from
trend, and ηt is an iid zero-mean shock. Assume that the money supply follows,

mt = pt−1 + δ′zt + ut

zt = Azt−1 + εt

We assume for simplicity that zt is (2×1) and εt is iid zero-mean with positive definite
covariance matrix Σε. We also assume that zt is stationary with the eigenvalues of
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A inside the unit circle. The stochastic disturbance zt collects the serially correlated
disturbances that affect aggregate supply, aggregate demand, and the money supply.
The matrices β1, β2, δ determine which components of z affect the respective reduced
form relationships via (possible) zero components.

Denoting πt = pt − pt−1 we can write the law of motion for the economy in its
expectations-augmented Phillips curve form

πt =
φ

1 + φ
πe

t +
(δ + β2 − β1)

′

1 + φ
zt +

1

1 + φ
(wt + ut)

or

πt = θπe
t + γ′zt + νt (1)

where θ = φ
1+φ

, γ′ = (δ+β2−β1)
′

1+φ
, νt = 1

1+φ
(wt + ut). Note, in particular, that 0 ≤ θ < 1.

The cobweb model also takes the reduced form (1) with θ < 0. This case is considered
in (Branch and Evans 2004).

A rational expectations equilibrium (REE) is a stationary sequence {πt} which is a
solution to (1) given πe

t = Et−1πt, where Et is the conditional expectations operator.
It is well-known that (1) has a unique REE and it is of the form

πt = (1 − θ)−1γ′Azt−1 + γ′εt + νt (2)

If instead agents only took one component of z into account when forecasting inflation
then the reduced form weights on the components of zt will change. Such a deviation
from the REE (2) is a key insight of our model.

3.2 Model Misspecification

This paper departs from the rational expectations hypothesis (RE) and imposes that
agents are boundedly rational. One popular alternative to RE is to model agents as
econometricians (Evans and Honkapohja 2001). According to this literature, agents
have a correctly specified model whose parameters are estimated from a reasonable
estimator. In many instances, these beliefs converge to RE. In practice, however,
econometricians often misspecify their models. Professional forecasters often times
restrict the number of variables and/or lags because of degree of freedom problems.
Following (Evans and Honkapohja 2001), (Evans and Ramey 2003), and (Branch and
Evans 2004), we argue that if agents are expected to behave like econometricians then
they can also be expected to misspecify their models. We impose misspecification by
forcing agents to underparameterize in at least one dimension. We follow (Evans and
Honkapohja 2001), however, and impose that these underparameterized beliefs are
optimal linear projections given the misspecification. In the next subsection we allow
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the model to endogenously determine the dimension in which agents underparameter-
ize. The next Section introduces model uncertainty by replacing optimal projections
with their least squares estimates.

Beliefs are formed from models that take one of the following forms

πe
t = b1z1,t−1 (3)

πe
t = b2z2,t−1. (4)

Because zt is a bivariate VAR(1) it is clear that (3)-(4) represents all possible un-
derparameterized models. The assumption that zt is bivariate VAR(1) is, of course,
made for analytical convenience. One can show the existence of Misspecification
Equilibria if zt is n× 1 and follows a VAR(p). We impose that the parameters b1, b2

are formed as optimal linear projections of πt on zi,t for i = 1, 2. That is, beliefs
satisfy the orthogonality condition

Ezi,t−1

(
πt − bizi,t−1

)
= 0 (5)

This condition ensures that, in an equilibrium, agents’ beliefs are consistent with the
actual process in the sense that their forecasting errors are undetectable within their
perceived model. When this occurs we say the model is at a Restricted Perceptions
Equilibrium (RPE).3

Equilibria based on model misspecification that satisfies an orthogonality condi-
tion like (5) appear frequently in the literature. (Evans and Ramey 2003) consider
RPE in the Lucas-type model. (Sargent 1999) focuses on the closely related self-
confirming equilibria. (Hommes, Sorger, and Wagener 2002) and (Branch and Mc-
Gough 2003) extend (Hommes and Sorger 1998) by defining a Stochastic Consistent
Expectations Equilibrium as an equilibrium in which agents have linear beliefs which
are consistent with a non-linear model.

Because agents may be distributed heterogeneously across predictors, actual mar-
ket beliefs for the economy are a weighted average of the individual beliefs

πe
t = nb1z1,t−1 + (1 − n)b2z2,t−1

where n is the proportion of agents who use model 1.4 Inserting these beliefs into (1)
leads to

πt = θ
(
nb1z1,t−1 + (1 − n)b2z2,t−1

)
+ γ′Azt−1 + γ′εt + νt

Or, by combining similar terms,

πt = ξ1z1,t−1 + ξ2z2,t−1 + ηt (6)

3(Adam 2004) presents experimental evidence for approximate RPE in a bivariate macro model
of output and inflation.

4We identify model 1 as the model with the z1,t component and model 2 is defined symmetrically.
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where

ξ1 = γ1a11 + γ2a21 + θnb1,

ξ2 = γ1a12 + γ2a22 + θ(1 − n)b2,

ηt = γ′εt + νt, and aij is the ijth element of A. It follows from (5) and (6) that the
optimal belief parameters are

b1 = ξ1 + ξ2ρ

b2 = ξ2 + ξ1ρ̃

where ρ = Ez1z2/Ez2
1 and ρ̃ = Ez1z2/Ez2

2 .
5 Note that the ξ parameters are functions

of b. Thus an RPE is a stationary process for πt which satisfies (6) with parameters
ξ1, ξ2 which solve

[
1 − θn −θnρ

−θ(1 − n)ρ̃ 1 − θ(1 − n)

][
ξ1

ξ2

]
= A′γ (7)

A unique RPE exists if and only if the matrix which premultiplies the parameter
vector is invertible. We formalize this invertibility condition below:

Condition �: � �= 0 for all n ∈ [0, 1] , where

� = 1 − θ + θ2n(1 − n)(1 − ρρ̃)

Remark 1 Using the argument of (Branch and Evans 2004) it can be shown that
Condition � is satisfied for all θ < 1.

3.3 Misspecification Equilibrium

A Misspecification Equilibrium (ME) is an RPE which jointly determines the fraction
of agents using a given model. Below we formally define the equilibrium and present
results on existence of ME.

We follow (Brock and Hommes 1997) in assuming the map from predictor benefits
to predictor choice is a multinomial logit (MNL) map. Brock and Hommes assume
that agents base their predictor decisions on recent realizations of a deterministic
process. In an ME we instead assume agents base their decisions on the unconditional
moments of the stochastic process. Later when we introduce learning and dynamic
predictor selection the predictor choice is based on an average of past realizations.

5The existence of these unconditional moments are guaranteed by the stationarity of zt.
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As in (Evans and Ramey 1992) we assume agents seek to minimize their forecast
MSE, i.e. we assume agents maximize

Eu = −E (πt − πe
t )

2

The MNL approach leads to the following mapping, for each predictor i = 1, 2,

ni =
exp {αEui}∑2

j=1 exp {αEuj}

Noting that
∑2

j=1 nj = 1, (??) can be re-written

n =
1

2

(
tanh

[α

2

(
Eu1 − Eu2

)]
+ 1

)
≡ Hα(Eu1 − Eu2)

where Hα : R → [0, 1].

The parameter α is called the ‘intensity of choice’. It parameterizes agents’ sensi-
tivity to changes in forecasting success. (Brock and Hommes 1997) focus on the case
of large but finite α. (Branch and Evans 2004) note that a drawback to finite α is
it imposes that agents are not fully optimizing. (Branch and Evans 2004) show that
in a stochastic framework where agents underparameterize their forecasting models,
heterogeneity may persist even as α → +∞. This paper follows (Branch and Evans
2004) in emphasizing the α → +∞ case so that agents behave optimally given their
misspecification.

One can verify that the MSE’s of the predictors are

Eu1 = ξ2
2

(
ρEz1z2 − Ez2

2

) − σ2
η

Eu2 = ξ2
1

(
ρ̃Ez1z2 − Ez2

1)
) − σ2

η

Define the map F : [0, 1] → R as

F (n) = Eu1 − Eu2 = ξ2
1 (1 − ρρ̃) + ξ2

2

(
ρ2 − Q

)
where Q = Ez2

2/Ez2
1 . If condition � is satisfied, F (·) is continuous and well-defined.

Because condition � is satisfied for all θ ∈ [0, 1), there exists a well-defined
mapping Tα = Hα ◦ F .

Definition A Misspecification Equilibrium (ME) is a fixed point, n∗, of Tα.

In a Misspecification Equilibrium the forecast parameters satisfy the orthogonality
condition and the predictor proportions are determined by the MNL. In equilibrium,
they are, therefore, both endogenously determined.

Proposition 2 A Misspecification Equilibrium exists.
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This result follows since Tα : [0, 1] → [0, 1] is continuous and Brouwer’s theorem
ensures that a fixed point exists.6 By developing details of the map F we are able
to investigate further the set of ME.

Proposition 3 The function F (n) is monotonically increasing for all 0 ≤ θ < 1.

The Appendix sketches the proofs to all propositions. The precise theoretical details
are presented in (Branch and Evans 2004) for the cobweb model. The results here are
an extension of that paper and many of the same details apply. For precise statements
we refer the reader to (Branch and Evans 2004).

From the equation for expected utility it can be further shown that

F (1) ≷ 0 iff (1 − ρρ̃)ξ2
1(1) ≷ (Q − ρ2)ξ2

2(1)

F (0) ≷ 0 iff (1 − ρρ̃)ξ2
1(0) ≷ (Q − ρ2)ξ2

2(0)

where Q =
Ez2

2

Ez2
1
. Furthermore, from (7) we have

(ξ1(1))
2

(ξ2(1))2
=

((γ1a11 + γ2a21) + (γ1a12 + γ2a22)θρ)2

(1 − θ)2 (γ1a12 + γ2a22)
2 ≡ B1

(ξ1(0))
2

(ξ2(0))
=

(γ1a11 + γ2a21)
2(1 − θ)

2

((γ1a11 + γ2a21)θρ̃ + γ1a12 + γ2a22)
2 ≡ B0

Note that 0 < B0 < B1. Recall that Q, ρ, and ρ̃ are determined by A and Σε. The
above results and Proposition 3 imply:

Lemma 4 There are three possible cases depending on A, θ, γ and Σε:

1. Condition PM: F (0) < 0 and F (1) > 0. Condition PM is satisfied when (1 −
ρρ̃)B0 + ρ2 < Q < (1 − ρρ̃)B1 + ρ2.

2. Condition P1: F (0) > 0 and F (1) > 0. Condition P1 arises when Q < (1 −
ρρ̃)B0 + ρ2.

3. Condition P0: F (0) < 0 and F (1) < 0. Condition P0 arises when Q > (1 −
ρρ̃)B1 + ρ2.

6(Branch and Evans 2004) prove existence of a Misspecification Equilibrium for an n-dimensional
vector zt following a stationary VAR(p) process, provided |θ| is sufficiently small. The proof in
Branch-Evans does not rely on the sign of θ.
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Remark: ρρ̃ = 1 is ruled out by the positive definiteness of Σε.

Below we give numerical examples of when each condition may arise.

Under Condition PM, F (0) < 0 and F (1) > 0 implies that either model is prof-
itable so long as all agents coordinate on that model; that is, there is no incentive
for agents to deviate from homogeneity. When Condition P1 or P0 holds one model
always dominates the other.

Lemma 4 allows for a characterization of the set of Misspecification Equilibria for
large α. Let

Nα = {n∗|Tα(n∗) = n∗}
We now present our primary existence result for large α.

Proposition 5 Characterization of Misspecification Equilibria for large α:

1. Under Condition PM, as α → ∞, Nα → {0, n̂, 1} where n̂1 is s.t. F (n̂1) = 0.

2. Under Condition P0, as α → ∞, Nα → {0}.
3. Under Condition P1, as α → ∞, Nα → {1}.

The remainder of the paper is primarily concerned with Case 1 in which there
are multiple equilibria. It should be briefly noted that an ME does not coincide
with the unique REE in (2). For all n∗ ∈ Nα a comparison of (2) and the ME in
(6) and (7) (for a given n∗) shows that the ME has different relative weights on the
exogenous variables.7 Interestingly, there may exist multiple ME even though there is
a unique REE. The ‘instability’ that results from misspecification is key for generating
endogenous regime change in the Lucas model.

3.4 Numerical Examples

We illustrate our results numerically. Figure 5 gives the T-maps for various values of
α. The upper part of the figure shows the T-maps corresponding to (starting from
n = 0 and moving clockwise) α = 10, α = 20, α = 50, α = 1000. We set

A =

[
.5 .001

.001 .3

]

7(Adam 2003) considers a New Keynesian model where agents are restricted to univariate fore-
casting models. In his model, though, there exist equilibria which are REE.

13



γ′ = [.5, .75],

Σε =

[
.03 .001
.001 .15

]

and θ = .6. The bottom portion of the figure is the profit difference function F (n).

INSERT FIGURE 5 HERE

The matrix A, Σε, and θ have been chosen so that Condition PM holds. Condi-
tion PM holds under many other parameterizations. We chose these parameters as
they deliver quantitatively reasonable results in the section on real-time learning and
dynamic predictor selection.

A key property of the model is that as α → ∞

Hα(x) →
⎧⎨
⎩

1 if x > 0
0 if x < 0

1/2 if x = 0

and this governs the behavior of Tα = Hα ◦ F . Since Hα is an increasing function
and F is monotonically increasing, it follows that Tα is increasing. Under Condition
PM it is clear that (??) implies existence of three fixed points for α sufficiently large.
The figure illustrates this intuition.

This example makes it clear that multiple equilibria can exist in the Lucas-type
monetary model. When agents underparameterize there is an incentive to coordinate
on a particular forecasting model. Interestingly, though, there also exists an interior
equilibrium. Below we show that this equilibrium is unstable under learning. The
existence of multiple ME suggests there may be interesting learning phenomena in
the model. We take up this issue in the section below.

The particular parameterization which leads to this figure produces the following
asymptotic covariance matrix for zt:

Σz =

[
.04 .0013

.0013 .1648

]

Notice that the variance of z2 is approximately 4 times that of z1. The effect of this
can be seen in Figure 5 where the ‘basin of attraction’ for the n = 0 ME is larger
than for the n = 1 ME. A priori we would expect a real-time version of this economy
to spend, on average, more time near n = 0 than n = 1. This logic will be key in
Section 5 below.

It should be emphasized that in other contexts there may exist a unique interior
ME. (Branch and Evans 2004) illustrate this case by developing the framework in
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the context of the cobweb model. The existence of an ME with heterogeneity– what
(Branch and Evans 2004) call Intrinsic Heterogeneity– exists for precisely the opposite
reasoning for multiple ME in the Lucas model. In the cobweb model there is negative
feedback from expectations onto the state. Under certain conditions there is an
incentive for agents to deviate from the consensus model. Thus, the equilibrium forces
push agents away from homogeneity. In the Lucas model the equilibrium forces, as a
result of the positive feedback, push the economy towards homogeneity. These results
illustrate the multiplicity of equilibrium phenomena that can arise depending on the
self-referential features of a simple model.

4 Learning and Dynamic Predictor Selection

In this section we address whether the Misspecification Equilibria are attainable un-
der real-time learning of the type emphasized in (Evans and Honkapohja 2001) and
dynamic predictor selection. We now substitute optimal linear projections with real-
time estimates formed via recursive least squares (RLS). We also assume that agents
choose their model each period based on an estimate of mean square error. The
next section replaces RLS with a constant gain updating rule of the form used in
(Evans and Honkapohja 1993), (Sargent 1999), (Cho, Williams, and Sargent 2002),
and (Williams 2004a).

We replace the equilibrium stochastic process (6) with one which has time-varying
beliefs and predictor proportions. Below we provide details on how the key relation-
ships are altered. This section briefly discusses the stability of the equilibrium under
recursive least squares. We model least squares learning as in (Branch and Evans
2004). Agents have a RLS updating rule with which they form estimates of the belief
parameters b1

t , b
2
t . They also estimate the MSE of each predictor by constructing a

moving average of past forecast errors with equal weight given to all time periods.
Given estimates for the belief parameters and predictor fitness, agents choose their
forecasting model according to the MNL map in real time.8

We now assume the equilibrium stochastic process is given by

πt = ξ1(b
1
t−1, n1,t−1)z1,t−1 + ξ2(b

2
t−1, n1,t−1)z2,t−1 + ηt.

Agents use a recursive least squares updating rule,

b1
t = b1

t−1 + κtR
−1
1,t z1,t−1

(
πt − b1

t−1z1,t−1

)
b2
t = b2

t−1 + κtR
−1
2,t z2,t−1

(
πt − b2

t−1z2,t−1

)
8A point made in (Branch and Evans 2004) is that stability of a steady-state depends on how

more recent forecast errors are weighted in the moving average calculation. In particular, as the
most recent error is weighted more heavily then instability will result as in (Brock and Hommes
1997, 1998).
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where

R1,t = R1,t−1 + κt

(
z2
1,t−1 − R1,t−1

)
R2,t = R2,t−1 + κt

(
z2
2,t−1 − R2,t−1

)

We consider two possible cases for the gain sequence κt: under decreasing gain,
κt = t−1 so that κt → 0; under constant gain, κt = κ ∈ (0, 1).

We also assume agents recursively update mean-square forecast error according
to

MSEj,t = MSEj,t−1 + λt

(
(πt − πe

j,t)
2 −MSEj,t−1

)
, j = 1, 2.

We again consider two possible cases for the gain sequence λt: under decreasing gain,
λt = t−1 so that λt → 0; under constant gain, λt = λ ∈ (0, 1).

We first look at the case of decreasing gain for both κt, λt. We then turn in the
next Section to our main emphasis of constant gain updating.

4.1 Stability under decreasing gain

In this subsection we study whether the sequence of estimates b1
t , b

2
t and predictor

proportions n1,t converge to a Misspecification Equilibrium.9 Our aim is to use simu-
lations to ascertain which equilibrium is stable under real-time learning and dynamic
predictor selection. Establishing analytical convergence is beyond the scope of this
paper.

We continue with the parameterization in the previous section which yielded mul-
tiple ME. We set

A =

[
.5 .001

.001 .3

]
, Σε =

[
.03 .001
.001 .15

]

and γ′ = [.5, .75]. We also set θ = .6 and α = 1000.10 We simulate the model for
5,000 time periods. The initial value of the VAR is equal to a realization of its white
noise shock, i.e., z0 = ε0. The initial value n1,0 is drawn from a uniform distribution
on [0, 1] and bj,0, j = 1, 2 is drawn from a uniform distribution on [0, 2]. The initial
estimated variances are set R1,0 = R2,0 = 1.

Figure 6 illustrates the results of two representative simulations. The top panel
plots the simulated proportions nt against time. Recall that for the chosen parameters

9Because the analysis is numerical we are being deliberately vague in what sense these sequences
converge.

10Similar results were obtained for other parameter settings. In particular, the speed of conver-
gence is sensitive to larger values of θ and α.
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there exist three equilibria. The plot demonstrates that only the equilibria with
homogeneous expectations are stable under learning and dynamic predictor selection.
The dynamics quickly converge to either n = 0 or n = 1. The bottom panel plots the
reduced form equilibrium parameters b1

t−1, b
2
t−1. In each panel there are two horizontal

lines which correspond to the parameter values in either the n = 0 or n = 1 ME.
In the b1 panel the top horizontal line corresponds to the n = 1 equilibrium and in
the b2 panel the top horizontal line is for the n = 0 equilibrium. As seen in the
top panel, these parameters converge to their ME values. Which equilibrium the
dynamics converge to depends on the basins of attraction. As we emphasize in the
next section, these basins are sensitive to the parameterization of the zt process.
Thus, we conclude that ME with n ∈ {0, 1} are locally stable under learning and
dynamic predictor selection.

INSERT FIGURE 6 HERE

The intuition for this stability is as follows. The multiple equilibria results from
an incentive for agents to coordinate on a single model. These coordinating forces
yield the interior equilibrium with heterogeneity unstable under learning. Suppose
the dynamics begin in a neighborhood of the interior equilibrium. Because the profit
function is monotonically increasing, as more agents mass onto a particular model
then more agents will also want to use that model. The dynamics are repelled from
the neighborhood of the interior steady-state and towards one of the other ME. To
which ME the dynamics converge depends on the basin of attraction in which the
initial conditions lie.

This result is, again, distinct from the result in (Branch and Evans 2004). In that
paper, there is a unique Misspecification Equilibrium which is stable under learning.
In this paper we have multiple equilibria on the boundary of the unit interval which
are locally stable under learning. This distinction leads to interesting dynamics when
agents update with a constant gain learning algorithm.

5 Real-time Learning with Constant Gain

It has been suggested by (Sargent 1999), among others, that agents concerned with
structural change should use a constant gain version of RLS to generate parameter
estimates. A constant gain algorithm involves a time-invariant gain which places
a high relative weight on recent versus distant outcomes. If agents are concerned
about structural change then a constant gain algorithm will better pick up a change
in parameters. It has also been argued by (Orphanides and Williams 2003) that
constant gain learning is more reasonable than RLS learning because the learning
rule itself is stationary where it is time-dependent in RLS.
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In the Lucas model with misspecification we showed that there may exist multiple
equilibria. Moreover, a subset of these equilibria are stable under learning with a
decreasing gain algorithm such as RLS. In these equilibria there is an incentive for
agents to coordinate on the same forecasting model. If a large enough proportion
of agents suddenly switch forecasting models then the economy will switch from one
stable ME to another. Agents concerned with this possibility should use a constant
gain algorithm instead of a decreasing gain to account for possible regime change.

There has been an explosion in research which adopts constant gain learning rules.
Examples include (Bullard and Cho 2002), (Cho and Kasa 2003), (Cho, Williams, and
Sargent 2002), (Evans and Honkapohja 1993, 2001), (Evans and Ramey 2003), (Kasa
2002), (Orphanides and Williams 2002), (Sargent 1999) and (Williams 2004a,b). In
many of these models constant gain learning can lead to abrupt changes or ‘escapes’
in the dynamics. For example, models with multiple equilibria such as (Evans and
Honkapohja 1993, 2001) occasional shocks can lead agents to believe the economy
has shifted to a new equilibrium. The result of these beliefs is a self-confirming shift
to the new equilibrium. Unlike sunspot equilibria, these shifts are driven entirely by
agents’ recursive parameter estimates. In (Sargent 1999), (Cho and Kasa 2003), (Cho,
Williams, and Sargent 2002), (Bullard and Cho 2002), and (McGough 2004) occa-
sional large shocks may lead to temporary deviations from the equilibrium uniquely
stable under RLS.

The same logic underlies the use of constant gain RLS for parameter estimation
carries over to the estimate of the relative fitness of the two forecast rules. Agents who
are concerned about structural change, including shifts taking the form of occasional
regime changes, would want to allow for the possibility that the better performing
forecast rule may shift over time. In order to remain alert to such shifts, agents would
weight recent forecast errors more heavily than past forecast errors when computing
the average mean square error of each rule. This is equivalent to a constant gain
estimate of the average mean square error and leads to dynamic predictor selection
following a stochastic process.

In this section we examine the implications of constant gain learning and dynamic
predictor selection in the Lucas model with multiple misspecification equilibria. Note,
though, that we expect to find distinct dynamics from the studies listed above. This
is because in each misspecification equilibrium the mean inflation rate, hence mean
output, is the same. Instead the variance of inflation differs across equilibria. We
show that endogenous inflation and output volatility arise through two channels: (1)
the drift in beliefs from parameter learning with a constant gain RLS; (2) dynamic
predictor selection with a geometric average of past squared forecast errors.

Our results show that this combination can generate the observed volatility pre-
sented in Section 2. In (Branch and Evans 2004) the joint learning of parameters
and dynamic predictor selection was presented as a novel extension of (Evans and
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Honkapohja 2001) and (Brock and Hommes 1997), but that model possesses a unique
equilibrium and the focus was on heterogeneity and stability. Here the focus is on en-
dogenous volatility resulting from the dual learning process in a set-up with multiple
equilibria.

5.1 Joint learning with constant gain algorithms

Because with constant gains κt = κ > 0, λt = λ > 0 the dynamics will not converge
to a Misspecification Equilibrium. We note that because the ME with n ∈ {0, 1} are
stable under decreasing gain learning we anticipate that the dynamics will spend a
considerable portion of their time in a neighborhood of the stable ME’s.

Under constant gain, MSEj,t estimates the MSE as an average of past squared
forecast errors with weights declining geometrically at rate 1−λ. Similarly, constant
gain least squares aims to minimize a weighted sum of squared errors where the weight
declines geometrically at rate 1 − κ. In choosing κ, λ there is a trade-off in tracking
structural change versus filtering noise. How strongly nj,t and bj,t react to these shocks
then depends on λ, κ, the ‘intensity of choice’ parameter in the MNL mapping α,
and the relative size of the basins of attraction of the two stable steady-state ME.
Switching as a result of changes in relative MSE is the second source of endogenous
volatility.

As a means of illustrating the intuition we first present a simulation from a pa-
rameterization designed to yield striking results. We first let the asymptotic moments
of the z process differ markedly. Set

A =

[
.5 .001

.001 .3

]
, Σε =

[
.2 .1
.1 3.2

]

γ′ = [.5, .5], θ = .95, and α = 1000. We set κ = .15 and λ = .35. With this
parameterization the asymptotic covariance matrix for z is

Σz =

[
.2668 .1190
.1190 3.5166

]

Figures 7-8 illustrate typical trajectories when α = 1000, 10 respectively. The
figure illustrates a number of switches between equilibria during the period 1500-
2000. Notice that in this plot the system spends most of its time at the n = 0
ME. Moreover, when the dynamics switch to the n = 1 ME it is for relatively short
periods. This is because the basin of attraction for n = 0 is relatively large, and
it takes a greater accumulation of shocks to place the economy in the n = 1 basin.
This parameterization was designed to make the volatility differences dramatic. In
so doing we set the variance of inflation at the n = 0 ME much greater than at the
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n = 1 ME. Because the variance of z2 is much greater than z1 and z1, z2 are weakly
correlated, the basin of attraction for the ‘lower’ ME is larger. It is only when a very
large proportion of agents use the z1 forecasting model is it in the best interests of all
agents to use that model. Notice also that these dynamics exist for both large and
small values of α.

INSERT FIGURES 7-8 HERE

Once a switch takes place there is considerable differences in inflation volatility.
Notice that during the periods of frequent switches between ME– so that, on average,
more time is spent at the n = 1 ME– the inflation volatility switches between a high
rate and a low rate. In the n = 1 ME there is no positive feedback from z2 through
expectations onto the inflation rate. Thus, in the n = 1 ME a larger relative weight
is placed on z1 which is a random variable with a lower asymptotic variance. Hence,
we see much lower inflation variances.

These simulations suggest an interpretation to the empirical regularity discussed
in the beginning of the paper. In the Lucas model with model underparameteriza-
tion there may exist multiple equilibria where agents ignore some relevant information
when forecasting inflation. If there are significant differences between the information
they incorporate and ignore, then the expectational feedback will make the inflation
variances differ across these equilibria. To explore this hypothesis further we parame-
terize the model so that unconditional variances have plausible magnitudes. We also
seek to isolate the contributions of parameter learning and mean-square error learning
to the endogenous volatility.

We now set the parameters as in Section 3.4 and Section 4, which we reproduce
here for convenience:

A =

[
.5 .001

.001 .3

]
, Σε =

[
.03 .001
.001 .15

]

with θ = .6, γ′ = (.5, .75) κ = .01, λ = .04. We simulate the model, first with
a transient period of length 15000, and then for 5000 periods in which we report
the results in the figures below. To isolate the effect of parameter drift versus dual
learning our strategy is as follows. We first present results where we fix the proportion
of agents n to one of its ME values, but allow agents to update their parameters with
constant gain least squares. This is analogous to the approach pursued, for example,
by (Orphanides and Williams 2003) in a full-information setting. We then present
simulations with dual learning.

Figure 9 presents the results from a typical simulation. There are 5 panels in
the figure. Beginning from the northwest and moving clockwise they are: predictor
proportion n, belief parameters b1

t , b
2
t , time t estimated unconditional variance of
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output and price respectively. The unconditional variances are computed as moving
averages with window length 200 of the variance of the simulated time series. We set
n = 0, though similar results obtain if we instead set n = 1. The horizontal lines in
the figure are the ME values.

INSERT FIGURES 9 HERE

Figures 9 shows that some of the endogenous volatility can be attributed to pa-
rameter drift. With a constant gain in the least-squares algorithm agents are sensitive
to structural change. This is why in the two panels on the right hand side of the fig-
ure there is considerable parameter drift. This parameter drift manifests itself in the
reduced-form parameters of the model and induces some endogenous volatility. How-
ever, it does not generate the type of regime-shifting volatility that was documented
in Section 2 and elsewhere in the literature.

Figure 10 now puts both elements together to illustrate that dual learning can
account for endogenous volatility. Figure 10 demonstrates combining parameter drift
and dynamic predictor selection induces a stochastic process for inflation and output
with volatility which both drifts and switches between high and low volatility regimes.

INSERT FIGURE 10 HERE

5.2 Further discussion

As a means of further discussion, an overview is helpful. We take a business cycle
model where only unexpected shocks matter for real output fluctuations. We as-
sume bounded rationality but preserve the spirit of Muth’s hypothesis and find that
there exist multiple equilibria in a model with a unique REE. Moreover, these mul-
tiple equilibria arise because the self-referential feature of the Lucas model provides
an incentive for agents to forecast with the same model. Each equilibrium can be
characterized by the forecasting model which generates it, and each predictor pro-
duces distinct forecasts. For practical purposes, the important theoretical implication
of the multiple equilibria result is that the self-referential property alters the effect
the exogenous stochastic processes have on inflation and output; the positive feed-
back from expectations onto inflation reinforces the effect of exogenous disturbances.
As agents switch forecasting models, the underlying equilibrium stochastic process
changes. This theoretical finding is the basis for the learning and predictor selection
dynamics in this Section.

The model in this paper is an extension of the learning literature and Brock-
Hommes’ A.R.E.D.. In the current paper beliefs and the choice of forecasting model
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are jointly determined. In contrast to our earlier paper set in a cobweb model –
whose primary distinction is a negative feedback from beliefs onto the state – we find
multiple equilibria. This insight suggested, and our results confirm, that a dynamic
version of the model can lead to new and important results.

Previous work by (Orphanides and Williams 2003) and (Sargent 1999) highlight
the role ‘perpetual learning’ might play in the Great Moderation. But, as has been
argued elsewhere the actual U.S. experience has been regime shifting and drifting
volatility. The results of this section suggest a new avenue for exploring how an
economy might endogenously generate shifting inflation and output volatility.

In particular, we identify two channels. Parameter learning with a constant gain
version of least squares produces drifting volatility, but does not generate regime
shifting volatility. However, the inclusion of constant gain dynamic predictor selec-
tion, in which agents estimate a geometric average of past squared forecast errors for
each competing model, can lead to distinct shifts in inflation and output volatility.
As with constant gain parameter updating, the use of constant gain in estimates of
predictor fitness can be interpreted as a way of providing robustness to structural
change.

With dual constant gain learning, shocks can occasionally lead agents to switch
forecast models. This, via the feedback of expectations onto the state, produces
a regime switch in inflation and output volatility that can have varying durations.
Evidence presented in (Cogley and Sargent 2003) and (Sims and Zha 2004) suggest
that drifting and regime switching volatility are important elements of the empir-
ical record. The simulation results in this Section demonstrate that a simple self-
referential economic model in which agents choose between competing parsimonious
predictors provide a possible explanation for this finding.

It is important to emphasize how natural the assumptions are that generate these
results. We model agents as econometricians, in effect, taking the motivation of the
learning literature seriously. Because of computational limitations and degrees of
freedom problems agents are forced to underparameterize by omitting at least one
variable and/or lag from their forecasting model. Although the agents are boundedly
rational, they are ‘in the spirit’ of Muth’s original hypothesis since agents only select
best-performing statistical models. In the real-time dynamic version of the model we
again assume agents behave as econometricians by recursively updating parameter
and goodness of fit estimates in light of new data and remaining vigilant against
structural change.
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6 Conclusion

This paper considered a simple Lucas-type monetary model where inflation is driven
by an exogenous process and expectations of current inflation. We introduce model
uncertainty and underparameterization to the model. We assume that agents choose
the best performing statistical models from a list of misspecified forecasting func-
tions. When agents’ predictor choices are endogenous to the model, there exists an
equilibrium in the stochastic process, agents’ beliefs, and the proportion of agents
using a given model. Moreover, there may exist multiple Misspecification Equilibria
each with distinct stochastic properties. Numerical simulations show that a subset of
these equilibria are stable under least squares learning. If agents adopt dual learn-
ing with constant gains, then the system can endogenously switch between equilibria
producing time-varying inflation and output volatility.

There is empirical evidence of time-varying inflation and GDP volatility that
is consistent with the equilibrium and real-time learning properties of our model.
Importantly, we identify two channels through which the economy may generate,
endogenously drifting and regime-switching economic volatility. The first channel is
through drifting parameter estimates that arise from an adaptive learning rule alert
to possible structural change. Drifting parameter estimates imply mean forecasts
consistent with their equilibrium values, but with occasional departures which induces
economic volatility that does not exist in a long-run equilibrium. The second channel
is through dynamic predictor selection. Analogously, predictor selection rules that
remain alert to possible structural change can lead agents to switch forecast rules
in response to occasional large shocks. Such shocks can induce switching between
equilibria and produce persistent swings in inflation and output volatility.

These results are significant because they extend (Branch and Evans 2004) by
showing that underparameterization and expectational feedback are important ele-
ments of the economic process. Strikingly, we are able to obtain these results in a
simple Lucas-model that has a unique rational expectations equilibrium. The results
of this paper show that there are potentially important implications to models with
dual learning of parameter estimates and dynamic forecasting model selection.

A Appendix

Proof of Proposition 3. The proof of the proposition follows Lemma 5 in (Branch
and Evans 2004). Here we briefly summarize the argument and amend it as necessary.
We can rewrite (7) as

S(n1)ξ = A′γ,
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where ξ′ = (ξ1, ξ2) and S(n1) is the indicated 2×2 matrix. We seek to sign dF/dn1 =
(dF/dξ)′(dξ/dn1). Following (Branch and Evans 2004) it can be verified that

dF/dn1 = 2θξ′K(n1)ξ, where

K =

(
1 − ρρ̃ 0

0 ρ2 − Q

)
S−1

(
1 ρ
−ρ̃ −1

)

= =

⎛
⎝

(r2−1)(−1+(1+n(r2−1))θ)
(1−θ)+(n−1)n(r2−1)θ2

√
Qr(r2−1)(θ−1)

(1−θ)+(n−1)n(r2−1)θ2

√
Qr(r2−1)(θ−1)

(1−θ)+(n−1)n(r2−1)θ2

−Q(r2−1)(1−r2θ+n(r2−1)θ)
(1−θ)+(n−1)n(r2−1)θ2

⎞
⎠

Here r2 = ρρ̃ with 0 ≤ r2 < 1. Notice that K is symmetric. It is easily seen that the
necessary and sufficient condition for monotonicity that K is positive semidefinite is
satisfied.

Proof of Proposition 5. Our proof again follows (Branch and Evans 2004).

1. From our earlier paper it was established that for each α the map Tα has a fixed
point denoted n∗(α), and, moreover, ∃{α(s)}s s.t. α(s) → ∞ ⇒ n(α(s)) → n̄
for some n̄ which is a fixed point to the map limα(s)→∞Tα(s). The proposition
claims that n̄ ∈ {0, n̂, 1} where F (n̂) = 0. That n̂ is a fixed point was proven
in Proposition 8 of (Branch and Evans 2004). Following the arguments for
Conditions P0 and P1 in that proposition, it is clear that F ′ > 0 implies n̄ ∈
{0, 1} is a fixed point.

2. Parts 3 and 4 follows from the proof to part (1.).
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  Figure 1.  Log of inflation and detrended log GDP, 1947:1-2004:2. 
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Figure 2.  Moving Averages (with window length of 8 quarters) of unconditional variance of inflation and 
detrended log GDP.   
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Figure 3.  Conditional Variances from a GARCH(1,1) model of an AR(4) process for Inflation and log 
GDP. Sample: 1947:1-2004:2. 
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Figure 4.  Conditional Variances from a GARCH(1,1) model of an AR(4) process for Inflation and log 
GDP. Sample: 1955:1-2004:2. 
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  Figure 5.  T-map for various values of a and  q=.60. 
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Figure 6.  Two RLS learning and dynamic predictor selection trajectories converging to ME.  Note: 
horizontal lines correspond to equilibrium parameter values. 
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Figure 7.  Constant gain learning with θ=.95, κ=.15, λ=.35, α=100. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



0 500 1000 1500 2000 2500

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500
-100

-50

0

50

100

n1 

π 

 
 

Figure 8.  Constant gain learning with θ=.95, κ=.15, λ=.35, α=10. 
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Figure 9.  Parameter learning and no dynamic predictor selection with n=0.  Solid line is n=0 ME and 
dashed line represents n=1 ME. 
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Figure 10.  Parameter learning and dynamic predictor selection. 
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