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Abstract

This paper describes a new continuous-time principal-agent model, in which the

output is a diffusion process with drift determined by the agent’s unobserved ef-

fort. The risk-averse agent receives consumption continuously. An optimal contract,

based on the agent’s continuation value as a state variable, is computed by a new

method using a differential equation. During employment the output path stochas-

tically drives the agent’s continuation value until it hits a low retirement point or a

high retirement point. Unlike in related discrete-time models, one can use calculus

to derive comparative statics and evaluate inefficiency. 1
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1 Introduction.

This paper explores a continuous-time analogue of the repeated principal-agent model. The

continuous-time formulation leads to a new method for deriving an optimal contract, one

that is simpler computationally than the widely used discrete-time method developed by

Phelan and Townsend (1991). It also yields a clearer intuitive understanding of the optimal

contract’s nature. The optimal contract comes from a solution of a differential equation,

which allows us to derive various comparative statics results.

We consider a dynamic setting, in which an agent controls the drift of an output process

by his choice of effort. The principal does not observe the agent’s effort, but sees the total

output: a Brownian motion with a drift that depends on effort. The principal offers a

contract to an agent at time 0 and commits to it. The contract consists of a flow of

consumption at every moment of time contingent on the entire past output path. The agent

is risk-averse and the principal is risk-neutral. The agent receives utility from consumption

and disutility from effort. In our basic model, the agent demands an initial reservation

utility from the entire contract in order to begin, and the principal will offer a contract

only if he can derive positive profit from it. If the contract is offered and accepted, the

agent cannot quit, and the principal cannot replace the agent. After we solve the basic

model, we consider extensions where the agent can quit, and the principal can replace the

agent at a cost. It is one of the advantages of the continuous-time formulation that such

extensions can be analyzed with ease, using the same differential equation that applies to

the basic model.

In our setting, the optimal contract can be described in terms of the agent’s continuation

value as a single state variable. At any moment of time, the agent’s continuation value

is the total utility, which the agent expects from the future if he acts optimally. In our

continuous-time setting, the dynamic evolution of the agent’s continuation value is naturally

described by its drift and volatility. The volatility of the agent’s continuation value has

an analogue in discrete-time models, where the observed realization of output makes the

agent’s continuation value follow a random walk. In discrete time, it is the random walk’s

step size that determines the agent’s incentive to work hard. That is, step size expresses

the sensitivity of the agent’s continuation value to realized output, and hence a large step

size motivates the agent to work hard for high output. Volatility is the analog of step size

in a continuous time model, and as one would expect, it is by manipulating the volatility

of the agent’s continuation value that the principal creates incentives in our setting.
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The drift in the agent’s continuation value can be understood as follows. From a

contractual point of view, the agent’s continuation value is the expected present value

promised to the agent by the principal. Promises must be fulfilled. Given a particular

promise, the principal can pay to the agent less now and escalate future promises, or pay

more now and owe to the agent less in the future. The principal’s choice of how to fulfill

his promise induces a drift in the agent’s continuation value. We find that it is optimal for

the principal to pay to the agent at a rate, at which the marginal cost of delivering utility

to the agent is a martingale whenever the agent receives positive consumption. We call

this phenomenon compensation smoothing.

Here is the form of an optimal contract. Depending on the agent’s participation con-

straint, the principal will choose a starting promised value W0 to maximize his profit. The

starting promised value can be equal to or greater than the agent’s initial demand Ŵ .

As time goes on, the principal will recompute a new promised value Wt at every point of

time using a stochastic differential equation driven by the output path. The agent remains

employed as long as his continuation value stays in the interval (0, Wgp). When the agent’s

value reaches an endpoint of this interval, the agent is retired: he stops putting effort and

receives his continuation value by consuming a constant stream of consumption payments

from the principal. Before the agent is retired, the principal’s payment to the agent at

every point of time is uniquely determined by Wt. The larger Wt, the greater the payment.

An interesting feature of the optimal contract is the existence of a probationary interval

[0, W ∗] of continuation values, where W ∗ < Wgp. When the the agent’s continuation value

enters the probationary interval, the principal stops paying him, but keeps adjusting Wt

based on the current path of output.

Why does the optimal contract exhibit these features? The low retirement point is

necessary because the only way to deliver to the agent a value 0 is by giving him constant

consumption 0, and allowing him to not work. The high retirement point exists due to the

income effect: when the agent’s consumption is high, it costs the principal too much to

compensate him for positive effort. In the probationary interval, the principal is punishing

the agent at his own cost, that is, the principal’s profit is increasing in the agent’s value in

this interval. During probation, the least-cost way of punishing the agent is by paying him

zero.2

Using the differential equation that characterizes the optimal contract, we can derive

new comparative statics results about how the principal’s profit and the optimal contract

2We assume that the utility from zero consumption is bounded and normalize it to zero.
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depend on the parameters of the model. By far the most powerful effect on the principal’s

profit comes from the productivity of the agent. Increase in productivity improves the

principal’s profit directly through higher output and indirectly by making effort more de-

tectable. We prove that increase in productivity improves the principal’s profit even in the

face of comparable adverse changes in both the cost of effort and the volatility of output.

The continuous-time formulation allows us to estimate how much efficiency is lost due

to informational problems. In the limit as the discount rate goes to zero, the total loss

of efficiency in terms of the principal’s profit is δα2σ2

2
, where δ is the agent’s coefficient

of absolute risk aversion, α is the piece-rate (the fraction of the risk borne by the agent)

required to induce proper incentives, and σ is the volatility of output. This result elaborates

upon what is implied by the Folk Theorem: the “per period” inefficiency converges to 0

(proportionally to the discount rate r), but the total inefficiency accumulated over time

converges to a strictly positive constant.

1.1 Related Literature.

Let us discuss how this paper is related to existing literature. The idea that the agent’s

promised value is a sufficient state variable to build optimal contracts is not new. Promised

value has been used in many discrete-time models due to the theoretical developments of

Abreu, Pearce and Stacchetti (1986 and 1990). Our paper will show that in continuous

time, promised value sufficiently describes the past history to specify an optimal contract.

The research in our paper was inspired by the discrete-time model of Phelan and

Townsend (1991). They develop a method of computing optimal long-term contracts in a

discrete time setting. Their method relies on linear programming to solve the principal’s

problem in a given period based on a guess of a profit function for the continuation of the

game. When this problem is solved for every continuation value, one obtains a new guess

for a profit function. Multiple iterations lead to convergence to the true profit function.

One can see a direct parallel between their discrete-time solutions and the continuous-time

solutions in this paper. The main advantage of their approach is its applicability to a very

wide range of settings, even those that require more than one state variable. Also, because

of discretization of the set of feasible consumptions and continuation values, their method

does not require any assumptions on the form of the agent’s utility function. However, the

method of Phelan and Townsend is much more computationally intensive than the method

of solving differential equations suggested in this paper. Also, this paper contributes to
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our understanding of the theory of optimal contracts between a principal and an agent. A

lot of features of an optimal contract are illuminated more clearly by the continuous-time

solutions, e.g. drift and volatility of the promised value, existence of a probationary period

and the two retirement points on the boundary. Finally, we are able to find analytical

comparative statics.

Brownian motion has been first applied to the principal-agent problem in a paper by

Holmstrom and Milgrom (1987). In their model, the agent also controls the drift of a

diffusion process for total output. Unlike in our continuous-time model, in their model the

agent receives only one payment in the end of a finite time interval, when the interaction

with the principal ends. Their paper pursues two main results: that an optimal contract

depends only on aggregate output and that the final payment to the agent is linear in

aggregate output. Holmstrom and Milgrom show that these results hold given the following

assumptions: the agent has an exponential utility of consumption, and the disutility of effort

is computed by subtracting a fixed amount from the agent’s consumption, independently of

the total level of wealth. In particular, their form of utility function has no income effect:

it takes the same monetary incentives to induce the agent’s effort when his income is high

or low.

In our model aggregation and linearity disappear on a global time scale. When we

consider a wide range of utility functions, the principal needs the flexibility to adjust the

agent’s piece-rate depending on the agent’s income level. In our model the agent’s marginal

utility and risk aversion are changing in a complex way with income level, and the optimal

piece-rate reflects the incentives that the agent needs and the trade-off between incentives

and insurance. However, both linearity and aggregation are present on a small time scale. In

our model during a small interval of time ∆t, the change in the agent’s value is proportional

to the change in total output ∆X. Speaking loosely, it does not matter by what sequence of

wiggles this change ∆X has occurred; only the aggregate change determines the evolution

of the agent’s continuation value. The model of Holmstrom and Milgrom applies for the

kinds of employment, where the agent’s income level does not change significantly during

the course of employment; therefore income effect does not matter. Our model applies to

situations where the agent’s income level changes during the course of a long term contract,

e.g. when the agent expects to move up the employment ladder.3

3In our model, for discount rates very close to 0, the agent’s income level and piece-rate do not change
significantly for the effective duration of the contract. In this limiting case, the form of an optimal contract
is approximately linear.
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The asymptotic efficiency result, i.e. that the principal’s profit converges to first best

as the discount rate converges to 0, is not new. Among others, Fudenberg, Holmstrom

and Milgrom (1990) derive an asymptotic efficiency result in a discrete-time setting. They

argue that the reason for this result is that as the discount rate converges to 0, the agent

effectively becomes less risk averse because the principal can smooth consumption for the

agent. We show that even though the average “per-period profit” inefficiency converges

to zero, the total inefficiency added up over time converges to a strictly positive constant.

This result is new.

Recently, Williams (2003) has developed another new and very general principal-agent

model in continuous time. The model is based on a stochastic state process X, whose

evolution depends on the principal’s choices, the agent’s choices, X itself, and time t. The

agent’s choice is unobservable to the principal. The procedure to find an optimal contract

involves solving a PDE, and forward an backward SDEs. The resulting contract can be

written recursively using several state variables: time t, state X and the agent’s value.

When hidden states are allowed in the model, the contract involves an additional state

variable. Williams considers a finite time horizon. Unlike Williams, we design a continuous-

time model in infinite time horizon and analyze the specific issue of unobserved effort. In

our setting, we are able to derive an optimal contract in terms of a single state variable,

the agent’s continuation value. The simplicity of the contract allows us to investigate its

defining features, give intuitive meaning to the components of the contract, and derive

comparative statics results.

The paper is organized as follows. Section 2 provides the setting and formulation of the

principal’s problem. Section 3 presents an optimal contract and discusses its interesting

features: the drift and volatility of the agent’s continuation value, retirement points, and the

probationary interval. Section 4 provides rigorous mathematical derivation and justification

for the form of an optimal contract. Section 5 presents some comparative statics results.

Section 6 characterizes asymptotic contracts for interest rate r close to 0. Section 7 presents

several alternative formulations of the model that can be solved by the same differential

equation. Section 8 concludes the paper.

2 The Setting.

Consider the following dynamic principal-agent model in continuous time. A standard

Brownian motion Z = {Zt,Ft; 0 ≤ t < ∞} on (Ω,F ,Q) drives the output process. The
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total output produced up to time t, denoted by Xt, evolves according to

dXt = At dt + σdZt,

where At is the agent’s choice of effort level and σ is a constant. The agent’s effort level

process A = {At ∈ A, 0 ≤ t < ∞} is adapted to Ft, where the set of feasible effort levels

A is compact with the smallest element 0. We will pay particular attention to the binary

action case A = {0, a}. The agent experiences cost of effort c(At), measured in the same

units as the utility of consumption, where c : A → � is continuous, increasing and convex.

Assume that c(0) = 0 and there is ε > 0 such that c(a) ≥ εa for all a ∈ A.

For convenience of notation we denote by QA the probability measure over paths of

output X induced by effort choice A. The expectation under QA will be denoted by EA.

The output process X is publicly observable by both the principal and the agent. The

principal does not observe the agent’s effort A, and uses observations of X to give the

agent incentives to make costly effort. Before the agent starts working for the principal,

the principal offers him a contract that specifies a flow of consumption utility Ut(Xs; 0 ≤
s ≤ t) ∈ [0, UH ] based on the principal’s observation of Xt. The principal can commit to

any such contract. It costs the principal g(u) to deliver to the agent consumption utility

u, where g : [0, UH ] → [0, CH] is the inverse of the agent’s utility of consumption function.

Assume that g is increasing, convex and C2. Normalize g(0) = 0 and assume g′(0) = 0, i.e.

that the agent’s marginal utility of consumption is infinite at zero consumption. Section 7

will present an extension in which g′(0) > 0.

For simplicity, assume that both the principal and the agent discount the flow of profit

and utility at a common rate r. If the agent chooses effort level At, 0 ≤ t < ∞, his total

expected utility is given by

E

[∫ ∞

0

e−rt(Ut − c(At)) dt

]
,

and the principal gets profit

E

[∫ ∞

0

e−rt dXt −
∫ ∞

0

e−rtg(Ut) dt

]
.

We say that an effort level process At, 0 ≤ t < ∞ is incentive compatible with respect

to Ut if it maximizes the agent’s total value given Ut.
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2.1 Formulation of The Principal’s Problem.

The problem of the principal is to offer a contract for the agent: a stream of consumption

utility Ut(Xs, 0 ≤ s ≤ t) contingent on realized output up to time t for all t, and an

incentive-compatible advice of effort level At, 0 ≤ t < ∞ that maximizes the principal’s

profit

E

[∫ ∞

0

e−rt dXt −
∫ ∞

0

e−rtg(Ut) dt

]

subject to delivering to the agent a required initial value of at least Ŵ :

E

[∫ ∞

0

e−rt(Ut − c(At))dt

]
≥ Ŵ . (1)

We assume that the principal can choose not to employ the agent, so we are only interested

in contracts that generate nonnegative profit for the principal.

3 Optimal Contract.

In this section, we will heuristically derive an optimal contract. In section 4 we will formally

show that an optimal contract takes the form presented in this section. Only for this section,

assume that an optimal contract can be written in terms of the agent’s promised value Wt

as a single state variable. The promised value Wt is the total utility that the principal

expects the agent to derive from the future after a given moment of time t. Promised value

will play the role of the unique state descriptor that determines how much the agent gets

paid, what effort level he is supposed to choose, and how the promised value changes due

to the realization of output. The principal must design a contract that specifies functions

u(W ), the flow of consumption utility to the agent, a(W ), the recommended effort level,

and the law of motion of Wt driven by the output path Xt. Three objectives must be met.

First, the agent must have sufficient incentives to choose the recommended effort levels.

Second, payments, recommended effort and the law of motion must be consistent, so that

the state descriptor Wt represents the agent’s true continuation value. Lastly, the contract

must maximize the principal’s profit.

Before we describe the dynamic nature of the contract, note that the principal has the

option to retire the agent with any value W ∈ [0, WH ] = [0, UH/r]. To retire the agent

with value W, the principal offers him constant consumption utility rW and allows him to
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choose zero effort. Denote the principal’s profit from retiring the agent by

F0(W ) = −g(rW )

r
.

Note that the principal cannot deliver any value less than 0, because the agent can guarantee

himself nonnegative utility by always taking effort 0. In fact, the only way to deliver value

0 is through retirement. Similarly, retirement is the only way to deliver value WH , which is

the highest value that the principal can deliver to the agent. We will call F0 the principal’s

retirement profit.

The optimal contract will consist of an interval (0, Wgp) of continuation values,4 where

the agent is actively employed and Wt evolves as a diffusion process driven by Xt. Mechan-

ically, the principal will adjust the agent’s promised value according to equation

dWt = (rWt − u(Wt) + c(a(Wt))) dt +
γ(a(Wt))

σ
(dXt − a(Wt)dt)︸ ︷︷ ︸

σdZt

(2)

until the retirement time when Wt hits 0 or Wgp. Typically, Wgp is less than WH .

We want to point out two facts about expression (2). First, the drift rWt − u(Wt) +

c(a(Wt)) of the agent’s promised value accounts for promise keeping. In order for Wt to

correctly describe the principal’s debt to the agent, it should grow at an interest rate r

and fall due to the flow of repayments u(Wt)− c(a(Wt)). Note that when the agent follows

effort recommendation, term dXt−a(Wt)dt is driftless. Second, function γ(a), which gives

the minimum volatility of the promised value required to induce effort level a, is defined by

γ(a) ≡ min{y ∈ [0,∞) :
ya

σ
− c(a) ≥ ya′

σ
− c(a′) for all a′ ∈ A}.

What is the intuition behind this definition? Speaking loosely, the agent will choose effort

level maximize the expected change of his future promised value due to effort minus the cost

of effort. In equation (2), only the drift of X is affected by the agent’s effort. Therefore,

the agent will choose effort level a′ to maximize

γ

σ
a′ − c(a′).

From concavity of c(a), function γ(a) is increasing in a. For the binary action case with

4Subscript gp stands for “golden parachute.”

9



A = {0, a}, γ(a) = c(a)σ/a.

We come to the crucial part where the principal has to compute the main features of

an optimal contract: payments u(W ) and recommendations of effort level a(W ). Also, the

principal has to find the best retirement point Wgp.

0

W
W ∗ WgpWc

Profit

F0(W )

Ffb(W )

F (W )

Figure 1: Typical form of F.

Denote by F (W ) the highest profit that the principal can derive when he delivers to the

agent value W. To maximize profit, the principal must optimally choose u(W ) and a(W )

for each value W ∈ [0, Wgp]. Function F should satisfy equation

rF (W ) = max
a>0,u

a − g(u) + F ′(W )(rW − u + c(a)) + F ′′(W )γ(a)2/2 (3)

The principal is maximizing the expected current flow of profit a− g(u) plus the expected

change of future profit due to the drift and volatility of the agent’s promised value.

Equation (3) can be rewritten in the following form suitable for computation:

F ′′(W ) = min
a>0,u

rF (W ) − a + g(u) − F ′(W )(rW − u + c(a))

γ(a)2/2
(4)

To compute the optimal contract, the principal must solve this differential equation by

setting F (0) = 0 and choosing the largest value of F ′(0) > 0 such that solution F reaches

F0 at some point Wgp > 0, as shown in a computed example on Figure 1. Denote by u(W )

and a(W ) the minimizing values of u and a in (4) for W ∈ (0, Wgp). Function F (W ), which
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is concave, gives the optimal profit that the principal can earn while delivering to the agent

value W ∈ [0, Wgp]. Functions u(W ) and a(W ) give the optimal consumption utility and

effort recommendation, which the agent receives when his continuation value is W.

Given the form of F, what initial value will the principal offer to the agent given that the

agent requires value at least Ŵ ? Denote by W ∗ the maximum of F, and by Wc the critical

value, where F (Wc) = 0, as shown in Figure 1. Then the starting value that maximizes

the principal’s profit subject to the agent’s participation constraint (1) is

W0 =

⎧⎪⎨
⎪⎩

W ∗ if Ŵ < W∗

Ŵ if Ŵ ∈ [W∗, Wc]

no contract if Ŵ > Wc

Let us summarize the optimal contract. The principal will give the agent a starting

promised value W0 and keep adjusting it according to equation (2) until a stopping time τ

when Wt hits a retirement point 0 or Wgp. Until time τ, the principal will provide the agent

with consumption utility u(Ws) and advise him to take action a(Ws), which are found by

solving equation (4). If Wt hits 0, the principal will retire the agent by giving him constant

consumption utility of 0 after that forever. If Wt hits Wgp the principal will also retire the

agent by giving him rWgp. When the agent gets retirement, he is allowed to take action 0

forever.

One interesting feature of the optimal contract is the existence of retirement points.

The principal must retire the agent when W hits 0 because the only way to deliver to the

agent value 0 is to pay him 0 forever. Why is it optimal for the principal to retire agent

at some point Wgp, which is typically less than WH? This happens because when the flow

of payments to the agent is large enough, it costs the principal too much to compensate

the agent for his effort. This is true even if the agent’s effort is perfectly observed. Figure

2 shows the principal’s first-best profit Ffb, which is the upper envelope of unconstrained

profit functions Fa(W ) = F0(W + c(a)/r) + a/r for each individual effort level. Note the

interval [W ∗
gp, WH ], on which F0(W ) is first-best profit. On this interval, the expected flow of

output a from any positive effort level is smaller than the cost c(a)g′(rW ) of compensating

the agent for that effort level. Therefore, it is optimal to retire the agent for W ∈ [W ∗
gp, WH ]

even if effort is observable. In summary, the main reason to have a high retirement point

is that the agent’s marginal utility decays to 0 when his consumption increases, and the

marginal disutility of effort remains bounded above 0. With unobservable effort, Wgp < W ∗
gp

because the principal must compensate the agent not only for the effort, but also for the
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a1/r

a2/r

− c(a1)
r

− c(a2)
r

0

0

W

W ∗
gp

Profit

F0(W )

Ffb(W )
Fa1(W )

Fa2(W )

Figure 2: First best profit.

risk caused by incentives to induce any positive effort level.

Another interesting feature of the optimal contract is a probationary interval [0, W ∗],

on which F (W ) is increasing. From equation (4), the agent receives consumption 0 when

his value is in this interval. Intuitively, the principal punishes the agent at his own cost

when the agent is on probation. Providing the agent with positive consumption would not

be the least-costly way to punish the agent.

Let us discuss more intuition behind the principal’s choice of the recommended effort

level and the choice of payments to the agent. We can see from (3) that the principal will

choose effort level a(W ) to maximize

a + c(a)F ′(W ) +
γ(a)2

2
F ′′(W ), (5)

where a is the expected flow of output, −c(a)F ′(W ) is the cost of compensating the agent

for his effort, and −γ(a)2

2
F ′′(W ) is the cost of compensating the agent for the income

uncertainty caused by incentives.

To get intuition behind the choice of u, let us interpret the agent’s value as the principal’s
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debt to the agent. The principal will choose the cheapest way to repay his debt to the agent.

Theorem 1 assumes that the contract derived in this section is optimal, and shows that

under this contract g′(u(Wt)) is a martingale whenever the agent is not on probation. We

can call this phenomenon compensation smoothing.

Theorem 1. If Wt > W ∗, then g′(u(Ws)) is a martingale for t ≤ s ≤ τW ∗ under the

optimal contract, where W ∗ is the maximum of F.

Proof. Certainly this is true when Wt = Wgp, because after that u(Ws) is constant.

When Wt ∈ (W ∗, Wgp), F must satisfy (4) at Wt; the first-order condition of minimization

with respect to u implies that g′(u) = −F ′(W ). Let us show that F ′(W ) has drift 0.

From (4) and the Envelope Theorem, we have

F ′′′(W ) =
−F ′′(W )(rW − u + c(a))

γ(a)2/2
,

By Ito’s Lemma and (2), the drift of F ′(W ) is

F ′′(W )(rW − u + c(a)) + F ′′′(W )γ(a)2/2,

which by the previous expression is zero. QED.

The next section justifies why the optimal solution really takes this form.

Remark 1. We assume that the principal will refuse to offer a contract to the agent,

unless the principal gets nonnegative profit from some contract. If there is no value F ′(0) >

0 such that the corresponding solution to (4) reaches F0 at some point Wgp > 0, then every

contract with positive value to the agent gives the principal negative profit. In this case,

the principal will refuse to offer a contract.

Remark 2. We assume in this model that the agent cannot save or borrow, and is

restricted to consume what the principal pays him at every moment of time. What would

happen if the agent actually could save and borrow at rate r, but the principal did not

know it? Which would he do? By Theorem 1, g′(u(Ws)) is a martingale, so the agent’s

marginal utility of consumption 1/g′(u(Ws)) must be a submartingale. Since the agent’s

marginal utility increases in expectation, he is tempted to save for the future.

Remark 3. We can call −F ′(W )γ(a)/σ the agent’s piecerate, i.e. the risk borne by

the agent measured in the units of the principal’s profit rather than the agent’s value. This

expression is meaningful if F ′(W ) < 0, i.e. when the agent is not on probation and his
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flow consumption is positive. Since the principal maximizes (5), it can be shown that the

piecerate is always less than 1 when the agent is not on probation.

4 Justification.

In this section we do not assume that an optimal contract can be written in terms of

promised value as a single state variable, but derive this property of an optimal contract.

Consider an arbitrary contract (U, A) = {Ut, At; 0 ≤ t < ∞}. Define the the agent’s

continuation value at time t by

Wt(U, A) = EA

[∫ ∞

t

e−r(s−t)(Us − c(As)) ds|Ft

]
, (6)

Notice that process W (U, A) can be associated with any contract. Define the value that

the agent expects from an entire strategy A given the information at time t by

Vt(U, A) = EA

[∫ ∞

0

e−rs(Us − c(As)) ds|Ft

]
=

∫ t

0

e−rs(Us − c(As)) ds + e−rtWt(U, A) (7)

Note that, since both Us and As are bounded, Vt is a bounded martingale under QA with

last element V∞(A, U) =
∫ ∞

0
e−rs(Us − c(As)) ds.

Lemma 1. Assume that filtration {Ft} satisfies the usual conditions. Then process

Vt(U, A) has a RCLL modification.

Proof. Since V is a martingale, the function t → EVt is constant, thus right-

continuous. Then by Theorem 1.3.13 of Karatzas and Shreve (from now on K-S), a RCLL

modification exists. QED

Proposition 1. Representation of the agent’s value as a diffusion process.

There exists a progressively measurable process Y = {Yt,Ft; 0 ≤ t < ∞} such that

EA

[∫ t

0

(e−rsYs)
2 ds

]
< ∞

for every 0 ≤ t < ∞ and

Vt(U, A) =

∫ t

0

e−rsYs dZA
s + V0(U, A); 0 ≤ t < ∞ (8)
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Proof. This result follows immediately from the Theorem on Representations of Brow-

nian, Square-Integrable Martingales as Stochastic Integrals (K-S, p.182). The factor e−rt

in front of Yt is just a convenient rescaling. QED

From (7) and (8) it follows that

dVt(U, A) = e−rtYt dZA
t = e−rt(Ut − c(At)) dt − re−rtWt(U, A) dt + e−rt dWt(U, A) ⇒

dWt(U, A) = (rWt(U, A) − Ut + c(At)) dt + Yt dZA
t , (9)

This is a useful equation for the continuation value process W.

4.1 A Condition for the Optimality of the Agent’s Effort.

An agent’s strategy A is optimal with respect to U if it maximizes his total expected utility

V0(U, A). To identify a condition for the optimality of agent’s effort, consider two alternative

strategies A and A∗. Strategies A and A∗ induce probability measures over output paths

denoted by QA and QA∗
respectively. We denote expectations under these measures by EA

and EA∗
. The standard Brownian motions under measures QA and QA∗

are given by

ZA
t =

1

σ

(
Xt −

∫ t

0

As ds

)
and ZA∗

t =
1

σ

(
Xt −

∫ t

0

A∗
s ds

)
(10)

Lemma 2. Define V̂t to be the entire value that the agent expects to obtain if he

followed strategy A until time t, and plans to continue by following strategy A∗

V̂t =

∫ t

0

e−rs(Us − c(As)) ds + EA∗
[∫ ∞

t

e−rs(Us − c(A∗
s)) ds|Ft

]
(11)

If V̂t is a supermartingale under measure QA, then strategy A∗ is at least as good for

the agent as A. If V̂t is a submartingale, but not a martingale, then A∗ is strictly worse

than A.

Proof. Note that limt→∞ V̂t =
∫ ∞

0
e−rs(Us − c(As)) ds = V∞(U, A). Because V̂t are

uniformly bounded, by Dominated Convergence Theorem

lim
t→∞

EA[V̂t] = EA[V∞(U, A)] = V0(U, A).

If V̂t is a supermartingale, then
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V0(U, A) = lim
t→∞

EA[V̂t] ≤ V̂0 = V0(U, A∗),

so strategy A∗ is at least as good as A.

If V̂t is a submartingale, but not a martingale, then

V0(U, A) = lim
t→∞

EA[V̂t] > V̂0 = V0(U, A∗),

so strategy A∗ is worse than A. QED

Proposition 2. Necessary and sufficient condition for agent’s optimality. For

a given strategy A∗, suppose that Y ∗
t is the volatility of Wt(U, A∗) given by Proposition

1. A∗ is optimal if and only if the following condition holds for all alternative strategies A

almost surely:

Y ∗
t A∗

t − σc(A∗
t ) ≥ Y ∗

t At − σc(At), 0 ≤ t < ∞ (12)

Proof. Recall that V̂t, defined by (11), is the value from following strategy A until

time t and then switching to A∗. Let us identify the drift of V̂t.

V̂t =

∫ t

0

e−rs(c(A∗
s)−c(As))ds+Vt(U, A∗) =

∫ t

0

e−rs(c(A∗
s)−c(As))ds+

∫ t

0

e−rsY ∗
s dZA∗

s +V0(U, A∗)

=

∫ t

0

e−rs

(
c(A∗

s) − c(As) + Y ∗
s

As − A∗
s

σ

)
ds +

∫ t

0

e−rsY ∗
s dZA

s + V0(U, A∗),

where, by (10), the Brownian motions under QA and QA∗
are related by ZA∗

t = ZA
t +∫ t

0
As−A∗

s

σ
ds.

Thus V̂t is a diffusion process under QA with drift

e−rt (Y
∗
t At − σc(At)) − (Y ∗

t A∗
t − σc(A∗

t ))

σ
.

Suppose (12) holds for strategy A∗. Then for any alternative strategy A the drift of V̂t

under QA is never positive, so V̂t is a supermartingale. From Lemma 2 we conclude that

strategy A∗ is at least as good as any alternative strategy A.

If (12) does not hold on a set of positive measure, choose At that maximizes Y ∗
t At−c(At)
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for all t ≥ 0. Then the drift of V̂t under QA is everywhere nonnegative and positive on a

set of positive measure. Therefore, by Lemma 2, strategy A is strictly better than A∗.

We conclude that a candidate strategy A∗ of the agent is optimal if and only if (12) holds

almost surely. QED

From Proposition 2 it follows that the minimal volatility of the agent’s continuation

value required to induce him to take action a > 0 is

γ(a) = min{y ∈ [0,∞) : ya − σc(a) ≥ ya′ − σc(a′) for all a′ ∈ A}.

4.2 The Principal’s Problem.

Consider the problem of maximizing the principal’s profit subject to delivering to the agent

a specific value W0 ∈ [0, WH ]. The optimality differential equation, which is reproduced

below, is the key tool for finding an optimal contract.

F ′′(W ) = min
a>0,u

rF (W ) − a + g(u) − F ′(W )(rW − u + c(a))

γ(a)2/2
(13)

We first explore solutions to equation (13). Then, based on an appropriate solution to

this equation, in Proposition 3 we identify a sufficient condition, under which a contract is

optimal. Based on this condition, we construct an optimal contract in Proposition 4 using

a strong solution of equation (2).

Lemma 3. Given initial conditions F (0) = 0 and F ′(0) = Fp, a solution to equation

(13) exists and is unique. Such solutions are concave and continuous in Fp.

Proof. See Appendix.

Among solutions to (13) with Fp > 0 that reach F0 at some Wgp > 0, consider the

solution with the largest Fp, call it the highest feasible solution and denote it by F :

[0, WH ] → �. Figure 3 shows several typical solutions of equation (13) marked by A, B and

C. On the figure, solution B is the highest feasible solution. For now, assume that such a

solution exists. Then F (W ) ≥ F0(W ) for all W ∈ [0, WH ]. Otherwise, if we increase Fp

slightly, the corresponding solution would still reach F0 at some positive value of W, which

means that we did not choose Fp correctly. Since F is concave and F (W ) ≥ F0(W ) for all

W, any line tangent to F never goes below F0, i.e.

∀ W, W ′, F ′(W )(W ′ − W ) + F (W ) ≥ F0(W
′) (14)
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A

B
C

0

W
Wgp

Profit

F0(W )

Figure 3: Typical solutions of the optimality equation.

Define u(W ) and a(W ) to be the minimizing values associated with the highest feasible

solution F of equation (13).

Proposition 3. Sufficient condition for optimality of a contract. Consider

the highest feasible solution F of the optimality equation, as defined above. Consider a

contract (U, A) that induces continuation values Wt = Wt(U, A) with W0 ∈ [0, Wgp]. Denote

the volatility of Wt by Yt, and define τ = inf{t : Wt = 0 or Wgp}. This contract is optimal

in delivering value W0 if

Ut = u(Wt), At = a(Wt), and Yt = γ(At) for t ∈ [0, τ)

Ut = rWτ , At = 0, and Yt = 0 for t ≥ τ
(15)

To prove Proposition 3, we will need the following lemma:

Lemma 4. Suppose (14) holds for a function F : [0, WH ] → � that solves (13). For an

arbitrary incentive compatible contract (U, A) define

Gt(U, A) =

∫ t

0

e−rs dXs −
∫ t

0

e−rsg(Us) ds + e−rtF (Wt(U, A)), 0 ≤ t < ∞.
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Then Gt(U, A) is a QA-supermartingale with a last element

G∞(U, A) =

∫ ∞

0

e−rs dXs −
∫ ∞

0

e−rsg(Us) ds (16)

Moreover, if a contract satisfies (15), Gt is a martingale.

Proof. By exploring the drift of G, let us show that G is a supermartingale for an

arbitrary contract, and a martingale for a contract that satisfies (15) for t ∈ [0,∞). For an

arbitrary contract (U, A), according to equation (9) W (U, A) satisfies

dWt = (rWt − Ut + c(At)) dt + Yt dZA
t .

By Ito’s formula

dF (Wt) = F ′(Wt) dWt + F ′′(Wt)
Y 2

t

2
dt =

(
F ′(Wt)(rWt − Ut + c(At)) + F ′′(Wt)

Y 2
t

2

)
dt + F ′(Wt)Yt dZA

t .

Thus,

dGt(U, A)

e−rt
= dXt − g(Ut) dt − rF (Wt) dt + dF (Wt) =

(
At − g(Ut) − rF (Wt) + F ′(Wt)(rWt − Ut + c(At)) + F ′′(Wt)

Y 2
t

2

)
dt+(σ+F ′(Wt)Yt)dZ

A
t .

From Proposition 2, we know that since the contract (U, A) is incentive compatible,

Yt ≥ γ(At) for all t. If At > 0, then using (13) and F ′′ ≤ 0 we obtain

At − g(Ut) − rF (Wt) + F ′(Wt)(rWt − Ut + c(At)) + F ′′(Wt)
Y 2

t

2
≤

a(Wt) − g(u(Wt)) − rF (Wt) + F ′(Wt)(rWt − u(Wt) + c(a(Wt))) + F ′′(Wt)
γ(a(Wt))

2
= 0.

Equality is reached when the contract satisfies (15).

If At = 0, then using (14) and F ′′ ≤ 0 we obtain

At − g(Ut) − rF (Wt) + F ′(Wt)(rWt − Ut + c(At)) + F ′′(Wt)
Y 2

t

2
≤

rF0(Ut/r) − rF (Wt) + F ′(Wt)(rWt − Ut) ≤ 0.

Equality holds when Yt = 0, rWt = Ut and F (Wt) = F0(Wt).
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We conclude that the drift of G is negative or zero for an arbitrary incentive compatible

contract, and zero for a contract that satisfies (15).

Using (K-S, 1.3.19), to show that G has a last element G∞ defined by (16), we need to

check that Gt, 0 ≤ t < ∞ are uniformly integrable. Terms e−rtF (W ) and
∫ t

0
e−rsg(Us) ds

are uniformly integrable since they are uniformly bounded. Term
∫ t

0
e−rs dXs has a uni-

formly bounded second moment, therefore it is also uniformly integrable. Since e−rtF (W )

converges to 0, Gt converges to G∞ pointwise and in L1.

This concludes the proof that Gt, 0 ≤ t ≤ ∞ is a supermartingale for an arbitrary

incentive-compatible contract (U, A) and a martingale for a contract that satisfies (15).

QED

Proof of Proposition 3. Consider a candidate contract (U∗, A∗) with volatility of

continuation values Y ∗ that satisfies (15), and an arbitrary alternative incentive-compatible

contract (U, A). Let us show that (U∗, A∗) gives the principal profit greater or equal than

(U, A). Using Lemma 4

EA∗
[G∞(U∗, A∗)] = G0(U

∗, A∗) = F (W0) = G0(U, A) ≥ EA[G∞(U, A)].

QED

What if for all F ′(0) = Fp > 0, the corresponding solution to (13) stays above F0

for all W > 0? Then there is no contract that gives the principal nonnegative profit for

any W0 > 0. Indeed, consider F that solves (13) with initial conditions F (0) = 0 and

F ′(0) = 0. Since F is concave, F (W ) < 0 for all W > 0. From the continuity of solutions

in initial conditions, F (W ) ≥ F0(W ) for all W. Therefore, (14) holds and Lemma 4 applies

for an arbitrary incentive-compatible contract (U, A). Therefore, the principal’s profit from

contract (U, A) is

EA[G∞(U, A)] ≤ G0(U, A) = F (W0) < 0.

Proposition 4. Existence of an optimal contract. If a(W ) has bounded variation,

then equation

dWt =

(
rWt − u(Wt) + c(a(Wt)) − a(Wt)γ(a(Wt))

σ

)
dt +

γ(a(Wt))

σ
dXt (17)

with an initial condition W0 ∈ [0, Wgp] has a unique strong solution until the time τ =
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inf{t : Wt = 0 or Wgp}. Then the the contract (U, A) defined by

Ut = u(Wt), and At = a(Wt), for t ∈ [0, τ)

Ut = rWτ , and At = 0, for t ≥ τ
(18)

is optimal in delivering to the agent value W0.

Whenever we talk about a solution Wt until a stopping time τ, assume for convenience

that Wt stays constant from τ onwards. The following lemma, which follows from Theo-

rem 4 of Veretennikov (1979), gives sufficient conditions for existence and uniqueness of a

solution to a one-dimensional SDE.

Lemma 5. Let X = {Xt,Ft; 0 ≤ t < ∞} be a one-dimensional Brownian motion. If

b and y are Borel and bounded, y is bounded away from zero and has bounded variation,

then equation

dWt = b(Wt) dt + y(Wt) dXt

has a unique strong solution.

Lemma 6. If a(W ) has bounded variation, a strong solution to (17) until the stopping

time τ exists and is unique.

Proof. Define b(W ) = rW − u(W ) + c(a(W )) and y(W ) = γ(a(W )). Clearly, both

b and y are bounded for W ∈ [0, Wgp]. Since a(W ) has bounded variation, y(W ) also has

bounded variation, and since γ(a) is bounded above 0, y(W ) is also bounded above 0. It

follows from Lemma 5 that equation (17), which can be written as

dWt = b(Wt) dt +
y(Wt)

σ
dXt,

has a unique strong solution until the stopping time τ. QED

Lemma 7. Let W be the unique strong solution to (17). Define (U, A) by (18). Then

Wt indeed represents agent’s continuation value associated with the contract (U, A), i.e.

Wt = Wt(U, A) a.s.

Proof. Consider

Vt = e−rtWt +

∫ t

0

e−rs(Us − c(As)) ds,

and let us show that Vt = Vt(U, A). Note that V satisfies
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dVt = e−rt (dWt − (rWt − Ut + c(At)) dt) = e−rt

(
γ(At)

σ
dXt − Atγ(At)

σ
dt

)
= e−rtγ(At)dZ

A
t ,

so V is a martingale under QA. Also, note that V is uniformly bounded, and limt→∞ Vt =

V∞(U, A). Therefore, using the Dominated Convergence Theorem,

Vt = lim
s→∞

E[Vs|Ft] = E[V∞(U, A)|Ft] = Vt(U, A).

for 0 ≤ t ≤ ∞. Then,

e−rtWt = Vt −
∫ t

0

e−rs(Us − c(As)) ds = Vt(U, A)−
∫ t

0

e−rs(Us − c(As)) ds = e−rtWt(U, A),

so Wt = Wt(U, A) almost surely. QED

Proof of Proposition 4. A strong solution W to (17) exists by Lemma 6. Define a

contract (U, A) by (18). By Lemma 7, Wt is the true continuation value. Therefore, (U, A)

satisfies (15), so by Proposition 3 it is the optimal way to deliver value W0. QED

Propositions 1 through 4 give us the form of an optimal contract to deliver a particular

value W0 to the agent, and verify that such a contract is indeed optimal. To devise an

optimal contract that satisfies agent’s participation constraint (1), the principal must choose

an initial promised value W0 ∈ [Ŵ , WH ] that maximizes his profit F (W0). Since F is a

concave function with maximum at some point W ∗, we have

W0 =

⎧⎪⎨
⎪⎩

W ∗ if Ŵ < W∗

Ŵ if Ŵ ∈ [W∗, Wc]

no contract if Ŵ > Wc

5 Comparative Statics.

For the rest of the paper, let us consider the binary-action case with A = {0, a}. By

Proposition 2, the volatility of continuation values required to induce effort a is γ(a) =

c(a)σ/a. The following change of variables is useful for comparative statics analysis: Denote

average value by ω = rW, average profit f(ω) = rF (W ) and average retirement profit

f0(ω) = rF0(W ) = −g(ω). Let ωgp = rWgp and ω∗
gp = rW ∗

gp. Then equation (13) can be
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conveniently rewritten as

f ′′(ω) = min
u

f(ω) + f ′(ω)(u − ω) − f0(u) − a − f ′(ω)c(a)

r(c(a)σ/a)2/2
. (19)

We are interested in the effect of the following parameters on the principal’s profit and

the optimal contract: effort level a, which reflects productivity, cost of effort c(a), discount

rate r and the volatility of output σ, which reflects the size of informational problem.

The first result is that changes in volatility of output are equivalent to changes in the

discount rate in terms of their effect on the principal’s profit and the optimal contract.

The intuition behind this result is that when discounting is slower, the principal has longer

time to observe output and detect the agent’s effort, which is equivalent to having lower

volatility of output for faster discounting rates.

Result 1. Changing σ2 by a factor of α has the same effect on the principal’s profit as

changing r by a factor of α.

Proof. Equation (19) is the same whether we change σ2 or r by a factor of α. Therefore,

both of these changes have the same effect on the principal’s profit. QED

The following lemma is the key engine in proving a lot of other comparative statics

results:

Lemma 8. Let h(f, f ′, ω) be the right hand side of (19) for parameters (a, c(a), σ, r),

and h̃(f, f ′, ω) be the right hand side of (19) for parameters (ã, c̃(ã), σ̃, r̃). Let f : [0, UH ] →
� be the principal’s average profit for parameters (a, c(a), σ, r). If

h̃(f(ω), f ′(ω), ω) < h(f(ω), f ′(ω), ω)

for all ω, then the principal’s profit for the second set of parameters is at least as great as

for the first set of parameters for all ω.

Proof. See Appendix.

Result 2. The principal’s profit is increasing in a, decreasing in c(a), decreasing in σ,

and decreasing in r.

Proof. It is easy to check that increasing a, decreasing c(a), decreasing σ, or decreasing

r decreases the right hand side of (19). Therefore, using Lemma 8, we conclude that the

principal’s profit must increase. QED
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Note that increase in a increases the principal’s profit it two ways: by increasing pro-

ductivity and by making it easier for the principal to detect effort. Also, increase in c(a)

has two consequences: it decreases the flow of utility to the agent and makes it more dif-

ficult for the principal to give the agent incentives. The decrease in the flow of utility to

the agent has a positive effect on the principal’s profit when he is punishing the agent with

consumption 0, but the increased difficulty to give the agent incentives always overweighs

this positive effect. Thus, when c(a) increases, the principal’s profit decreases overall.

The following result is quite nontrivial. It shows that increase in productivity is worth-

while even if it causes an equivalent increase in the cost of effort, and even if it exacerbates

informational problems.

Result 3. If we increase a, c(a) and σ2 by a factor of α > 1, then the principal’s profit

increases.

Proof. Let h(f, f ′, ω) be the right hand side of (19) for parameters (a, c(a), σ, r),

and h̃(f, f ′, ω) be the right hand side of (19) for parameters (αa, αc(a),
√

ασ, r). Denote

by f : [0, ωgp] → � the principal’s average profit for the first set of parameters. For all

ω ∈ [0, ωgp),

f ′(ω) > f ′(ωgp) = f ′
0(ωgp) ≥ f ′

0(ω
∗
gp) = −a/c(a) ⇒ a + f ′(ω)c(a) > 0.

Consider an arbitrary ω ∈ [0, ωgp). From (14), b = minu f(ω)+f ′(ω)(u−ω)−f0(u) ≥ 0.

Therefore, we have

h(f(ω), f ′(ω), ω) =
b − (a + f ′(ω)c(a))

rγ(a)2/2
>

b − α(a + f ′(ω)c(a))

αrγ(a)2/2
= h̃(f(ω), f ′(ω), ω).

Therefore, by Lemma 8, the principal’s profit must be higher for parameters (αa, αc(a),
√

ασ, r)

than for parameters (a, c(a), σ, r). QED

6 Asymptotic Contracts as r → 0.

It is best to formulate the theorem about optimal contracts in the limit as r → 0 in terms of

averages. Let ffb be the principal’s first best average profit, the upper envelope of f0(ω) and

f0(ω + c(a)) + a. We know from earlier analysis that ωgp ≤ ω∗
gp, where f ′

0(ω
∗
gp) = −a/c(a).

Note that u(ω/r) is the flow of consumption utility that the agent receives when his average
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promised value is ω.

Theorem 2. As r → 0, ωgp → ω∗
gp and the principal’s average profit f converges to

first best pointwise on (0, ω∗
gp). The agent’s flow of consumption utility under the optimal

contract u(ω/r) converges to ω + c(a) pointwise on (0, ω∗
gp − c(a)) and to ω∗

gp pointwise on

[ω∗
gp − c(a), ω∗

gp). For ω ∈ (0, ω∗
gp − c(a)), f(ω) = ffb(ω) + f ′′

fb(ω)rγ(a)2/2 + o(r).

Proof. See Appendix.

According to Theorem 3, the principal’s average profit converges to first best, which

is consistent with the Folk Theorem. The total loss of efficiency accumulated over time is

approximately a constant, which equals

−f ′′
fb(ω)γ(a)2

2
=

g′′(u)c(a)2σ2

2a2
=

δα2σ2

2
,

where δ = g′′(u)/g′(u)2 is the agent’s coefficient of absolute risk aversion and α = c(a)g′(u)/a

is the piece-rate.

Let us discuss the optimal contract. The contract features several prominent intervals

of the agent’s values. On the main interval (0, ω∗
gp − c(a)), which we can call regular

employment, the agent receives compensation for the cost of his effort and the annuity

value of Wt in the form of consumption utility. Therefore, on this interval the agent’s value

is asymptotically driftless.

There is a small probationary interval of values [0, ε), where the agent receives con-

sumption 0. In the probationary interval the agent’s value has a strong upward drift. The

principal compensates the agent for his effort exclusively with continuation values. This

is optimal for the principal, because his profit actually increases in the agent’s value. The

low retirement point is extremely costly for the principal. A simple calculation shows that

even if the agent chooses no effort in the probationary interval, his value would still have

a slight upward drift.

There is also a special pre-retirement interval (ω∗
gp − c(a), ω∗

gp) near the high retirement

point. In that interval the agent receives approximately constant consumption utility, which

is equal to his “golden parachute” consumption utility. The agent’s value has an upward

drift towards the high retirement point. Unlike near the low retirement point, the principal

is not trying to prevent high retirement. The principal chooses retirement with a golden

parachute, whereas he is forced to retire the agent if the low retirement point is reached.

Throughout the pre-retirement interval, the agent is supposed to put effort. If he chose
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not to, a simple calculation shows that his value would drift down towards the regular

employment interval. The agent is compensated for his effort partly with consumption,

and partly with the increasing chance of a golden parachute.

7 Extensions.

The basic model presented above has great flexibility, which allows us to include new

features with ease, according to the situation that we are trying to illustrate. Here are

three possible extensions. First, for legal reasons, it may be impossible to implement

contracts that bind the agent to the principal forever. What if the agent can walk away?

Second, we assumed that when the principal retires the agent, he shuts down the factory

and does not make any production profit or loss anymore. What if, upon retiring an agent,

the principal could hire a new one? Third, we assumed that g′(0) = 0, i.e. the marginal

utility of consumption is infinite at consumption 0. How does the optimal contract change

if we allow for bounded marginal utility (g′(0) > 0)?

7.1 What if the Agent Can Quit?

Suppose that the agent can quit working for the principal at any time, and replace his

continuation value from contract with the principal by an alternative outside value W̃ ≤ Ŵ .

The alternative value W̃ can be interpreted as value from a new employment minus the

search cost. What is the optimal contract in this situation?

Let us precisely describe the principal’s problem. The principal has to specify a stream

of consumption utility Ut, 0 ≤ t ≤ τ, an incentive compatible advice of effort level At,

0 ≤ t ≤ τ, and a stopping time τ, at which the agent is allowed to take alternative

employment. The principal’s objective is to maximize his profit

E

[∫ τ

0

e−rt dXt −
∫ τ

0

e−rtg(Ut) dt

]
.

subject to

E

[∫ τ

0

e−rt(Ut − c(At))dt + e−rτW̃

]
≥ Ŵ

and for all t < τ

E

[∫ τ

t

e−r(s−t)(Us − c(As))ds + e−r(τ−t)W̃

]
≥ W̃ .
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By analogy with the basic model, it can be shown that the optimal contract in this

setting has the following form: The principal has to solve the familiar optimality equation

F ′′(W ) = min
a>0,u

rF (W ) − a + g(u) − F ′(W )(rW − u + c(a))

γ(a)2/2
(20)

by setting F (W̃ ) = 0 and choosing the highest positive value for F ′(W̃ ) such that the

resulting solution will touch F0 at some point W̃gp > Ŵ. If there is no such value for F ′(W̃ ),

then no contract can give positive profit to the principal. Denote by u : [W̃ , W̃gp] → [0, UH ]

the consumption utility and by a : [W̃ , W̃gp] → A, the effort, which solve the minimization

problem in (20).

The principal will compute the agent’s continuation value according to equation (2),

starting with a value W0 which maximizes F on the set [Ŵ , W̃gp], provided that F (W0) ≥ 0.

If F (W0) < 0, then there is no contract that gives the principal positive profit, so he will

refuse to offer employment to the agent. If F (W0) ≥ 0, then the principal will offer to the

agent a flow of utility u(Wt) and suggest action a(Wt) until the time when Wt hits W̃ or

W̃gp. If Wt hits W̃ , payments stop and the agent quits. If Wt hits W̃gp, the agent stops

working and receives a lifetime flow of utility of rW̃gp.

In this setting, we can show that the principal’s profit and W̃gp are both decreasing in

W̃ when there is any contract at all that gives the principal positive profit. Intuitively,

the larger W̃ , the less ability the principal has to punish the agent, the smaller his profit

will be. Why does the agent get high retirement earlier when W̃ is larger? When W is

large, the size of profit that the principal can make in case W drifts down contributes to

the decision whether to retire the agent or not. When W̃ is larger, the principal’s profit is

smaller, so he has less incentive to keep the agent employed, and W̃gp must fall.

A typical contract is shown in Figure 4 for an interesting example when W̃ = Ŵ . In

this case, if there is a contract that gives the principal positive profit, then he will always

start off the agent with an initial promised value W0 strictly greater than W̃ . In this case,

W0 is the point at which F achieves a maximum.

Remark. We have implicitly assumed that payments to the agent have to stop if the

agent quits and that the agent will not seek re-employment if the high retirement point

is reached. Both of these are natural assumptions. Indeed, if the low retirement point is

reached, the agent is in the probationary region and receives payments of 0. The principal

is keeping the agent’s value down at his own cost. Payments after the agent quits would

improve the agent’s value, which is opposite to what the principal is trying to achieve.
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Figure 4: The principal’s profit with an alternative participation constraint.

Therefore, it is optimal not to compensate the agent if he chooses to quit. On the other

hand, suppose that all employment available to the agent is of the same nature. If it is

efficient for one principal to retire the agent with a golden parachute, then the agent is so

well off that nobody can efficiently make him work, so nobody will offer him employment.5

7.2 What if the Principal Can Replace the Agent?

Suppose instead that the agent cannot freely quit, but the principal can let him go at

any moment of time and hire a new agent. Assume that all potential agents have the

same reservation value Ŵ to start employment, and the principal faces a search cost C. A

contract specifies when employment ends, and payments to the agent both before and after

the termination of employment. After an agent stops working for the principal, he stops

putting effort, but continues to consume payments from the principal, and does not seek

reemployment. What is an optimal contract in this situation?

To compute an optimal contract, let us take a guess D = F (W0) − C about additional

5It is possible to imagine an alternative setting where, once the agent is retired with a golden parachute,
he can accept employment of a different nature, which was not possible earlier. This would be a very
interesting alternative extension.
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Figure 5: The principal’s profit when the agent can be replaced at cost C.

profit that the principal can realize when he fires an agent and replaces him with another.

Then the new retirement profit function is F0(W ) = −g(Wr)/r + D. To find the optimal

contract, the principal must solve the familiar equation (20) with initial conditions F (0) =

F0(0) = D and maximal F ′(0) > 0 such that the resulting solution will reach F0 at some

point Wgp > 0. Choose W0 to be the point that maximizes the resulting function F on the

interval [Ŵ , Wgp], where Ŵ is the agent’s reservation value. Our guess of D is correct if

F (W0) = D + C. If it happens that F (W0) < D + C, then our guess of D is too large, and

if F (W0) > D + C, then our guess of D is too small. Once we find F (W ), the optimal

contract will give the agent starting value W0 (in Figure 5, W0 = Ŵ ) and take the usual

form. Note that due to the principal’s ability to replace an agent, his profit may be greater

than the first best profit with just one agent.

In this setting, we find that Wgp is increasing in C. This is a natural conclusion, since

when it is less costly to replace an agent with a new one, the principal will retire the old

agent sooner.

7.3 What if g′(0) > 0?

We assumed so far that g′(0) = 0, which means that the agent’s marginal utility at con-

sumption 0 is infinity. If the agent’s marginal utility at consumption 0 is finite, then the
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Figure 6: When g′(0) > 0, the probationary interval is greater than [0, W ∗].

optimal contract can be found by the same procedure as before. In this altered setting,

point W ∗, at which function F is maximized, will lie strictly inside the probationary interval

[0, Wp]. Point Wp is defined by F ′(Wp) = F ′
0(0) < 0.6 Therefore, if the agent’s reservation

value is Ŵ ≤ W ∗, then the agent’s starting value will be W0 = W ∗ and the agent will start

strictly inside the probationary interval. A typical example is shown in Figure 6.

8 Conclusion.

This paper develops a new flexible method of analyzing long-term interaction between a

principal and an agent. Continuous-time modeling allows us to better explore informa-

tional problems when the agent’s effort is unobserved. Contracts in continuous-time can

be characterized by the volatility and drift of the agent’s promised value. The volatil-

ity of the promised value summarizes the agent’s incentives. Higher volatility induces a

higher effort level. The principal will choose a volatility that induces the optimal effort

level, maximizing output minus the cost of effort and the cost of providing incentives. At

the same time, the drift of the agent’s continuation value depends on how the principal

chooses to pay up his promises over time. The principal will choose a payment scheme

under which the marginal cost of delivering utility to the agent is a martingale. We call

this effect compensation smoothing. An optimal contract features an employment interval

6In the optimality equation, u = 0 will be chosen when F ′(W ) ≥ −g′(0) = F ′
0(0). Otherwise, the

minimizing choice of u is positive and satisfies the first-order condition F ′(W ) = −g′(u).
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with two retirement endpoints. Inside the employment interval the agent’s continuation

value follows a diffusion process with drift and volatility determined by the considerations

above. Once the agent’s value hits a retirement point, it is most efficient for the principal

to compensate the agent with constant consumption and allow him to choose an effort level

of zero forever.

The reason for existence of a low retirement point is that the principal cannot deliver

to the agent any value below zero. The agent can always guarantee himself value zero by

putting no effort. In other words, zero is the agent’s minmax payoff. The existence of a

high retirement point is more surprising. In many situations, which are not covered by our

model, the agent gets promoted after good performance, because the agent’s performance

reflects his skill level. In our model, we show that even if all agents are of the same skill

level, the optimal contract features a high retirement point due exclusively to the income

effect: the fact that when the agent becomes wealthy, it costs the principal too much to

compensate him for his effort. Under the optimal contract, once a retirement point is

reached, the agent remains there forever.

Several open questions for further research come to mind from the basic continuous-time

model presented in this paper. First, what do optimal contracts look like when the agent

can save and borrow behind the principal’s back?7 This would be a much more realistic

situation for many applications, but the answer to this problem remains extremely difficult.

The contract proposed in this paper would be vulnerable to many deviations in the setting

where the agent could save and borrow. The agent would save his income to insure himself

against future manipulations by the principal. One way to approach this problem is to

add a restriction on the contract that the payments to the agent must induce a martingale

marginal utility of consumption. Then the agent would not be able to improve his welfare

by deviating only with his effort, or only with his savings. This idea is investigated in a

first-order approach taken up in discrete time in Werning (2002). His approach is very

useful in providing an upper bound on the principal’s profit, since the first-order conditions

are necessary for incentive compatibility. However, does the first-order approach guaran-

tee full incentive compatibility of contracts? First-order conditions probably do imply full

incentive compatibility when the agent’s cost of effort is sufficiently convex, but the neces-

sary conditions on the cost of effort are hard to identify. When the agent’s choice of effort

is binary, the first order approach fails as the following verbal argument demonstrates:

7If the savings were observable and contractible, then the principal would be able to achieve the same
profit as if the agent could not save or borrow.
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under any scheme proposed by the first order approach, the agent’s marginal utility of

consumption is a martingale. When the agent is supposed to put positive effort, the first

order condition implies that he is indifferent between positive effort and effort zero, given

that he does not alter his consumption pattern. The agent’s deviation to effort zero would

modify the underlying probability measure, so that with the original consumption pattern

his marginal utility of consumption will be a submartingale. Therefore, by saving appropri-

ately the agent can strictly improve his utility. We conclude that under an optimal contract

subject to just first order incentive compatibility conditions, the agent always has a prof-

itable deviation, which involves choosing effort zero and increased savings. Kocherlakota

(2003) shows that the first order approach is invalid when the agent’s cost of effort is linear

in the unemployment insurance problem, and develops a number of new elegant ideas to

solve the problem. There is hope that the answer to the question of hidden savings can be

found by applying the work of Williams (2003), who considers the possibility of a hidden

state variable.

It would be interesting to apply the basic model developed in this paper to describe

a market with multiple agents and principals. Due to the flexibility of a continuous-time

model, this direction is promising. The optimality equation allows us to use calculus to

determine how contracts depend on the parameters of the production technology. Also, we

found that the same equation describes an optimal contract under alternative boundary

conditions for various values of the agent’s quitting value W̃ and the cost of replacement

of an agent C. One can imagine a dynamic market with random entry and exit of princi-

pals and agents. For an added twist, one can imagine also that principals have different

production technologies and agents have different observable skill levels. What happens in

a dynamic equilibrium? How are values of W̃ and C determined endogenously, and how

do they vary over time and across population?

9 Appendix.

Proof of Lemma 3. First, we need to verify linear growth and Lipschitz conditions. This
will imply existence, uniqueness and continuity of solutions in initial conditions. Define

H(Φ, Φ′, W ) = min
u,a

rΦ − a + g(u) − Φ′(rW − u + c(a))

γ(a)2/2
.

We are exploring equation

F ′′(W ) = H(F (W ), F ′(W ), W ). (21)

32



There are constants K and L such that

∀ u, a, W
r

γ(a)2/2
≤ K and

|rW − u + c(a)|
γ(a)2/2

≤ L.

Therefore, the linear growth conditions hold. To verify a Lipschitz condition, consider
a pair of points (Φ, Φ′) and (Ψ, Ψ′) in the phase space of F and F ′. Assume without
loss of generality that H(Ψ, Ψ′, W ) ≥ H(Φ, Φ′, W ), and that (u, a) are the minimizers of
H(Φ, Φ′, W ). Then

H(Ψ,Ψ′,W ) ≤ rΨ−a+g(u) − Ψ′(rW−u+c(a))
γ(a)2/2

and H(Φ,Φ′,W ) =
rΦ−a+g(u) − Φ′(rW−u+c(a))

γ(a)2/2

⇒ |H(Ψ, Ψ′, W )−H(Φ, Φ′, W )| = H(Ψ, Ψ′, W )−H(Φ, Φ′, W ) ≤ |Ψ−Φ|K + |Ψ′−Φ′|L.

Next, let us show that a solution that starts from initial conditions F (0) = 0 and
F ′(0) ≥ 0 is concave. Let us show that if ever H(Φ, Φ′, W ) = 0 on the path of a solution,
then then the corresponding solution must be a straight line F (W ′) = Φ + (W ′ − W )Φ′.
We need to verify that H(Φ + (W ′ − W )Φ′, Φ′, W ′) = 0 for all W :

H(Φ + (W ′ − W )Φ′,Φ′,W ′) = min
u,a

rΦ+(W ′−W )Φ′ −a+g(u) − Φ′(rW ′−u+c(a))
γ(a)2/2

=

min
u,a

rΦ−a+g(u) − Φ′(rW−u+c(a))
γ(a)2/2

= H(Φ,Φ′,W ) = 0.

Because H(0, F ′(0), 0) < 0, the solution that starts from initial conditions F (0) = 0 and
F ′(0) ≥ 0 is not a straight line. Therefore, H(F (W ), F ′(W ), W ) never reaches 0 on the
path of F, and so H(F (W ), F ′(W ), W ) must remain negative. This completes the proof
that solutions to (13) with initial conditions F (0) = 0 and F ′(0) ≥ 0 are concave functions.
QED

Proof of Lemma 8. Consider solutions to

f̃ ′′ = h̃(f̃ , f̃ ′, ω) (22)

with initial condition f̃(0) = 0. Since h̃(0, f ′(0), 0) < h(0, f ′(0), 0), the solution to (22) with
f̃ ′(0) = f ′(0) + ε just hit f at some point ωε for all small ε > 0. As we increase ε, from the
continuity of solutions in initial conditions, ωε increases until it reaches ωgp where f hits
f0, or f̃ becomes tangent to f at ωε. The latter is impossible, however, since this would
imply that

f ′′ ≤ f̃ ′′ ⇒ h(f(ωε), f
′(ωε), ωε) ≤ h̃(f(ωε), f

′(ωε), ωε).

We conclude that ω̃gp ≥ ωgp, and the profit curve f̃ for the second set of parameters stays
above f on [0, ωgp]. QED
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Proof of Theorem 2. We will go loosely through the argument behind the proof,
to spare the reader of long precise calculations. Note that when the principal chooses to
deliver to the agent consumption utility u, he gets a flow of profit a− g(u) = ffb(u− c(a)).

First, to find a lower bound on the principal’s profit, consider a scheme under which
the principal induces the agent to work for ω ∈ (0, ω∗

gp − c(a)), and retires him when ω
hits 0 or ω∗

gp − c(a). Suppose when the agent’s average value is ω, the principal gives him
consumption utility u = ω + c(a). Then the principal’s profit under the optimal scheme is
certainly greater or equal to the principal’s profit under this scheme. Under this scheme
the agent’s average continuation value evolves according to

dωt = rγ(a)dZt.

Denote by τ the retirement time. For all ω0 ∈ (0, ω∗
gp − c(a)), E[e−rτ ] converges to

0 exponentially fast, so the contribution to profit from the agent’s retirement becomes
negligible. Ignoring retirement, we can evaluate the principal’s average profit from this
scheme as

rE

[∫ ∞

0

e−rtffb(ω) dt

]
= r

∫ ∞

0

e−rtffb(ω0) +
Var[ωt]

2
f ′′

fb(ω0) dt =

= r

∫ ∞

0

e−rtffb(ω0) +
r2γ(a)2t

2
f ′′

fb(ω0) dt = ffb(ω0) +
rγ(a)2

2
f ′′

fb(ω0) + o(r2).

This gives us a lower bound on the principal’s profit

f(ω) ≥ ffb(ω) +
rγ(a)2

2
f ′′

fb(ω).

Any line tangent to f lies above f, and f has to be above its lower bound for all
ω ∈ (0, ω∗

gp − c(a)). Therefore, f(ω) + f ′(ω)(v − ω) has to lie above

ffb(v) +
rγ(a)2

2
f ′′

fb(v) = f0(v + c(a)) + a +
rγ(a)2

2
f ′′

fb(v).

For v = u − c(a) we obtain

f ′′(ω) =
f(ω) + f ′(ω)(u − c(a) − ω) − f0(u) − a

rγ(a)2/2
≥ f ′′

fb(v).

The last inequality is strict when the corresponding line tangent f lies strictly above the
lower bound. But f ′′(ω) < f ′′

fb(v) is impossible since then the corresponding solution f to
(19) would have to end up above ffb. We conclude that all lines tangent to f must be also
tangent to the lower bound and, since f is strictly concave, this is only possible when f is
approximately at the lower bound. Thus we have

f(ω) ∼ ffb(ω) +
rγ(a)2

2
f ′′

fb(ω).

34



From the optimality equation (19), we must have f ′(ω) = f ′
fb(u(ω/r) − c(a)), so

u(ω/r) ∼ ω + c(a) for ω ∈ (0, ω∗
gp − c(a)). Since u(ω/r) is increasing in ω,

u(ωgp/r) = ωgp ≥ u

(
ω∗

gp − c(a)

r

)
∼ ω∗

gp,

so we conclude that ωgp → ω∗
gp and u(ω/r) → ω∗

gp for ω ∈ (ω∗
gp − c(a), ω∗

gp).
Finally, since f(ω) → ffb(ω) on (0, ω∗

gp − c(a)) and f is concave, the principal’s profit
must converge to first best on (ω∗

gp − c(a), ω∗
gp) as well. QED
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