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Abstract

It is generally believed that learning-by-doing acts a force that leads to market dominance. Because

organizational forgetting can erode a learning-based cost advantage, it might be expected that organi-

zational forgetting would make it less likely that learning-by-doing would lead to market dominance. In

this paper we show that this traditional intuition may be incorrect. We analyze a fully dynamic model

of price competition when �rms face a learning curve and the possibility of organizational forgetting. We

show that even though the leader �rm may under-price the follower and this price di¤erence may grow

as the leader�s cost advantage widens, the market may remain unconcentrated in both the short run and

long run. And even when learning-by-doing does give rise to a non-trivial degree of market concentration,

a steepening of the learning curve does not necessarily translate into a higher degree of concentration. We

also show that organizational forgetting does not act as a simple o¤set to the e¤ects of learning-by-doing.

Rather, over an interesting range of parameters, organizational forgetting intensi�es pricing rivalry and

leads to a greater degree of market concentration. In other words, instead of serving as an antidote to

market dominance, organizational forgetting makes a learning-based cost advantage more sustainable and

thus makes it more likely that the market will be dominated by a single �rm. By extending the model to

include entry and exit, we show that predatory pricing can arise endogenously and that organizational

forgetting makes predaotry behavior more likely to occur. We develop these insights by employing the

framework in Ericson and Pakes (1995) to numerically analyze the Markov perfect equilibria (MPE) in

a pricing game in a di¤erentiated products duopoly market. A striking feature of our analysis is that in

contrast to recent papers that have employed this computational framework, we show that there can be

multiple symmetric MPE.
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1 Introduction

Empirical studies provide ample support for the hypothesis that learning-by-doing can be an important source

of cost advantage. Learning-based cost reductions have been documented in a wide variety of industrial

settings including airframes (Alchian 1963), chemical processing (Lieberman 1984), construction of nuclear

power plants (Zimmerman 1982), semiconductors (Irwin and Klenow 1994), and shipbuilding (Thompson

2001, Thornton and Thompson 2001). Empirical work has also begun to suggest the possibility that learning-

by-doing can be �undone�by organizational forgetting, i.e., the depreciation of the know-how that the �rm

has built up in the production process. Empirical evidence on organizational forgetting has been presented

by Argote and Epple (1990) and Thompson (2003) for the case of World War II Liberty Ships, by Benkard

(2000) in the production of wide-body airframes, and by Darr, Argote, and Epple (1995) in the operation of

pizza franchises.

It is generally believed that learning-by-doing acts a force that leads to market dominance. The idea

is straightforward: a �rm with a learning-based cost advantage can pro�tably under-price its rivals for

current sales, moving it further down the learning curve than its rivals. As the �rm�s cost advantage widens,

it has even more �leg room� to under-price its rivals in the future, eventually allowing the �rm to win

nearly all sales. Since organizational forgetting can erode a learning-based cost advantage, one expects

that organizational forgetting makes it less likely that learning-by-doing leads to market dominance. In

other words, if learning-by-doing gives rise to a �winner-take-all�market, organizational forgetting acts as

antidote to market dominance by making a �rm�s learning-based cost advantage less sustainable.

In this paper we show that this traditional intuition may be incorrect. We analyze a fully dynamic model

of price competition with di¤erentiated products when �rms face a learning curve and the possibility of

organizational forgetting. We show that even though the leader may under-price the follower � a phenom-

enon Cabral and Riordan (1994) refer to as increasing dominance or ID � and the price di¤erence may

grow as the leader�s cost advantage widens (increasing increasing dominance or IID), the market may remain

unconcentrated in both the short run and long run. And even when learning-by-doing does give rise to a

high degree of market concentration, a steepening of the learning curve does not necessarily translate into a

higher degree of concentration. Contrary to the intuition above, we also show that organizational forgetting

does not simply o¤set learning-by-doing. Rather, over an interesting range of parameters, organizational

forgetting intensi�es pricing rivalry and leads to a greater degree of market concentration. In other words,

instead of serving as an antidote to market dominance, organizational forgetting can make a learning-based

cost advantage even more sustainable and thus makes market dominance more likely. This result is particu-

larly striking because in our model we employ a speci�cation in which the likelihood of forgetting increases in

the amount of know-how that the �rm has learned, and so one suspects that a learning-based cost advantage

would be especially fragile.1

We develop these insights by employing the framework in Ericson and Pakes (1995) to numerically solve

1As we discuss below, this speci�cation is consistent with empirical evidence on learning and forgetting in industrial contexts.
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the Markov perfect equilibria (MPE). A striking feature of our analysis is that in contrast to recent papers

that have employed this computational framework, we show that there can be multiple symmetric MPE.

These multiple equilibria are not an artifact of the mathematical properties of the demand and cost functions

we use. Rather, they are grounded in the dynamics of the model and can be interpreted as a bootstrapping

phenomenon spawned by organizational forgetting. For a given set of parameter values, di¤erent equilibria

can give rise to very di¤erent industry structures in the short run and the long run. A given set of parameter

values may give rise an equilibrium pricing function in which the leader charges a price that is lower, but

not too much lower, than the follower�s, allowing both �rms to move down their learning curves in tandem.

These same parameter values may give rise to a di¤erent equilibrium pricing function in which a �rm that

gains a cost advantage will charge extremely low prices in order to aggressively defend its advantage if it is in

immediate danger of losing its cost advantage. Indeed, in some equilibria, a �rm that has a signi�cant know-

how lead will launch a price war to prevent the follower �rm from moving into a position in which it might

eventually pose a threat to the leader�s cost advantage. In these equilibria, the resulting industry structure

can be quite asymmetric. The distinctive role played by organizational forgetting is re�ected in the fact

that these multiple equilibria only arise in the presence of organizational forgetting. With no organizational

forgetting, we �nd a unique equilibrium in which each �rm eventually reaches the bottom of its learning

curve.

A number of theoretical studies have explored the competitive implications of the learning curve, primarily

focusing on quantity-setting games in �nite-horizon models, including Spence (1981), Fudenberg and Tirole

(1983), Ghemawat and Spence (1985), Ross (1986), and Cabral and Riordan (1997). The papers that are

closest in spirit to ours are Cabral and Riordan (1994), Lewis and Yildirim (2002), and Benkard (2003).

Cabral and Riordan (1994) analyze a symmetric MPE in a di¤erentiated-product duopoly market in which

�rms compete via prices to win a sale in each period. Cabral and Riordan focus on the circumstances under

which equilibrium prices exhibit ID and IID. Our analysis di¤ers from Cabral and Riordan in that we consider

a model with organizational forgetting and allow for the possibility that neither �rm may make a sale in

a particular period. Adding organizational forgetting makes it impossible to solve our model analytically,

and so unlike Cabral and Riordan, we rely on a computational rather than an analytical approach to the

characterization of the MPE. Because we compute the equilibrium pricing function, we can use the theory

of Markov processes to determine the transient and ergodic distributions over states, which enables us to

develop a characterization of industry dynamics that is much richer than would be possible through a purely

analytical approach. A key insight from this analysis is, as noted above, that ID and IID are not su¢ cient

for an industry to be dominated by a market leader.2

Lewis and Yildirim (2002) analyze a MPE between suppliers facing a learning curve, but they focus on

the issue of how a single buyer (e.g., a government agency) can optimally design a multi-period procurement

auction. This emphasis is very di¤erent from the objective of our paper which is to analyze competition

2Nor, as we show, are ID and IID necessary for market dominance.
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between �rms facing a learning curve in an unregulated market in which buyers cannot a¤ect the dynamics

of the industry.

Like our paper, Benkard (2003) uses numerical methods to compute the MPE in a model of dynamic com-

petition that includes learning-by-doing, organizational forgetting, and entry and exit. Benkard�s objective

is to calibrate his model to the wide-body jet market of the 1970s and 1980s, and he shows that the implied

equilibrium dynamics closely track the observed dynamics of price competition in that industry. In contrast

to Benkard�s paper, our focus is not on calibrating our model to a particular industry setting. Rather, we

show how underlying economic fundamentals can shape industry dynamics, with a particular focus on the

role of organizational forgetting.

The organization of the remainder of the paper is as follows. Section 2 describes the model and the

approach used in our computations. Section 3 provides an overview of the equilibrium correspondence.

Section 4 analyzes pricing behavior in equilibrium, and Section 5 characterizes the industry dynamics implied

by it. Section 6 undertakes a number of robustness checks. Section 7 extends the model to include entry

and exit and applies the insights of the model to analyze predatory pricing and limit pricing. Section 8

summarizes and concludes.

2 Model

For expositional simplicity, we focus on an industry with two �rms without entry and exit. The general

model is outlined in Appendix B.

2.1 Firms and states

We consider an in�nite-horizon dynamic game in an industry that consists of two �rms, indexed by n 2 f1; 2g.

Firm n is described by its state en 2 f1; : : : ;Mg � �, where a state describes a �rm�s stock of know-how.

At any point in time, the industry is characterized by a vector of �rms�states e = (e1; e2) 2 �2, where �2 is

the state space. The notation e[2] denotes the state (e2; e1) found by switching the know-how levels of the

two �rms.

The marginal cost c(en) of �rm n depends on its accumulated know-how. The �rms face a learning curve

given by

c(en) =

8<: �e�n if 1 � en < m;

�m� if m � en �M;

where � = ln �
ln 2 = log2 � for a learning curve with a slope of � percent. Thus, unit cost decreases by 1 � �

percent whenever cumulative experience doubles. Coe¢ cient � is the marginal cost with minimal experience

(normalized to be e = 1), and m < M represents the experience level at which the �rm reaches the bottom

of its experience curve.

Following Cabral and Riordan (1994), we take a period to be a length of time that is just long enough for
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at most one �rm to make a sale. By making a sale, a �rm can add to its stock of know-how. In contrast to

Cabral and Riordan (1994), however, we also incorporate organizational forgetting in our model; see Argote

and Epple (1990), Darr, Argote, and Epple (1995), Benkard (2000), and Thompson (2003) for empirical

evidence. Accordingly, we assume that the evolution of the stock of know-how of �rm n is governed the

following law of motion:

e0n = en + eqn � efn;
where en is the �rm�s know-how in the current period, e0n is its know-how in the next period, eqn 2 f0; 1g is
the �rm�s quantity in the current period, and efn 2 f0; 1g represents organizational forgetting. If eqn = 1, the
�rm augments its know-how through learning-by-doing, while if efn = 1; the �rm loses a unit of know-how

through organizational forgetting.

We let �(en) = Pr( efn = 1) denote the probability that �rm n�s know-how depreciates in the current

period, and we assume that this probability is increasing in en. Assuming that the probability of forgetting

increases in the amount of know-how has several advantages. First, experimental evidence on forgetting in

the industrial psychology literature suggests that the rate of forgetting is an increasing function of the amount

learned (Bailey 1989). Second, by assuming that �(en) is increasing, it can be shown that the expected decay

of know-how in the absence of future learning is a convex function of time.3 This phenomenon (known in

the psychology literature as Jost�s Second Law) is consistent with experimental evidence on forgetting by

individuals (Wixted and Ebbesen 1991). Finally, a speci�cation in which �(en) increases in en is conceptually

similar to the �capital-stock�model employed in empirical work on organizational forgetting. In the capital-

stock model, the depreciation of know-how is proportional to the existing stock of know-how, and so to

counteract this, the accumulation of new knowledge through learning-by-doing must increase in proportion

to the stock of existing know-how.4 Our speci�cation has the same property: as the �rm�s stock of know-how

goes up, its probability of winning a sale must increase in order to counteract the depreciation of its know-

how.5 In the computations described in the next section, we employ the functional form, �(en) = 1�(1��)en ,

where � 2 [0; 1]. When � > 0; this function is strictly increasing and concave in en. If � = 0; then �(en) = 0

for all en, and the �rm never forgets.6

Conditional on �rm n making a sale in the current period (an event denoted by w), its know-how changes

3A proof is available on request. If �(en) was constant in en, the decay of know-how would be a linear function of time.
4More speci�cally, the law of motion in a capital stock model of organizational forgetting is e0n = (1 �  )en + qn; where  

is the depreciation rate.
5We do not employ a capital stock model of depreciation in this paper in order to keep the state space integer-valued. See

Benkard (2003) for an alternative speci�cation that approximates the capital stock model while maintaining an integer-valued
state space.

6One way to motivate this functional form would be to imagine that forgetting results when skilled workers leave the �rm.
In particular, suppose that each additional unit produced by the �rm enables one more worker to acquire a special job-related
skill that increases his/her productivity, and thus a unit en of know-how corresponds to the number of workers in �rm n who
have acquired the special skill. If one or more of these specially skilled workers leaves the �rm in the next period, the �rm
is assumed to lose, on net, the equivalent of one unit of experience. (Think of new workers being hired to replace those that
leave, and assume that there is just enough �organizational memory� so that all but one of the new workers can be trained to
replicate the skills of the workers they are replacing.) Under this interpretation, the forgetting parameter � would represent
the rate of labor turnover in a given period, and �(en) would be the probability that at least one worker from the group of en
workers who possess the special skill leaves the �rm in the next period.
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according the transition function

Pr(e0njen; w) =

8<: 1� �(en) if e0n = en + 1;

�(en) if e0n = en:

Conditional on �rm n not making a sale (an event denoted by l), its know-how changes according to the

transition function

Pr(e0njen; l) =

8<: 1� �(en) if e0n = en;

�(e0n) if e0n = en � 1:

At the upper and lower boundaries of the state space, we take the transition function to be Pr(M jM;w) = 1

and Pr(1j1; l) = 1, respectively.

2.2 Price competition

The industry draws its customers from a large pool of potential buyers. In each period, one buyer enters the

market and makes, at most, one purchase, either from one of the two �rms in the industry (�inside�goods

1 or 2) or an alternative product (�outside� good 0) made from a substitute technology.7 The net utility

that a buyer obtains by purchasing product n is vn � pn +e"n; where vn is a deterministic component of net
utility, and e"n is the buyer�s idiosyncratic preference for product n. We assume that the deterministic utility
of the inside goods is the same, so v1 = v2 = v: Further, we assume that the outside good is supplied under

conditions of perfect competition that drive its price to its marginal cost c0.

A buyer�s idiosyncratic preferences (e"0;e"1;e"2) are unobservable to �rms and are assumed to be iid Type
1 extreme value random variables with location parameter 0 and scale parameter �. The scale parameter

represents the extent of horizontal product di¤erentiation, with a lower value of � corresponding to weaker

product di¤erentiation. As � ! 0, the industry becomes a homogeneous product oligopoly.

In any period, the buyer chooses the alternative that gives it the highest net utility. Given the assumed

distribution of the idiosyncratic valuations, the probability that �rm n makes a sale when prices are p

� (p1; p2) is given by the logit speci�cation

Dn(p) =
exp(v�pn� )

exp(v0�c0� ) +
P2

j=1 exp(
v�pj
� )

:

The demand function is symmetric (i.e., D1(p1; p2) = D2(p2; p1)) and has three economically meaningful

parameters: �,v, and v0 � c0. As v0 � c0 ! �1 (i.e., the inside goods are in�nitely better than the outside

good), we are in the Cabral and Riordan (1994) setting in which the buyer always purchases from one of the

two �rms in the industry.

7Since there is a di¤erent buyer in each period, buyers are non-strategic. Lewis and Yildirim (2002) consider a model of
pricing along a learning curve when there is a single buyer who anticipates the dynamics of future competition.
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2.3 Bellman equation

Consider an industry that is in state e. Letting � 2 (0; 1) denote a �rm�s discount factor,8 the net present

value of future cash �ows to �rm 1 is given by:

V1(e) = max
p1

(
(p1 � c(e1))D1(p1; p2(e)) + �

2X
k=0

Dk(p1; p2(e))V 1k(e)

)
; (1)

where p2(e) denotes the price charged by the rival �rm, and

V 1k(e) � E[V1(e0)je;buyer purchases good k]; k 2 f0; 1; 2g;

is the expectation of �rm 1�s value function, conditional on the buyer purchasing good k in state e.9 Firm

2 has a comparable value function.

Let 
1(p1) denote the term in brackets in equation (1). Di¤erentiating it with respect to p1, and using

properties of the logit demand speci�cation10 , we have

@
1
@p1

= D1

�
1� (p1 � c(e1))

�
� �
�
V 11 +


1
�

�
: (2)

Di¤erentiating this again, combining terms, and using the expression in (2) gives us:

@2
1
@p21

= � 1
�

@
1
@p1

[1� 2D1]�
D1
�
:

Thus, @
1@p1
= 0) @2
1

@p21
= �D1

� < 0, i.e., the objective function is strictly quasi-concave and the price choice

p1(e) is therefore unique.

Setting @
1
@p1

to 0 and rearranging terms, �rm 1�s equilibrium price can be shown to solve the following

equation:

p1 = c(e1) +
�

1�D1(p1; p2(e))
� ��(p2(e); e); (3)

where

�(p2; e) � V 11(e)�
�
�(p2)V 12(e) + (1� �(p2))V 10(e)

�
8The discount factor is given by � = �

1+r
, where r > 0 denotes the per period discount rate and 1�� 2 [0; 1) is an exogenous

probability that the industry�s order �ow vanishes in the next period (e.g., because their products are supplanted by a drastic
innovation that draws away its pool of customers).

9To illustrate the form of V 1k(e); consider V 12(e), the expectation of �rm 1�s value function given that the buyer purchases
from �rm 2:

V 12(e) = Pr(e1 � 1je1; l) [Pr(e2je2; w)V (e1 � 1; e2) + Pr(e2 + 1je2; w)V (e1 � 1; e2 + 1)]
+Pr(e1je1; l) [Pr(e2je2; w)V (e1; e2) + Pr(e2 + 1je2; w)V (e1; e2 + 1)] :

10 In particular, we use that @Dn(p)
@pn

= � 1
�
Dn(p)(1�Dn(p)) and

@Dk(p)
@pn

= 1
�
Dn(p)Dk(p); k 6= n:

7



and

�(p2) �
exp(v�p2� )

exp(v�p2� ) + exp(v0�c0� )
:

The term �(p2; e) is �rm 1�s (undiscounted) �prize�from making the next sale in state e when �rm 2 charges

price p2: It consists of the di¤erence between the �rm�s expected value V 11(e) if it wins the sale and its

expected value �(p2)V 12(e)+(1� �(p2))V 10(e) if it does not win the next sale, where �(p2) is the probability

that the rival wins the next sale, conditional on the �rm not winning. The prize represents the wedge that

makes dynamic pricing behavior di¤er from static pricing behavior.

2.4 Equilibrium

Because the demand speci�cation is symmetric, we focus attention on symmetric Markov perfect equilibria

(MPE). Existence of a symmetric MPE in pure strategies follows from the arguments in Doraszelski and

Satterthwaite (2004). In a symmetric MPE, it su¢ ces to determine the value and policy functions of �rm 1,

and throughout the remainder of the paper, p�(e) � p1(e) denotes the symmetric equilibrium pricing function

for �rm 1, while V �(e) = V1(e) denotes the corresponding equilibrium value function.11 Further, we let

V
�
k(e) � V

�
nk(e); k = 0; 1; 2; denote the expected value functions. Finally, we let D

�(e) � D1(p�(e); p�(e[2]))

denote the equilibrium probability that the typical �rm makes a sale in state e.

Given this notation, we can write the symmetric MPE as follows:

V �(e) = [p�(e)� c�(e)]D�(e) + �
h
�(p�(e[2]))V

�
2(e) +

�
1� �(p�(e[2])

�
V
�
0(e)

i
: (4)

p�(e) = c�(e) +
�

1�D�(e)
; (5)

where

c�(e) � c(e1)� ��(p�(e[2]); e)

is the virtual marginal cost. The virtual marginal cost is endogenously determined in equilibrium and equals

the actual marginal cost minus the discounted prize from winning. Since the (symmetric) static Nash

equilibrium price py(c) for marginal costs c = (c1; c2) is given by

py(c) = c1 +
�

1�Dy(c)
;

where Dy(c) � D1(py(c); py(c[2])), it follows that the MPE price p�(e) is the static Nash equilibrium price

corresponding to the virtual marginal costs c�(e) =
�
c�(e); c�(e[2])

�
; i.e., p�(e) = py(c�(e)):

11We thus obtain the value and pricing functions of �rm 2 by switching the arguments of �rm 1�s pricing and value functions:
p2 (e) = p1(e[2]): V2(e) = V1(e[2]):
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2.5 Computation

To compute a symmetric MPE, we adapt the algorithm described in Pakes and McGuire (1994). The

algorithm works iteratively. It takes a value function eV �(e) and pricing function ep�(e) as the starting point
for an iteration and generates updated value and policy functions. Each iteration proceeds as follows:

1. First, we use equation (5) to compute an updated pricing policy p�(e) for �rm 1, taking the pricing

policies of �rm 2 to be ep�(e[2]): In this step, we use eV �(e) to compute the expected value functions,
V
�
0(e); V

�
1(e); and V

�
2(e):

2. Next, we use equation (4) to compute an updated value function, V �(e).

3. The iteration is completed by assigning V �(e) to eV �(e); and p�(e) to ep�(e):12
The algorithm terminates once the relative change in the value and the policy functions from one iteration

to the next is below a pre-speci�ed tolerance. All programs are written in Matlab 6.5. Details are available

from the authors upon request.

2.6 Parameterization

In our numerical analysis, will focus on how the learning curve and organizational forgetting in�uence the

shape of the equilibrium pricing function and the industry dynamics that are implied by that pricing behavior.

Accordingly, in our baseline analysis, we will report results for a wide range of values of � and �, holding

�xed all other parameters. Later, we will check whether the insights from our baseline analysis are robust to

changes in the degree of product di¤erentiation, as measured by �, and the size of the market of the inside

goods, as parameterized by v0� c0 relative to v. The values of the parameters used in the computations are

as follows.

2.6.1 Rate of learning

We compute the equilibrium for the following values of �:

f0:95; 0:85; 0:75; 0:65; 0:55; 0:35; 0:15; 0:05g � R

Empirical estimates of experience curves tend to �nd slopes in the range of 0:75 to 0:95 (Lieberman 1984,

Dutton and Thomas 1984), and so in describing our results, we will often focus on the case � = 0:85; which

can be thought of (loosely) as the �median�slope across a wide array of empirical estimates.

12More precisely, we assign a weighted average of V (e) and ~V (e) to ~V (e) to help the algorithm converge.

9



2.6.2 Rate of organizational forgetting

We compute the equilibrium for the following values of �:

f0; 0:01; 0:02; 0:03; 0:04; 0:05; 0:06; 0:07; 0:08; 0:09; 0:10; 0:30; 0:50; 0:90g � D

Empirical studies of organizational forgetting that employ a capital stock model have found rates of forgetting

that range from 4 percent per month to 25 percent per month. Our model is not strictly comparable to a

capital stock model, so it is not immediately obvious what empirically plausible values of � might be. To

shed light on this question, Appendix A develops a �mapping�between the depreciation rate in a capital

stock model and the parameter � in our model. Based on this analysis, it would appear that the empirically

relevant range of � is between 0 and about 0.10. Accordingly, in describing our results, we will focus our

attention on cases in this range: � = 0 (which will serve as a benchmark against which to compare our model

to Cabral and Riordan (1994)), � = 0:03, and � = 0:08: As we will see below, this set of ��s generates a rich

variety of industry dynamics.

2.6.3 Parameters held �xed for the baseline analysis

� Attractiveness of the outside alternative, v0 � c0: In our baseline analysis, we set v0 � c0 = 0. In

Section 6, we discuss how the equilibrium is a¤ected if we make the outside alternative more attractive

(v0 � c0 = 3) and (in�nitely) less attractive (v0 � c0 = �1).

� Degree of horizontal di¤erentiation, �: In our baseline analysis, we set � = 1, resulting in a moderately

weak degree of horizontal di¤erentiation.13 In Section 6, we discuss how the equilibrium changes if

horizontal di¤erentiation becomes stronger (� = 2) and extremely weak (� = 0:10).

2.6.4 Parameters held �xed throughout analysis

� State space;M : Throughout the analysis, we consider a state space with 30 possible levels of know-how,

i.e., M = 30

� Know-how level at which learning curve �attens out, m: We assume that the learning curve �attens

out at 15 units of know-how, i.e., m = 15.

� Marginal cost at the �top� of the learning curve, �: We consider a learning curve with an initial level

of marginal cost equal to 10, i.e., � = 10. Note that with � = 10, along an 85 percent learning curve

(� = 0:85), marginal cost falls from $10 per unit to approximately $5.30 per unit at e = 15.

13To illustrate, if both �rms set a price equal to their initial marginal cost � = 10, the own price elasticity of demand would
equal -6.67. As �rms drop their prices in tandem, the own-price elasticity of demand falls, reaching a level of -3.28 if both �rms
set a price equal to the marginal cost at the bottom of an 85 percent learning curve.
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� Deterministic component of utility of the inside goods, v: Throughout the analysis, we �x v = 10:

Because v � � = 0, note that in the baseline case of v0 � c0 = 0, when a �rm is at the �top�of the

learning curve, its product is �on a par�with the outside alternative.

� Discount factor, �: We set � = 0:9524: This corresponds to a variety of scenarios that di¤er according

to the length of a period. For example, it corresponds to a case in which a period is one year, the

industry is certain to survive, and the discount rate is 5 percent (r = 0:05). It could also correspond

to a setting in which a period is one month, the market has a 96:5 percent chance of surviving from

one month to the next, and the monthly discount rate is about 1.06 percent (which corresponds to an

annual discount rate of about 12.7 percent).14

3 Equilibrium correspondence

To characterize how the nature of learning-by-doing and organizational forgetting shapes equilibrium pric-

ing behavior and industry dynamics, we compute the MPE for all (�; �) combinations in P � D, with all

other parameters set to their baseline values. We then use the computed pricing function to construct the

Markov transition probability of next period�s state e0 given the current state e. This allows us to use tools

from stochastic process theory to analyze the Markov process of industry dynamics rather than relying on

simulations. In particular, we can use the transition probabilities to compute the limiting distribution over

states, �1(e) implied by the equilibrium.

Table 1 provides an overview of the MPE by showing the expected industry Her�ndahl index correspond-

ing to the limiting distribution:

H1 �
X
ee1
X
ee2
"
D�(ee)2 +D�(ee[2])2�
D�(ee) +D�(ee[2])�2

#
�1(ee):

The Her�ndahl index is based on the �rms�conditional market shares, and so it is bounded below by 0.5

and above by 1.

Two points emerge from this overview. First, there may be multiple symmetric MPE for a given set

of parameter values. Second, though the equilibria can di¤er greatly across parameter values, equilibrium

pricing behavior can generally be classi�ed into one of three categories that di¤er in interesting ways. We

discuss each point in turn.

14To put this second scenario in perspective, technology companies such as IBM, Cisco Systems, Microsoft, Intel, Dell, and
Sun Microsystems had costs of capital in the range of 11 to 15 percent in the late 1990s. Further, an industry with a survival
probability of 96.5 percent from one month to the next has an expected life of 26-27 months. Thus, this second scenario might
be thought of as broadly representative of a technology company that receives orders from customers on a once-a-month basis
for a product in which the pace of innovative activity in the industry would be expected to make it obsolete in roughly two
years.
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Figure 1: Equilibrium correspondence (expected Her�ndahl index) for � = 0:85 and � 2 D.

3.1 Multiple equilibria

Table 1 illustrates that for some parameter combinations we were able to �nd two, or even three, symmetric

MPE. For example, for � = 0:85; � = 0:03; we found two equilibria: one in which the long-run expected

Her�ndahl is 0.500, and another in which the long-run expected Her�ndahl is 0.516. The multiple equilibria

were discovered by means of a systematic search that employed various starting values for p�(�) and V �(�):

Speci�cally, our approach is to start calculation from the equilibrium for a neighboring set of parameter

values, and check if the solution is di¤erent from the already known equilibrium.

Generically, we would expect that for any particular combination of parameter values, the number of

symmetric MPE is odd (Herings and Peeters 2004). This suggests that for the case of � = 0:85, the

equilibrium correspondence has the shape shown in Figure 1, which in turn suggests that in this case there

may be as many as three equilibria when � = 0:03; of which we have computed two, those corresponding to

points A or C on the equilibrium correspondence. Because our computational algorithm relies on iterated

best responses, the equilibria that we have computed are stable in the sense that if we chose starting values

close enough to the equilibria at A or C, the iterated best response algorithm will lead us back to the

equilibria at A or C: By contrast, the conjectured equilibrium at B is likely to be unstable in the sense that

even slight perturbations away from B will lead us either to A or C. In this respect, the equilibria we have

calculated are appealing because one might imagine that a process of iterated best responses would be one
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way that �rms would work their way toward an equilibrium.

Given the assumed properties of demand and cost, the static Nash equilibrium in our model can be

shown to be unique. Further, we �nd unique symmetric MPE in the absence of organizational forgetting.

Thus, the multiple equilibria in our model seem to arise because of the dynamic structure of the model with

organizational forgetting, and not because of any mathematical properties that �ow from our speci�cation

of demand or the learning curve. Following our discussion of equilibrium pricing behavior and the resulting

industry dynamics, we will develop an intuition for why the multiple equilibria arise in our model when there

is organizational forgetting.

3.2 Classifying equilibria

Table 1 suggests that there are three broad categories of equilibria. First, we have equilibria in which

H1 � 0:500 indicating that in the long run we end up with two equal-sized �rms. An example is the case

where � = 0:85; � = 0 (no organizational forgetting) or the ��rst�equilibrium when � = 0:85; � = 0:03. As

can be seen from the top two panels of Figure 2, except in a neighborhood of e = (1; 1), a �rm�s equilibrium

price is not particularly sensitive to its own state or that of its rival. For this reason, we refer to these as

�at equilibria (labeled F in Table 1). Although a �at equilibrium might exhibit a range of intense price

competition in a neighborhood of e = (1; 1) � what we will refer to as a �well�� price competition in a

�at equilibrium is not particularly intense once �rms begin to make modest progress in moving down their

learning curves.

Second, we have equilibria in which H1 is between 0:500 to approximately 0:580; indicating that in the

long run we end up with an asymmetric oligopoly in which one �rm has a market share between 50 to 70

percent, while the other �rm has a market share between 30 and 50 percent. An example is the �second�

equilibrium when � = 0:85; � = 0:03: As can be seen from the graph of p�(e) in the bottom left panel in

Figure 2, the equilibrium pricing function not only has a well but it also exhibits a pronounced �trench�

running along the diagonal. For this reason, we refer to these as trenchy equilibria (labeled T in Table

1). In a trenchy equilibrium, price competition between equally experienced �rms is fairly intense. Price

competition abates only when �rms move into the asymmetric region of the state space.

Finally, we have equilibria in which H1 is extremely high (often in the range between about 0.7 and

0.95), indicating that in the long run we end up with a single �rm that essentially dominates the market.

An example of this is the case where � = 0:85; � = 0:08: As can be seen from the graph of p�(e) in the

bottom right panel of Figure 2, the equilibrium policy function not only has a deep trench running along

the diagonal, it also has a �sideways trench�running along the edges of the state space. For this reason, we

refer to equilibria of this type as extra trenchy (labeled at X in Table 1). In an extra-trenchy equilibrium,

price competition between equally experienced �rms is extremely intense; furthermore, there are regions in

the state space where there is also intense price competition between �rm with a signi�cant cost advantage

and its disadvantaged rival.
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Figure 2: Price function for � = 0:85 and � = 0; 0.03 (both equilibria), 0.08. Line in e2 = 30 plane is the
cost function c (e1).

Figure 3 shows the value functions corresponding to the equilibrium pricing functions in Figure 2. The

value functions corresponding to the trenchy and extra-trenchy equilibria show that both a leader and a

follower experience a drop in value as the industry moves from an asymmetric state near the diagonal to a

state located along the diagonal; in other words, the diagonal trench on the pricing function is mirrored by a

trench in the value function. Further, in the value function corresponding to the extra-trenchy equilibrium,

the value of being the dominant �rm is signi�cant, while the value associated with being the follower is very

close to zero. Further, the value associated with the initial state (1; 1) is also low, indicating that �rms

expect to dissipate signi�cant pro�tability in the race to become the industry leader.
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Figure 3: Value functions for � = 0:85 and � = 0; 0.03 (both equilibria), 0.08.

For each (�; �) pair in Table 1, we have classi�ed the equilibria into one of three categories: F , T , X.

Although we motivated the di¤erent classes of equilibria by pointing out that they give rise to signi�cantly

di¤erent expected Her�ndahl indexes in the long run, the classi�cation of equilibria in Table 1 is actually

based on an algorithm that identi�es wells, diagonal trenches, and sideways trenches through direct exami-

nation of the equilibrium pricing functions. An equilibrium is classi�ed as �at if the pricing function has no

diagonal trench. An equilibrium is classi�ed as trenchy equilibria if it has a diagonal trench, and either no

sideways trenches or very narrow and shallow sideways trenches that are close to the axis of state space. An

equilibrium is classi�ed as extra-trenchy if it has a diagonal trench and su¢ ciently deep sideways trenches

that are several states wide.
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4 Pricing behavior

The three categories of equilibria give rise to di¤erent dynamic pricing behavior. In this section, we explore

the nature of equilibrium pricing behavior in greater detail.

4.1 Learning-by-doing

It is useful to compare the equilibrium pricing behavior in our dynamic model to the pricing behavior that

would arise in the Nash equilibrium in a static model without learning or forgetting. We begin with a

de�nition:

De�nition 1 The value function V �(e) is locally non-decreasing in its �rst argument at state e if V �(e1 +

1; z) � V �(e1; z) � V �(e1 � 1; z) for z 2 fe2 � 1; e2; e2 + 1g, and it is locally non-increasing in its second

argument at state (e1; e2) if V �(z; e2 � 1) � V �(z; e2) � V �(z; e2 + 1) for z 2 fe1 � 1; e1; e1 + 1g: The value

function is well-behaved at e if it is locally non-decreasing in its �rst argument and locally non-increasing in

its second argument at (e1; e2):

Our computations illustrate that the equilibrium value function is not guaranteed to be well behaved,

although it typically is well behaved over much of the state space. When the value function is well behaved,

we can unambiguously compare the MPE prices to the static Nash equilibrium prices:

Proposition 1 If the value function V �(e) is well behaved in state e, then a �rm�s prize from winning is

non-negative, i.e., �(p; e) � 0. Furthermore, a �rm�s virtual marginal cost cannot exceed its actual marginal

cost, and its equilibrium price in state e cannot exceed the static equilibrium price corresponding to the cost

pair c(e) � (c(e1); c(e2)); i.e., c�(e) � c(e) and p�(e) � py(c(e)):

Proof 1 Note that

�(p; e) � �(p)
h
V
�
1(e)� V

�
2(e)

i
+ (1� �(p))

h
V
�
1(e)� V

�
0(e)

i
:

It is straightforward (but tedious) to establish that if V �(�) is well behaved at e, V �1(e) � V
�
2(e) � 0 and

V
�
1(e)� V

�
0(e) � 0, which implies �(p; e) � 0: This, in turn, implies that c�(e) � c(e1) and c�(e[2]) � c(e2),

so that c�(e) � c(e). Because the static Nash equilibrium price py(c) is non-decreasing in c (Vives 1999), it

follows that p�(e) = py(c�(e)) � py(c(e)).

This proposition highlights the fundamental economic impact of learning-by-doing. Whenever the value

function is well-behaved, a �rm anticipates a non-negative prize from winning the next sale. When this prize

is strictly positive, the �rm acts �as if� its marginal cost is lower than its current out-of-pocket cost c(en);

inducing each �rm, in equilibrium, to price more aggressively than it would have in a static Nash equilibrium.

In e¤ect, the amount by which each �rm lowers its price below the static Nash equilibrium price is a measure

of the extent to which the �rm uses price cuts to invest in lowering its future costs.
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4.2 Organizational forgetting

Because organizational forgetting counteracts the rate of learning and makes gains in know-how more transi-

tory, one might expect that �rms would be more reluctant to invest in the acquisition of know-how through

aggressive price competition when there is organizational forgetting. But the diagrams in Figure 2 suggest

a di¤erent conclusion: organizational forgetting can actually intensify price competition. When we have an

85 percent learning curve with no organizational forgetting (� = 0), we have a �at equilibrium in which in

nearly all states the equilibrium price is very close to the static Nash equilibrium price corresponding to the

marginal cost c(m) at the bottom of the learning curve. This re�ects the well-understood intuition that when

the discount factor � is close to 1, �rms facing a deterministic learning curve price �as if� their marginal

cost is c(m) (Spence 1981, Cabral and Riordan 1994). But if � = 0:03, a modest degree of organizational

forgetting, we obtain two equilibria, and in each of these equilibria there is fairly intense price competition at

the top of the learning curve (in states near (1; 1)). Further, in the second of the two equilibria (in the lower

right panel of Figure 2), there is also a diagonal trench where equally experienced �rms engage in intense

price competition. If organizational forgetting becomes even stronger (� = 0:08), price competition becomes

even more intense throughout most of the state space.

The intuitive explanation for the impact of organizational forgetting is this. Organizational forgetting

creates a �current�that �rms must ��ght against�as they attempt to reduce costs by accumulating expe-

rience. When there is organizational forgetting, a �rm increases its stock of know-how by making sales at a

rate that exceeds the rate at which its know-how depreciates through organizational forgetting. When two

�rms have the same know-how, each �rm will set the same price and have an equal probability of making a

sale. This probability cannot exceed 0.5, and may be less than 0.5 depending on the attractiveness of the

outside alternative. Given this, it may be virtually impossible for two equally experienced �rms to move

all the way down the learning curve, even though it might be quite possible for one �rm to do so. This

phenomenon gives rise to two opposing forces. On the one hand, organizational forgetting makes it less

attractive for the �rms to set low prices when they are at (or close to) the top of the learning curve: after

all, why invest in accumulating know-how through price cuts when your know-how gains will be transitory

(and when your rival will also be unable to sustain its know-how gains). This is the �investment-sti�ing�

e¤ect of organizational forgetting, and it works to soften price competition in states close to the top of the

learning curve. On the other hand, though, because organizational forgetting can give rise to a situation in

which the market can support just one low-cost �rm, each �rm has a strong incentive to move o¤ � and

stay o¤ � the diagonal of the state space, even in states at the bottom of the learning curve. We call this

the �preemption�e¤ect of organizational forgetting, and it works to intensify price competition.

We can see the trade-o¤ between the investment-sti�ing and preemption e¤ects in the third and fourth

columns of Table 2 which show the equilibrium prices p�(1; 1) and p�(2; 2) for symmetric �rms at or near

the top of an 85 percent learning curve. As � increases from 0 to about 0.07-0.08, price competition at

the top of the learning curve intensi�es, indicating that the preemption e¤ect dominates the investment-
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sti�ing e¤ect over this range of �. However, as � increases beyond 0.08, price competition at the top of the

learning curve begins to wane (although it still remains much more intense than it would be in the absence of

organizational forgetting, until we reach the extremely high value of � of 0.30). Thus, the investment-sti�ing

e¤ect dominates the preemption e¤ect only when � becomes su¢ ciently large.

� Equilib. type p�(1; 1) p�(2; 2) p�(14; 14) p�(15; 15)
0 F 7:80 7:78 7:24 7:24
0:01 F 7:64 7:65 7:22 7:23
0:02 F 7:10 7:37 7:19 7:22
0:03 F 4:87 6:25 7:14 7:21
0:03 T 2:89 4:03 5:99 6:13
0:04 F 1:25 3:17 6:80 6:99
0:04 T 1:36 3:03 5:65 5:94
0:05 T �0:83 1:31 4:84 5:06
0:06 T �3:63 �1:71 4:41 4:56
0:07 X �5:08 �3:95 4:02 4:13
0:08 X �4:59 �4:01 3:05 3:21
0:09 X �3:94 �3:84 2:10 2:25
0:10 X �3:19 �3:52 1:25 1:37
0:30 X 8:84 5:60 �5:54 �5:55
0:50 X 10:80 8:82 �5:20 �5:52
0:70 X 11:00 9:24 �5:37 �5:71
0:90 X 11:20 9:37 �5:57 �5:90

Table 2: Prices in symmetric states at the top and the bottom of the learning curve, � = 0:85. (Equilibrium
classi�cations: F = �at equilibrium; T = trenchy equilibrium; X = extra-trenchy equilibrium.)

The trade-o¤ between the investment sti�ing and preemption e¤ects is di¤erent if one or both �rms

happen to have reached the bottom, or close to the bottom, of the learning curve. At the bottom of the

learning curve, the investment-sti�ing e¤ect of organizational forgetting is virtually absent: cost reductions

from accumulating further know-how are zero or close to zero anyway, so it really does not matter that much

that organizational forgetting makes those small gains more transitory. However, the preemption e¤ect

continues to operate. We see this in the fourth and �fth columns of Table 2: when �rms are at, or near the

bottom, of an 85 percent learning curve (states (14; 14) and (15; 15)), increases in � tend to intensify price

competition.

The preemption e¤ect may be so strong that a �rm may be willing to set price below its marginal cost

even when it is at the bottom of the learning curve. A straightforward extension of Theorem 4.4 in Cabral

and Riordan (1994) tells us that this is something that would not happen without organizational forgetting:

if � = 0, the equilibrium price of a �rm at the bottom of the learning exceeds its marginal cost no matter

what the state of its rival �rm, i.e., p�(m; e2) > c(m) for any e2 2 f1; : : : ;Mg).15 However, when there is

organizational forgetting a �rm that reaches the bottom of the learning curve might price below marginal

15Cabral and Riordan prove their theorem in a model in which there is no outside demand alternative. The logic of their
proof of Theorem 4.4 can be readily adapted to the setting in our model where there is an outside alternative. A proof is
available on request.
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cost. For example, when � = 0:85, � = 0:08, p�(15; 14) = 4:07 and p�(15; 15) = 3:21, both of which are less

than the �rm�s marginal cost c(m) of 5:30:

4.3 Wells, trenches, and resultant forces

The most dramatic manifestations of the intensi�ed price competition brought about by organizational

forgetting are the wells and trenches in the pricing function. Wells (as seen in the top right-hand panel and

the two bottom panels of Figure 2) represent an intense preemption battle between the �rms to establish

an initial advantage, followed by a quick �surrender�by the follower once one of the �rms has established

an initial advantage. As this �gure (as well as Table 2) shows, even a modest amount of organizational

forgetting can give rise to intense races to acquire initial advantage.

Diagonal trenches (as seen in the two bottom panels of Figure 2) correspond to price wars that are

triggered when a follower moves from a position of cost disadvantage to one of cost parity. Diagonal trenches

are fueled by the prize that accrues to a �rm from assuming the role of industry leader and from avoiding

the role of industry follower. Put another way, because organizational forgetting makes it more di¢ cult for

both �rms to move down their learning curve in tandem, diagonal trenches re�ect the strong incentive that

each �rm has to �ght hard to move o¤ � and stay o¤ � the diagonal of the state space.

Sideways trenches (as seen in the bottom right-hand panel of Figure 2) are, like diagonal trenches, price

wars that are triggered when a follower improves its competitive position. In contrast to a diagonal trench,

however, the price war in the sideways trench is not triggered because the follower has moved into a position

of cost parity. Instead, it arises in order to keep a severely disadvantaged �rm �in its place�as a marginal

force in the industry. That is, a sideways trench is designed to prevent a �rm with minimal know-how from

�breaking through� to a position where it can evolve into a �rm that could, at some point in the future,

represent a threat to the pro�tability of the market leader. If diagonal trenches are about �ghting against

an imminent threat, sideways trenches are about �ghting a distantly imagined threat. One might think of

them as an equilibrium manifestation of the dictum, �Only the paranoid survive.�

Pricing behavior drives the evolution of the industry. The impact of wells and trenches on equilibrium

behaviors can be highlighted through the use of resultant forces diagrams. Given that the industry is in

state e in the current period, it will be in state e0 in the next period, where e0k � ek 2 f�1; 0; 1g; k = 1; 2.

We determine the expected movement of the state by computing the probability weighted average of e0 � e

using the Markov transition probabilities. Reinterpreting e0�e as a direction and the associated probability

as the force operating in that direction, the expected movement E(e0 � eje) becomes the resultant force.16

Figure 4 shows the resultant forces for the scenarios we have been focusing on: � = 0:85 and � = 0; 0:03, and

16More formally, let �(e0je; p�(e)) denote the Markov transition probability from state e = (e1; e2) to state e0 = (e01; e
0
2). We

�rst compute the resultant force as

E[(e0 � e)je] =
X
e02�2

(e01 � e1; e
0
2 � e2)�(e

0je; p�(e)):

Then, we plot an arrow with the foot at (e1; e2) and the head at (e1; e2) + E[(e0 � e)je].
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Figure 4: Resultant forces for � = 0:85 and � = 0; 0.03 (both equilibria), 0.08.

0:08. The arrows in Figure 4 point in the direction in which the industry is expected to evolve, and their

length indicates the speed at which this is expected to happen.17

When there is no forgetting, (� = 0) the resultant forces indicates that �rms tend to acquire know-how

in lockstep, with both �rms moving steadily to the bottom of the learning curve. The resultant forces in the

�at equilibrium with � = 0:03 shows a similar, but not completely identical, dynamic. In this case, the �ow

of the resultant forces suggests that the �rms would initially be expected to diverge somewhat, a re�ection

of the existence of the well at (1; 1). However, the �atness of the equilibrium beyond this well creates an

opportunity for the follower to catch up to the leader, and both �rms eventually converge to a symmetric

position at the bottom of their learning curves.

17To simplify the graph, we plot resultant forces only for states that are multiples of 3.
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By contrast, in the trenchy equilibrium with � = 0:03; the resultant forces moves the industry toward

points away from the diagonal, a re�ection of the diagonal trench in the pricing function. Thus, in contrast

to the �at equilibrium, a follower would not be expected to catch up to the leader, suggesting that the

industry would tend to evolve to a long-run structure in which �rms are asymmetric.18 The same is true

in the extra-trenchy equilibrium with � = 0:08, but the e¤ect is even more dramatic: the resultant forces

suggests that the industry would tend to evolve toward a structure in which one �rm is dominant. In this

case, we can see the e¤ect of the sideways trench: it makes it unlikely that a follower who operates at the

top of the learning curve would be able to �break through� and put itself in a position in which it could

challenge the leader.

5 Industry dynamics

Traditional intuition holds that learning-by-doing is likely to lead to market dominance by giving a more

experienced �rm the ability to pro�tably underprice its less experienced rival, which enables the leader to

widen its cost advantage over time, increasing the scope for underpricing the rival. Cabral and Riordan (1994)

formalize this idea with the properties of increasing dominance (ID) and increasing increasing dominance

(IID). The MPE exhibits ID if e1 > e2 ) p�(e1; e2) < p�(e2; e1). The MPE exhibits IID if p�(e1; e2) �

p�(e2; e1) decreases in e1. If ID holds, the leader charges a lower price than the follower. If IID holds, the

gap between the leader�s price and the follower�s price increases as the leader�s cost advantage becomes more

pronounced. In a model with no organizational forgetting, Cabral and Riordan prove that ID and IID hold

when the discount factor is su¢ ciently close to 1 and when it is su¢ ciently close to 0.

Even though the equilibrium pricing function satis�es ID and IID, however, it is not immediately clear

that the industry is on an inevitable path toward monopoly or near-monopoly, either in the short run or

the long run. The e¤ect of ID and IID on pricing behavior and industry dynamics might be economically

insigni�cant if the di¤erence in the prices of the two �rms is small and there is some degree of horizontal

di¤erentiation between the �rms.19 In such a scenario, the leader would set a slightly lower price than the

follower, and this small price gap would grow a bit over time as the experience gap widens. But because the

di¤erence in prices remains small, with even a modest degree of horizontal di¤erentiation both �rms might

be able to split the sales more or less equally over time and thus move down the learning curve together. If

so, ID and IID would have no discernible impact on the structure of the industry in the short run or the

long run.20

18When we study industry dynamics more explicitly in the next section, we will see that this is in fact the case.
19 Indeed, Cabral and Riordan prove that in the limiting case of � = 1 both �rms charge the same price in every state, i.e.,

p�(e1; e2) = py(c(m); c(m)) for all (e1; e2). This suggests that for �reasonable�discount factors the price gap may be small.
20As we will see below, this is exactly what happens when there is no organizational forgetting, or when organizational

forgetting is relatively weak.
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Figure 5: Timepath of the expected Her�ndal index for � = 0:85 and � = 0; 0.03 (both equilibria), 0.08.

5.1 Transient and limiting distributions

Because ID and IID may not be fully informative, we investigate industry dynamics in more detail by using

the Markov transition probabilities to compute the transient distribution �T (ej(1; 1)) over states at time T ,

starting from the initial state (1; 1). To characterize short-run industry dynamics, we compute the expected

Her�ndahl index implied by the transient distribution at time T ,

HT �
X
ee1
X
ee2
"
D�(ee)2 +D�(ee[2])2�
D�(ee) +D�(ee[2])�2

#
�T (eej(1; 1));

and to characterize long-run dynamics, we compute the expected Her�ndahl index H1 associated with the

limiting distribution �1(e).

Figure 5 plots the time path of HT for each of our four representative scenarios. To the extent that the

�rms evolve in a more or less symmetric fashion, the expected industry Her�ndahl index should be close to

0.500, and the transient distributions should be unimodal and concentrated along the diagonal of the state

space. If, by contrast, the industry structure is asymmetric, the expected industry Her�ndahl should exceed

0.500, and the transient distributions should be bimodal with probability weight concentrated closer to the

axes.
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When � = 0, the maximal expected Her�ndahl index is approximately 0.527 (reached in period 4).

Despite the fact that the pricing function is characterized by ID and IID, the industry structure remains

highly symmetric as it evolves over time. By T = 32, the expected Her�ndahl index is essentially 0.500.

This case illustrates that that ID and IID are not su¢ cient for industry dominance, either in the short run

or the long run.

In contrast to the case without organizational forgetting, organizational forgetting introduces both short-

run and long-run asymmetries in industry structure. Consider, for example, the �at equilibrium for � = 0:03.

As we see from Figure 5, the industry initially becomes asymmetric, attaining an expected Her�ndahl index

that exceeds 0.650 between periods 2 and 8. Over time, the degree of asymmetry declines, but even after

32 periods, the industry is still mildly asymmetric, with an expected Her�ndahl index of 0.514. However, as

time passes the asymmetries fade. In the limit, the industry becomes nearly symmetric with H1 = 0:500.

The short-run dynamics for the trenchy equilibrium when � = 0:03 are similar. However, under this scenario,

the asymmetries do not disappear in the long run, with H1 = 0:516:When � = 0:08, more exaggerated and

persistent asymmetries arise. The industry becomes highly asymmetric right away, attaining an expected

Her�ndahl index of 0.844 by T = 8. However, the degree of asymmetry hardly changes after that, with

an expected Her�ndahl index of 0.807 and a limiting expected Her�ndahl of 0:770: In this case, one �rm

develops an initial cost advantage that persists over time. Interestingly, even though the likely outcome in

this market is dominance by one �rm, ID and IID do not hold at all points in the state space (in fact, in

this equilibrium, ID is violated in about 14 percent of the states and IID is violated in over 55 percent of

the states). Thus, ID and IID are neither necessary nor su¢ cient for market dominance.

These conclusions are reinforced by direct examination of the transient distributions. Figures 6 and

7 show the transient distributions for T = 8 and T = 32 for our representative scenarios, and Figure 8

shows the corresponding limiting distribution. (In each panel in Figures 6 - 8, the height of each line is the

probability that the industry is in a particular state at that point in time).

The transient distributions for our four scenarios reveal a rich variety of short-run and long-run dynamics.

When there is no forgetting, the transient distribution is unimodal and concentrated along the diagonal of

the state space. Though temporary asymmetries among �rms might arise (e.g., Figure 6 shows that at

T = 8, there is positive probability that one �rm can be in state 9, while the other can still be in state 1),

the follower is very likely to catch up, and the asymmetries are unlikely to persist.

By contrast, when there is organizational forgetting, the transient distributions can have very di¤erent

shapes. In the �at equilibrium for � = 0:85, � = 0:03; the transient distributions in the short and inter-

mediate run are bimodal. For example, at T = 32, the modes are (15; 7) and (7; 15). In the limit, though,

the asymmetries between the �rms virtually disappear, with the limiting distribution becoming essentially

unimodal. In the trenchy equilibrium for � = 0:85, � = 0:03, we get a similar pattern in the long run and

the short run (though the two modes are more distinguishable and pronounced), but the asymmetries do

not vanish: the limiting distribution has two modes: (25; 18) and (18; 25). In this case, both �rms reach
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Figure 6: Transient distribution at T = 8 (start from (1; 1) at T = 0) for � = 0:85 and � = 0; 0.03 (both
equilibria), 0.08.

the bottom of the learning curve, but one �rm is more vulnerable to forgetting than the other. When

� = 0:85; � = 0:08, the transient distributions reveal that the industry essentially evolves along the �edge�

of the state space, a re�ection of the sideways trenches discussed earlier. As time passes, the modal state of

the follower �rm remains e2 = 1, while the modal state of the leader moves from e1 = 6 at T = 8 to e1 = 13

at T = 32 and e1 = 19 as T !1. In this case, the modal outcome is for the leader to make it safely to the

bottom of the learning curve, leaving the follower stuck at the top.

Table 3 summarizes the short-run and long-run industry dynamics for all (�; �) 2 P � D. It shows the

expected Her�ndahl Index given the limiting distribution, H�
1 (repeating the information in Table 1) and

the maximum attained expected Her�ndahl Index, bH�. Table 4 presents similar information in a slightly

di¤erent way. It classi�es industry structures into categories, depending on the location of the modes of the
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Figure 7: Transient distribution at T = 32 (start from (1; 1) at T = 0) for � = 0:85 and � = 0; 0.03 (both
equilibria), 0.08.

limiting distribution:

� Symmetric duopoly (S): modal state such that je1 � e2j � 1 and e1 > 1, e2 > 1.

� Asymmetric duopoly (A): modal state such that je1 � e2j > 1 and e1 > 1; e2 > 1:

� Near-monopoly (M): modal state such that je1 � e2j > 1 and e1 = 1 or e2 = 1.

� Stagnant industry (E): modal state is (1; 1):

Tables 3 and 4 suggests three conclusions. First, holding the degree of organizational forgetting �xed,

short-run and long-run industry concentration may be non-monotonic in the rate of learning. For example,
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Figure 8: Limiting distribution for � = 0:85 and � = 0; 0.03 (both equilibria), 0.08.

when there is no organizational forgetting, the maximal expected Her�ndahl index increases as we move

from � = 0:95 to � = 0:55, but beyond � = 0:55 it decreases. We see a similar non-monotonicity in both

the maximal and limiting Her�ndahl indices when � = 0:05. These examples tell us that a steeper learning

curve does not necessarily give rise to a greater degree of market dominance, either in the short run or

the long run. The intuition is this: if the learning curve is su¢ ciently steep, a �rm may be compelled to

pursue learning-based cost reductions, no matter how signi�cant its rival�s cost advantage. Given this, a

cost advantage based on a learning curve may not be sustainable, and the equilibrium market structure may

relatively symmetric.

Second, if organizational forgetting becomes su¢ ciently severe (� > 0:50), the �rms end up trivially

symmetric: they operate at or close to top of the learning curve, with neither �rm able to achieve or sustain
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an advantage over the other. This re�ects the investment-sti�ing e¤ect of organizational forgetting: when

organizational forgetting is severe, it does not make sense to seek learning-based cost reductions.

Third, for small and intermediate values of �, organizational forgetting tends to make a learning-based

cost advantage more sustainable and could even result in a near-monopoly structure in the long run as we

saw in the case of � = 0:85; � = 0:08. This conclusion might seem surprising. After all, if an industry leader�s

know-how is vulnerable to an increasing rate of organizational forgetting (as in our speci�cation), one might

expect that it could never get too far ahead of its rival, and every so often, the leader might drift �back up�

its learning curve to a position of parity with its rival. Furthermore, if there is a likelihood that an industry

leader�s cost advantage might erode, it might even be worthwhile for a follower to continue to set prices that

keep it �close�to the leader and poised to capitalize if the leader�s cost advantage does begin to erode. Thus,

one might expect that organizational forgetting would serve as a leveling force that would tend, over time,

to result in a symmetric market structure.

But this intuition is incomplete because it ignores the preemption e¤ect of organizational forgetting.

As discussed earlier, the preemption e¤ect motivates an industry leader to price aggressively to defend its

position against immediate and distant competitive threats. Given this pricing behavior, the industry leader

may �nd that its cost advantage is more secure than it would have been in the absence of organizational

forgetting.

To illustrate this last point, we use the transient distribution at each period T to calculate the expected

number of periods it will take for a role reversal, a point at which the industry moves from an asymmetric

state to a symmetric state (or put di¤erently, a point at which the industry moves to the diagonal of the state

space). Figure 9 shows expected role reversal time as a function of T for each of our representative scenarios.

Because both modes of the limiting distribution are contained in a single recurrent set, role reversals occur

from time to time. However, as Figure 9 shows, role reversals become exceedingly unlikely the higher the

rate of forgetting. For example, when � = 0:85; � = 0; after 32 periods the expected time for a role reversal

is around 30 periods. By contrast, when � = 0:85; � = 0:08, after 32 periods, the expected time for a role

reversal is 25,000 periods, essentially forever!

5.2 Organizational forgetting and multiple equilibria

The industry dynamics spawned by organizational forgetting shed light on why multiple equilibria can arise

in our model. As we have seen, organizational forgetting can make it extremely di¢ cult for two �rms to

coexist in a symmetric cost position over time. This sets the stage for a self-ful�lling hypothesis of market

dominance:

� Firms believe that symmetric coexistence is virtually impossible and that a single dominant �rm will

emerge, which implies ...

� ... in symmetric states, each �rm prices aggressively in order to become the market leader.

30



Figure 9: Timepath of expected role reversal time for � = 0:85 and � = 0; 0.03 (both equilibria), 0.08.

� The price wars in symmetric states ensure that symmetric coexistence is, in fact, impossible, thereby

leading to the emergence of a dominant �rm.

If the �rms believed that they could coexist in a symmetric cost position over time, they would not �ght as

aggressively to avoid being symmetric, and they would indeed be able to coexist, i.e., the market would not

be winner-take-all. Put another way, organizational forgetting can give the MPE a bootstrap aspect: trenchy

equilibria are trenchy because two symmetric �rms could not survive �trench warfare�for very long, which

in turn makes the prophecy of trench warfare self ful�lling. If �rms believed that coexistence is possible,

trench warfare would not arise, which indeed makes coexistence possible.

This intuition suggests that multiple equilibria are likely to arise when the rate of organizational for-

getting is just large enough to make symmetric coexistence extremely di¢ cult in the midst of intense price

competition, but possible when price competition is su¢ ciently restrained. This would explain why the

multiple equilibria tend to disappear when � is close to zero or when � is su¢ ciently large. When � is close to

zero, symmetric coexistence is possible even when price competition is intense. When � is su¢ ciently large,

symmetric coexistence is likely to be di¢ cult even when price competition is reasonably mild.

The reason that multiple MPE arise in our model is thus di¤erent from the reason for the multiple

equilibria in Cabral and Riordan (1994) when they enrich their model to allow for exit. In Cabral and
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Riordan, the prospect of driving the other �rm out of the market makes it tempting for the industry leader

to price aggressively, but the fact that the industry leader prices aggressively, makes it self-ful�lling for the

follower to exit. In our model, it is organizational forgetting, not the presence of avoidable �xed costs,

which makes it di¢ cult for two equal-sized �rms to coexist and gives rise to the possibility of a bootstrap

equilibrium in which the �rms compete aggressively to achieve a position of industry dominance.21

6 Robustness checks

To check the robustness of our conclusions, we investigate how two key parameters � � (the product

di¤erentiation parameter) and v0 � c0 (attractiveness of the outside alternative) � a¤ect the nature of the

MPE. Speci�cally, for each (�; �) combination in the parameter set R� D, we calculated the MPE for each

of the following scenarios:

1. Weak horizontal di¤erentiation: � = 0:10 and v0 � c0 = 0 (baseline value).

2. Strong horizontal di¤erentiation: � = 2 and v0 � c0 = 0 (baseline value).

3. (In�nitely) unattractive outside alternative (the case studied by Cabral and Riordan (1994)): � = 1

(baseline value) and v0 � c0 = �1.

4. Very attractive outside alternative: � = 1 (baseline value) and v0 � c0 = 3:

Note that increasing the attractiveness of the outside alternative e¤ectively shrinks the market of the inside

goods, and when v0� c0 = 3, the inside goods have an advantage over the outside alternative only after each

�rm moves su¢ ciently far down the learning curve.22

Tables analogous to Table 3 that report the results of these calculations are available on request. The

key conclusions that emerge from this analysis are as follows:

� In all of the above scenarios, we continue to �nd multiple equilibria.

� The pattern of results that we saw for the case of � = 1 and v0 � c0 = 0 continues to hold: modest

amounts of organizational forgetting act as a force that results in less symmetric market structures.

� Holding �, �, and v0 � c0 �xed, weaker horizontal di¤erentiation tends to result in a more asymmetric

market structure. This makes sense. For low values of � each �rm is tempted to engage in aggres-

sive preemptive pricing behavior since undercutting one�s rival by even a tiny amount increases the

21As we will see below, adding entry and exit to our model adds this additional �bootstrapping� e¤ect to our model and
increases the set of cases in which we have multiple equilibria (including some in which � = 0).
22To see this more concretely, note that if v0 � c0 = 3 and each �rm sets a price equal to marginal cost c(1) = 10, the

probability that a �rm makes the next sale would be about 4.5 percent, and the outside good would win 91 percent of the
time. By contrast, if each �rm reaches the bottom of a 85 percent learning curve and charged the static Nash equilibrium price
(which turns out to be 6.84), the probability that a �rm makes the next sale would be about 35 percent, and the outside good
would win about 30 percent of the time.
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probability of winning to close to 1. Even when there is no organizational forgetting, the industry can

remain quite asymmetric for many periods. By contrast, when horizontal di¤erentiation is extremely

strong, �rms can peacefully coexist with each other, and each follows an equilibrium pricing policy

that resembles that followed by a monopolist. Unless organizational forgetting is su¢ ciently strong,

the �rms move down their learning curves more or less in tandem and attain approximately the same

level of cost.

� Elimination of the outside alternative (v0 � c0 = �1) has essentially no impact on our key results.

The equilibrium pricing and value functions remain essentially unchanged.

� For su¢ ciently low values of �, the increase in v0 � c0 from 0 to 3 tends to result in more pronounced

asymmetries between �rms in the short run and possibly even more pronounced asymmetries in the

long run. For example, when v0�c0 = 3, � = 0:85, � = 0, the maximal expected Her�ndahl is 0.628, as

compared to a maximal expected Her�ndahl of 0.527 when v0 � c0 = 0, � = 0:85, and � = 0: However,

for su¢ ciently high values of �, the increase in v0 � c0 tends to result in less pronounced short-run

and long-run asymmetries. The intuition is this. An increase in the attractiveness of the outside

option has o¤setting e¤ects that are similar to the investment-sti�ing and preemption e¤ects due to

organizational forgetting. First, by shrinking the market for the inside goods, it becomes more di¢ cult

for both �rms to move down the learning curve together, making the market more like winner-take-all,

thereby intensifying price competition. When � is low, this tends to deepen the wells and trenches in

the equilibrium pricing function, which in turn exaggerates the magnitude and persistence of short-run

asymmetries between �rms. O¤setting this, however, is that the smaller market size makes investments

in the development of a learning-based cost advantage less valuable, reducing �rm�s willingness to price

low when they are the top of the learning curve. This works to reduce the critical value of � at which

the investment-sti�ing impact of organizational forgetting dominates the preemption e¤ect.

This last point suggests that whether organizational forgetting sti�es investment in know-how (leading

to an outcome in which both �rms are stuck at the top of the learning curve), or intensi�es investment in

know-how by heating up price competition (leading to an asymmetric oligopoly or a near-monopoly market

structure), will depend on the size of the market of the inside goods. In a situation in which movement down

the learning curve is a necessary condition for the �inside goods�to attain market penetration, organizational

forgetting may operate in the manner suggested by traditional intuition: it acts as a force not unlike a

�attening of the learning curve. In a situation in which the inside goods can �win� against the outside

alternative even when the inside goods are at the top of their learning curves, organizational forgetting may

intensify price competition and induce more asymmetric structures.
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7 Entry and exit

So far we have assumed that two �rms are present in the market at the outset and never exit. It is

straightforward to extend the model to allow for entry and exit. Appendix B presents the formal speci�cation

of the model that we use to study entry and exit with multiple �rms; here, we will brie�y sketch the model.

We assume that there at any given time there is a total number N �rms, each of which can either be

an incumbent or potential entrant. Thus, If N� is the number of incumbent �rms, N � N� is the number

of potential entrants. If an incumbent �rm exits the industry in a given period, it perishes and a potential

entrant automatically takes its �slot�and has to decide whether or not to enter the industry in that period.

Potential entrants are drawn from a large pool. Hence, if a potential entrant chooses not to enter the industry

in a given period, it disappears and another potential entrants takes its slot in the next period. Throughout

this section, we focus on the case in which N = 2.

To ensure the existence of an equilibrium, we use the approach in Doraszelski and Satterthwaite (2004) in

which each potential entrant receives a privately observed �draw� eSn from a distribution of possible set-up

costs, and active �rms operating in the industry receive a privately observed draw eXn from a distribution of

possible salvage values. This speci�cation allows us to characterize entry and exit behavior using an operating

probability �(e) 2 [0; 1], where e 2 f0; 1; : : : ;Mg� f0; 1; : : : ;Mg is the state, and en = 0 corresponds to the

situation in which �rm n is a potential entrant. The �(e) of an incumbent �rm indicates the probability that

the �rm remains in the market in a given period. The �(e) of a potential entrant indicates the probability

that the entrant comes into the market in the period.

The symmetric MPE consists of a pricing functions p(e) and an operating probability �(e) for the

representative �rm (where p = 1 if the �rm is not active). Though alternative speci�cations are possible,

we focus on the case in which a new entrant comes into the industry at the top of the learning curve.

Table 5 summarizes the equilibrium calculations for all combinations of (�; �) 2 f0:85g � D. In these

calculations, we assume that a new entrant pays a set-up cost that is uniformly distributed on the interval

[3; 6]; while an incumbent �rm that exits receives a salvage value that is uniformly distribution on the interval

[0; 3]:23

Table 5 shows that the inclusion of entry and exit does not alter the thrust of the results that we

described above: organizational forgetting can act as a force that intensi�es pricing rivalry and leads to more

asymmetric market structures. However, allowing for the possibility that �rms can exit adds an additional

component to the prize from winning a sale: by winning the next sale, a �rm can move the industry into a

state in which a rival is more likely to exit, in which case it may be replaced by a �rm with an even higher

cost, or maybe not replaced at all. As a result, entry and exit and organizational forgetting can interact to

increase the depth of trenches, and likelihood of eventual concentration. A comparison of Table 5 with the

corresponding column of Table 3 reveals that for any given level of � , entry and exit makes it more likely

23Notice that this implies that some portion of entry costs is necessarily sunk. This eliminates the possibility of �speculative
entry�: entering the industry in the hope of receiving a draw on the salvage value that exceeds the entry cost.
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� F T X
0 :527 � �

:500
0:01 :547 � �

:500
0:02 :600 � �

:500
0:03 :765 � :945

:500 1:000
0:04 :857 � :999

:502 1:000
0:05 � � 1:000

1:000
0:06 � � 1:000

1:000
0:07 � � 1:000

1:000
0:08 � � 1:000

1:000
0:09 � � 1:000

1:000
0:1 � � 1:000

1:000
0:3 � � :997

:997
0:5 � � :659

:597
0:7 � � :690

:539
0:9 � � :728

:511

Table 5: Maximal (top number) and limiting (bottom number) Expected Her�ndahls for (�; �) 2 f0:85g�D,
with classi�cation of equilibria.

that we will see a trenchy or extra-trenchy equilibrium, and the long-run market structure is likely to be

more concentrated.

7.1 Predatory pricing

In the model with entry, exit, and organizational forgetting, equilibrium pricing behavior can give rise to

behavior that seems to resemble traditional notions of predatory pricing. In the trenchy and extra-trenchy

equilibria that arise for intermediate values of �, competition between the two �rms plays out something like

this: if both �rms enter the market, they �ght an intense price war as long as both remain at the top of the

learning curve. If one �rm gains a cost advantage by moving one or more steps down the learning curve,

both �rms may continue to charge prices below their marginal costs, but the leader now under-prices the

follower. If the leader�s cost advantage become su¢ ciently large, the follower eventually exits, after which
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the leader increases its price substantially, up to a level roughly equal to the static monopoly price for the

marginal cost at the bottom of the learning curve.

In this situation, can the low-price �rm plausibly be accused of engaging in predatory pricing? In other

words, does predatory pricing arise in the equilibrium of our model? To explore this question, we adapt two

�economic de�nitions�of predatory pricing that have been proposed in the literature: one by Ordover and

Willg (1981); the other by Cabral and Riordan (1997).

Ordover and Willg (1981) de�ne a predatory action as �a response to a rival that sacri�ces part of the

pro�t that could be earned under competitive circumstances, were the rival to remain viable, in order to

induce exit and gain consequent monopoly pro�ts.� An operationalization of that test in our model would

be to determine whether the low-price �rm�s price is lower than it would have been in a counterfactual model

in which �rms are assumed to remain viable, i.e., to never exit.24 Formally:

De�nition 2 (Ordover-Willig Test of Predatory Pricing) Let p�(e) be the pricing function in a model with

entry and exit, and let minfp�(e); p�(e[2])g be the price charged by the low-price �rm in states � � feejee1 > ee2g
when the �rms are asymmetric.25 Further, let p�0(e) be the equilibrium price that the low-price �rm would

have charged in the counterfactual model without exit. The low-price �rm�s price is predatory in state e 2 �

if minfp�(e); p�(e[2])g < p�0(e), i.e., the low-price �rm�s price is lower than it would have been in the absence

of exit.26 ;27

A potential limitation of this de�nition of predatory pricing is that the �never exit� counterfactual is

quite strong. A �rm in our model may exit because it happened to get a particularly high realization of the

salvage value eXn, and the fact that it exits under these circumstances does not mean that its rival intended
to force it out of the market through predatory behavior. A second (even more subtle) limitation is that in

our model with exit, a �rm may charge a lower price than it would have charged in a model without exit,

not because it intends to hasten the exit of its rival in the next period (the classic notion of a predatory

action), but rather because it seeks to improve its own future competitive position in the hope that it may

eventually come to pass that its rival exits at some distant point in the future.

In light of these limitations, we study an alternative de�nition of predatory behavior o¤ered by Cabral

and Riordan (1997): �an action is predatory if (1) a di¤erent action would increase the likelihood that rivals

24 It might be the case that the high-price �rm�s price is also lower than it would have been in the absence of exit. However,
this price would not be predatory since presumably the high-price �rm could argue that its price was intended to meet the
competition.
25There is no loss of generality in focusing on states in which e1 > e2. Given the symmetry of the MPE, states in which

e2 > e1 are �mirror images� of states in which e1 > e2.
26 In symmetric states (e1 = e2 = e) it might also be the case that p�(e; e) < p�0(e; e). However, in these states the �rms

charge the same price, so there is no distinction between the predator and the prey. It seems unlikely that antitrust policy
would penalize �rms in this situation, and so these cases are not classi�ed as predatory pricing.
27A complication in applying this de�nition arises if we have multiple equilibria. We deal with this by following the convention

of comparing �like�equilibria. For example, if a model with entry and exit there is a �at and a trenchy equilibria, and there is
a corresponding �at and trenchy equilibrium in the model without entry and exit, we compare the �at equilibrium to the �at
equilibrium, and the trenchy equilibrium to the trenchy equilibrium. If the model with entry and exit has two or more equilibria,
but there is a unique equilibrium in the model without entry and exit, we compare all equilibria to the unique equilibrium
without entry and exit. The opposite (more problematic) case where there are more equilibria without entry and exit than
there are with entry and exit did not arise in our calculations.
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would remain viable; (2) the di¤erent action would be more pro�table under the counterfactual hypothesis

that the rival�s viability were una¤ected.�Cabral and Riordan formalize their de�nition using a two-period

model in which one �rm can take an action in the �rst period that increases the likelihood that a rival

�rm will exit at the beginning of the second period. In such a model, an action would be predatory if a

lower action would be more pro�table under the counterfactual hypothesis that the rival �rm�s probability

of exit is �xed at its equilibrium level. This test di¤ers from the Ordover-Willig test in that it allows for the

possibility that there could be a positive probability that the rival exits in equilibrium.28

To operationalize the Cabral Riordan test in our model, we use the following counterfactual. Consider a

model in which there can be entry and exit, but imagine that a �rm acts �as if�the industry cannot transition

to a state in which its rival exits next period. This forces the �rm to �ignore�the �prize�that it gets if the

industry transitions to a state in which follower exits in the next period, which, in turn, implies that the

�rm�s current pricing decision will not internalize this component of the prize. Unlike the Ordover-Willig �no

exit�counterfactual, however, the rival in this counterfactual can still exit if it is optimal to do so. Note that

this counterfactual focuses on exit inducement in the next period. A �rm in this counterfactual is permitted

to internalize the incremental bene�t of transitioning to a state from which, at some distant point in the

future, the industry may reach other states in which the rival may exit. In this sense, this counterfactual

gives the �rm more latitude to price aggressively than in the �no exit�counterfactual.

We formalize the Cabral-Riordan standard for predatory pricing as follows:

De�nition 3 (Cabral-Riordan Test of Predatory Pricing) Let p�(e) be the pricing function in a model with

entry an exit, and let minfp�(e); p�(e[2])g be the price charged by the low-price �rm in states � � feejee1 > ee2g
when the �rms are asymmetric. Further, let bp�(e) be the equilibrium price that the low-price �rm would have

charged if it had ignored the impact of its pricing decision on its rival�s next-period exit behavior.29 The

low-price �rm�s price is predatory in state e 2 � if minfp�(e); p�(e[2])g < bp�(e), i.e., the low-price �rm�s
price is lower than it would have been had it not ignored the impact of its pricing decision on the rival�s

next-period exit behavior.

Table 6 and Table 7 summarize the extent of predatory pricing according to each of the two standards

when � = 0:85.30 Each table reports three numbers. The �rst is the percentage of asymmetric states in which

the low-price �rm engages in above-cost predatory pricing. The second is the percentage of asymmetric states

in which the low-price �rm engages in below-cost predatory pricing (and so the sum of these two percentages

is the overall incidence of predatory pricing). The third is the percentage of asymmetric states in which the

low-price charges a below-cost price that is non-predatory.

For the set of parameter values in Tables 6 and 7, the two standards yield di¤erent results. As we would

28 In the two-period model studied by Cabral and Riordan, this test can be shown to di¤er from the Ordover and Willig test.
29 In Appendix 2, we discuss how we alter the model with entry and exit to compute this counterfactual equilibrium pricebp�(e).
30Throughout this analysis, we assume that as above, a new entrant pays a set-up cost that is uniformly distributed on the

interval [3; 6]; and an incumbent �rm that exits receives a salvage value that is uniformly distribution on the interval [0; 3]:
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Predatory pricing: Predatory pricing: Non-predatory pricing:
� above cost below cost below cost
0 0% 0% 0:7%
0:01 0% 0% 0:7%
0:02 0% 0% 0:7%

0:03 (F ) 19:8% 0% 1:1%
0:03 (T ) 11:5% 7:8% 1:6%
0:04 (F ) 0% 0:2% 2:3%
0:04 (T ) 8:5% 14:3% 1:8%
0:05 23:7% 13:1% 1:4%
0:06 49:7% 8:5% 0:5%
0:07 50:6% 7:6% 0%
0:08 60:5% 9:2% 0%
0:09 63:7% 10:1% 0%
0:10 62:8% 10:6% 0:2%
0:30 38:9% 9:2% 0:7%
0:50 33:1% 7:1% 2:3%
0:70 31:5% 6:4% 3:0%
0:90 29:4% 6:4% 3:0%

Table 6: Incidence of predatory pricing under the Ordover-Willig test when � = 0:85

Predatory pricing: Predatory pricing: Non-predatory pricing:
� above cost below cost below cost
0 0% 0% 0:7%
0:01 0% 0% 0:7%
0:02 0% 0% 0:7%

0:03 (F ) 15:6% 0% 1:1%
0:03 (T ) 11:5% 7:8% 1:6%
0:04 (F ) 0% 0:2% 2:3%
0:04 (T ) 3:4% 13:6% 1:8%
0:05 18:2% 10:6% 1:4%
0:06 40:5% 7:1% 0:5%
0:07 39:1% 7:6% 0%
0:08 48:5% 9:2% 0%
0:09 52:6% 10:1% 0%
0:10 53:8% 10:6% 0:2%
0:30 38:2% 9:2% 0:7%
0:50 32:9% 7:1% 2:3%
0:70 31:3% 6:4% 3:0%
0:90 29:2% 6:4% 3:0%

Table 7: Incidence of predatory pricing under the Cabral-Riordan test when � = 0:85
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expect, the Cabral-Riordan standard is more restrictive than the Ordover-Willig standard. For example,

when � = 0:85; � = 0:05, in almost 37 percent of the asymmetric states, the Ordover-Willig test identi�es

predatory pricing, while the Cabral-Riordan test identi�es predatory pricing in just about 29 percent of the

asymmetric states.

That said, there are several broad conclusions that are implied by either standard. First, predatory

pricing can indeed arise in equilibrium, but the predatory price need not be below marginal cost. For

example, when � = 0:08, under the Cabral-Riordan standard, in more than 48 percent of the asymmetric

states we have above-cost predatory pricing, while in about 9 percent of these states we have below-cost

predatory pricing.

Second, it is possible to have below-cost pricing that is not predatory. For example, when � = 0, we

have no instances of predatory pricing under either standard, but in 0.70 percent of the asymmetric states

we have below-cost pricing. Clearly, then, below-cost pricing is neither a necessary nor a su¢ cient condition

of predatory pricing. Still, the tables suggests that below-cost prices that are non-predatory are rare. Thus,

for these parameter values, the incidence of below-cost pricing usually is su¢ cient to indicate predatory

behavior under either standard.

Finally, under either standard, the incidence of predatory behavior tends to increase in � for low levels of

organizational forgetting and decreases in � when � becomes su¢ ciently large. When � = 0:85, the incidence

of predatory pricing under the Ordover-Willig standard is greatest when � = 0:09 (with the low-price

�rm engaging in predatory behavior in 73.8 percent of the asymmetric states). Under the Cabral-Riordan

standard, the incidence of predatory behavior is maximized when � = 0:10 (with the low-price �rm engaging

in predatory behavior in over 64 percent of the asymmetric states). By contrast, when � = 0; 0:01, and 0:02,

there is no predatory behavior under either standard, while at the other extreme, when � = 0:90, there is

predatory behavior in about 35 percent of the asymmetric states under either standard. There is a tendency

for predatory behavior to be greatest when, in the absence of exit, organizational forgetting would spawn

trenchy or extra-trenchy equilibria in which the probability of re-entry is zero (or close to it) once the follower

exits. Under these conditions, it is particularly tempting for the industry leader to price aggressively in order

to push the follower �rm out of the industry.

7.2 Limit pricing

Limit pricing refers to a situation in which a �rm threatened with entry charges a lower price than it would

have had it not been threatened with entry. When there is learning-by-doing, limit pricing is potentially

rational because by pricing aggressively in the current period, the �rm may accelerate the rate at which it

moves down its learning curve, thereby making it less attractive for another �rm to enter the market later

on.

Just as we can use our model to test for predatory pricing, we can also use it to test for the presence of

equilibrium limit pricing. In our two-�rm model with entry and exit, limit pricing arises when the equilibrium
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price p�(e1; 0) charged by the �rm when it is the sole incumbent is strictly less than the price pM (e1) that

it would have charged had it been a monopolist that faces a learning curve but is unthreatened by the

possibility of future entry. In Table 8 below, we illustrate the incidence of limit pricing for � = 0:85. As

in the tables pertaining to predatory pricing, Table 8 reports three numbers. The �rst is the percentage

of single-�rm states (i.e., (e1; 0)) in which the incumbent �rm engages in above-cost limit pricing (i.e.,

c(e1) � p�(e1; 0) < pM (e1)). The second is the percentage of single-�rm states in which the incumbent

engages in below-cost limit pricing (and so the sum of these two percentages is the overall incidence of limit

pricing). The third is the percentage of single-�rm states in which the incumbent does not engage in limit

pricing (i.e., p�(e1; 0) � pM (e1), but p�(e1; 0) < c(e1)).

Limit pricing: Limit pricing: Non-predatory pricing:
� above cost below cost below cost
0 0% 0% 3:3%
0:01 16:7% 3:3% 0%
0:02 13:3% 3:3% 0%

0:03 (F ) 20:0% 3:3% 0%
0:03 (T ) 3:3% 3:3% 0%
0:04 (F ) 43:3% 3:3% 0%
0:04 (T ) 3:3% 3:3% 0%
0:05 6:7% 3:3% 0%
0:06 6:7% 3:3% 0%
0:07 6:7% 3:3% 0%
0:08 6:7% 3:3% 0%
0:09 6:7% 3:3% 0%
0:10 6:7% 3:3% 0%
0:30 26:7% 3:3% 0%
0:50 46:7% 0% 0%
0:70 36:7% 0% 0%
0:90 33:3% 0% 0%

Table 8: Incidence of limit pricing when � = 0:85

Table 8 indicates that limit pricing can arise in equilibrium, and its incidence is greatest for low levels

of � and for high levels of �: The intuition is this. Recall from Table 5, that for intermediate values of �

(� between 0.03 and 0.10), we get trenchy equilibria in which the short-run and long-run structure of the

industry is monopolized. If only one �rm initially enters the market, then for these parameter values, the

equilibrium probability of entry ��(0; e1) tends to be positive only when e1 = 1; once the leader moves to

states e1 � 2, the probability of further entry drops to zero, putting the incumbent in a position where it

has a (nearly) secure monopoly.31 This corresponds to what Bain (1956) called blockaded entry.

Now, for su¢ ciently large values of �, even though there may be a zero probability of entry in state

(e1; 0), e1 > 1, there is a non-trivial probability that because of organizational forgetting, an incumbent

with know-how e1 > 1 will eventually drift back to e1 = 1, where it will once again be threatened by entry.

31We say �nearly�secure because there is, of course, the possibility that the �rm could �forget�and eventually slide backward
to state (1,0) where once again it would be threatened by entry.
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Hence, for su¢ ciently large �, an incumbent will charge a lower price than a monopolist would, even if the

incumbent is not currently in a state in which there is a positive probability of entry. In other words, the

incumbent may engage in limit pricing in states where entry is blockaded in order to reduce the chance of

moving back to states where entry is not blockaded.

For the �at equilibria that prevail when � su¢ ciently low, the situation is very di¤erent. In these cases,

there is a positive probability of entry that gets smaller as the leader�s experience grows, i.e., ��(0; e1)

decreases in e1. Given this, the incumbent can bene�t by setting a price below the price that a monopolist

would set in order to accelerate its movement down the learning curve and make entry less likely. This is a

classic case of limit pricing.

8 Summary and conclusions

This paper applies the Markov-perfect equilibrium framework presented in Ericson and Pakes (1995) to

explore how the presence of a learning curve and organizational forgetting can a¤ect price competition and

the evolution of industry structure. We compute symmetric MPE and show that it is possible to obtain

multiple MPE for a given set of parameter values. We also saw that the MPE can involve price wars that

serve a variety of di¤erent purposes: to gain an initial advantage (wells), to ward o¤ immediate threats

to one�s competitive position (diagonal trenches), to ward o¤ distant threats to one�s competitive position

(sideway�s trenches), or to keep a �rm in a position in which it is eventually likely to exit (sideways trenches

in a model with entry and exit). Surprisingly, we �nd that organizational forgetting can often act as a force

that intensi�es pricing rivalry and makes industry structure more asymmetric. The basic intuition is that

organizational forgetting can turn a market in which two or more �rms could have peacefully coexisted at

the bottom of the learning curve into a winner-take-all or winner-take-most market, which in turn creates

an incentive for each �rm to �ght hard to move ahead and stay ahead of its rival in the race to accumulate

know-how. This intuition continues to apply when the industry consists of more than two �rms. In that

case, price wars arise in equilibrium as part of the shakeout that propels the industry toward its eventual

equilibrium structure.

The model in this paper can be extended to analyze a variety of applied and policy issues. For example,

the evolution of industry structure is likely to be a¤ected in important ways by the extent of know-how

spillovers across �rms. This suggests that it might be useful to explore the welfare implications of policies

aimed at making it easier for followers or new entrants to bene�t from the know-how that industry leaders

have generated. The model can also be used to study the impact of policies aimed at subsidizing new entrants

or lagging incumbents.

The model can also be extended to incorporate additional economic forces that might play an important

role in the evolution of industries in which learning and forgetting are an important part of the business

landscape. For example, in the current paper, we have not explicitly modeled capacity constraints or order
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backlogs, nor have we explored the role of uncertainty about the eventual size of the markets. These are

factors that might be expected to diminish �rms�incentives to engage in preemptive pricing behavior, and

we would therefore expect that they could have an impact on the equilibrium structure of the industry. In

future work, we intend to study these complications.

A Correspondence between capital stock model of learning and
forgetting and the model used in this paper

The capital stock model of learning and forgetting is given by the deterministic relationship

et+1= (1� �)et+yt:

where � is the rate of forgetting per period, and yt in the �ow of orders in a particular period t. Notice that if yt= 0,
then if � > 0; et+1 < et: Further, note that the higher is et increases, yt must also increase in order to o¤set the
proportional depreciation of know how. If the �rm has a steady �ow y� of orders over time, the steady state level of
know-how is given by:

e�=
y�

�
:

To illustrate, consider Benkard�s (2000) analysis of learning and forgetting in the wide-body airframe market. There
were 250 L-1011 aircraft produced over a 14 year period. Assuming a smooth �ow of orders, this implies that q � 1:5
aircraft per month. Benkard found that � � 0:04 per month. This implies that the steady state level of know-how
was equal to 1:5

0:04= 37:50 units.
Now consider our stochastic model of learning and forgetting:

ee�+1= e�+eq�� ef� :
(Since the length of a period in our model is, by de�nition, the period of time in which there is, at most, one sale, our
period length need not correspond to the length of a period in the capital stock model; hence we use of a di¤erent
time subscript.) Taking expectations gives us:

E(ee�+1je� ) = e�+ � �(e� )
where  =Pr (eq�= 1) is the probability that the �rm makes a sale in a period, and �(e� ) = 1� (1� �)

e� : In our
model, the steady state level of experience e� is given by:

E(ee�+1je�) = e�;
which implies that:

e�=
ln(1� )
ln(1� �) :

We now ask: What is the value � of the forgetting parameter so that our speci�cation generates a steady state level
of experience equal to that implied by an particular capital stock model? The answer is

y�

�
=
ln(1� )
ln(1� �) ;

or
�= 1� (1� )

�
y�

To illustrate, consider the data in Benkard�s study. If a �rm�s rate of sales is 1.5 units per month and it faces a
monthly depreciation rate of 4 percent, �

y�=
0:04
1:5 = 0:02667: This implies that � falls in the range between 0 and

0.077 as  ranges between 0 and 0.95, with � � 0:018 when  = 0:5: As another example, consider a market in
which a �rm sells 8 units per month and the monthly depreciation rate is 25 percent (roughly the situation facing
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builders of Liberty Ships in Argote and Epple (1990)). This implies a steady-state stock of experience of 32 units.
To achieve a comparable steady-state experience in our model in which a �rm has a probability  of making a sale
in a given period would require that � range between 0 and 0.089 as  ranges between 0 and 0.95, with � � 0:021
when  = 0:5:

B General model with entry and exit

In this appendix, we sketch the N -�rm version of our model with entry and exit.

B.1 Order of moves

1. Each of theN� incumbent �rms learns its own scrap value and makes an exit decision. Each of theN �N�potential
entrant learns its own set-up cost and makes an entry decision. Entry and exit decisions are made simultane-
ously. In this process, the industry transits from state e to state e0. Speci�cally, incumbent �rm n transits from
state en 6= 0 to state e0n= 0 upon exiting and potential entrant n transits from state en= 0 to state e0n= e

0 6= 0
upon entering the industry.

2. Price competition takes place among active �rms, where �rm n is active if and only if e0n 6= 0. Know-how
accumulates and organizational forgetting occurs. In this process, the industry transits from state e0 to state
e00:

Before making their entry and exit decisions, all �rms observe state e, and all �rms observe state e0 prior to making
their pricing decisions.

B.2 Entry and exit

Before price competition takes place, incumbent �rms can choose to exit the industry, while potential entrants can
choose to enter it. If an incumbent �rm exits the industry, it receives a scrap value and perishes. We assume that
at the beginning of each period, incumbent �rm n draws a random scrap value eXn from a distribution GX(�) with
E( eXn) = eX: The distribution GX(�) is uniform over the support [X�a;X+a], where 0 < a �X is a parameter.
Thus,

GX(Xn) =

8<:
0 if Xn < X � a;

1
2 +

Xn�X
2a if Xn 2 [X � a;X + a];

1 if Xn > X + a:

Scrap values are iid across �rms and periods, and �rm n�s realized scrap value is observed only by itself but not by
its rivals. Let �n(e; Xn) = 1 denote the decision of incumbent �rm n to remain in the industry in state e when it
has drawn a scrap value Xn, while �n(e; Xn) = 0 denotes the decision to exit.

Simultaneous with the exit decisions of incumbent �rms, potential entrants make entry decisions. If a potential
entrant decides not to enter, it receives nothing and perishes. If potential entrant n enters, it incurs a set-up cost.
At the beginning of each period, potential entrant n draws a random set-up cost eSn from a distribution GS(�) with
E(eSn) =S: The distribution GS(�) is uniform over the support [S�b; S+b], where 0 < b �S is a parameter. Thus,

GS(Sn) =

8<:
0 if Sn < S � b;

1
2 +

Sn�S
2b if Sn 2 [S � b; S + b];

1 if Sn > S + b:

The set-up costs are independently and identically distributed across �rms and periods, and its realized set-up cost
is private to a �rm. Let �n(e; Sn) = 1 denote the decision of potential entrant n to enter the industry in state e
when it has drawn a set-up cost Sn, while �n(e; Sn) = 0 denotes the decision to stay out.

Combining the �rms� entry and exit decisions, let �n(e) denote the probability that �rm n operates in the
industry in state e, and �(e) = (�1(e); : : : ; �N (e)) denote the vector of operating probabilities for all �rms in the
industry. If �rm n is an incumbent (i.e., en 6= 0), then �n(e) =

R
�n(e; Xn)dGX(Xn). If �rm n is an entrant (i.e.,

en= 0), then �n(e) =
R
�n(e; Sn)dGS(Sn).
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B.3 Bellman equations

To develop the Bellman equations, we �rst consider price setting by active �rms. We then consider the exit decisions
of incumbent �rms and the entry decisions of potential entrants. Throughout this section, we will use the following
notation:

� Vn(e) denotes the expected net present value of future cash �ows to �rm n in state e before entry and exit
decisions have been made.

� Un(e0) denotes the expected net present value of future cash �ows to active �rm n in state e0 after entry and
exit decisions have been made.

B.3.1 Pricing decisions by active �rms

Consider an industry that, via a process of entry and exit, has transitioned from state e to state e0: the net present
value of future cash �ows to active �rm n is given by:

Un(e
0) =max

pn

(
(pn � c(e0n))Dn(pn;p�n(e0)) + �

NX
k=0

Dk(pn;p�n(e
0))V nk(e

0)

)
; (B.1)

where p�n(e0) denotes the prices charged by the other �rms and

V nk(e
0) � E[Vn(e

00)je0;�rm k wins the sale]

=

e01X
e001=e1�1

� � �
e0k�1X

e00k�1=e
0
k�1�1

e0k+1X
e00k=e

0
k

e0k+1X
e00k=e

0
k+1�1

� � �
e0NX

e00N=e
0
N�1Y

i 6=k
Pr(e00i je0i; l) Pr(e00k je0k; w)Vn(e00);

V n0(e
0) � E[Vn(e

00)je0; no �rm wins the sale]

=

e01X
e001=e

0
1�1

� � �
e0NX

e00N=e
0
N�1

NY
i=1

Pr(e00i je0i; l)Vn(e00):

Note that V nk(e0) is well-de�ned if only if �rm k is active in state e0, for if �rm k is inactive, then the conditioning
event that �rm k wins the sale has probability zero. As a convenient normalization, we specify that if �rm k is
inactive in state e0, then V nk(e0) = 0.

The �rst-order condition that determines an active �rm�s equilibrium price pn(e0) can be expressed as:

pn(e
0)� c(e0n) =

�

1�Dn(p(e0))
� �

NX
k=0

�
@Dk(p(e))=@pn
�@Dn(p(e))=@pn

� �
V nn(e

0)� V nk(e0)
�
; (B.2)

where p(e0) = (p1(e0); : : : ; pN (e0)) is the vector of equilibrium prices in state e0.

B.3.2 Exit decisions

To develop the Bellman equation determining Vn(e), consider the exit decision �n(e; Xn) of incumbent �rm n who
has drawn a random scrap value Xn. An incumbent �rm remains in the industry in state e if its realized scrap value
is less than or equal to the expected value of continuing forward to the price-setting stage. Let

bXn(e) � Ee0 [Un(e0)je; e0n = en;��n(e)] (B.3)

denote the expected value to incumbent �rm n of continuing forward to the price-setting stage as an active �rm with
its current know-how level, i.e., e0n = en, taking into account the operating probabilities ��n(e) of all other �rms.
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bXn(e) is de�ned as X
e012E01

: : :
X

e0n�12E0n�1

X
e0n+12E0n+1

: : :
X

e0N2E0N

Un(e
0
1; : : : e

0
n�1; en; e

0
n+1; : : : ; e

0
N )

Y
k 6=n;e0k 6=0

�k(e)
Y

k 6=n;e0k=0

(1� �k(e));

where

E 0n =
�
f0; eng if en 6= 0;
f0; e0g if en = 0:

The exit decision of incumbent �rm n is characterized by

�n(e; Xn) =

8><>:
1 if Xn < bXn(e);
[0; 1] if Xn = bXn(e)
0 if Xn > bXn(e):

The expected net present value of future cash �ows Vn(e; Xn) to incumbent �rm n who has drawn scrap value Xn
is given by:

Vn(e;Xn) = maxf bXn(e); Xng:
Integrating over all possible scrap values gives us the value function Vn(e) for incumbent �rm n in state e:

Vn(e) =

Z X+a

X�a
maxf bXn(e); XngdGX(Xn)

=

8><>:
X if bXn(e) < X � a;

1
4a

h bXn(e)2 � 2 bXn(e)(X � a) + (X + a)2
i
if bXn(e) 2 [X � a;X + a];bXn(e) if bXn(e) > X + a:

(B.4)

Since scrap values are private, from the point of view of other �rms, the probability �n(e) that incumbent �rm
n remains in the industry is:

�n(e) = GX(
bXn(e)) =

8><>:
0 if bXn(e) <X�a;

1
2 +

bXn(e)�X
2a if bXn(e) 2 [X�a;X+a];

1 if bXn(e) >X+a: (B.5)

Because GX is monotone on the support of X , �n(e) can be used as a policy choice instead of �n(e; Xn).

B.3.3 Entry decisions

Consider the entry decision �n(e; Sn) of potential entrant n who has drawn a random set-up cost Sn. A potential
entrant enters the industry in state e if its realized set-up cost is less than or equal to the expected value of continuing
forward to the price-setting stage. Let

bSn(e) � Ee0 [Un(e0)je; e0n= e0; ��n(e)] (B.6)

be the expected value of continuing forward to the price-setting stage as an active �rm with the initial know-how
level, i.e., e0n = e0, taking into account the operating probabilities ��n(e) of all other �rms. bSn(e) is computed
analogous to bXn(e), and the entry decision of potential entrant n is characterized by

�n(e; Sn) =

(
1 if Sn�bSn(e0);
0 if Sn�bSn(e0):

The expected net present value of future cash �ows Vn(e; Sn) to potential entrant n who has drawn set-up cost Sn
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is given by:
Vn(e; Sn) =max fbSn(e)� Sn; 0g:

Integrating over all possible set-up costs gives us the value function Vn(e) for potential entrant n in state e:

Vn(e) =

Z S+b

S�b
max fbSn(e)� Sn; 0gdGS(Sn)

=

8><>:
0 if bSn(e) <S�b;

1
4b

hbSn(e)2 � 2bSn(e)(S � b) + (S � b)2i if bSn(e) 2 [S�b;S+b];bSn(e)�S if bSn(e) >S+b: (B.7)

Finally, from the point of view of other �rms, the probability �n(e) that potential entrant n enters the industry is:

�n(e) = GS(
bSn(e)) =

8><>:
0 if bSn(e) <S�b;

1
2 +

bSn�S
2b if bSn(e) 2 [S�b;S+b];

1 if bSn(e) >S+b: (B.8)

B.4 Equilibrium

Since our demand speci�cation is symmetric, i.e.,

Dn(p1; : : : ; pn�1; pn; pn+1; : : : ; pN ) = D1(pn; : : : ; pn�1; p1; pn+1; : : : ; pN )

for all n, as well as anonymous, i.e.,

D1(p1; : : : ; pn; : : : ; pk; : : : ; pN ) = D1(p1; : : : ; pk; : : : ; pn; : : : ; pN )

for all n � 2 and k � 2, we focus attention on symmetric and anonymous Markov perfect equilibria (MPE). In such
a MPE, it su¢ ces to determine the value and policy functions of a prototypical �rm, which we take to be �rm 1. We
can then obtain the value and policy functions of �rm n as follows:

Vn(e)= V 1(e
[n]);

pn(e)= p 1(e
[n]);

�n(e)= � 1(e
[n]);

where e[n]� (en; : : : ; en�1; e1; en+1; : : : ; eN ) is the vector formed by switching the �rst and nth entries in e= (e1; : : : ; eN ).
A symmetric and anonymous MPE is therefore de�ned by value and policy functions V1(�), p1(�), and �1(�) satisfying
equations (B.2), (B.4), (B.5), (B.7), and (B.8). These equations form the basis of the algorithm used to compute the
equilibrium.

B.5 Computation

To compute a symmetric and anonymous MPE, we use a variant of the algorithm described in Pakes and McGuire
(1994). The algorithm works iteratively. It takes a value function eV (e) and policy functions ep(e) and e�(e) as the
starting point for an iteration and generates updated value and policy functions. Each iteration proceeds as follows:

1. Use equation (B.2) to compute an updated pricing policy p(e) for an active �rm, taking the pricing policies of
all other �rms to be given by ep(e[2]); : : : ;ep(e[N ]): Use equation (B.1) to compute U(e). In doing so, use eV (e)
to compute V 0(e); : : : ;V N (e) on the right-hand side of equation (B.2).

2. Use equations (B.5) and (B.8) to compute an updated operating probability �(e) for an incumbent �rm and a

potential entrant, respectively, using the just-computed U(e) and the operating probabilities e�(e[2]); : : : ;e�(e[N ])
for all other �rms to calculate the cuto¤s bX(e) and bS(e).
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3. Use equations (B.4) and (B.7) to compute the updated value function V (e) for an incumbent �rm and a
potential entrant, respectively, using the just-computed U(e) and the just-computed operating probability

�(e) to calculate the cuto¤s bX(e) and bS(e).
4. The iteration is completed by assigning V (e) to eV (e); p(e) to ep(e); and �(e) to e�(e):32

The algorithm terminates once the relative change in the value and the policy functions from one iteration to the
next is below a pre-speci�ed tolerance.

B.6 The Cabral-Riordan counterfactual

To implement the Cabral-Riordan �counterfactual�discussed in the text, we begin by noting that in the asymmetric
states in the two-�rm model, the leader never exited in all of our computed cases in the baseline equilibrium, i.e.,
�(e1; e2) = 1 for e1> e2. This implies that in identifying possible instances of predatory pricing, we can restrict
our attention to cases in which the leader is the low-price �rm. This is because if we restrict the follower to act �as
if� the leader does not exit in the next period, the follower would behave exactly as it would behave in the baseline
model because, indeed, the leader does not exit in the next period.

Given that the leader does not exit in states such that e1> e2, the leader�s value in these states is given by

V (e1; e2) = �(e2; e1)U(e1; e2) + (1� �(e2; e1))U(e1; 0);

where U(e1; 0) is the value that the leader gets if the follower exits and 1� �(e2; e1) is the probability that the
follower exits. In the counterfactual analysis, we imagine that in states e1> e2 an industry leader acts �as if�
�(e2; e1) = 1, and so it �believes� V (e1; e2) = U(e1; e2). This implies that when we compute the MPE in the
counterfactual, the expected value functionsV k(e1; e2) in the asymmetric states (e1 > e2) will be given by

V k(e1; e2) = Ee01;e02
fU (e1; e2) j(e1; e2); �rm k winsg ;

rather than by
V k(e1; e2) = Ee01;e02

fV (e1; e2) j(e1; e2); �rm k winsg :

In all other respects, the computation of the MPE proceeds as described above (specialized to N = 2). Note that the
counterfactual analysis does not prevent the follower from exiting. Rather, the leader acts �as if�the follower cannot
exit in the next period and thus in the leader�s pricing decision, the leader does not take into account the �prize�
that arises from the fact that the follower might exit in the next period. Due to this, the counterfactual model loses
the rational expectations property: the follower�s actions do not necessarily match the leader�s assumptions on them.
In the counterfactual exercise, we take it that the leader cannot update these assumptions by observing the actions
of the follower.
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