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ABSTRACT. This paper contributes to the development of recent tileeaon the explanation
power and calibration issue of heterogeneous asset prgodgls by presenting a simple sto-
chastic market fraction asset pricing model of two typesradiérs (fundamentalists and trend
followers) under a market maker scenario. It seeks to expigpects of financial market behav-
iour (such as market dominance, under and over-reactiofifaiility and survivability) and to
characterize various statistical properties (includingpeorrelation structure) of the stochastic
model by using the the dynamics of the underlying determimsystem, traders’ behaviour and
market fractions. Statistical analysis based on MontedCarhulations shows that the long-run
behaviour and convergence of the market prices, long (shamtprofitability of the fundamental
(trend following) trading strategy, survivability of chists, and various under and over-reaction
autocorrelation patterns of returns can be characterigéudstability and bifurcations of the un-
derlying deterministic system. Our analysis underpinstraasm on various market behaviour
(such as under/over-reactions), market dominance andestyfacts in high frequency financial
markets.
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1. INTRODUCTION

Traditional economic and finance theory is based on the gssams of investor homogene-
ity and the efficient market hypothesis. However, there isoavmng dissatisfaction with models
of asset price dynamics, based on the representative ageattipm, as expressed for example
by Kirman (1992), and the extreme informational assumpgtafirational expectations. As a re-
sult, the literature has seen a rapidly increasing numbkeetd@rogeneous agents models. These
models characterise the dynamics of financial asset priesstting from the interaction of het-
erogeneous agents having different attitudes to risk anthdaifferent expectations about the
future evolution of price$.For example, Brock and Hommes (1997, 1998) proposed a simple
Adaptive Belief Systento model economic and financial markets. Agents’ decisisasase
upon predictions of future values of endogenous variablesse actual values are determined
by the equilibrium equations. A key aspect of these modetkads they exhibit expectations
feedback. Agents adapt their beliefs over time by choogiog fdifferent predictors or expec-
tations functions, based upon their past performance asurezhby the realized profits. The
resulting dynamical system is nonlinear and, as Brock and rHesn(1998) show, capable of
generating the entireooof complex behaviour from local stability to high order aggland even
chaos as various key parameters of the model change. It bashewn (e.g. Hommes (2002))
that such simple nonlinear adaptive models are capablepthiexng important empirical ob-
servations, including fat tails, clustered volatility dndg memory, of real financial series. The
analysis of the stylized simple evolutionary adaptiveaystand its numerical analysis provides
insight into the connection between individual and marledtdviour. Specifically, it provides
insight into whether asset prices in real markets are dioréy by news or, are at least in part,
driven by market psychology.

The heterogeneous agents literature attempts to addresstevested issues among many
others. It attempts to explain various types of market behayvand to replicate the well doc-
umented empirical findings of actual financial markets, tiggzed facts. Recent literature has
demonstrated the ability to explain various types of mabladtaviour. However, in relation to

stylized facts, there is a gap between the heterogeneousl arod observed empirical findings.

1See, e.g., Arthuet al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaro®§)L9Bullard and
Duffy (1999), Chen and Yeh (1997, 2002), Chiarella (1992)jagella et al. (2002), Chiarella and He (2001,
2002, 2008), Dacorogneet al. (1995), Day and Huang (1990), De Long et al (1990), FarmerJasti (2002),
Frankel and Froot (1987), Gaunersdorfer (2000), Homme&1(22002), lori (2002), LeBaron (2000, 2001, 2002),
LeBaronet al.(1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999))
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It is well known that most of the stylized facts can be obsérerly for high frequency data
(e.g. daily) and not for low frequency data (e.g. yearly)wdwaer, two unrealistic assumptions
underpin this literaturé. The first is a risk-free rate of approximately 10 per-centtpading
period? Given that this rate is crucial for model calibration in geatimg stylized facts it is ob-
viously unrealistic. Second, the unrealistic nature ofabgumed trading period is problematic
for the quantitative calibration to actual time series. Afmped out by LeBaron (2002)This
(unrealistic trading period) is fine for early qualitativengparisons with stylized facts, but it is
a problem for quantitative calibration to actual time s&rie

Another more important issue for various heterogeneouet psgsing models is the interplay
of noise and deterministic dynamics. Given that deterrticwsodels are simplified versions of
realistic stochastic models and stability and bifurcatiomthe most powerful tools (among oth-
ers) to investigate the dynamics of nonlinear system, riteresting to know how deterministic
properties influence the statistical properties, such@gxistence and convergence of station-
ary process, and the autocorrelation (AC) structure of tleesponding stochastic system. In
particular, we can ask if there is a connection between uar&sC patterns of the stochastic
system and different types of bifurcations of the undedydeterministic skeleton. This has the
potential to provide insights into the mechanisms of gemegaarious AC patterns and stylized
facts in financial markets. At present, the mathematicalrthéas not yet be able to achieve
those tasks in general. Consequently, statistical anadygisMonte Carlo simulations is the
approach adopted in this paper.

This paper builds upon the existent literature by incorpogaa realistic trading period
which eliminates the unrealistic risk-free rate assummptwhilst also introducing market frac-
tions of heterogeneous traders into a simple asset-prandgwvealth dynamics model. In this
study this model is referred to as the Market Fractigh | Model. The model assumes three

types of participants in the asset market. This including twoups of boundedly rational

2See, e.g., Arthuet al. (1997), Brock and Hommes (1997), Chen and Yeh (2002), Cldageal (2002), Chiarella

and He (2002, 20G3, lori (2002), LeBaron (2002), LeBaraat al. (1999), Levyet al. (1994)).

Apart fromr; = 1% in Gaunersdorfer (2000) and LeBaron (2001) apd= 0.04% in Hommes (2002).

“In this literature, as risk-free rate of trading period @eses, demand on the risky asset increases. Consequently,
the price of the risky asset become rather larger numbeustiregsometimes in break-down in theoretic analysis
and overflows in numerical simulations. In addition, sommtg#resting dynamics disappear as the risk-free rate of
trading period decreases to realistic level (e.g. (5/25p¥day given a risk-free rate of 5% p.a. and 250 trading
days per year).

%In fact, the trading period of the model can be scaled to avsl lef trading frequency ranging from annually,
monthly, weekly, to daily.
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traders—fundamentalists (also called informed traderd)teend followers (also called less in-
formed traders or chartists), and a market-maker. The MFatrgitbws that long-run behaviour
of asset prices, wealth accumulations of heterogeneodmratrategies and the autocorrela-
tion structure of the stochastic system can be charactebgehe dynamics of the underlying
deterministic system, traders’ behaviour and market ifvast In addition, statistical analy-
sis based on Monte Carlo simulations show that the long-rimaweur and convergence of
the market prices, long (short)-run profitability of the damental (trend following) trading
strategy, survivability of chartists, and various unded amer-reaction AC patterns of returns
can be characterized by the stability and bifurcations efithderlying deterministic system.
Our analysis gives us some insights into mechanism of variarket behaviour (such as
under/over-reactions), market dominance and stylizet$ flchigh frequency financial mar-
kets.

This paper is organized as follows. Section 2 outlines a gidriction model of heteroge-
neous agents with the market clearing price set by a markietmiatroduces the expectations
function and learning mechanisms of the fundamentaliststeand followers, and derives a
complete market fraction model on asset price and wealtlamyes. Price dynamics of the
underlying deterministic model is examined in Section &tiStical analysis, based on Monte
Carlo simulations, of the stochastic model is given in SecfioBy using the concept of random
fixed point, we examine the long-run behavior and convergefthe market price to the funda-
mental price. By examining wealth accumulation, we analliegtofitability and survivability.
By choosing different set of parameters near different tydsfurcation boundaries of the un-
derlying deterministic system, we explore various under@rer-reaction AC patterns. Section

5 concludes and all proofs and additional statistical tesuke included in the Appendixes.

2. HETEROGENEOUSBELIEFS, MARKET FRACTIONS AND MARKET-MAKER

Both empirical (e.g. Taylor and Allen (1992)) and theordti@ag. Brock and Hommes
(1997)) studies show that market fractions among diffetgmes of traders play an important
role in financial markets. Empirical evidence from Taylodahllen (1992) suggests that at
least 90% of traders place some weight on technical anadysise or more time horizons. In
particular, traders rely more on technical analysis, aoepg to the fundamental analysis, at

shorter horizons. As the length of time horizons increas@entraders rely on the fundamental
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rather than technical analysis. In addition, there is aegaoportion of traders who do not
change their strategies over all time horizons. Theorgjcstudy from Brock and Hommes
(1997) shows that, when different groups of traders, sudhradamentalists and chartists, hav-
ing different expectations about future prices and diveecompete between trading strategies
and choose their strategy according to an evolutiorfimgss measuréhe corresponding de-
terministic system exhibits rational routes to randomné&$ge adaptive switching mechanism
proposed by Brock and Hommes (1997) is an important elemétte @daptive belief model.

It is based on bottiitness functiorand discrete choice probability. In this paper, we take a
simplified version of Brock and Hommes’ framework. The MF micaesumes that the mar-
ket fractions among heterogeneous agents are fixed andeatedras fixed parameters. Apart
from mathematical tractability, this simplification is maited as follows. First, because of the
amplifying effect of the exponential function used in thealete choice probability, the market
fractions become very sensitive to price changes and thestfunctions. Therefore, it is not
very clear to see how different market fractions themseti@sictually influence the market
price. Secondly, when agents switch intensively, it becouh#ficult to characterize market
dominance, profitability and survivability when dealinghvheterogeneous trading stratedies.
Thirdly, different types of agents play different roles¢Bas the autocorrelation structure we
discuss late) and it is important to understand their resipdity to certain dynamics. Such
analysis becomes clear when we isolate the market fractions switching. In doing so, we
can examine explicitly the influence of the market fractionghe price behaviour.

The set up follows the standard discounted value assengritiodel with heterogeneous
agents, which is closely related to the framework of Day andrd) (1990), Brock and Hommes
(1997, 1998) and Chiarella and He (2002). However, the mat&ating price is arrived at via a
market maker scenario in line with Day and Huang (1990) and@ha and He (2003 rather
than the Walrasian scenario used in Brock and Hommes (1998¥otds on a simple case in
which there are three classes of participants in the assdemawo groups of traders, funda-

mentalists and trend followers, and a market maker, asitéestin the following discussion.

2.1. Market Fraction and Market Clearing Price under a Market Maker. Consider an
asset pricing model with one risky asset and one risk freetalkgs assumed that the risk free
asset is perfectly elastically supplied at gross returiRof 1 + r/K, wherer stands for a

®This analysis in turn leads to a justification on agents $witg, which is discussed in Section 3.
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constant risk-free rate per annual aidstands for the frequency of trading period per year.
Typically, K = 1,12, 52 and250 for trading period of year, month, week and day, respedgtivel
To calibrate the stylized facts observed from daily pricevemoent in financial market, we select
K = 250 in our following discussion.

Let P, be the price (ex dividend) per share of the risky asset at tirard {D,} be the
stochastic dividend process of the risky asset. Then théhwvefaa typical investork att + 1 is
given by

Whis1 = RWht + [Pry1 + Diyy — RP 2y, (2.1)

whereW,,, and z,, are the wealth and the number of shares of the risky assehamed of
investor# att, respectively. Letv, ; andV},; be thebeliefsof type I traders about the condi-
tional expectation and variance of quantitieg at 1 based on their information set at time

Denote byR, ., the excess capital gain on the risky asseét-atl, that is
Riy =P + Dy — R (2.2)
Then it follows from (2.1) and (2.2) that
Eni(Wig1) = BW; + Epg(Rev1) 2, Vit(Wig1) = ZfQL,ch,t(RtH)a (2.3)

wherez;,; is the demand by agentfor the risky asset. Assume that traders have a constant
absolute risk aversion (CARA) utility function with the riskexsion coefficient:, for type h
traders (that i€/,,(W) = —exp(—a,WV)) and their optimal demand on the risky assget are

determined by maximizing their expected utility of the wikalThen

Epi(Riy1)
py = ——— 2.4
M apVii(Ris1) (24)

Given the heterogeneity and the nature of asymmetric irdtion among traders, we con-
sider two most popular trading strategies correspondingvitotypes of boundedly rational
traders—fundamentalists and trend followers, and thdietsawill be defined in the following
discussion. Assume the market fraction of the fundamest$adind trend followers is; andn,
with risk aversion coefficieni; andas,, respectively. Lein = n; — ny € [—1,1]. Obviously,
m = 1,—1 corresponds to the case when all the traders are fundamséntaid trend follow-

ers, respectively. Assume zero supply of outside sharemn,Tusing (2.4), the aggregate excess
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demand per investar, ; is given by

1+m ELt[RtJrl] 1—-m E27t [RtJrl]
2 alvl,t[RtH] 2 a2‘/2,t[Rt+l]'

(2.5)

Zet = MN1214 + NaZoy =

To complete the model, we assume that the market is clearadrigrket maker. The role of
the market maker is to take a long (when < 0) or short (wher, ; > 0) position so as to clear
the market. At the end of periad after the market maker has carried out all transactionsy he
she adjusts the price for the next period in the directiorhefdbserved excess demand. Let
be the speed of price adjustment of the market maker (thiglsarbe interpreted as the market
aggregate risk tolerance). To capture unexpected markest olenoise created byoise traders
we introduce a noisy demand tedmwhich is an 11D normally distributed random variable

with &, ~ N(0, 02). Based on those assumptions, the market price is determyned b
Py = P+ pizey + oy

Using (2.5), this becomes

Pii=P+E(1+m)

. B[Ry (1- )M +9,. (2.6)

alvl,t [Rt+1] alvz,t [Rt+1]

It should be pointed out that the market maker behavior is thodel is highly stylized. For
instance, the inventory of the market maker built up as alre$the accumulation of various
long and short positions is not considered. This could afiecor her behavior and the market
maker price setting role in (2.6) could be a function of theemtory. Allowing to be a function
of inventory would be one way to model such behavior. Suclsiclenations are left to future
research. Future research should also seek to explore thefmindations of the coefficiept

In the present paper it is best thought of as a market fricthoil an aim of our analysis is to

understand how this friction affects the market dynamics.

2.2. Fundamentalists. Denote byF;, = {F,, P,_1, - ; Dy, Dy, ---} the common infor-
mation set formed at timé. We assume that, apart from the common information set, the
fundamentalists haveuperiorinformation on the fundamental valug;, of the risky asset and
they also realize the existence of non-fundamental tradach as trend followers introduced in
’In this paper, we assume a constant volatility noisy demanddtze volatility is related to an average fundamental
price level. This noisy demand may also depend on the maria.pTheoretically, how the price dynamics are

influenced by adding different noisy demand is still a diffiqgaroblem. Here, we focus on the constant volatility
noisy demand case and use Monte Carlo simulations andis@ltanalysis to gain some insights into this problem.
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the following discussion. They believe that the stock priey be driven away from the funda-
mental value in short-run, but it will eventually convergettie fundamental value in long-run.
The speed of the convergence measures their confidenceotetied fundamental value. More

precisely, we assume that the fundamental value followataostiry random walk process
Ptj—l :Pt*[1+aegt]7 gtNN<Ou]->7 0-6207 P(;(:P>07 (27)

whereé, is independent of the noisy demand procéssThis specification ensures that nei-
ther fat tails nor volatility clustering are brought aboytthe exogenous news arrival process.
Hence, emergence of any autocorrelation pattern of therrettithe risky asset in our late

discussion would be driven by the trading process itsetherathan news. We assume the

conditional mean and variance of the fundamental traddisifo
Evy(Pi1) =P+ a(Ply — B),  Vig(Pa) = o7, (2.8)

wherecs? stands for a constant variance on the price. Here parameter0, 1] is the speed

of price adjustment of the fundamentalist toward the funelata value. It measures their con-
fidence level on the fundamental value. In particular,doe 1, the fundamental traders are
fully confident about the fundamental value and adjust tegpected price at next period in-
stantaneously to the fundamental value. &of 0, the fundamentalists become naive traders.
In general, the fundamental traders believe that marketsféicient and prices converge to the
fundamental value. An increase (decrease) indicates that the fundamental traders have high
(low) confidence on their estimated fundamental value,ifgatb a quick (slow) adjustment of

their expected price towards the fundamental price.

2.3. Trend followers. Unlike the fundamentalists, trend followers are technicaders who
believe the future price change can be predicted from vanatiterns or trends generated from
history price. The trend followers are assumed to extrapdlee latest observed price change
over a long-run sample mean price and to adjust their vagi@stimate accordingly. More

precisely, their conditional mean and variance are assuoedow

Es(Piy1) = B+ v(P — w), Vou(Piy1) = U% + byvy, (2.9)
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wherey, b, > 0 are constants, and andv, are sample mean and variance, respectively, which
may follow some learning processes. Parameteneasures the extrapolation rate and high
(low) values ofy correspond to strong (weak) extrapolation from the tretidvieers. The co-
efficientb, measures the influence of the sample variance on the comalitrariance estimated
by the trend followers who believe more volatile price moeem Various learning schenfes

can be used to estimate the sample measnd variance,. In this paper we assume that

Uy = OUp—1 + (1 - 5)Pt> (2.10)

Vy = (51},5,1 + (5(1 — (5)(Pt — Ut,1)2, (211)

whereé € [0.1] is a constant. This process on the sample mean and varialchnmsting
process ofgeometric decay procesgen the memory lag length tends to infiitgasically,

a geometric decay probability proceds— §){1,4, 42, --- } is associated to the history prices
{P,, P,_1, P,_»,--- }. Parameted measures the geometric decay rate. &ot 0, the sample
meanu, = P,, which is the latest observed price, while= 0.1, 0.5, 0.95 and0.999 gives a half
life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectilélg selection of this process is two
folds. First, traders tend to put high weight to the mostinépeices and less weight to the more
remote prices when they estimate the sample mean and vari&g@econdly, we believe that
this geometric decay process may contribute to certaincautelation patterns, even the long
memory feature observed in real financial markets. In aatdit has mathematical advantage

of tractability.

2.4. The Complete Stochastic Model.To simplify our analysis, we assume that the dividend
processD;, follows D, ~ N (D, 0%), the expected long-run fundamental vale= (R — 1)D,

and the unconditional variances of price and dividend okerttading period are related by

8For related studies on heterogeneous learning and assetgomodels with heterogeneous agents who's condi-
tional mean and variance follow various learning processegefer to Chiarella and He (20832003).
9See Chiarell®t. al. (2005) for the proof.
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0% = qo?.1° Based on assumptions (2.8)-(2.9),
E17t(Rt+1) :Pt—f—a(Ptil —Pt)+D—RPt:Oé<Pttrl—Pt)—(R—1)(Pt—P>,

Vig(Ripr) = (1 + q)oi

and hence the optimal demand for the fundamentalist is diyen

1 * _ o _ . —
a1 gz @i = B) = (B= (B = P)) (2.12)

214 =

In particular, whenP = P,

(a+R-1)(P—P)

= 2.1
1 ai(1+ q)o? (2.13)
Similarly, from (2.9), (usingD = (R — 1)P)
Eyy(Ryy1) = Po+~(P,—w)+ D — RP, = (P, —u) — (R—1)(P, — P),
Vou(Rig1) = o7 (14 g + buwy),
whereb = by /o?. Hence the optimal demand of the trend followers is given by
g = AP w) —(R= (A= P) 2.14)

ax07(14+q+bvy)

Subsisting (2.12) and (2.14) into (2.6), the price dynaroinder a market maker is determined
by the following 4-dimensionally stochastic differencestgm SDShereafter)

( pl 14+m ; 5
Pt+1:Pt+§ W[Q(Pwl_ﬂ)—(R_U(H—P)]
V(P —u) = (R=1)(P, — P)

ax07 (14 q+bvy)

+(1—m) + 0y,

2.1
u = ouy1 + (1 —0)R, (2.15)

Vs = 6Ut—1 + 6(1 — 5)(-Pt — Ut_1)27

L Pt*+1 = Pt*[l +Ue€t]'

10n this paper, we choose? = (Ps)2/K andq = 2. This can be justified as follows. LetP be the annual
volatility of P, andD; = r P, be the annual dividend. Then the annual variance of the eldd?, = r2(Po)?.
Thereforeo?, = 6% /K = r?(Po)?/K = r?s?. For all numerical simulations in this paper, we chodse=
$100,7 = 5% p.a. ¢ = 20% p.a., K = 250. CorrespondinglyR = 1 + 0.05/250 = 1.0002,07 = (100 x
0.2)2/250 = 8/5 ando, = 1/250.
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2.5. Wealth Dynamics and Shares.Traders’ wealth in general follow some growing processes.
To be able to measure the wealth dynamics among differetintysstrategies, to examine the
market dominance and price behaviour, we introduce twotivea¢asures. The first measures
the absolute level of the wealth share (or proportion) ofépeesentative agent from each type,
called theabsolute wealth shafer short, which is defined by

Wl,t W2,t

= Dbt == 2.16
Wi+ Wy wat Woi + Way ( )

Wit

wherell; ; andW,, are the wealth at timeof the representative trader of the fundamentalists
and trend followers, respectively. This measure can be tase@asure the evolutionary perfor-
mance or profitability of the two trading strategies and dahig, (w.,) indicates profitability

of the fundamentalists (trend followers). The second messilne overall market wealth share,
called themarket wealth sharer short, of different trading strategy and it is defined asket
fraction weighted average of the absolute wealth propastio

(1 + m)WLt Do s — (1 - m)WQ,t
(1+m)Wyy + (1 —m)Way,’ 2T A )W+ (1 —m)Way,

(2.17)

Wy =

A high market wealth share, ; (w- ) indicates market dominance of the fundamentalists (trend
followers) with respect to the overall market wealth. kgt = 1/W, ; andV,, = 1/W, ;. Then

it follows from (2.1) that

Vi o Vi V. _ Vai
1,t+1 — 3 2,41 — .
a R + Rt—l—lzl,t‘/l,t t+ R + Rt—}—lzl,t‘/l,t
Note that
Vi _ /Wi, _ Wa
Vie+Var /Wi +1/Way Wi+ Wa,
‘/Q,t 1/W2:t let

Vig+ Vaoy B 1/ Wi+ 1/ Wa, - Wi+ Wy,

and therefore the absolute wealth shares are determined by

Var Vi
_ ot = 2.18
e Vig + Vo, e Vig + Vo ( )
and the market wealth shares are governed by
1 1-—
Brs — (14+m)Va, By — (1—m)V, (2.19)

(1 +m)Vor + (1 —m)Vi, (1+m)Vor+ (1 —m)Vis
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For these wealth measures, it is difficult to obtain expliatosed form expressions in terms of
(stationary) state variables. In this paper, we use thdiagxfunctions(V; ;, 5 ;) and numeri-
cal simulations to study the wealth dynamics of the fundaaiests and trend followers and the
market impact of the two differential trading strategies.

It has been widely accepted that stability and bifurcatieoty is a powerful tool in the study
of asset-pricing dynamics (see, for example, Day and Hub9@()), Brock and Hommes (1997,
1998) and Chiarella and He (2002, 2@)3 However, how the stability and various types of
bifurcation of the underlying deterministic system affédw¢ nature of the stochastic system,
including stationarity, distribution and statistic profes of returns, is not very clear at the
current stage. Although the techniques discussed in Arfi®1€8) may be useful in this regard,
mathematical analysis of nonlinear stochastic dynamigstesn is still difficult in general. In
this paper, we consider first the corresponding deterninsgeleton of the stochastic model
by assuming that the fundamental price is given by its langwalueP; = P and there is no
demand shocks, i.er; = 0. = 0. We then conduct stochastic analysis of the stochastic Imode

through Monte Carlo simulation.

3. DYNAMICS OF THE DETERMINISTIC MODEL

When the long run fundamental price is a constant and there isorsy demand, the 4-
dimensionally stochastic system (2.15) reduces to theviatlg 3-dimensionally deterministic

difference systen¥DS hereafter)

(P _p4 l+m[(l—a—R)(P,—P) L—m[y(P —w)— (R-1)(F— P)
T ar(1+q)o? 2 azaf(1+ g+ buy)

up = oug—1 + (1 —0)P,

Ve = (5Ut71 + 5(1 - 5>(Pt — Ut,1)2.

\

(3.1)
The following result on the existence and uniqueness ofigtetate of the deterministic system

iS obtained.

Proposition 3.1. For DDS (3.1),(P;, us, v;) = (P, P,0) is the unique steady state.

Proof. See Appendix A.1. O
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We call this unique steady state as the fundamental steatdy #n the following discussion,

we focus on the stability and bifurcation of the fundamestabdy state of the deterministic

model. We first examine two special cases= 1 andm = —1 before we deal with the general

casem € (—1,1).

3.1. The casem = 1. In this case, the following result on the global stabilityddnfurcation
is obtained.
Proposition 3.2. For DDS (3.1), if all the traders are fundamentalists, iz = 1, then the

fundamental priceP is globally asymptotically stable if and only if

o 2(1,1(1 + C])U%

=——— 3.2
O<,u<,u0,1 (R+oz—1) ( )
In addition, i = 11 leads to a flip bifurcation withh = —1, where
R+a-—-1
A=1—p——. 3.3
Vel + 93 43)
Proof. See Appendix A.2. O

The stability region of the fundamental pri¢gis plotted in(c, 1) plane in Fig.A.1 in Ap-
pendix A.2, whergy 1 (1) = [2a1(1+q)o?]/R for a = 1 andpug1(0) = [2a;(1+¢)o?]/(R—1)
for « = 0. Along the flip bifurcation boundary; decreases as increases. It follows from
Proposition 3.2 that the stability of the fundamental syesidte is independent of the price
adjustment of the fundamentalists when the market makendsmreacted (i.ex < pio1(1)).
However, wheru > 11(1), the stability of the steady state can be maintained onlyrvthe
reactions of the fundamentalists and the market maker demdxd. Numerical simulations
indicate that the over-reaction from either the market makéhe fundamentalists can push the

price to explode (through the flip bifurcation).

3.2. The casen = —1. Similarly, we obtain the following stability and bifurcati result when

all traders are trend followers.

Proposition 3.3. For DDS (3.1), if all the traders are trend followers (thatris= —1), then
(1) for 6 = 0, the fundamental steady state is globally asymptoticadiple if and only if
0<p<Q/(R—1),whereQ = 2as(1 + ¢)o?. In addition, a flip bifurcation occurs
along the boundary: = Q/(R — 1);
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(2) for o € (0,1), the fundamental steady state is stable for

fh1 0<~v<%
O<p<
ﬂ27 :YOS’%
where
1-— 1 2
i Q N o) BN ()il

M= R-1)—925/(1+0) "™  2y—-®-1] 1

In addition, a flip bifurcation occurs along the boundary= ji; for 0 < v < 4, and a

Hopf bifurcation occurs along the boundagy= fi, for v > 7.

Proof. See Appendix A.3. O

The local stability regions and bifurcation boundariesiadécated in Fig. A.2 (a) foh = 0
and (b) fors € (0, 1) in Appendix A.3, wherey, = (14 6)(R — 1)/(26) is obtained by letting
p2 = Q/(R —1). Given thatkR = 1 + r/K is very close to 1, the value ¢f along the flip
boundary is very large ang, is close to 0. This implies that, fér= 0, the fundamental price
is stable for a wide range ¢f. Foed € (0, 1), the stability region is mainly bounded by the
Hopf bifurcation boundary. Along the Hopf boundayy,decreases ag increases, implying
that the stability of the steady state is maintained whersgeed of the market maker and the
extrapolation of the trend followers are balanced. Nunaganulations indicate that, near the
bifurcation boundary, price either converges periodicedithe fundamental value or oscillates
regularly or irregularly. In addition, the Hopf bifurcatidooundary shifts to the left when
increases. This implies that the steady state is stalglizinen more weights are given to the

most recent prices.

3.3. The general casen € (—1,1). We now consider the complete market fraction model
DDS with both fundamentalists and trend followers by assgmi € (—1,1). Leta = as/ay

be the ratio of the absolute risk aversion coefficients.rftigwut that the stability and bifurcation
of the fundamental steady state are different from the pteviwo special cases and they are
determined jointly by the geometric decay rate and extatjmoi rate of the trend followers, the
speed of the price adjustment of the fundamentalists toswde fundamental steady state, and

the speed of adjustment of the market maker towards the magkeegate demand.

Proposition 3.4. For DDS (3.1) withm € (—1,1),
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(1) if 6 = 0, the fundamental steady state is stable(fer 1 < p*, where

. 2Q)
o R-DO-m) +aR+a-1)(1+m)

In addition, a flip bifurcation occurs along the boundary= ;* with « € [0, 1];

(2) if 6 € (0,1), the fundamental steady state is stable for

M1 0<~v<7
O<p<
K2, ’YOS’)/?
where
146 Q1 1-4 Q 1
H1 = 5 ].—m'YQ—'y’ Ho = 5 1—m’7—’}/17
1+m (1+6)? 1+6

In addition, a flip bifurcation occurs along the boundary= y; for 0 < v <~y and a

Hopf bifurcation occurs along the boundaty= 15 for v > ~,.

Proof. See Appendix A.3. O
'LL 1 \ / 1
| \ // |
. \\ 4 I
Flip Boundaryu = Jg // |
Iao L\ _ 4|_ o _ 4 Hopf Boundlratryu = 2
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[ \ [
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FIGURE 3.1. Stability region and bifurcation boundaries fore (—1,1) and
J € (0,1).

The model with the fundamentalists only can be treated agedgated case of the complete

model withé = 0. Ford € (0, 1), the fundamental steady state becomes unstable throungh eit
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flip or Hopf bifurcation, indicated in Fig.3.1, where

2 20
(R—1)(1-m)+a(R+a—1)(1+m)

Variations of the stability regions and their bifurcatioumdaries characterise different impacts

of different types of trader on the market price behavioummarised as follows.

e The market fractiohas a great impact on the shape of the stability region ahaditad-
aries. It can be verified that, 7o, 72 andu, us increase as: increases. This observa-
tion has two implications: (i) the locals stability regianparametersy, ) is enlarged
as the fraction of the fundamentalists increases and tHisates a stabilizing effect of
the fundamentalists; (ii) the flip (Hopf) bifurcation bowarg becomes dominant as the
fraction of the fundamentalists (trend followers) incregscorrespondingly, the market
price displays different behaviour near the bifurcatiomraries. Numerical simu-
lations of the nonlinear system (3.1) show that price besoaxplosive near the flip
bifurcation boundary, but converges to either periodicwasyperiodic cycles near the
Hopf bifurcation boundary.

The speed of price adjustment of the fundamentalists tasmareifundamental vallres

an impact that is negatively correlated to the market foactiThis observation comes
from the fact that, as increases;; and hencey, and~, decreases. In other word, an
increase (decrease) of the fundamentalists fraction isv&@gut to a decrease (increase)
of the price adjustment speed of the fundamentalists towerlindamental value.

The memory decay ratef the trend followers has a similar impact on the price behav
iour as the speed of the price adjustment of the fundamsetgalbes. This is because
that, asd decreases, both, and~, increase. In particular, as — 0, vy, %2 — +0o0
and the stability and bifurcation is then characterisedigymhodel with the fundamen-
talists only. On the other hand, ds— 1, both~, and~; tend to~; whilst ziy tends to
infinity and the stability and bifurcation are then charastr by the model with the
trend followers only. In additiony, increases a8 decreases, implying the steady state
is stabilizing as trend followers put more weights on the enacent prices.

The risk aversion coefficientsave different impact on the price bahaviour, depending
on the relative risk aversion ratio. Note thatnd hence, increase for = as/a; < a*

and decrease for = as/a; > a*, wherea* = (R—1)/(R+a—1) € (1 -1/R,1].
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Hence the local stability region is enlarged (reduced) wthertrend followers are less

(more) risk averse than the fundamentalists in the sengge afa*a; (ay > a*a,).

Overall, in terms of the local stability and bifurcation betfundamental steady state, a similar
effect happens for either high (low) geometric decay ratdaigh (low) market fraction of the
trend followers, or high (low) speed of the price adjustn@rthe fundamentalists towards the
fundamental value. This observation make us concentratetatistical analysis of the sto-
chastic model (2.15) om (the market fraction) and (the speed of the price adjustment of
the fundamentalists toward the fundamental value). Nwaksimulations (not reported here)
for the deterministic system (3.1) show that: (i) the mapk@tes converge to the fundamental
value for the parameters located insider the local stgbiigion; (ii) near the flip bifurcation
boundary, prices are explode and near the Hopf bifurcattambary, prices converge to either
periodic or quasi-periodic price cycles (as we move awamftioe Hopf boundary, more com-
plicated price dynamics can be generated, but this is ndbthes of this paper.); (iii) there is

no significant difference between the average wealth sludites types of investors

4., STATISTIC ANALYSIS OF THE STOCHASTIC MODEL

In this section, by using numerical simulations, we examiagous aspects of the price
dynamics of the stochastic heterogeneous asset pricinglr{®d5) where both the noisy fun-
damental price and noisy demand processes are presentdnalysis is conducted by estab-
lishing a connection on the price dynamics between SDS Y218 its underlying DDS (3.1).
In so doing, we are able to obtain some theoretical insigtitsthe generating mechanism of
various statistic properties, including those econorogiroperties and stylised facts observed
in high frequency financial time series.

Our analysis is conducted as follows. As a benchmark, weréxséw briefly the so-called
stylized facts based on both S&P500 and AOI (Australian Allli@ary Index). Secondly, we
use the concept of random fixed point to examine the conveegeithe market temporal equi-
librium price and its long-run behaviour. It is found thaetbonvergence of asset prices of

SDS (2.15) to the random fixed point is related to the stguilitthe fixed point of DDS (3.1).

UThere is no difference when prices converge to the fundagthealie. However, when prices converge to cycles,

the trend followers can accumulate more wealth share (at ofd over 5,000 trading days, about 20 years).

Overall, for the deterministic system, the fundamentalistnnot accumulate more wealth than the trend followers
and both survive in the market.
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Thirdly, we use Monte Carlo simulations to conduct statétamalysis and test on the conver-
gence of the market prices to the fundamental price. It ismonly believed that the market
price is mean-reverting to the fundamental price in long-tout it can deviate from the fun-
damental price in short-run. We analyze market conditiordeu which this is true. Fourthly,
by analysing wealth accumulation, we examine the profitgaind survivability of differen-
tial trading strategies. Our analysis shows long-run (shor) profitability of the fundamental
(trend following) strategy and long-run survivability ¢fe trend followers. Finally, by examin-
ing the autocorrelation (AC) structure of (relative) remimear different types of bifurcations,
we study the generating mechanism of different AC pattelhsst of our results are very in-
tuitive and can be explained by various behaviour aspecteeofmodel, including the mean
reverting of the fundamentalists, the extrapolation ofttead followers, the speed of price ad-
justment of the market maker, and the market dominance. tHtist&cal analysis and test are

based on Monte Carlo simulations.

4.1. Financial Time Series and Stylized FactsRecent research on heterogeneous asset pric-
ing models are aimed to explain various market behaviourtaneéplicate the econometric
properties and stylized facts of financial time series. Agachmark, we include time series
plots on prices and returns for both S&P500 and AOI (Australhll Ordinary Index) from
Aug. 10, 1993 to July 24, 2002 and the corresponding densstyilsutions, autocorrelation
coefficients (ACs) and statistics of the returns in AppendixA. (high-frequency) financial
time series share some common facts, the so called styksasl including excess volatility
(relative to the dividends and underlying cash flows), vtiatlustering (high/low fluctuations
are followed by high/low fluctuations), skewness (eithegat&e or positive) and excess kur-
tosis (comparing to the normally distributed returns)gdeang dependence (insignificant ACs
of returns, but significant and decaying ACs for absolute @juésed returns), etc. For a com-
prehensive discussion of stylized facts characterizingntral time series, we refer to Pagan
(1996) and Lux (2004).

Recent structure models on asset pricing and heterogenetiatskhave shown relatively
well understood mechanism of generating volatility clustg skewness and excess kurtosis.

However, it is less clear on the mechanism of generating-tang dependencé.In addition,

123ee Lux (2004) for a recent survey on possible mechanisnergiimg long rang dependence, including coexis-
tence of multiple attractors and multiplicative noise mss
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there is lack of statistical analysis and test on those mmesims. Our statistic analysis in this
paper is based on Monte Carlo simulations, hoping to establisonnection between various
AC patterns of the SDS and the bifurcation of the underlyiigS Such connection is nec-
essary to understanding the mechanism of generatingestyfists, to replicating econometric
properties of financial time series, and to calibrating tloelet to financial data.

In the following discussion, we choose the annual volgtiit the fundamental price to be
20% (hencer, = (20/v/K)% with K = 250) and the volatility of the noisy demang = 1,
which is about 1% of the average fundamental price lé&ve! $100. For all of the Monte Carlo
simulation, without mention, we run 1,000 simulations 0@gd00 time periods and discard
the first 1,000 time periods to wash out the initial noisea&ffé&ach simulation generates two
independent sets of random numbers, one is for the fundaimante and the other is for the
noisy demand. The draws are i.i.d. across 1,000 simulatimrsthe same sets of draws are

used for different scenario with different sets of paramgete

4.2. Random Fixed Point and Long-Run Behaviour. One of the primary objectives of this
paper is to analyse the long run behaviour of SDS (2.15). B8 [B.1), the long-run behav-
iour is characterised by either stable fixed points or variattractors examined in the previous
section. For stochastic dynamic system, the long-run bebais often characterised by sta-
tionarity and invariant probability distribution. As pa&d in Bohm and Chiarella (2005), this
view does not provide information about stationary sohsigenerated by the stochastic differ-
ence system and cannot supply any information about thdistalh a stationary solution.

The theory of random dynamical system (e.g. Arnold (1998)yides the appropriate con-
cepts and tools to analyze sample paths and investigatelithging behaviour. The central
concept is that of aandom fixed poinf and its asymptotic stability, which are generalisations
of the deterministic fixed point and its stability. Intuigly, a random fixed point corresponds
to a stationary solution of a stochastic difference sysiken(R.15) and the asymptotic stability
implies that sample paths converge to the random fixed point prise for all initial conditions
of the system. We are interested in the existence and syatiila random fixed point of SDS
(2.15) when the deterministic fixed point of DDS (3.1) is apymtical stable. However, since
mmnold (1998) for mathematical definitions of dam dynamical systems and of stable random

fixed points and Bohm and Chiarella (2005) for economicaliegfions to asset pricing with heterogeneous mean
variance preferences.
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SDS (2.15) is nonlinear, a general theory on the existendes@ility of a random fixed point
is not yet available and we conduct our analysis by numesicalilations.

For illustration, we choose parameters as follows
y=21 0=085 pn=043, m=0, w,=05 and a=10.5,0.1,0. (4.1)

For DDS (3.1) with the set of parameters (4.1), applying Bsttpn 3.4 implies that the fun-
damental value is locally asymptotically stable for= 1,0.5,0.1 and unstable forv = 0. Our
numerical simulations show that this is also true for thelinear system (3.1).

For the parameter set (4.1), Fig.4.1 shows the price dyrsanfithe corresponding SDS
(2.15) with four different values af = 1,0.5,0.1, 0 and (arbitrarily) different initial conditions
but with a fixed set of noisy fundamental value and demandgases. It is found that, fer =
1,0.5 and0.1, respectively, there exists a random fixed point and prigésdifferent conditions
converge to the fixed random point in long run. In fact, theveogence only takes about 50,
100 and 400 time periods far = 1,0.5 and 0.1, respectively. However, there is no such
stable random fixed point far = 0 and prices with different initial conditions lead to diféert
random sample paths (In fact, the sample paths are shiftediffeyent initial conditions.).
This is a surprising result—the stability of fixed point oftbahe deterministic and stochastic
systems is same for the same parameter set (4.1). In factethult holds for other selections
of parameters (as long as the solutions of DDS (3.1) do ndbdgp. Theoretically, how the
stability of the deterministic system and the correspogditochastic system are related is a

difficult problem in generat?

4.3. Convergence of Market Price to the Fundamental Value.We now turn to the relation
between the market price and the fundamental price. It isnconty believed that the market
price is mean-reverting to the fundamental price in long-tout it can deviate from the fun-
damental price in short-run. The following discussion aadés that this is true under certain

market conditions.

4t is well known from the stochastic differential equatidtetature (e.g. see the examples in Mao (1997), pages
135-141) that, for continuous differential equations,iagdoise can have double-edged effect on the stability—
it can either stabilize or destabilize the steady state efdifferential equations. For our SDS (2.15), humerical
simulations show that adding a small (large) noise canlgtady (destabilize) the price dynamics when parameters
are near the flip bifurcation boundary of the DDS (3.1).
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FIGURE 4.1. Price convergence wiiti=1 (a); 0.5 (b); 0.1 (c); and 0 (d) for
different initial conditions.

As we known from the local stability analysis of DDS (3.1) ttlzan increase inv has a
similar effect to an increase in. Parametet measures confidence level of the fundamentalists
on their estimated fundamental valik. The previous discussion illustrates that, for fixed
m = 0, asa increases (i.e. as the fundamentalists become more contddheir estimated
fundamental price), the speed of convergence of the marke o the random fixed point
increases. When price of DDS (3.1) is stable, it convergebddixed point corresponding to
the constant fundamental valie For SDS (2.15), it is interesting to know how the stable
random fixed point is related to the fundamental value pces

To illustrate, for parameter set (4.1), the averaged timesef the difference of market and
fundamental price®;, — P, based on Monte Carlo simulations are reported in Fig. 4.hadivs
that, asa increases, the deviation of the market price from the fureteaal price decreases.
That is, as the fundamentalists become more confident ongkemated fundamental price,

the deviation of market price from the fundamental priceratkiced.
A statistical analysis is conducted by using Monte Carlo $atnons for the given set of para-

meters (4.1) with four different values af The average prices, returns, absolute wealth shares



22 HE AND LI

50 4
40 )
30
0
20
10 =2
O —_
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
1 1
05 05
0 0
05 05
70 1000 2000 3000 4000 5000 O 1000 2000 3000 4000 5000

FIGURE 4.2. Time series of price differend® — P; with a=0 (top left); 0.1
(top right); 0.5 (second left); and 1 (second right).

of the fundamentalists are reported in Fig. 4.4. Because of 0, the absolute and market
wealth shares are the same. The resulting Wald statistobstéxt the differences between mar-
ket prices and fundamental prices are reported in Tablelhéa null hypothesis is specified as,
respectively,

e Case 1:Hy : P, = P}, t = 1000, 2000, ..., 5000;

e Case 2H, : P, = P}, t = 3000, 3500, 4000, ..., 5000;

e Case 3Hy : P, = Py, t = 4000,4100, 4200, ..., 5000;

e Case 4H, : P, = P}, t = 4000, 4050, 4100, ..., 5000;

e Case 5,Hy : P, = Pf,t = 4901,4902,4903...,5000, which refers to the last one hundred

periods;

e Case 6Hy: P, = P/, t =4951,4952, ..., 5000, which refers to the last fifty periods.

Noticed that the critical values corresponding to abovedtistics come from thg, dis-
tribution with degree of freedom 5, 5, 11, 21, 100, and 5(yeesvely, at 5% significant level.
We see that forr = 0, all of the null hypothesis are strongly rejected at 5% digant level.

Fora = 0.5 andl, all of the null hypothesis can not be rejected at 5% sigmfitevel. We also
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see that when increasing, the resulting Wald statistics decreasinggex€ase 5 witln = 1).
This confirms that when increasing, i.e. when the fundamentalists become moredanifon

the fundamental price, the differences between pricesamtbimental prices become smaller.
TABLE 4.1. Wald test statistics fdp, and ;.

a=0 a=01 a=0.5 «a=1 Critical value

Casel 100.585 13.289 5.225 3.698 11.071
Case2 99.817 13.964 6.782 4.358 11.071
Case3 121.761 24971 16.041 10.840 19.675
Case4 148.690 38.038 23.836 19.190 32.671
Case5 293.963 105.226 99.618 103.299 124.342
Case6 177.573 50.970 45.043 43.052 67.505

As we know that an increase i has similar effect to an increase of the market fraction
of the fundamentalists. The above statistic analysis tmies that, as the fundamentalists
dominate the market (as increases), the market prices follow the fundamental pridesely.
Trend extrapolation of the trend followers can drive thekagaprice away from the fundamental

price. This result is very intuitive.

4.4. Wealth Accumulation, Profitability and Survivability. It is commonly believed that
irrational traders (such as the trend followers in our mpdely do better than rational traders
(such as the fundamentalists) over a short-run, but ovengrton, irrational traders will be
driven out of the market and rational traders will be the osyvivors over a long-run. We
now justify this common belief by analyzing the wealth dynesrof our heterogeneous market
fraction model in which traders do not change their beliefsrdaime periods. Consequently,
we examine profitability and survivability of both types cdding strategies. Two situations are
considered in the following discussion.

In the first case, we choose parameter set (4.1) by fixing médetion m and varyinga.
For each set of parameters, we run one simulation over 2@i@@0periods in order to see
possible limiting behaviours. Fig. 4.3 demonstrates trsohibe wealth share accumulations
of the fundamentalists with = 1,0.5,0.1,0 and keeping all the other conditions the same. It
shows that (i) trend followers survive in long-run fer= 1,0.5 and0.1 in the sense that their
absolute wealth share does not vanish, although they adateness wealth shares over the time
period; (ii) the trend followers are doing better then thedamentalists whea = 0; (iii) the
profitability of the fundamentalists improvesaicreases (i.e. as they become more confident

on their estimated fundamental value). These results afgeiuconfirmed when we run Monte
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FIGURE 4.3. Time series of the absolute wealth accumulation of timeldi-
mentalistsw, ;, with e = 1,0.5, 0.1 and0.

Carlo simulations, the results are given in Fig. 4.4. For eadbe of«, we plot the average
market price (left column), return (middle column) and dbsowealth share accumulation
(right column)*® of the fundamentalists for four values@in Fig. 4.4. Fora = 0, the absolute
wealth share of the fundamentalists is dropped from 50% ¢oiedi3%, while forae = 0.1,0.5
and 1, itis increased from 50% to 55%, 76% and 86%, respéctive

Given that bothv andm have similar impact on the local stability of the deterntigisys-
tem, we can demonstrate that they play similar role in terfnsealth accumulation. Again,
by running one simulation over 20,000 time periods, Fig.shéws the absolute wealth share
accumulations of the fundamentalists for four differenuea ofm = —0.95,0 and0.5 with
a=05v=2pu=0.50= 085w, = 0.5. Inthis case, the fundamentalists form their
conditional expectation by taking average of the latestketgorice and fundamental price. In
all four cases, (i) the fundamentalists accumulate mordttwveaare than the trend followers
in long-run (an increase from 50% to about 70-75%), howewertrend followers survive in
long-run and they can even accumulate more wealth shareont-sin when they dominate
the market (this is the case when= —0.95, which corresponds to 97.5% of trend followers
and 2.5% of the fundamentalists); (ii) the profitability dketfundamentalists improves as

increases (i.e. as the market fraction of the fundametgadhsreases). Essentially, we have

5The initial wealth share for both types of traders are egual = 0.5. Because ofn = 0, both the absolute and
market wealth shares are the same.
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FIGURE 4.5. Time series of the absolute wealth accumulation of tmeldi-

mentalistsw, ; with m = —0.95,0,0.5 and «

085, Wi,0 = 0.5.

= 05,7y = 2,u = 05,0 =

16Comparison of Fig.4.3 and Fig. 4.5 indicates that paramef#ays more important role on the wealth accumu-

lation than parameten does.
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In the second case, we assume that the fundamentalists igeetraalers (i.e.a = 0 and
Ei1(Pi+1) = B). Inthis case the fundamental price plays no role on theitiondl expectation

formation of the fundamentalists. We choose
a=0, y=1, pu=04, §=085 w,=05 and m=-1,-0.5,0,0.5,1. (4.2)

For each set of parameters, we run one simulation over 2@i®@0periods such that the cor-
responding limiting behaviours become clear. Fig. 4.6sthates the absolute wealth share
accumulations of the fundamentalists with different mafkactionm = —1,-0.5,0,0.5,1,
and keeping all the other conditions the same. It shows tvatall, no one is doing signifi-
cant better by accumulating significant wealth share tharothers. However, different from
the previous case, trend followers are doing slightly bétyeaccumulating more wealth share,
exceptm = 1. In addition, the profitability of the fundamentalists iropes asn increases (i.e.
as their market population share increases). These reselfsirther confirmed when we run
Monte Carlo simulations, the results are given in Fig. B.2 irp&pdix B, which includes the
average market price, return and absolute wealth shareradation of the fundamentalist$.

It is also interesting to see that the average market prioeases, rather than decreases in the
first case, stochastically. Given the naive expectatiorheffindamentalists, this may due to

the trend chasing activity of the trend followers.
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FIGURE 4.6. Time series of the absolute wealth accumulation of tmeld-
mentalistsw; , with m = —1,-0.5,0,0.5,1 anda = 0,7 = 1,u = 04,9 =
085, W10 = 0.5.

The initial wealth share for both types of traders are equal = 0.5. For different value ofn, the market
wealth shares are different.
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The above analysis leads to the following implications anglofitability and survivability:

¢ Although the trend followers have no information on the famental value, they sur-
vive in long-run. This may due to the learning mechanism thiegaged. In addition,
they can do even better than the fundamentalists over sinort-

e The profitability of the fundamentalists improve as eithleryt become more confident
on their estimated fundamental value or they dominate th&eha

e The trend followers are doing better by accumulating moraltheshare when the funda-
mentalists become naive traders. In addition, their ptafitg improves as their market

population share increases.

Overall, we have shown the long-run (short-run) profit&pibf the fundamental (trend fol-
lowing) trading strategy and long-run survivability of ttrend following strategy. This result
partially verifies a common belief that the chartists may dtidy in short-run, but market will
be dominated by the fundamentalists in long-run. Howeberchartists do survive in long-run
and this may due to their learning. This result provides rsséy incentive and justification
on recent studies on heterogeneous asset pricing (e.g. Bnacdommes (1997) and Chiarella
and He (2002, 20G3) in which traders switch their trading strategy based amage fithess

function from time to time.

4.5. Bifurcations and Autocorrelation Patterns. Understanding autocorrelation (AC) struc-
ture of returns plays an important role on the market effigyeand predictability. It is often
a difficult task to understand the generating mechanism obws AC patterns, in particular
those realistic patterns observed in financial time setigs. believed that the underlying de-
terministic dynamics of the stochastic system plays ingrtole on the AC structure of the
stochastic system. But how they are related is not clear. drfdliowing discussion, we are
trying to establish such connection by analyzing changesutifcorrelation (AC) structures of
the stochastic returns when parameters change near tihediun boundaries of the underlying
deterministic model. The analysis is conducted throughtel@arlo simulations. This analysis
leads us to some insights into how particular AC patterne@stochastic model are character-
ized by different types of bifurcation of the underlying eieninistic system. In so ding, it helps

us to understand the mechanism of generating realistic A€rpa.
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From our discussion in the previous section, we know thatdbal stability region of the
steady state is bounded by both flip and Hopf bifurcation bauies in general. To see how
the AC structure changes near different types of bifurcabioundary, we select two sets of
parameters, denoted by (F1) and (H1), respectively,

Fl)a=1,vy=08,u=5,0 =0.85, w19 = 0.5 andm = —0.8, —0.5, —0.3, 0;

(H1) o =1,y =2.1, 1 = 0.43,5 = 0.85,w; o = 0.5 andm = —0.95, —0.5,0, 0.5.
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FIGURE 4.7. Monte Carlo simulation on the average ACs of returnifioe=
—0.8,—-0.5,0.3, 0 for parameter sgtF'1).

For (F1) with different values of:, the steady state of DDS (3.1) is locally stabi¢lowever,
asm increases, we move closely to the flip bound&ryor (H1), there exists a Hopf bifurcation
valuem € (0,0.005) such that the steady state is locally stablerfor= 0.5 > m and unstable
form = —0.95,—-0.5,0 < m through a Hopf bifurcation. Asn decreases, we are moving
closely to the Hopf bifurcation boundary initially, and therossing over the boundary, and

18The solutions become exploded when parameters are neaipgHaftircation boundary and hence we only
choose parameters from inside the stable region.

19This means that the difference between the givemd the corresponding flip bifurcation value(m) becomes
smaller asn increases. Itis in this sense that an increase is destabilising the steady state.
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then moving away from the boundary. Therefore, an incremase is stabilizing the steady
state. Itis interesting to see that the market fraction lféerent stabilizing effect near different
bifurcation boundary.

For SDS (2.15), Fig. 4.7 and Fig. 4.8 report the average ACslafive return for four differ-
ent values ofn with parameter set (F1) and (H1), respectively. Tables Bd?2BaB in Appendix
B report the average ACs of returns over the first 100 lags, tineber in the parentheses are
standard errors, the number in the second row for each lathatetal number of ACs that are
significantly (at 5% level) different from zero among 1,0@@glations. It is found that adding

the noise demand does not change the nature of ACs of returns.
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FIGURE 4.8. Monte Carlo simulation on the average ACs of returnifioe=
—0.95,—0.5,0, 0.5 for parameter sgti 1).

Given that there is no significant AC structure from the nasturns of the fundamental
values, the persistent AC patterns displayed in Figs. 87ndlicate some connections between

AC patterns of SDS (2.15) and the dynamics of the underlyiDg$¥3.1). For parameter set

20Noisy processes in our model do not change the qualitatiwganaf the AC of returns, however, they do change
the AC patterns of the absolute and squared returns. This is@ddressed in our separate paper He and Li (2004).



30 HE AND LI
(F1), the fundamental value of the underlying DDS (3.1) talty stable and the AC structure
of returns of SDS (2.15) changes as the parameters are molser to the flip bifurcation
boundary. For the deterministic model, we know that an iaseeofm has a similar effect to
an increase ofy, the speed of price adjustment of the fundamentalistg, tine speed of price
adjustment of the market maker. Corresponding to the case-ef—0.8 in Fig. 4.7, anunder
and over-reaction patterrf* characterizing by an oscillatory decaying ACs witl®’'(i) > 0
for small lags followed by negative ACs for large lags is okiedrwhen the parameters are far
away from the flip bifurcation boundary. Intuitively, thissults from the constant price under-
adjustment from either the fundamentalists or the markd&dema\s the parameters are moving
toward the flip bifurcation boundary, such as the casewof —0.5,0.3 in Fig. 4.7, anover-
reaction pattern characterized by an increasig' with AC(i) < 0 for small lagsi appears.
As the parameters move closely to the flip boundary, such &wh= 0 in Fig. 4.7, this
over-reaction pattern becomestaong over-reaction pattern characterizing by an oscillating
and decaying ACs which are negative for odd lags and positiveyen lags. These results
are very intuitive. When the market fractions of the fundataksts are small, it is effectively
equal to a slow price adjustment from either the fundamestsabr market maker, leading to
under-reaction. As: increases, such adjustment becomes strong, leading taeameactiort
Near the Hopf bifurcation boundary, the AC structure betwars differently when parame-
ters cross the Hopf boundary from unstable region to stag®n, see Fig. 4.8. For smatl,
saym = —0.95, —0.5, the steady state of the deterministic model is unstabletdnifdircates to
either periodic or quasi-periodic cycles. For the stodhasbdel, astrong under-reaction AC
pattern characterizing by significantly decaying positi€(:) for small lags: and insignif-
icantly negativeAC (i) for large lagsi, as illustrated in Fig. 4.8 forn = —0.95.2 Asm
increases, say tom = —0.5 and0, the strong under-reaction pattern is replaced by an over-
reaction pattern. Asn increases further, say ta = 0.5 in Fig. 4.8, the steady state of the
deterministic model becomes stable and the AC structureeo$tochastic return reduces to an
insignificant under-reaction pattern.

2IThis means a short-run under-reaction and long-run o\attian.

22Based on this observation, one can see that both the fundalisteand market maker need to react to the market
price atright wayin order to generate insignificant AC patterns observed enfiral markets. Essentially, this is
the mechanism we are using to characterising the long raggendlence in our separate paper He and Li (2004).
23The AC structure discussed here are actually combined mgs@f the under-reacting trend followers and over-
reacting fundamentalists. This leads price to be undeaatedafor short lags, over-reacted for medium lags, and
mean-reverted for long lags.
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The above discussion is based®r= 1 (i.e. the fundamentalists are fully confident about

their estimated fundamental value). Similar result areeokesd fora < 1 (when the fundamen-

talists are not fully confident about the fundamental valkgy. B.3 in Appendix B plots the

results for the following set of parameters:

(FH):  a=05~v=08u=50=085  m=—09,-0.5,0,0.9.

In this case, small values of are close to Hopf boundary and large valuesroére close to
the flip boundary. As we can see from the AC patterns in Fig. B.Appendix B that, asn
increases, AC patterns change from strong under-reaaionder- and over-reaction, and to
over-reaction, and then to strong over-reaction.

In all cases, the ACs decay and become insignificant afterfféwstags (the first 5 lags for
under/over-reaction and the first 10 lags for strong reagtiBriefly, activity of the fundamen-
talists (either high fraction or high speed of price adjuestith are responsible for over-reaction
AC patterns and extrapolation from the trend followers asponsible for the under-reaction
AC patterns. In addition, a strong under-reaction AC pagtef SDS is in general associated
with Hopf bifurcation of the DDS, a strong over-reaction A@tgern is associated with flip bi-
furcation, and under and over-reaction AC patterns arecaed with both types of bifurcation
(depending on their dominance). This statistical analgsids us to some insights into how the

AC structure of the SDS are affected by different types affaiition of the underlying DDS.

5. CONCLUSION

The model proposed in this paper introduces a market frastoodel with heterogeneous
traders in a simple asset-pricing and wealth dynamics fwaorie It also contributes to the lit-
erature by incorporating a realistic trading period, whetiminates the untenable risk-free rate
assumption. The relationship between deterministic ®oered stochastic elements by focus-
ing on various aspects of financial market behaviour, inolydnarket dominance, under and
over-reaction, profitability and survivability, and stital properties, including autocorrelation
structure, of the stochastic model is examined. Statisticalysis based on Monte Carlo simu-
lations shows that the long-run behaviour and convergetite onarket prices, long (short)-run
profitability of the fundamental (trend following) tradirsgrategy, survivability of chartists can

be characterized by the dynamics of the underlying detéstignsystem. In particular, we
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show that various under and over-reaction autocorrelggaiterns of returns can be character-
ized by the bifurcation nature of the deterministic syst&uch analysis helps us to understand
potential sources of generating realistic time series gntogs.

As one of the stylized facts, long-range dependence inilioldi.e., hyperbolic decline of
its autocorrelation function) has been focused in recéetdiure and we refer to Lux (2004)
for an extensive survey on empirical evidence, models archar@sms in financial power laws.
Based on our understanding from this paper, it is interesorighow that if our model has a
potential to generate realistic long-rang dependencelatility. In fact, this issue is addressed
in our separate paper He and Li (2004). It shows the model kaes mechanism to generate
realistic long-memory feature. The analysis is based ontM@arlo simulations and estimates
of GARCH and FIGARCH effects.

As we have seen that itis interesting and important to seetheweterministic dynamics and
noise interact each other. Theoretical understanding emdnnections between certain time
series properties of the stochastic system and its undgriigterministic dynamics is important
but difficult, and statistical analysis based on variousecaeetric tools seems necessary. It is
worth emphasizing that all these interesting qualitativé quantitative features arise from our
simple market fraction model with fixed market fraction. Therding mechanism developed
in Lux and Marchesi (1999) and the adaptive switching meisinann Brock and Hommes
framework (Brock and Hommes (1997, 1998)) are very importathanisms in understanding
the behaviour of real financial market. It would be interggtio extend our analysis from the
current model to a changing fraction model, in which partef mmarket fractions are governed
by herding mechanism and part follows some evolutionarp@gaprocesses. Taking together
the herding and switching mechanisms and the findings inpiier, we hope we can better

understand and characterize a large part of the stylizeéd éddinancial data.
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APPENDIXA. PROOFS OFPROPOSITIONS

A.1. Proof of Proposition 3.1. For P} = P, the demand function for the fundamentalists becomes

(1-a—-R)(P—-P)
ar(1+r2)o? )

Z1,t

Let (P, ut, vi) = (Po, uo,vo) be the steady state of the system. ThE® w, vo) satisfies

(I-—a—-R)(R—P)
ar(1+r2)o?

%:%+%a+m

V(P —uo) —(R—1)(Fo — P)

1-— A.l

+( m) GQU%(1+T2+b'UO) ’ ( )

ug = dug + (1 — (5)P0, (A.2)
vo = 0vg + 6(1 — (5)(P0 — ’LL())2. (A.3)

One can verify that Py, ug, vo) = (P, P, 0) satisfies (A.1)-(A.3); that is the fundamental steady state is
one of the steady state of the system (3.1). It follows from (A.2)-(A.8)d@a [0, 1) that Py = ug, vg =
0. This together with (A.1) implies tha®, = P. In fact, if Py # P, then (A.1) implies that

LEmg oo gy 2™

ay a2

(1-R)=0. (A.4)

However, sincex € [0,1], R = 1+r/K > 1andm € [—1, 1], equation (A.4) cannot be hold. Therefore

the fundamental steady state is the unique steady state of the system.

A.2. Proof of Proposition 3.2. For P} = P andm = 1, equation (3.1) becomes

(B+a-1)(F—P)

Pp1=P —p PRI (A.5)
which can be rewritten as
Py — P =\P — P, (A.6)
where
V=1 R+a-1

Mal(l +7r2)o?’
Obviously, from (A.6), the fundamental prideis globally asymptotically attractive if and only|ik| <

1, which in turn is equivalent t0 < u < .
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FIGURE A.1. Stability region and bifurcation boundary for = 1.

A.3. Proof of Propositions 3.3 and 3.4.For P} = P, system (3.1) is reduced to the following 3-

dimensional difference deterministic system

—Pt-l—l - Fl(Ptautvvt)7
w1 = Fo (P, ug, ve), (A.7)

V41 = F3(Pt7utvvt)7

where
" (1-a—R)(P-P)
Fi(P. =P+ =|(1
V(P —u) = (R-1)(P - P)
1 _
+(L=m) az0?(1+ 12+ bv) ’
Fy(Pu,v) = du+ (1 —6)Fi(P,u,v),
F3(P,u,v) = v+ (1 — 8)(Fy —u)?.
Denote
a= %, Q = 2ax(1 4 r%)o?.
ai

At the fundamental steady stat2, P, 0),

O _ P - _ _
B—P—A_I—FQ[(l—i—m)a(l a—R)+ (1—m)(1+~—R)],
on _p_ _ml-m  O0R _,

8U_B_ Q ’ v =0

aFg_ aFZ_ — o 8F2_ .
Sp=0-94  SE-c=é+(1-0B,  FI=0

OF; OF; OF;

oP ou  Ov
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Then the Jacobina matrix of the system at the fundamental steady/ staggven by

A B O
J=] 1-84 C 0 (A-8)
0 00

and hence the corresponding characteristic equation becomes

where
T(\) =X\ —[A+6+ (1 — 8B\ +JA.
It is well known that the fundamental steady state is stable if all three eilymsug satisfy |\;| < 1
(e =1,2,3), wherehs = 0 and), » solve the equatiol’(\) = 0.
Ford = 0,I'(A) = A]A — (A+ B)]. The first result of Proposition 3.3 is then follows freal < A =
A+ B <land\=-1whenA+ B =1.

Ford € (0, 1), the fundamental steady state is stable if

(). T(1) > 0;
(i). T(—1) > 0;
(iii). 0A < 1.

It can be verified that

(i). Fora €]0,1],T'(1) > 0 holds;

(i). I'(—1) > 0is equivalent to

either v >y or 0<y < and 0< p < pr,

where
1456 14+m
V2 = 7[(R—1)+G(R+0‘_1)m],
146 Q1

! § 1—mvy—7v

(iii). The conditiond A < 1 is equivalent to

either v < or v > 7 and  0< p < o,
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where
1+m

1-5 Q1

T T—my -

Noting that, ford € (0,1), v1 < v < 72, where

(1+ )2 1+m

= -1 S |
5 (R-1)4+a(R+« )l—m

solves the equatiop; = pe. Also, i1 is an increasing function of for v < 2 while 5 is a decreasing
function of v for v > ~;. Hence the two conditions for the stability are reduce® ta p < p, for
0 <~ <~ and0 < pu < ug fory > 7. In addition, the two eigenvalues bf\) = 0 satisfy\; = —1
and\; € (—1,1) wheny = pp and )\ o are complex numbers satisfying; | < 1 whenu = po.
Therefore, a flip bifurcation occurs along the boundar i, for 0 < v < ~y and a Hopf bifurcation

occurs along the boundapy= ps for v > ~.

7 ) %
Flip Boundaryu = % 2
] 1-9)(R-1)
Flip Bound =0
g g Ip Bounaaryu = 1
R-1 R—-1
Hopf Boundaryu = fiz
g v
@@ =0 (b) &€ (0,1)

FIGURE A.2. Stability region and bifurcation boundaries for theni follow-
ers and market maker model with= 0 (a) andj € (0, 1) (b).
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APPENDIXB. MONTE CARLO SIMULATIONS AND STATISTICAL RESULTS

Econometric Properties and Statistics of S&P 500 and. AQthis appendix, we include time series
plots on prices and returns for both S&P 500 and AOI (Australian Ordihatgx) from Aug. 10, 1993
to July 24, 2002 in Fig.B.1. The corresponding density distributions, atredation coefficients (ACs)

and statistics of the returns are also illustrated in Fig. B.1 and Table B.1.

FIGURE B.1. Time series on prices and returns and density distobsitand
autocorrelation coefficients (ACs) of the return for S&P 5@) &nd AOI (b)

from Aug. 10, 1993 to July 24, 2002.
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TABLE B.1. Statistics of returns series of for S&P500 and AOI froogA 10,
1993 to July 24, 2002.

Std. Dev.| Skew. Kurt. Jarque-Berg
-0.504638| 8.215453| 2746.706
7.263339| 1789.96

Index Mean Median Max. Min.
S&P500| 0.000194| 0.0000433| 0.057361| -0.070024| 0.0083
AOI 0.000269| 0.000106 | 0.055732| -0.071127| 0.010613| -0.23127
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FIGURE B.2. Average Monte Carlo time series of market prices, retamd
absolute wealth share of the fundamentalists with- 0,v = 1,4 = 0.4, =
0.85, w9 = 0.5, andm = —0.5 (top row), O (second row), 0.5 (third row),
1(4-th row), -1(the last row).
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TABLE B.2. Autocorrelations of; for the flip-set parametér'1).

Lag m = —0.8 m=—0.5 m = —0.3 m=20
1 0.2933(0.0169) -0.0256 (0.0149) -0.3076 (0.0136) -0.8602 (0)0084
993 455 1000 1000
2 0.1664 (0.0162) -0.0760 (0.0152) -0.0278 (0.0169) 0.6939 (0.0161)
988 935 720 1000
3 0.0636(0.0161) -0.0782 (0.0157) -0.0328 (0.0168) -0.5899 (0)0205
883 915 456 1000
4 -0.0112(0.0164) -0.0621 (0.0158) -0.0102 (0.0168) 0.5123 (0)0233
297 826 115 998
5 -0.0630(0.0168) -0.0420 (0.0158) -0.0058 (0.0167) -0.4528 (0)025
868 625 79 986
6 -0.0958 (0.0168) -0.0262 (0.0158) -0.0034 (0.0167) 0.4033 (0)0262
949 379 70 978
7 -0.1116 (0.0169) -0.0134(0.0158) -0.0014 (0.0167) -0.3631 (0)026
968 163 72 969
8 -0.1148(0.0169) -0.0052 (0.0158) -0.0006 (0.0166) 0.3282 (0)0274
976 57 54 955
9 -0.1102 (0.0169) -0.0015 (0.0159) -0.0010 (0.0167) -0.2981 (8)027
966 58 53 934
10 -0.0989 (0.0169) 0.0008 (0.0159) -0.0009 (0.0167) 0.2712 (0)0280
953 63 57 916
20 0.0248 (0.0179) -0.0006 (0.0160) -0.0001 (0.0167) 0.1188 (0)0278
338 51 57 690
30 -0.0036(0.0181) 0.0002 (0.0160) 0.0002 (0.0167) 0.0565 (0.0268)
96 51 54 463
40 -0.0020 (0.0180) 0.0005 (0.0160) 0.0007 (0.0167) 0.0291 (0.0262)
88 39 47 299
50 0.0015(0.0180) 0.0006 (0.0160) 0.0009 (0.0167) 0.0150 (0.0259)
77 66 56 230
60 -0.0017 (0.0181) -0.0014 (0.0161) -0.0013(0.0167) 0.0059 (9)025
99 56 54 218
70 0.0012(0.0181) 0.0003(0.0161) 0.0001 (0.0167) 0.0046 (0.0259)
84 54 50 197
80 0.0005(0.0180) 0.0013(0.0161) 0.0014 (0.0167) 0.0032 (0.0258)
74 76 64 181
90 -0.0006 (0.0181) -0.0006 (0.0161) -0.0007 (0.0167) 0.0016 (9)025
84 64 54 184
100 -0.0003 (0.0181) -0.0005 (0.0162) -0.0001 (0.0168) 0.00235%8)02
69 48 52 192

39
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TABLE B.3. Autocorrelations of, for the Hopf-set parametéfi 1).

Lag m = —0.95 m=—0.5 m =20 m = 0.5
1 0.0746 (0.0345) 0.1037 (0.0196) 0.0688 (0.0176) 0.0205 (0.0168)
898 964 582 730
2 0.0825(0.0326) 0.0802 (0.0189) 0.0429 (0.0174) 0.0064 (0.0169)
811 868 469 687
3 0.0720(0.0315) 0.0593(0.0187) 0.0241(0.0173) -0.0020 (0.0170)
788 672 434 618
4 0.0631(0.0309) 0.0426(0.0183) 0.0116(0.0173) -0.0059 (0.0171)
756 493 422 529
5 0.0535(0.0301) 0.0294 (0.0182) 0.0023(0.0174) -0.0079 (0.0171)
721 380 436 418
6 0.0456 (0.0292) 0.0185(0.0182) -0.0050 (0.0173) -0.0099 (0.0171)
677 301 398 339
7 0.0388(0.0288) 0.0107 (0.0180) -0.0080 (0.0173) -0.0085 (0.0170)
587 272 366 244
8 0.0333(0.0287) 0.0049 (0.0179) -0.0095 (0.0171) -0.0068 (0.0170)
498 257 325 161
9 0.0309 (0.0278) -0.0009 (0.0178) -0.0111 (0.0173) -0.0066 (0)0170
433 290 313 154
10 0.0250 (0.0268) -0.0050 (0.0177) -0.0116(0.0172) -0.0055 (0)017
358 281 245 106
20 0.0021 (0.0230) -0.0152 (0.0175) -0.0048 (0.0171) -0.0012 (0)017
88 228 62 53
30 -0.0035(0.0215) -0.0058 (0.0174) 0.0002 (0.0171) 0.0003 (0)0170
78 76 53 58
40 -0.0066 (0.0201) -0.0013(0.0175) -0.0003 (0.0172) -0.000470)01
84 54 50 a7
50 -0.0053(0.0191) 0.0002(0.0177) 0.0001(0.0172) 0.0002 (0.0170)
80 56 63 62
60 -0.0059 (0.0193) -0.0005 (0.0175) -0.0012(0.0172) -0.00137@)01
85 53 60 54
70 -0.0045 (0.0190) 0.0008 (0.0175) 0.0006 (0.0172) 0.0006 (0.0171)
72 61 59 56
80 -0.0034 (0.0186) 0.0008 (0.0175) 0.0009 (0.0172) 0.0010 (0.0170)
73 61 61 58
90 -0.0046 (0.0185) -0.0013(0.0176) -0.0008 (0.0172) -0.00097@)01
73 60 65 63
100 -0.0037 (0.0183) -0.0001 (0.0178) -0.0002 (0.0173) -0.00037Q)0
56 55 50 43
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