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ABSTRACT. This paper contributes to the development of recent literature on the explanation

power and calibration issue of heterogeneous asset pricingmodels by presenting a simple sto-

chastic market fraction asset pricing model of two types of traders (fundamentalists and trend

followers) under a market maker scenario. It seeks to explain aspects of financial market behav-

iour (such as market dominance, under and over-reaction, profitability and survivability) and to

characterize various statistical properties (including autocorrelation structure) of the stochastic

model by using the the dynamics of the underlying deterministic system, traders’ behaviour and

market fractions. Statistical analysis based on Monte Carlo simulations shows that the long-run

behaviour and convergence of the market prices, long (short)-run profitability of the fundamental

(trend following) trading strategy, survivability of chartists, and various under and over-reaction

autocorrelation patterns of returns can be characterized by the stability and bifurcations of the un-

derlying deterministic system. Our analysis underpins mechanism on various market behaviour

(such as under/over-reactions), market dominance and stylized facts in high frequency financial

markets.
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1. INTRODUCTION

Traditional economic and finance theory is based on the assumptions of investor homogene-

ity and the efficient market hypothesis. However, there is a growing dissatisfaction with models

of asset price dynamics, based on the representative agent paradigm, as expressed for example

by Kirman (1992), and the extreme informational assumptions of rational expectations. As a re-

sult, the literature has seen a rapidly increasing number ofheterogeneous agents models. These

models characterise the dynamics of financial asset prices;resulting from the interaction of het-

erogeneous agents having different attitudes to risk and having different expectations about the

future evolution of prices.1 For example, Brock and Hommes (1997, 1998) proposed a simple

Adaptive Belief Systemto model economic and financial markets. Agents’ decisions are base

upon predictions of future values of endogenous variables whose actual values are determined

by the equilibrium equations. A key aspect of these models isthat they exhibit expectations

feedback. Agents adapt their beliefs over time by choosing from different predictors or expec-

tations functions, based upon their past performance as measured by the realized profits. The

resulting dynamical system is nonlinear and, as Brock and Hommes (1998) show, capable of

generating the entirezooof complex behaviour from local stability to high order cycles and even

chaos as various key parameters of the model change. It has been shown (e.g. Hommes (2002))

that such simple nonlinear adaptive models are capable of explaining important empirical ob-

servations, including fat tails, clustered volatility andlong memory, of real financial series. The

analysis of the stylized simple evolutionary adaptive system, and its numerical analysis provides

insight into the connection between individual and market behaviour. Specifically, it provides

insight into whether asset prices in real markets are drivenonly by news or, are at least in part,

driven by market psychology.

The heterogeneous agents literature attempts to address two interested issues among many

others. It attempts to explain various types of market behaviour, and to replicate the well doc-

umented empirical findings of actual financial markets, the stylized facts. Recent literature has

demonstrated the ability to explain various types of marketbehaviour. However, in relation to

stylized facts, there is a gap between the heterogeneous model and observed empirical findings.

1See, e.g., Arthuret al. (1997), Brock and Hommes (1997, 2002), Brock and LeBaron (1996), Bullard and
Duffy (1999), Chen and Yeh (1997, 2002), Chiarella (1992), Chiarellaet al. (2002), Chiarella and He (2001,
2002, 2003c), Dacorognaet al. (1995), Day and Huang (1990), De Long et al (1990), Farmer andJoshi (2002),
Frankel and Froot (1987), Gaunersdorfer (2000), Hommes (2001, 2002), Iori (2002), LeBaron (2000, 2001, 2002),
LeBaronet al. (1999), Lux (1995, 1997, 1998) and Lux and Marchesi (1999))
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It is well known that most of the stylized facts can be observed only for high frequency data

(e.g. daily) and not for low frequency data (e.g. yearly). However, two unrealistic assumptions

underpin this literature.2 The first is a risk-free rate of approximately 10 per-cent pertrading

period.3 Given that this rate is crucial for model calibration in generating stylized facts4, it is ob-

viously unrealistic. Second, the unrealistic nature of theassumed trading period is problematic

for the quantitative calibration to actual time series. As pointed out by LeBaron (2002),‘This

(unrealistic trading period) is fine for early qualitative comparisons with stylized facts, but it is

a problem for quantitative calibration to actual time series’.

Another more important issue for various heterogeneous asset pricing models is the interplay

of noise and deterministic dynamics. Given that deterministic models are simplified versions of

realistic stochastic models and stability and bifurcationare the most powerful tools (among oth-

ers) to investigate the dynamics of nonlinear system, it is interesting to know how deterministic

properties influence the statistical properties, such as the existence and convergence of station-

ary process, and the autocorrelation (AC) structure of the corresponding stochastic system. In

particular, we can ask if there is a connection between various AC patterns of the stochastic

system and different types of bifurcations of the underlying deterministic skeleton. This has the

potential to provide insights into the mechanisms of generating various AC patterns and stylized

facts in financial markets. At present, the mathematical theory has not yet be able to achieve

those tasks in general. Consequently, statistical analysisand Monte Carlo simulations is the

approach adopted in this paper.

This paper builds upon the existent literature by incorporating a realistic trading period5,

which eliminates the unrealistic risk-free rate assumption, whilst also introducing market frac-

tions of heterogeneous traders into a simple asset-pricingand wealth dynamics model. In this

study this model is referred to as the Market Fraction (MF ) Model. The model assumes three

types of participants in the asset market. This including two groups of boundedly rational

2See, e.g., Arthuret al. (1997), Brock and Hommes (1997), Chen and Yeh (2002), Chiarella et al (2002), Chiarella
and He (2002, 2003c), Iori (2002), LeBaron (2002), LeBaronet al. (1999), Levyet al. (1994)).
3Apart fromrf = 1% in Gaunersdorfer (2000) and LeBaron (2001) andrf = 0.04% in Hommes (2002).
4In this literature, as risk-free rate of trading period decreases, demand on the risky asset increases. Consequently,
the price of the risky asset become rather larger numbers resulting sometimes in break-down in theoretic analysis
and overflows in numerical simulations. In addition, some ofinteresting dynamics disappear as the risk-free rate of
trading period decreases to realistic level (e.g. (5/250)%per day given a risk-free rate of 5% p.a. and 250 trading
days per year).
5In fact, the trading period of the model can be scaled to any level of trading frequency ranging from annually,
monthly, weekly, to daily.
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traders—fundamentalists (also called informed traders) and trend followers (also called less in-

formed traders or chartists), and a market-maker. The MF model shows that long-run behaviour

of asset prices, wealth accumulations of heterogeneous trading strategies and the autocorrela-

tion structure of the stochastic system can be characterised by the dynamics of the underlying

deterministic system, traders’ behaviour and market fractions. In addition, statistical analy-

sis based on Monte Carlo simulations show that the long-run behaviour and convergence of

the market prices, long (short)-run profitability of the fundamental (trend following) trading

strategy, survivability of chartists, and various under and over-reaction AC patterns of returns

can be characterized by the stability and bifurcations of the underlying deterministic system.

Our analysis gives us some insights into mechanism of various market behaviour (such as

under/over-reactions), market dominance and stylized facts in high frequency financial mar-

kets.

This paper is organized as follows. Section 2 outlines a market fraction model of heteroge-

neous agents with the market clearing price set by a market maker, introduces the expectations

function and learning mechanisms of the fundamentalists and trend followers, and derives a

complete market fraction model on asset price and wealth dynamics. Price dynamics of the

underlying deterministic model is examined in Section 3. Statistical analysis, based on Monte

Carlo simulations, of the stochastic model is given in Section 4. By using the concept of random

fixed point, we examine the long-run behavior and convergence of the market price to the funda-

mental price. By examining wealth accumulation, we analyze the profitability and survivability.

By choosing different set of parameters near different typesof bifurcation boundaries of the un-

derlying deterministic system, we explore various under and over-reaction AC patterns. Section

5 concludes and all proofs and additional statistical results are included in the Appendixes.

2. HETEROGENEOUSBELIEFS, MARKET FRACTIONS AND MARKET-MAKER

Both empirical (e.g. Taylor and Allen (1992)) and theoretical (e.g. Brock and Hommes

(1997)) studies show that market fractions among differenttypes of traders play an important

role in financial markets. Empirical evidence from Taylor and Allen (1992) suggests that at

least 90% of traders place some weight on technical analysisat one or more time horizons. In

particular, traders rely more on technical analysis, as opposed to the fundamental analysis, at

shorter horizons. As the length of time horizons increase, more traders rely on the fundamental
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rather than technical analysis. In addition, there is certain proportion of traders who do not

change their strategies over all time horizons. Theoretically, study from Brock and Hommes

(1997) shows that, when different groups of traders, such asfundamentalists and chartists, hav-

ing different expectations about future prices and dividends compete between trading strategies

and choose their strategy according to an evolutionaryfitness measure, the corresponding de-

terministic system exhibits rational routes to randomness. The adaptive switching mechanism

proposed by Brock and Hommes (1997) is an important elements of the adaptive belief model.

It is based on bothfitness functionand discrete choice probability. In this paper, we take a

simplified version of Brock and Hommes’ framework. The MF model assumes that the mar-

ket fractions among heterogeneous agents are fixed and are treated as fixed parameters. Apart

from mathematical tractability, this simplification is motivated as follows. First, because of the

amplifying effect of the exponential function used in the discrete choice probability, the market

fractions become very sensitive to price changes and the fitness functions. Therefore, it is not

very clear to see how different market fractions themselvesdo actually influence the market

price. Secondly, when agents switch intensively, it becomes difficult to characterize market

dominance, profitability and survivability when dealing with heterogeneous trading strategies.6

Thirdly, different types of agents play different roles (such as the autocorrelation structure we

discuss late) and it is important to understand their responsibility to certain dynamics. Such

analysis becomes clear when we isolate the market fractionsfrom switching. In doing so, we

can examine explicitly the influence of the market fractionson the price behaviour.

The set up follows the standard discounted value asset pricing model with heterogeneous

agents, which is closely related to the framework of Day and Huang (1990), Brock and Hommes

(1997, 1998) and Chiarella and He (2002). However, the marketclearing price is arrived at via a

market maker scenario in line with Day and Huang (1990) and Chiarella and He (2003c) rather

than the Walrasian scenario used in Brock and Hommes (1998). We focus on a simple case in

which there are three classes of participants in the asset market: two groups of traders, funda-

mentalists and trend followers, and a market maker, as described in the following discussion.

2.1. Market Fraction and Market Clearing Price under a Market Maker. Consider an

asset pricing model with one risky asset and one risk free asset. It is assumed that the risk free

asset is perfectly elastically supplied at gross return ofR = 1 + r/K, wherer stands for a

6This analysis in turn leads to a justification on agents switching, which is discussed in Section 3.
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constant risk-free rate per annual andK stands for the frequency of trading period per year.

Typically, K = 1, 12, 52 and250 for trading period of year, month, week and day, respectively.

To calibrate the stylized facts observed from daily price movement in financial market, we select

K = 250 in our following discussion.

Let Pt be the price (ex dividend) per share of the risky asset at timet and {Dt} be the

stochastic dividend process of the risky asset. Then the wealth of a typical investor-h at t + 1 is

given by

Wh,t+1 = RWh,t + [Pt+1 + Dt+1 − RPt]zh,t, (2.1)

whereWh,t andzh,t are the wealth and the number of shares of the risky asset purchased of

investor-h at t, respectively. LetEh,t andVh,t be thebeliefsof typeh traders about the condi-

tional expectation and variance of quantities att + 1 based on their information set at timet.

Denote byRt+1 the excess capital gain on the risky asset att + 1, that is

Rt+1 = Pt+1 + Dt+1 − R Pt. (2.2)

Then it follows from (2.1) and (2.2) that

Eh,t(Wt+1) = RWt + Eh,t(Rt+1)zh,t, Vh,t(Wt+1) = z2

h,tVh,t(Rt+1), (2.3)

wherezh,t is the demand by agenth for the risky asset. Assume that traders have a constant

absolute risk aversion (CARA) utility function with the risk aversion coefficientah for typeh

traders (that isUh(W ) = − exp(−ahW )) and their optimal demand on the risky assetzh,t are

determined by maximizing their expected utility of the wealth. Then

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.4)

Given the heterogeneity and the nature of asymmetric information among traders, we con-

sider two most popular trading strategies corresponding totwo types of boundedly rational

traders—fundamentalists and trend followers, and their beliefs will be defined in the following

discussion. Assume the market fraction of the fundamentalists and trend followers isn1 andn2

with risk aversion coefficienta1 anda2, respectively. Letm = n1 − n2 ∈ [−1, 1]. Obviously,

m = 1,−1 corresponds to the case when all the traders are fundamentalists and trend follow-

ers, respectively. Assume zero supply of outside shares. Then, using (2.4), the aggregate excess
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demand per investorze,t is given by

ze,t ≡ n1z1,t + n2z2,t =
1 + m

2

E1,t[Rt+1]

a1V1,t[Rt+1]
+

1 − m

2

E2,t[Rt+1]

a2V2,t[Rt+1]
. (2.5)

To complete the model, we assume that the market is cleared bya market maker. The role of

the market maker is to take a long (whenze,t < 0) or short (whenze,t > 0) position so as to clear

the market. At the end of periodt, after the market maker has carried out all transactions, heor

she adjusts the price for the next period in the direction of the observed excess demand. Letµ

be the speed of price adjustment of the market maker (this canalso be interpreted as the market

aggregate risk tolerance). To capture unexpected market news or noise created bynoise traders,

we introduce a noisy demand term̃δt which is an IID normally distributed random variable7

with δ̃t ∼ N (0, σ2
δ ). Based on those assumptions, the market price is determined by

Pt+1 = Pt + µze,t + δ̃t.

Using (2.5), this becomes

Pt+1 = Pt +
µ

2

[

(1 + m)
E1,t[Rt+1]

a1V1,t[Rt+1]
+ (1 − m)

E2,t[Rt+1]

a1V2,t[Rt+1]

]

+ δ̃t. (2.6)

It should be pointed out that the market maker behavior in this model is highly stylized. For

instance, the inventory of the market maker built up as a result of the accumulation of various

long and short positions is not considered. This could affect his or her behavior and the market

maker price setting role in (2.6) could be a function of the inventory. Allowingµ to be a function

of inventory would be one way to model such behavior. Such considerations are left to future

research. Future research should also seek to explore the microfoundations of the coefficientµ.

In the present paper it is best thought of as a market friction, and an aim of our analysis is to

understand how this friction affects the market dynamics.

2.2. Fundamentalists. Denote byFt = {Pt, Pt−1, · · · ; Dt, Dt−1, · · · } the common infor-

mation set formed at timet. We assume that, apart from the common information set, the

fundamentalists havesuperiorinformation on the fundamental value,P ∗

t , of the risky asset and

they also realize the existence of non-fundamental traders, such as trend followers introduced in

7In this paper, we assume a constant volatility noisy demand and the volatility is related to an average fundamental
price level. This noisy demand may also depend on the market price. Theoretically, how the price dynamics are
influenced by adding different noisy demand is still a difficult problem. Here, we focus on the constant volatility
noisy demand case and use Monte Carlo simulations and statistical analysis to gain some insights into this problem.
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the following discussion. They believe that the stock pricemay be driven away from the funda-

mental value in short-run, but it will eventually converge to the fundamental value in long-run.

The speed of the convergence measures their confidence levelon the fundamental value. More

precisely, we assume that the fundamental value follows a stationary random walk process

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t], ǫ̃t ∼ N (0, 1), σǫ ≥ 0, P ∗

0 = P̄ > 0, (2.7)

whereǫ̃t is independent of the noisy demand processδ̃t. This specification ensures that nei-

ther fat tails nor volatility clustering are brought about by the exogenous news arrival process.

Hence, emergence of any autocorrelation pattern of the return of the risky asset in our late

discussion would be driven by the trading process itself, rather than news. We assume the

conditional mean and variance of the fundamental traders follow

E1,t(Pt+1) = Pt + α(P ∗

t+1 − Pt), V1,t(Pt+1) = σ2

1, (2.8)

whereσ2
1 stands for a constant variance on the price. Here parameterα ∈ [0, 1] is the speed

of price adjustment of the fundamentalist toward the fundamental value. It measures their con-

fidence level on the fundamental value. In particular, forα = 1, the fundamental traders are

fully confident about the fundamental value and adjust theirexpected price at next period in-

stantaneously to the fundamental value. Forα = 0, the fundamentalists become naive traders.

In general, the fundamental traders believe that markets are efficient and prices converge to the

fundamental value. An increase (decrease) inα indicates that the fundamental traders have high

(low) confidence on their estimated fundamental value, leading to a quick (slow) adjustment of

their expected price towards the fundamental price.

2.3. Trend followers. Unlike the fundamentalists, trend followers are technicaltraders who

believe the future price change can be predicted from various patterns or trends generated from

history price. The trend followers are assumed to extrapolate the latest observed price change

over a long-run sample mean price and to adjust their variance estimate accordingly. More

precisely, their conditional mean and variance are assumedto follow

E2,t(Pt+1) = Pt + γ(Pt − ut), V2,t(Pt+1) = σ2

1 + b2vt, (2.9)
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whereγ, b2 ≥ 0 are constants, andut andvt are sample mean and variance, respectively, which

may follow some learning processes. Parameterγ measures the extrapolation rate and high

(low) values ofγ correspond to strong (weak) extrapolation from the trend followers. The co-

efficientb2 measures the influence of the sample variance on the conditional variance estimated

by the trend followers who believe more volatile price movement. Various learning schemes8

can be used to estimate the sample meanut and variancevt. In this paper we assume that

ut = δut−1 + (1 − δ)Pt, (2.10)

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2, (2.11)

whereδ ∈ [0.1] is a constant. This process on the sample mean and variance isa limiting

process ofgeometric decay processwhen the memory lag length tends to infinity.9 Basically,

a geometric decay probability process(1 − δ){1, δ, δ2, · · · } is associated to the history prices

{Pt, Pt−1, Pt−2, · · · }. Parameterδ measures the geometric decay rate. Forδ = 0, the sample

meanut = Pt, which is the latest observed price, whileδ = 0.1, 0.5, 0.95 and0.999 gives a half

life of 0.43 day, 1 day, 2.5 weeks and 2.7 years, respectively. The selection of this process is two

folds. First, traders tend to put high weight to the most recent prices and less weight to the more

remote prices when they estimate the sample mean and variance. Secondly, we believe that

this geometric decay process may contribute to certain autocorrelation patterns, even the long

memory feature observed in real financial markets. In addition, it has mathematical advantage

of tractability.

2.4. The Complete Stochastic Model.To simplify our analysis, we assume that the dividend

processDt follows Dt ∼ N (D̄, σ2
D), the expected long-run fundamental valueP̄ = (R − 1)D̄,

and the unconditional variances of price and dividend over the trading period are related by

8For related studies on heterogeneous learning and asset pricing models with heterogeneous agents who’s condi-
tional mean and variance follow various learning processes, we refer to Chiarella and He (2003a, 2003b).
9See Chiarellaet. al.(2005) for the proof.
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σ2
D = qσ2

1.10 Based on assumptions (2.8)-(2.9),

E1,t(Rt+1) = Pt + α(P ∗

t+1 − Pt) + D̄ − R Pt = α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ ),

V1,t(Rt+1) = (1 + q)σ2

1

and hence the optimal demand for the fundamentalist is givenby

z1,t =
1

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]. (2.12)

In particular, whenP ∗

t = P̄ ,

z1,t =
(α + R − 1)(P̄ − Pt)

a1(1 + q)σ2
1

. (2.13)

Similarly, from (2.9), (usingD̄ = (R − 1)P̄ )

E2,t(Rt+1) = Pt + γ(Pt − ut) + D̄ − R Pt = γ(Pt − ut) − (R − 1)(Pt − P̄ ),

V2,t(Rt+1) = σ2

1(1 + q + b vt),

whereb = b2/σ
2
1. Hence the optimal demand of the trend followers is given by

z2,t =
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

. (2.14)

Subsisting (2.12) and (2.14) into (2.6), the price dynamicsunder a market maker is determined

by the following 4-dimensionally stochastic difference system (SDShereafter)



































































Pt+1 = Pt +
µ

2

[

1 + m

a1(1 + q)σ2
1

[α(P ∗

t+1 − Pt) − (R − 1)(Pt − P̄ )]

+ (1 − m)
γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

+ δ̃t,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2,

P ∗

t+1 = P ∗

t [1 + σǫǫ̃t].

(2.15)

10In this paper, we chooseσ2

1
= (P̄ σ)2/K andq = r2. This can be justified as follows. LetσP̄ be the annual

volatility of Pt andD̄t = rPt be the annual dividend. Then the annual variance of the dividendσ̄2

D = r2(P̄ σ)2.
Thereforeσ2

D = σ̄2

D/K = r2(P̄ σ)2/K = r2σ2

1
. For all numerical simulations in this paper, we chooseP̄ =

$100, r = 5% p.a. σ = 20% p.a.,K = 250. Correspondingly,R = 1 + 0.05/250 = 1.0002, σ2

1
= (100 ×

0.2)2/250 = 8/5 andσ2

D = 1/250.
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2.5. Wealth Dynamics and Shares.Traders’ wealth in general follow some growing processes.

To be able to measure the wealth dynamics among different trading strategies, to examine the

market dominance and price behaviour, we introduce two wealth measures. The first measures

the absolute level of the wealth share (or proportion) of therepresentative agent from each type,

called theabsolute wealth sharefor short, which is defined by

w1,t =
W1,t

W1,t + W2,t

, w2,t =
W2,t

W2,t + W2,t

, (2.16)

whereW1,t andW2,t are the wealth at timet of the representative trader of the fundamentalists

and trend followers, respectively. This measure can be usedto measure the evolutionary perfor-

mance or profitability of the two trading strategies and a high w1,t (w2,t) indicates profitability

of the fundamentalists (trend followers). The second measures the overall market wealth share,

called themarket wealth sharefor short, of different trading strategy and it is defined as market

fraction weighted average of the absolute wealth proportions,

w̄1,t =
(1 + m)W1,t

(1 + m)W1,t + (1 − m)W2,t

, w̄2,t =
(1 − m)W2,t

(1 + m)W1,t + (1 − m)W2,t

. (2.17)

A high market wealth sharēw1,t (w̄2,t) indicates market dominance of the fundamentalists (trend

followers) with respect to the overall market wealth. LetV1,t = 1/W1,t andV2,t = 1/W2,t. Then

it follows from (2.1) that

V1,t+1 =
V1,t

R + Rt+1z1,tV1,t

, V2,t+1 =
V2,t

R + Rt+1z1,tV1,t

.

Note that

V1,t

V1,t + V2,t

=
1/W1,t

1/W1,t + 1/W2,t

=
W2,t

W1,t + W2,t

,

V2,t

V1,t + V2,t

=
1/W2,t

1/W1,t + 1/W2,t

=
W1,t

W1,t + W2,t

and therefore the absolute wealth shares are determined by

w1,t =
V2,t

V1,t + V2,t

, w2,t =
V1,t

V1,t + V2,t

(2.18)

and the market wealth shares are governed by

w̄1,t =
(1 + m)V2,t

(1 + m)V2,t + (1 − m)V1,t

, w̄2,t =
(1 − m)V1,t

(1 + m)V2,t + (1 − m)V1,t

. (2.19)
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For these wealth measures, it is difficult to obtain explicitly closed form expressions in terms of

(stationary) state variables. In this paper, we use the auxiliary functions(V1,t, V2,t) and numeri-

cal simulations to study the wealth dynamics of the fundamentalists and trend followers and the

market impact of the two differential trading strategies.

It has been widely accepted that stability and bifurcation theory is a powerful tool in the study

of asset-pricing dynamics (see, for example, Day and Huang (1990), Brock and Hommes (1997,

1998) and Chiarella and He (2002, 2003c)). However, how the stability and various types of

bifurcation of the underlying deterministic system affectthe nature of the stochastic system,

including stationarity, distribution and statistic properties of returns, is not very clear at the

current stage. Although the techniques discussed in Arnold(1998) may be useful in this regard,

mathematical analysis of nonlinear stochastic dynamical system is still difficult in general. In

this paper, we consider first the corresponding deterministic skeleton of the stochastic model

by assuming that the fundamental price is given by its long-run valueP ∗

t = P̄ and there is no

demand shocks, i.e.σδ = σǫ = 0. We then conduct stochastic analysis of the stochastic model

through Monte Carlo simulation.

3. DYNAMICS OF THE DETERMINISTIC MODEL

When the long run fundamental price is a constant and there is no noisy demand, the 4-

dimensionally stochastic system (2.15) reduces to the following 3-dimensionally deterministic

difference system (DDShereafter)































Pt+1 = Pt + µ
1 + m

2

[

(1 − α − R)(Pt − P̄ )

a1(1 + q)σ2
1

]

+
1 − m

2

[

γ(Pt − ut) − (R − 1)(Pt − P̄ )

a2σ2
1(1 + q + b vt)

]

,

ut = δut−1 + (1 − δ)Pt,

vt = δvt−1 + δ(1 − δ)(Pt − ut−1)
2.

(3.1)

The following result on the existence and uniqueness of steady state of the deterministic system

is obtained.

Proposition 3.1. For DDS (3.1),(Pt, ut, vt) = (P̄ , P̄ , 0) is the unique steady state.

Proof. See Appendix A.1. �
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We call this unique steady state as the fundamental steady state. In the following discussion,

we focus on the stability and bifurcation of the fundamentalsteady state of the deterministic

model. We first examine two special casesm = 1 andm = −1 before we deal with the general

casem ∈ (−1, 1).

3.1. The casem = 1. In this case, the following result on the global stability and bifurcation

is obtained.

Proposition 3.2. For DDS (3.1), if all the traders are fundamentalists, i.e.m = 1, then the

fundamental pricēP is globally asymptotically stable if and only if

0 < µ < µ0,1 ≡
2a1(1 + q)σ2

1

(R + α − 1)
. (3.2)

In addition,µ = µ0,1 leads to a flip bifurcation withλ = −1, where

λ = 1 − µ
R + α − 1

a1(1 + q)σ2
1

. (3.3)

Proof. See Appendix A.2. �

The stability region of the fundamental pricēP is plotted in(α, µ) plane in Fig.A.1 in Ap-

pendix A.2, whereµ0,1(1) = [2a1(1+ q)σ2
1]/R for α = 1 andµ0,1(0) = [2a1(1+ q)σ2

1]/(R−1)

for α = 0. Along the flip bifurcation boundary,µ decreases asα increases. It follows from

Proposition 3.2 that the stability of the fundamental steady state is independent of the price

adjustment of the fundamentalists when the market maker is under-reacted (i.e.µ ≤ µ0,1(1)).

However, whenµ > µ0,1(1), the stability of the steady state can be maintained only when the

reactions of the fundamentalists and the market maker are balanced. Numerical simulations

indicate that the over-reaction from either the market maker or the fundamentalists can push the

price to explode (through the flip bifurcation).

3.2. The casem = −1. Similarly, we obtain the following stability and bifurcation result when

all traders are trend followers.

Proposition 3.3. For DDS (3.1), if all the traders are trend followers (that ism = −1), then

(1) for δ = 0, the fundamental steady state is globally asymptotically stable if and only if

0 < µ < Q/(R − 1), whereQ = 2a2(1 + q)σ2
1. In addition, a flip bifurcation occurs

along the boundaryµ = Q/(R − 1);
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(2) for δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <







µ̄1 0 ≤ γ ≤ γ̄0

µ̄2, γ̄0 ≤ γ,

where

µ̄1 =
Q

(R − 1) − γ2δ/(1 + δ)
, µ̄2 =

(1 − δ)Q

2δ[γ − (R − 1)]
, γ̄0 = (R − 1)

(1 + δ)2

4δ
.

In addition, a flip bifurcation occurs along the boundaryµ = µ̄1 for 0 < γ ≤ γ̄0 and a

Hopf bifurcation occurs along the boundaryµ = µ̄2 for γ ≥ γ̄0.

Proof. See Appendix A.3. �

The local stability regions and bifurcation boundaries areindicated in Fig. A.2 (a) forδ = 0

and (b) forδ ∈ (0, 1) in Appendix A.3, wherēγ2 = (1 + δ)(R − 1)/(2δ) is obtained by letting

µ̄2 = Q/(R − 1). Given thatR = 1 + r/K is very close to 1, the value ofµ along the flip

boundary is very large and̄γo is close to 0. This implies that, forδ = 0, the fundamental price

is stable for a wide range ofµ. Foeδ ∈ (0, 1), the stability region is mainly bounded by the

Hopf bifurcation boundary. Along the Hopf boundary,µ decreases asγ increases, implying

that the stability of the steady state is maintained when thespeed of the market maker and the

extrapolation of the trend followers are balanced. Numerical simulations indicate that, near the

bifurcation boundary, price either converges periodically to the fundamental value or oscillates

regularly or irregularly. In addition, the Hopf bifurcation boundary shifts to the left whenδ

increases. This implies that the steady state is stabilizing when more weights are given to the

most recent prices.

3.3. The general casem ∈ (−1, 1). We now consider the complete market fraction model

DDS with both fundamentalists and trend followers by assuming m ∈ (−1, 1). Let a = a2/a1

be the ratio of the absolute risk aversion coefficients. It turns out that the stability and bifurcation

of the fundamental steady state are different from the previous two special cases and they are

determined jointly by the geometric decay rate and extrapolation rate of the trend followers, the

speed of the price adjustment of the fundamentalists towards the fundamental steady state, and

the speed of adjustment of the market maker towards the market aggregate demand.

Proposition 3.4. For DDS (3.1) withm ∈ (−1, 1),
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(1) if δ = 0, the fundamental steady state is stable for0 < µ < µ∗, where

µ∗ =
2Q

(R − 1)(1 − m) + a(R + α − 1)(1 + m)
.

In addition, a flip bifurcation occurs along the boundaryµ = µ∗ with α ∈ [0, 1];

(2) if δ ∈ (0, 1), the fundamental steady state is stable for

0 < µ <







µ1 0 ≤ γ ≤ γ0

µ2, γ0 ≤ γ,

where

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
, µ2 =

1 − δ

δ

Q

1 − m

1

γ − γ1

,

γ1 = (R − 1) + a(R + α − 1)
1 + m

1 − m
, γ0 =

(1 + δ)2

4δ
γ1, γ2 =

1 + δ

2δ
γ1.

In addition, a flip bifurcation occurs along the boundaryµ = µ1 for 0 < γ ≤ γ0 and a

Hopf bifurcation occurs along the boundaryµ = µ2 for γ ≥ γ0.

Proof. See Appendix A.3. �

Flip Boundaryµ = µ1

Hopf Boundaryµ = µ2

γ

µ

γ1 γ0 γ2

µ̄

µ̄0

FIGURE 3.1. Stability region and bifurcation boundaries form ∈ (−1, 1) and
δ ∈ (0, 1).

The model with the fundamentalists only can be treated as a degenerated case of the complete

model withδ = 0. Forδ ∈ (0, 1), the fundamental steady state becomes unstable through either
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flip or Hopf bifurcation, indicated in Fig.3.1, where

µ̄0 =
2

1 − δ
µ̄, µ̄ =

2Q

(R − 1)(1 − m) + a(R + α − 1)(1 + m)
.

Variations of the stability regions and their bifurcation boundaries characterise different impacts

of different types of trader on the market price behaviour, summarised as follows.

• The market fractionhas a great impact on the shape of the stability region and itsbound-

aries. It can be verified thatγ1, γ0, γ2 andµ1, µ2 increase asm increases. This observa-

tion has two implications: (i) the locals stability region in parameters(γ, µ) is enlarged

as the fraction of the fundamentalists increases and this indicates a stabilizing effect of

the fundamentalists; (ii) the flip (Hopf) bifurcation boundary becomes dominant as the

fraction of the fundamentalists (trend followers) increases, correspondingly, the market

price displays different behaviour near the bifurcation boundaries. Numerical simu-

lations of the nonlinear system (3.1) show that price becomes explosive near the flip

bifurcation boundary, but converges to either periodic or quasi-periodic cycles near the

Hopf bifurcation boundary.

• The speed of price adjustment of the fundamentalists towards the fundamental valuehas

an impact that is negatively correlated to the market fraction. This observation comes

from the fact that, asα increases,γ1 and henceγ0 andγ2 decreases. In other word, an

increase (decrease) of the fundamentalists fraction is equivalent to a decrease (increase)

of the price adjustment speed of the fundamentalists towardthe fundamental value.

• The memory decay rateof the trend followers has a similar impact on the price behav-

iour as the speed of the price adjustment of the fundamentalists does. This is because

that, asδ decreases, bothγ0 andγ2 increase. In particular, asδ → 0, γ0, γ2 → +∞
and the stability and bifurcation is then characterised by the model with the fundamen-

talists only. On the other hand, asδ → 1, bothγ0 andγ2 tend toγ1 whilst µ̄0 tends to

infinity and the stability and bifurcation are then characterised by the model with the

trend followers only. In addition,̄µo increases asδ decreases, implying the steady state

is stabilizing as trend followers put more weights on the more recent prices.

• The risk aversion coefficientshave different impact on the price bahaviour, depending

on the relative risk aversion ratio. Note that,µ̄ and hencēµ0 increase fora = a2/a1 < a∗

and decrease fora = a2/a1 > a∗, wherea∗ = (R − 1)/(R + α − 1) ∈ (1 − 1/R, 1].
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Hence the local stability region is enlarged (reduced) whenthe trend followers are less

(more) risk averse than the fundamentalists in the sense ofa2 < a∗a1 (a2 > a∗a1).

Overall, in terms of the local stability and bifurcation of the fundamental steady state, a similar

effect happens for either high (low) geometric decay rate, or high (low) market fraction of the

trend followers, or high (low) speed of the price adjustmentof the fundamentalists towards the

fundamental value. This observation make us concentrate our statistical analysis of the sto-

chastic model (2.15) onm (the market fraction) andα (the speed of the price adjustment of

the fundamentalists toward the fundamental value). Numerical simulations (not reported here)

for the deterministic system (3.1) show that: (i) the marketprices converge to the fundamental

value for the parameters located insider the local stability region; (ii) near the flip bifurcation

boundary, prices are explode and near the Hopf bifurcation boundary, prices converge to either

periodic or quasi-periodic price cycles (as we move away from the Hopf boundary, more com-

plicated price dynamics can be generated, but this is not thefocus of this paper.); (iii) there is

no significant difference between the average wealth sharesof two types of investors.11

4. STATISTIC ANALYSIS OF THE STOCHASTIC MODEL

In this section, by using numerical simulations, we examinevarious aspects of the price

dynamics of the stochastic heterogeneous asset pricing model (2.15) where both the noisy fun-

damental price and noisy demand processes are presented. The analysis is conducted by estab-

lishing a connection on the price dynamics between SDS (2.15) and its underlying DDS (3.1).

In so doing, we are able to obtain some theoretical insights into the generating mechanism of

various statistic properties, including those econometric properties and stylised facts observed

in high frequency financial time series.

Our analysis is conducted as follows. As a benchmark, we firstreview briefly the so-called

stylized facts based on both S&P500 and AOI (Australian All Ordinary Index). Secondly, we

use the concept of random fixed point to examine the convergence of the market temporal equi-

librium price and its long-run behaviour. It is found that the convergence of asset prices of

SDS (2.15) to the random fixed point is related to the stability of the fixed point of DDS (3.1).

11There is no difference when prices converge to the fundamental value. However, when prices converge to cycles,
the trend followers can accumulate more wealth share (at most of 2% over 5,000 trading days, about 20 years).
Overall, for the deterministic system, the fundamentalists cannot accumulate more wealth than the trend followers
and both survive in the market.
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Thirdly, we use Monte Carlo simulations to conduct statistical analysis and test on the conver-

gence of the market prices to the fundamental price. It is commonly believed that the market

price is mean-reverting to the fundamental price in long-run, but it can deviate from the fun-

damental price in short-run. We analyze market conditions under which this is true. Fourthly,

by analysing wealth accumulation, we examine the profitability and survivability of differen-

tial trading strategies. Our analysis shows long-run (short-run) profitability of the fundamental

(trend following) strategy and long-run survivability of the trend followers. Finally, by examin-

ing the autocorrelation (AC) structure of (relative) returns near different types of bifurcations,

we study the generating mechanism of different AC patterns.Most of our results are very in-

tuitive and can be explained by various behaviour aspects ofthe model, including the mean

reverting of the fundamentalists, the extrapolation of thetrend followers, the speed of price ad-

justment of the market maker, and the market dominance. The statistical analysis and test are

based on Monte Carlo simulations.

4.1. Financial Time Series and Stylized Facts.Recent research on heterogeneous asset pric-

ing models are aimed to explain various market behaviour andto replicate the econometric

properties and stylized facts of financial time series. As a benchmark, we include time series

plots on prices and returns for both S&P500 and AOI (Australian All Ordinary Index) from

Aug. 10, 1993 to July 24, 2002 and the corresponding density distributions, autocorrelation

coefficients (ACs) and statistics of the returns in Appendix B.All (high-frequency) financial

time series share some common facts, the so called stylised facts, including excess volatility

(relative to the dividends and underlying cash flows), volatility clustering (high/low fluctuations

are followed by high/low fluctuations), skewness (either negative or positive) and excess kur-

tosis (comparing to the normally distributed returns), long rang dependence (insignificant ACs

of returns, but significant and decaying ACs for absolute and squared returns), etc. For a com-

prehensive discussion of stylized facts characterizing financial time series, we refer to Pagan

(1996) and Lux (2004).

Recent structure models on asset pricing and heterogeneous beliefs have shown relatively

well understood mechanism of generating volatility clustering, skewness and excess kurtosis.

However, it is less clear on the mechanism of generating long-rang dependence.12 In addition,

12See Lux (2004) for a recent survey on possible mechanisms generating long rang dependence, including coexis-
tence of multiple attractors and multiplicative noise process.
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there is lack of statistical analysis and test on those mechanisms. Our statistic analysis in this

paper is based on Monte Carlo simulations, hoping to establish a connection between various

AC patterns of the SDS and the bifurcation of the underlying DDS. Such connection is nec-

essary to understanding the mechanism of generating stylised facts, to replicating econometric

properties of financial time series, and to calibrating the model to financial data.

In the following discussion, we choose the annual volatility of the fundamental price to be

20% (henceσǫ = (20/
√

K)% with K = 250) and the volatility of the noisy demandσδ = 1,

which is about 1% of the average fundamental price levelP̄ = $100. For all of the Monte Carlo

simulation, without mention, we run 1,000 simulations over6,000 time periods and discard

the first 1,000 time periods to wash out the initial noise effect. Each simulation generates two

independent sets of random numbers, one is for the fundamental price and the other is for the

noisy demand. The draws are i.i.d. across 1,000 simulations, but the same sets of draws are

used for different scenario with different sets of parameters.

4.2. Random Fixed Point and Long-Run Behaviour. One of the primary objectives of this

paper is to analyse the long run behaviour of SDS (2.15). For DDS (3.1), the long-run behav-

iour is characterised by either stable fixed points or various attractors examined in the previous

section. For stochastic dynamic system, the long-run behaviour is often characterised by sta-

tionarity and invariant probability distribution. As pointed in Bohm and Chiarella (2005), this

view does not provide information about stationary solutions generated by the stochastic differ-

ence system and cannot supply any information about the stability of a stationary solution.

The theory of random dynamical system (e.g. Arnold (1998)) provides the appropriate con-

cepts and tools to analyze sample paths and investigate their limiting behaviour. The central

concept is that of arandom fixed point13 and its asymptotic stability, which are generalisations

of the deterministic fixed point and its stability. Intuitively, a random fixed point corresponds

to a stationary solution of a stochastic difference system like (2.15) and the asymptotic stability

implies that sample paths converge to the random fixed point point wise for all initial conditions

of the system. We are interested in the existence and stability of a random fixed point of SDS

(2.15) when the deterministic fixed point of DDS (3.1) is asymptotical stable. However, since

13We refer to Arnold (1998) for mathematical definitions of random dynamical systems and of stable random
fixed points and Bohm and Chiarella (2005) for economical applications to asset pricing with heterogeneous mean
variance preferences.
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SDS (2.15) is nonlinear, a general theory on the existence and stability of a random fixed point

is not yet available and we conduct our analysis by numericalsimulations.

For illustration, we choose parameters as follows

γ = 2.1, δ = 0.85, µ = 0.43, m = 0, w1,0 = 0.5 and α = 1, 0.5, 0.1, 0. (4.1)

For DDS (3.1) with the set of parameters (4.1), applying Proposition 3.4 implies that the fun-

damental value is locally asymptotically stable forα = 1, 0.5, 0.1 and unstable forα = 0. Our

numerical simulations show that this is also true for the nonlinear system (3.1).

For the parameter set (4.1), Fig.4.1 shows the price dynamics of the corresponding SDS

(2.15) with four different values ofα = 1, 0.5, 0.1, 0 and (arbitrarily) different initial conditions

but with a fixed set of noisy fundamental value and demand processes. It is found that, forα =

1, 0.5 and0.1, respectively, there exists a random fixed point and prices with different conditions

converge to the fixed random point in long run. In fact, the convergence only takes about 50,

100 and 400 time periods forα = 1, 0.5 and 0.1, respectively. However, there is no such

stable random fixed point forα = 0 and prices with different initial conditions lead to different

random sample paths (In fact, the sample paths are shifted bydifferent initial conditions.).

This is a surprising result—the stability of fixed point of both the deterministic and stochastic

systems is same for the same parameter set (4.1). In fact, this result holds for other selections

of parameters (as long as the solutions of DDS (3.1) do not explode). Theoretically, how the

stability of the deterministic system and the corresponding stochastic system are related is a

difficult problem in general.14

4.3. Convergence of Market Price to the Fundamental Value.We now turn to the relation

between the market price and the fundamental price. It is commonly believed that the market

price is mean-reverting to the fundamental price in long-run, but it can deviate from the fun-

damental price in short-run. The following discussion indicates that this is true under certain

market conditions.

14It is well known from the stochastic differential equation literature (e.g. see the examples in Mao (1997), pages
135-141) that, for continuous differential equations, adding noise can have double-edged effect on the stability—
it can either stabilize or destabilize the steady state of the differential equations. For our SDS (2.15), numerical
simulations show that adding a small (large) noise can stabilizing (destabilize) the price dynamics when parameters
are near the flip bifurcation boundary of the DDS (3.1).
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FIGURE 4.1. Price convergence withα=1 (a); 0.5 (b); 0.1 (c); and 0 (d) for
different initial conditions.

As we known from the local stability analysis of DDS (3.1) that an increase inα has a

similar effect to an increase inm. Parameterα measures confidence level of the fundamentalists

on their estimated fundamental valueP ∗

t . The previous discussion illustrates that, for fixed

m = 0, asα increases (i.e. as the fundamentalists become more confident on their estimated

fundamental price), the speed of convergence of the market price to the random fixed point

increases. When price of DDS (3.1) is stable, it converges to the fixed point corresponding to

the constant fundamental valuēP . For SDS (2.15), it is interesting to know how the stable

random fixed point is related to the fundamental value process.

To illustrate, for parameter set (4.1), the averaged time series of the difference of market and

fundamental pricesPt−P ∗

t based on Monte Carlo simulations are reported in Fig. 4.2. It shows

that, asα increases, the deviation of the market price from the fundamental price decreases.

That is, as the fundamentalists become more confident on their estimated fundamental price,

the deviation of market price from the fundamental price arereduced.

A statistical analysis is conducted by using Monte Carlo simulations for the given set of para-

meters (4.1) with four different values ofα. The average prices, returns, absolute wealth shares
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FIGURE 4.2. Time series of price differencePt − P ∗

t with α=0 (top left); 0.1
(top right); 0.5 (second left); and 1 (second right).

of the fundamentalists are reported in Fig. 4.4. Because ofm = 0, the absolute and market

wealth shares are the same. The resulting Wald statistics todetect the differences between mar-

ket prices and fundamental prices are reported in Table 4.1.The null hypothesis is specified as,

respectively,

• Case 1:H0 : Pt = P ∗

t , t = 1000, 2000, ..., 5000;

• Case 2,H0 : Pt = P ∗

t , t = 3000, 3500, 4000, ..., 5000;

• Case 3,H0 : Pt = P ∗

t , t = 4000, 4100, 4200, ..., 5000;

• Case 4,H0 : Pt = P ∗

t , t = 4000, 4050, 4100, ..., 5000;

• Case 5,H0 : Pt = P ∗

t , t = 4901, 4902, 4903..., 5000, which refers to the last one hundred

periods;

• Case 6,H0 : Pt = P ∗

t , t = 4951, 4952, ..., 5000, which refers to the last fifty periods.

Noticed that the critical values corresponding to above test statistics come from theχ2 dis-

tribution with degree of freedom 5, 5, 11, 21, 100, and 50, respectively, at 5% significant level.

We see that forα = 0, all of the null hypothesis are strongly rejected at 5% significant level.

Forα = 0.5 and1, all of the null hypothesis can not be rejected at 5% significant level. We also
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see that whenα increasing, the resulting Wald statistics decreasing (except Case 5 withα = 1).

This confirms that whenα increasing, i.e. when the fundamentalists become more confident on

the fundamental price, the differences between prices and fundamental prices become smaller.

TABLE 4.1. Wald test statistics forPt andP ∗

t .

α = 0 α = 0.1 α = 0.5 α = 1 Critical value

Case 1 100.585 13.289 5.225 3.698 11.071
Case2 99.817 13.964 6.782 4.358 11.071
Case 3 121.761 24.971 16.041 10.840 19.675
Case 4 148.690 38.038 23.836 19.190 32.671
Case 5 293.963 105.226 99.618 103.299 124.342
Case 6 177.573 50.970 45.043 43.052 67.505

As we know that an increase inα has similar effect to an increase of the market fraction

of the fundamentalists. The above statistic analysis thus implies that, as the fundamentalists

dominate the market (asm increases), the market prices follow the fundamental prices closely.

Trend extrapolation of the trend followers can drive the market price away from the fundamental

price. This result is very intuitive.

4.4. Wealth Accumulation, Profitability and Survivability. It is commonly believed that

irrational traders (such as the trend followers in our model) may do better than rational traders

(such as the fundamentalists) over a short-run, but over a long-run, irrational traders will be

driven out of the market and rational traders will be the onlysurvivors over a long-run. We

now justify this common belief by analyzing the wealth dynamics of our heterogeneous market

fraction model in which traders do not change their beliefs over time periods. Consequently,

we examine profitability and survivability of both types of trading strategies. Two situations are

considered in the following discussion.

In the first case, we choose parameter set (4.1) by fixing market fractionm and varyingα.

For each set of parameters, we run one simulation over 20,000time periods in order to see

possible limiting behaviours. Fig. 4.3 demonstrates the absolute wealth share accumulations

of the fundamentalists withα = 1, 0.5, 0.1, 0 and keeping all the other conditions the same. It

shows that (i) trend followers survive in long-run forα = 1, 0.5 and0.1 in the sense that their

absolute wealth share does not vanish, although they accumulate less wealth shares over the time

period; (ii) the trend followers are doing better then the fundamentalists whenα = 0; (iii) the

profitability of the fundamentalists improves asα increases (i.e. as they become more confident

on their estimated fundamental value). These results are further confirmed when we run Monte
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FIGURE 4.3. Time series of the absolute wealth accumulation of the funda-
mentalistsw1,t with α = 1, 0.5, 0.1 and0.

Carlo simulations, the results are given in Fig. 4.4. For eachvalue ofα, we plot the average

market price (left column), return (middle column) and absolute wealth share accumulation

(right column)15 of the fundamentalists for four values ofα in Fig. 4.4. Forα = 0, the absolute

wealth share of the fundamentalists is dropped from 50% to about 43%, while forα = 0.1, 0.5

and 1, it is increased from 50% to 55%, 76% and 86%, respectively.

Given that bothα andm have similar impact on the local stability of the deterministic sys-

tem, we can demonstrate that they play similar role in terms of wealth accumulation. Again,

by running one simulation over 20,000 time periods, Fig. 4.5shows the absolute wealth share

accumulations of the fundamentalists for four different values ofm = −0.95, 0 and0.5 with

α = 0.5, γ = 2, µ = 0.5, δ = 0.85, w1,0 = 0.5. In this case, the fundamentalists form their

conditional expectation by taking average of the latest market price and fundamental price. In

all four cases, (i) the fundamentalists accumulate more wealth share than the trend followers

in long-run (an increase from 50% to about 70-75%), however,the trend followers survive in

long-run and they can even accumulate more wealth share in short-run when they dominate

the market (this is the case whenm = −0.95, which corresponds to 97.5% of trend followers

and 2.5% of the fundamentalists); (ii) the profitability of the fundamentalists improves asm

increases (i.e. as the market fraction of the fundamentalists increases). Essentially, we have

15The initial wealth share for both types of traders are equalw1,0 = 0.5. Because ofm = 0, both the absolute and
market wealth shares are the same.
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α = 0, 0.1, 0.5 and1.

shown that bothα andm play similar role on profitability (of the fundamentalists)and surviv-

ability (of the trend followers).16

0 1450 2900 4350 5800 7250 8700 10150 11600 13050 14500 15950 17400 18850

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75 m=0

m=−0.95

m=0.5

FIGURE 4.5. Time series of the absolute wealth accumulation of the funda-
mentalistsw1,t with m = −0.95, 0, 0.5 and α = 0.5, γ = 2, µ = 0.5, δ =
0.85, w1,0 = 0.5.

16Comparison of Fig.4.3 and Fig. 4.5 indicates that parameterα plays more important role on the wealth accumu-
lation than parameterm does.
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In the second case, we assume that the fundamentalists are naive traders (i.e.α = 0 and

E1,t(Pt+1) = Pt). In this case the fundamental price plays no role on the conditional expectation

formation of the fundamentalists. We choose

α = 0, γ = 1, µ = 0.4, δ = 0.85, w1,0 = 0.5 and m = −1,−0.5, 0, 0.5, 1. (4.2)

For each set of parameters, we run one simulation over 20,000time periods such that the cor-

responding limiting behaviours become clear. Fig. 4.6 illustrates the absolute wealth share

accumulations of the fundamentalists with different market fraction m = −1,−0.5, 0, 0.5, 1,

and keeping all the other conditions the same. It shows that,overall, no one is doing signifi-

cant better by accumulating significant wealth share than the others. However, different from

the previous case, trend followers are doing slightly better by accumulating more wealth share,

exceptm = 1. In addition, the profitability of the fundamentalists improves asm increases (i.e.

as their market population share increases). These resultsare further confirmed when we run

Monte Carlo simulations, the results are given in Fig. B.2 in Appendix B, which includes the

average market price, return and absolute wealth share accumulation of the fundamentalists.17

It is also interesting to see that the average market price increases, rather than decreases in the

first case, stochastically. Given the naive expectation of the fundamentalists, this may due to

the trend chasing activity of the trend followers.
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FIGURE 4.6. Time series of the absolute wealth accumulation of the funda-
mentalistsw1,t with m = −1,−0.5, 0, 0.5, 1 andα = 0, γ = 1, µ = 0.4, δ =
0.85, w1,0 = 0.5.

17The initial wealth share for both types of traders are equalw1,0 = 0.5. For different value ofm, the market
wealth shares are different.
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The above analysis leads to the following implications on the profitability and survivability:

• Although the trend followers have no information on the fundamental value, they sur-

vive in long-run. This may due to the learning mechanism theyengaged. In addition,

they can do even better than the fundamentalists over short-run.

• The profitability of the fundamentalists improve as either they become more confident

on their estimated fundamental value or they dominate the market.

• The trend followers are doing better by accumulating more wealth share when the funda-

mentalists become naive traders. In addition, their profitability improves as their market

population share increases.

Overall, we have shown the long-run (short-run) profitability of the fundamental (trend fol-

lowing) trading strategy and long-run survivability of thetrend following strategy. This result

partially verifies a common belief that the chartists may do better in short-run, but market will

be dominated by the fundamentalists in long-run. However, the chartists do survive in long-run

and this may due to their learning. This result provides essentially incentive and justification

on recent studies on heterogeneous asset pricing (e.g. Brockand Hommes (1997) and Chiarella

and He (2002, 2003c)) in which traders switch their trading strategy based on certain fitness

function from time to time.

4.5. Bifurcations and Autocorrelation Patterns. Understanding autocorrelation (AC) struc-

ture of returns plays an important role on the market efficiency and predictability. It is often

a difficult task to understand the generating mechanism of various AC patterns, in particular

those realistic patterns observed in financial time series.It is believed that the underlying de-

terministic dynamics of the stochastic system plays important role on the AC structure of the

stochastic system. But how they are related is not clear. In the following discussion, we are

trying to establish such connection by analyzing changes ofautocorrelation (AC) structures of

the stochastic returns when parameters change near the bifurcation boundaries of the underlying

deterministic model. The analysis is conducted through Monte Carlo simulations. This analysis

leads us to some insights into how particular AC patterns of the stochastic model are character-

ized by different types of bifurcation of the underlying deterministic system. In so ding, it helps

us to understand the mechanism of generating realistic AC patterns.
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From our discussion in the previous section, we know that thelocal stability region of the

steady state is bounded by both flip and Hopf bifurcation boundaries in general. To see how

the AC structure changes near different types of bifurcation boundary, we select two sets of

parameters, denoted by (F1) and (H1), respectively,

(F1) α = 1, γ = 0.8, µ = 5, δ = 0.85, w1,0 = 0.5 andm = −0.8,−0.5,−0.3, 0;

(H1) α = 1, γ = 2.1, µ = 0.43, δ = 0.85, w1,0 = 0.5 andm = −0.95,−0.5, 0, 0.5.replacements
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FIGURE 4.7. Monte Carlo simulation on the average ACs of return form =
−0.8,−0.5, 0.3, 0 for parameter set(F1).

For (F1) with different values ofm, the steady state of DDS (3.1) is locally stable.18 However,

asm increases, we move closely to the flip boundary.19 For (H1), there exists a Hopf bifurcation

valuem̄ ∈ (0, 0.005) such that the steady state is locally stable form = 0.5 ≥ m̄ and unstable

for m = −0.95,−0.5, 0 < m̄ through a Hopf bifurcation. Asm decreases, we are moving

closely to the Hopf bifurcation boundary initially, and then crossing over the boundary, and

18The solutions become exploded when parameters are near the flip bifurcation boundary and hence we only
choose parameters from inside the stable region.
19This means that the difference between the givenµ and the corresponding flip bifurcation valueµ1(m) becomes
smaller asm increases. It is in this sense that an increase inm is destabilising the steady state.
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then moving away from the boundary. Therefore, an increase in m is stabilizing the steady

state. It is interesting to see that the market fraction has different stabilizing effect near different

bifurcation boundary.

For SDS (2.15), Fig. 4.7 and Fig. 4.8 report the average ACs of relative return for four differ-

ent values ofm with parameter set (F1) and (H1), respectively. Tables B.2 and B.3 in Appendix

B report the average ACs of returns over the first 100 lags, the number in the parentheses are

standard errors, the number in the second row for each lag arethe total number of ACs that are

significantly (at 5% level) different from zero among 1,000 simulations. It is found that adding

the noise demand does not change the nature of ACs of returns.20
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FIGURE 4.8. Monte Carlo simulation on the average ACs of return form =
−0.95,−0.5, 0, 0.5 for parameter set(H1).

Given that there is no significant AC structure from the noisyreturns of the fundamental

values, the persistent AC patterns displayed in Figs. 4.7-4.8 indicate some connections between

AC patterns of SDS (2.15) and the dynamics of the underlying DDS (3.1). For parameter set

20Noisy processes in our model do not change the qualitative nature of the AC of returns, however, they do change
the AC patterns of the absolute and squared returns. This issue is addressed in our separate paper He and Li (2004).
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(F1), the fundamental value of the underlying DDS (3.1) is locally stable and the AC structure

of returns of SDS (2.15) changes as the parameters are movingcloser to the flip bifurcation

boundary. For the deterministic model, we know that an increase ofm has a similar effect to

an increase ofα, the speed of price adjustment of the fundamentalists, orµ, the speed of price

adjustment of the market maker. Corresponding to the case ofm = −0.8 in Fig. 4.7, anunder

and over-reaction pattern21 characterizing by an oscillatory decaying ACs withAC(i) > 0

for small lags followed by negative ACs for large lags is observed when the parameters are far

away from the flip bifurcation boundary. Intuitively, this results from the constant price under-

adjustment from either the fundamentalists or the market maker. As the parameters are moving

toward the flip bifurcation boundary, such as the case ofm = −0.5, 0.3 in Fig. 4.7, anover-

reaction pattern characterized by an increasingAC with AC(i) < 0 for small lagsi appears.

As the parameters move closely to the flip boundary, such as when m = 0 in Fig. 4.7, this

over-reaction pattern becomes astrong over-reactionpattern characterizing by an oscillating

and decaying ACs which are negative for odd lags and positive for even lags. These results

are very intuitive. When the market fractions of the fundamentalists are small, it is effectively

equal to a slow price adjustment from either the fundamentalists or market maker, leading to

under-reaction. Asm increases, such adjustment becomes strong, leading to an over-reaction.22

Near the Hopf bifurcation boundary, the AC structure behaviours differently when parame-

ters cross the Hopf boundary from unstable region to stable region, see Fig. 4.8. For smallm,

saym = −0.95,−0.5, the steady state of the deterministic model is unstable andit bifurcates to

either periodic or quasi-periodic cycles. For the stochastic model, astrong under-reactionAC

pattern characterizing by significantly decaying positiveAC(i) for small lagsi and insignif-

icantly negativeAC(i) for large lagsi, as illustrated in Fig. 4.8 form = −0.95.23 As m

increases, say tom = −0.5 and0, the strong under-reaction pattern is replaced by an over-

reaction pattern. Asm increases further, say tom = 0.5 in Fig. 4.8, the steady state of the

deterministic model becomes stable and the AC structure of the stochastic return reduces to an

insignificant under-reaction pattern.

21This means a short-run under-reaction and long-run over-reaction.
22Based on this observation, one can see that both the fundamentalists and market maker need to react to the market
price atright way in order to generate insignificant AC patterns observed in financial markets. Essentially, this is
the mechanism we are using to characterising the long range dependence in our separate paper He and Li (2004).
23The AC structure discussed here are actually combined outcomes of the under-reacting trend followers and over-
reacting fundamentalists. This leads price to be under-reacted for short lags, over-reacted for medium lags, and
mean-reverted for long lags.
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The above discussion is based onα = 1 (i.e. the fundamentalists are fully confident about

their estimated fundamental value). Similar result are observed forα < 1 (when the fundamen-

talists are not fully confident about the fundamental value). Fig. B.3 in Appendix B plots the

results for the following set of parameters:

(FH) : α = 0.5, γ = 0.8, µ = 5, δ = 0.85, m = −0.9,−0.5, 0, 0.9.

In this case, small values ofm are close to Hopf boundary and large values ofm are close to

the flip boundary. As we can see from the AC patterns in Fig. B.3 in Appendix B that, asm

increases, AC patterns change from strong under-reaction to under- and over-reaction, and to

over-reaction, and then to strong over-reaction.

In all cases, the ACs decay and become insignificant after firstfew lags (the first 5 lags for

under/over-reaction and the first 10 lags for strong reaction). Briefly, activity of the fundamen-

talists (either high fraction or high speed of price adjustment) are responsible for over-reaction

AC patterns and extrapolation from the trend followers are responsible for the under-reaction

AC patterns. In addition, a strong under-reaction AC patterns of SDS is in general associated

with Hopf bifurcation of the DDS, a strong over-reaction AC pattern is associated with flip bi-

furcation, and under and over-reaction AC patterns are associated with both types of bifurcation

(depending on their dominance). This statistical analysisleads us to some insights into how the

AC structure of the SDS are affected by different types of bifurcation of the underlying DDS.

5. CONCLUSION

The model proposed in this paper introduces a market fractions model with heterogeneous

traders in a simple asset-pricing and wealth dynamics framework. It also contributes to the lit-

erature by incorporating a realistic trading period, whicheliminates the untenable risk-free rate

assumption. The relationship between deterministic forces and stochastic elements by focus-

ing on various aspects of financial market behaviour, including market dominance, under and

over-reaction, profitability and survivability, and statistical properties, including autocorrelation

structure, of the stochastic model is examined. Statistical analysis based on Monte Carlo simu-

lations shows that the long-run behaviour and convergence of the market prices, long (short)-run

profitability of the fundamental (trend following) tradingstrategy, survivability of chartists can

be characterized by the dynamics of the underlying deterministic system. In particular, we
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show that various under and over-reaction autocorrelationpatterns of returns can be character-

ized by the bifurcation nature of the deterministic system.Such analysis helps us to understand

potential sources of generating realistic time series properties.

As one of the stylized facts, long-range dependence in volatility (i.e., hyperbolic decline of

its autocorrelation function) has been focused in recent literature and we refer to Lux (2004)

for an extensive survey on empirical evidence, models and mechanisms in financial power laws.

Based on our understanding from this paper, it is interestingto know that if our model has a

potential to generate realistic long-rang dependence in volatility. In fact, this issue is addressed

in our separate paper He and Li (2004). It shows the model doeshave mechanism to generate

realistic long-memory feature. The analysis is based on Monte Carlo simulations and estimates

of GARCH and FIGARCH effects.

As we have seen that it is interesting and important to see howthe deterministic dynamics and

noise interact each other. Theoretical understanding on the connections between certain time

series properties of the stochastic system and its underlying deterministic dynamics is important

but difficult, and statistical analysis based on various econometric tools seems necessary. It is

worth emphasizing that all these interesting qualitative and quantitative features arise from our

simple market fraction model with fixed market fraction. Theherding mechanism developed

in Lux and Marchesi (1999) and the adaptive switching mechanism in Brock and Hommes

framework (Brock and Hommes (1997, 1998)) are very importantmechanisms in understanding

the behaviour of real financial market. It would be interesting to extend our analysis from the

current model to a changing fraction model, in which part of the market fractions are governed

by herding mechanism and part follows some evolutionary adaptive processes. Taking together

the herding and switching mechanisms and the findings in thispaper, we hope we can better

understand and characterize a large part of the stylized facts of financial data.
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APPENDIX A. PROOFS OFPROPOSITIONS

A.1. Proof of Proposition 3.1. ForP ∗

t = P̄ , the demand function for the fundamentalists becomes

z1,t =
(1 − α − R)(Pt − P̄ )

a1(1 + r2)σ2
1

.

Let (Pt, ut, vt) = (P0, u0, v0) be the steady state of the system. Then(P0, u0, v0) satisfies

P0 = P0 +
µ

2

[

(1 + m)
(1 − α − R)(P0 − P̄ )

a1(1 + r2)σ2
1

+ (1 − m)
γ(P0 − u0) − (R − 1)(P0 − P̄ )

a2σ2
1
(1 + r2 + b v0)

]

, (A.1)

u0 = δu0 + (1 − δ)P0, (A.2)

v0 = δv0 + δ(1 − δ)(P0 − u0)
2. (A.3)

One can verify that(P0, u0, v0) = (P̄ , P̄ , 0) satisfies (A.1)-(A.3); that is the fundamental steady state is

one of the steady state of the system (3.1). It follows from (A.2)-(A.3) and δ ∈ [0, 1) thatP0 = u0, v0 =

0. This together with (A.1) implies thatP0 = P̄ . In fact, if P0 6= P̄ , then (A.1) implies that

1 + m

a1

(1 − α − R) +
1 − m

a2

(1 − R) = 0. (A.4)

However, sinceα ∈ [0, 1], R = 1+r/K > 1 andm ∈ [−1, 1], equation (A.4) cannot be hold. Therefore

the fundamental steady state is the unique steady state of the system.

A.2. Proof of Proposition 3.2. ForP ∗

t = P̄ andm = 1, equation (3.1) becomes

Pt+1 = Pt − µ
(R + α − 1)(Pt − P̄ )

a1(1 + r2)σ2
1

, (A.5)

which can be rewritten as

Pt+1 − P̄ = λ[Pt − P̄ ], (A.6)

where

λ ≡ 1 − µ
R + α − 1

a1(1 + r2)σ2
1

.

Obviously, from (A.6), the fundamental pricēP is globally asymptotically attractive if and only if|λ| <

1, which in turn is equivalent to0 < µ < µo.
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FIGURE A.1. Stability region and bifurcation boundary form = 1.

A.3. Proof of Propositions 3.3 and 3.4.For P ∗

t = P̄ , system (3.1) is reduced to the following 3-

dimensional difference deterministic system



























Pt+1 = F1(Pt, ut, vt),

ut+1 = F2(Pt, ut, vt),

vt+1 = F3(Pt, ut, vt),

(A.7)

where

F1(P, u, v) = P +
µ

2

[

(1 + m)
(1 − α − R)(P − P̄ )

a1(1 + r2)σ2
1

+ (1 − m)
γ(P − u) − (R − 1)(P − P̄ )

a2σ2
1
(1 + r2 + b v)

]

,

F2(P, u, v) = δu + (1 − δ)F1(P, u, v),

F3(P, u, v) = δv + δ(1 − δ)(F1 − u)2.

Denote

a =
a2

a1

, Q = 2a2(1 + r2)σ2
1.

At the fundamental steady state(P̄ , P̄ , 0),

∂F1

∂P
= A ≡ 1 +

µ

Q
[(1 + m)a(1 − α − R) + (1 − m)(1 + γ − R)],

∂F1

∂u
= B ≡ −µγ(1 − m)

Q
,

∂F1

∂v
= 0;

∂F2

∂P
= (1 − δ)A,

∂F2

∂u
= C ≡ δ + (1 − δ)B,

∂F2

∂v
= 0;

∂F3

∂P
=

∂F3

∂u
=

∂F3

∂v
= 0.
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Then the Jacobina matrix of the system at the fundamental steady stateJ is given by

J =













A B 0

(1 − δ)A C 0

0 0 0













(A.8)

and hence the corresponding characteristic equation becomes

λΓ(λ) = 0,

where

Γ(λ) = λ2 − [A + δ + (1 − δ)B]λ + δA.

It is well known that the fundamental steady state is stable if all three eigenvaluesλi satisfy |λi| < 1

(i = 1, 2, 3), whereλ3 = 0 andλ1,2 solve the equationΓ(λ) = 0.

Forδ = 0, Γ(λ) = λ[λ− (A+B)]. The first result of Proposition 3.3 is then follows from−1 < λ =

A + B < 1 andλ = −1 whenA + B = 1.

For δ ∈ (0, 1), the fundamental steady state is stable if

(i). Γ(1) > 0;

(ii). Γ(−1) > 0;

(iii). δA < 1.

It can be verified that

(i). For α ∈ [0, 1], Γ(1) > 0 holds;

(ii). Γ(−1) > 0 is equivalent to

either γ ≥ γ2 or 0 < γ < γ2 and 0 < µ < µ1,

where

γ2 =
1 + δ

2δ
[(R − 1) + a(R + α − 1)

1 + m

1 − m
],

µ1 =
1 + δ

δ

Q

1 − m

1

γ2 − γ
.

(iii). The conditionδA < 1 is equivalent to

either γ ≤ γ1 or γ > γ1 and 0 < µ < µ2,
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where

γ1 = (R − 1) + a(R + α − 1)
1 + m

1 − m
,

µ2 =
1 − δ

δ

Q

1 − m

1

γ − γ1

.

Noting that, forδ ∈ (0, 1), γ1 < γ0 < γ2, where

γ0 =
(1 + δ)2

4δ

[

(R − 1) + a(R + α − 1)
1 + m

1 − m

]

solves the equationµ1 = µ2. Also,µ1 is an increasing function ofγ for γ < γ2 while µ2 is a decreasing

function of γ for γ > γ1. Hence the two conditions for the stability are reduced to0 < µ < µ1 for

0 ≤ γ ≤ γ0 and0 ≤ µ ≤ µ2 for γ > γ0. In addition, the two eigenvalues ofΓ(λ) = 0 satisfyλ1 = −1

andλ2 ∈ (−1, 1) whenµ = µ1 andλ1,2 are complex numbers satisfying|λ1,2| < 1 whenµ = µ2.

Therefore, a flip bifurcation occurs along the boundaryµ = µ1 for 0 < γ ≤ γ0 and a Hopf bifurcation

occurs along the boundaryµ = µ2 for γ ≥ γ0.

Flip Boundaryµ =
Q̄

R−1

γ

µ

Q̄

R−1

Flip Boundaryµ = µ̄1

Hopf Boundaryµ = µ̄2

γ

µ

R − 1 γ̄0 γ̄2

Q̄

R−1

2
(1−δ)(R−1)

(a) δ = 0 (b) δ ∈ (0, 1)

FIGURE A.2. Stability region and bifurcation boundaries for the trend follow-
ers and market maker model withδ = 0 (a) andδ ∈ (0, 1) (b).
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APPENDIX B. MONTE CARLO SIMULATIONS AND STATISTICAL RESULTS

Econometric Properties and Statistics of S&P 500 and AOI. In this appendix, we include time series

plots on prices and returns for both S&P 500 and AOI (Australian OrdinaryIndex) from Aug. 10, 1993

to July 24, 2002 in Fig.B.1. The corresponding density distributions, autocorrelation coefficients (ACs)

and statistics of the returns are also illustrated in Fig. B.1 and Table B.1.

FIGURE B.1. Time series on prices and returns and density distributions and
autocorrelation coefficients (ACs) of the return for S&P 500 (a) and AOI (b)
from Aug. 10, 1993 to July 24, 2002.
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TABLE B.1. Statistics of returns series of for S&P500 and AOI from Aug. 10,
1993 to July 24, 2002.

Index Mean Median Max. Min. Std. Dev. Skew. Kurt. Jarque-Bera
S&P500 0.000194 0.0000433 0.057361 -0.070024 0.0083 -0.504638 8.215453 2746.706

AOI 0.000269 0.000106 0.055732 -0.071127 0.010613 -0.23127 7.263339 1789.96
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FIGURE B.2. Average Monte Carlo time series of market prices, returns and
absolute wealth share of the fundamentalists withα = 0, γ = 1, µ = 0.4, δ =
0.85, w1,0 = 0.5, andm = −0.5 (top row), 0 (second row), 0.5 (third row),
1(4-th row), -1(the last row).
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TABLE B.2. Autocorrelations ofrt for the flip-set parameter(F1).

Lag m = −0.8 m = −0.5 m = −0.3 m = 0

1 0.2933 (0.0169) -0.0256 (0.0149) -0.3076 (0.0136) -0.8602 (0.0084)
993 455 1000 1000

2 0.1664 (0.0162) -0.0760 (0.0152) -0.0278 (0.0169) 0.6939 (0.0161)
988 935 720 1000

3 0.0636 (0.0161) -0.0782 (0.0157) -0.0328 (0.0168) -0.5899 (0.0205)
883 915 456 1000

4 -0.0112 (0.0164) -0.0621 (0.0158) -0.0102 (0.0168) 0.5123 (0.0233)
297 826 115 998

5 -0.0630 (0.0168) -0.0420 (0.0158) -0.0058 (0.0167) -0.4528 (0.0250)
868 625 79 986

6 -0.0958 (0.0168) -0.0262 (0.0158) -0.0034 (0.0167) 0.4033 (0.0262)
949 379 70 978

7 -0.1116 (0.0169) -0.0134 (0.0158) -0.0014 (0.0167) -0.3631 (0.0269)
968 163 72 969

8 -0.1148 (0.0169) -0.0052 (0.0158) -0.0006 (0.0166) 0.3282 (0.0274)
976 57 54 955

9 -0.1102 (0.0169) -0.0015 (0.0159) -0.0010 (0.0167) -0.2981 (0.0278)
966 58 53 934

10 -0.0989 (0.0169) 0.0008 (0.0159) -0.0009 (0.0167) 0.2712 (0.0280)
953 63 57 916

20 0.0248 (0.0179) -0.0006 (0.0160) -0.0001 (0.0167) 0.1188 (0.0278)
338 51 57 690

30 -0.0036 (0.0181) 0.0002 (0.0160) 0.0002 (0.0167) 0.0565 (0.0268)
96 51 54 463

40 -0.0020 (0.0180) 0.0005 (0.0160) 0.0007 (0.0167) 0.0291 (0.0262)
88 39 47 299

50 0.0015 (0.0180) 0.0006 (0.0160) 0.0009 (0.0167) 0.0150 (0.0259)
77 66 56 230

60 -0.0017 (0.0181) -0.0014 (0.0161) -0.0013 (0.0167) 0.0059 (0.0259)
99 56 54 218

70 0.0012 (0.0181) 0.0003 (0.0161) 0.0001 (0.0167) 0.0046 (0.0259)
84 54 50 197

80 0.0005 (0.0180) 0.0013 (0.0161) 0.0014 (0.0167) 0.0032 (0.0258)
74 76 64 181

90 -0.0006 (0.0181) -0.0006 (0.0161) -0.0007 (0.0167) 0.0016 (0.0259)
84 64 54 184

100 -0.0003 (0.0181) -0.0005 (0.0162) -0.0001 (0.0168) 0.0023 (0.0258)
69 48 52 192
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TABLE B.3. Autocorrelations ofrt for the Hopf-set parameter(H1).

Lag m = −0.95 m = −0.5 m = 0 m = 0.5

1 0.0746 (0.0345) 0.1037 (0.0196) 0.0688 (0.0176) 0.0205 (0.0168)
898 964 582 730

2 0.0825 (0.0326) 0.0802 (0.0189) 0.0429 (0.0174) 0.0064 (0.0169)
811 868 469 687

3 0.0720 (0.0315) 0.0593 (0.0187) 0.0241 (0.0173) -0.0020 (0.0170)
788 672 434 618

4 0.0631 (0.0309) 0.0426 (0.0183) 0.0116 (0.0173) -0.0059 (0.0171)
756 493 422 529

5 0.0535 (0.0301) 0.0294 (0.0182) 0.0023 (0.0174) -0.0079 (0.0171)
721 380 436 418

6 0.0456 (0.0292) 0.0185 (0.0182) -0.0050 (0.0173) -0.0099 (0.0171)
677 301 398 339

7 0.0388 (0.0288) 0.0107 (0.0180) -0.0080 (0.0173) -0.0085 (0.0170)
587 272 366 244

8 0.0333 (0.0287) 0.0049 (0.0179) -0.0095 (0.0171) -0.0068 (0.0170)
498 257 325 161

9 0.0309 (0.0278) -0.0009 (0.0178) -0.0111 (0.0173) -0.0066 (0.0170)
433 290 313 154

10 0.0250 (0.0268) -0.0050 (0.0177) -0.0116 (0.0172) -0.0055 (0.0170)
358 281 245 106

20 0.0021 (0.0230) -0.0152 (0.0175) -0.0048 (0.0171) -0.0012 (0.0170)
88 228 62 53

30 -0.0035 (0.0215) -0.0058 (0.0174) 0.0002 (0.0171) 0.0003 (0.0170)
78 76 53 58

40 -0.0066 (0.0201) -0.0013 (0.0175) -0.0003 (0.0172) -0.0004 (0.0170)
84 54 50 47

50 -0.0053 (0.0191) 0.0002 (0.0177) 0.0001 (0.0172) 0.0002 (0.0170)
80 56 63 62

60 -0.0059 (0.0193) -0.0005 (0.0175) -0.0012 (0.0172) -0.0013 (0.0171)
85 53 60 54

70 -0.0045 (0.0190) 0.0008 (0.0175) 0.0006 (0.0172) 0.0006 (0.0171)
72 61 59 56

80 -0.0034 (0.0186) 0.0008 (0.0175) 0.0009 (0.0172) 0.0010 (0.0170)
73 61 61 58

90 -0.0046 (0.0185) -0.0013 (0.0176) -0.0008 (0.0172) -0.0009 (0.0171)
73 60 65 63

100 -0.0037 (0.0183) -0.0001 (0.0178) -0.0002 (0.0173) -0.0003 (0.0171)
56 55 50 43
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FIGURE B.3. Monte Carlo simulation on the average ACs of return form =
−0.9 (top left), -0.5 (top right), 0 (bottom left), 0.9 (bottom right) for parameter
set(FH).
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