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1 Introduction

The seminal paper of Kydland and Prescott (1982) and most of the models in the Real Business Cycle literature

consistently produce a high positive response of both output and employment (measured by hours worked per capita)

to a positive technological shock. In particular, this prediction is robust when the benchmark model allows other

shocks for playing a role in the cycle (as for instance, government spending, taxation). However, the high positive

correlation between hours and labor productivity seems in contrast to the data, namely, an observed near-zero

correlation.

This positive comovement between productivity and labor inputs and the technology shock-based explanation

of business cycles have been challenged by the empirical work of Gal̀ı (1999). This paper provides evidence that

technology shocks are a source of negative correlation between output and hours worked. More specifically, Gal̀ı

(1999) uses long-run restrictions à la Blanchard-Quah (henceforth, BQ) in a structural VAR model, in which labor

productivity and hours are specified in first-differences, and shows that productivity increases and hours fall after

a postive technology shock in the U.S., and that the short-run contribution of these shocks to business cycles is

rather weak. In subsequent papers, Gal̀ı (2004) and Gal̀ı and Rabanal (2004) restate these conclusions and therefore

question the suitability of RBC models to mimic the behavior of the economy—sticky price models are better suited

to reproduce the results of the VAR analysis.

Other papers in the literature have confirmed the findings of Gal̀ı (1999).1 In an earlier contribution, Blanchard,

Solow and Wilson (1995) show that an (exogenous) increase in productivity drives the unemployment rate up. Basu,

Fernal, and Kimball (2004) attempt to calculate a growth accounting based-measure of technology changes and find

that the short-run impact of their new measure on output is small, and its effect on hours worked per capita actually

sharply negative. Kiley (1997) and Francis (2001) apply the SVAR framework of Gal̀ı (1999) to manufacturing

industries and-or sectors and outline a negative correlation between employment and output growth after a positive

technology shock for must of the industries and-or sectors considered. Shea (1998) also shows, by using industry level

data, that labor input responds in the direction opposite to the movement in total factor productivity. Francis and

Ramey (2004a, b) extend the analysis of Gal̀ı (1999) in several dimensions and confirm the existing results. Francis

and Ramey (2002) provide evidence the Gal̀ı’s result to be robust after controlling for possible permanent shocks to

taxation which could also permanently affect labor productivity. Francis, Owyang and Theodourou (2003) use the

sign-restriction methodology proposed by Uhlig (2004), instead of long-run restrictions, and find the opposite result

of RBC models. International comparison studies (Gal̀ı, 1999, 2004; Francis and Ramey, 2004; Gal̀ı and Rabanal,

2004) also show much more evidence for a negative effect on hours worked after a positive technology shock than a

positive response of hours series.

Some recent papers, however, questioned the robustness of these empirical findings. Gal̀ı’s (1999, 2004) papers

have been especially subject to at least two lines of criticisms.

On the one hand, the restriction that technology shocks, and these only, have a permanent effect on labor

productivity as well as the BQ decomposition have been discussed (Chari, Kehoe and McGrattan, 2004; McGrattam,

1The following papers use a stationary transformation of the hours worked series.
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2004).2 Erceg, Guerrieri, and Gust (2004) point that the BQ decomposition might be useful if samples are large

enough; however, they find very large small-sample bias when data sets are roughly the length of currently available

U.S. time series. In contrast to the previous papers, Uhlig (2003) introduces “medium-run identification” and shows

it to be preferable to long-run or short-run identification (when applied to artificial data). Interestingly, Uhlig (2003)

finds that a positive technology shock yields an hump-shaped response of total hours; however, the initial response is

near-zero. Dedola and Neri (2004) estimate the effects of technology shocks by imposing sign-restrictions of impulse

response functions. They show that hours worked are much more likely to increase after a positive technology shock

occurs. This result appears to be robust in many dimensions. Peersman and Straub (2003) confirm this result in

the euro area. It is to be noted that the positive correlation between labor productivity and hours is robust to the

use of a stationary transformation of labor input in Uhlig (2003), Dedola and Neri (2004), and Peersman and Straub

(2003).

On the other hand, Christiano, Eichenbaum and Vigfusson (2003b, 2004) argue that the results are very sensitive

to the stochastic specification of the hours worked series. Hence, while the estimates in Gal̀ı (1999) and much of the

studies (finding an inverted hump-shaped response of hours worked) use first-differenced or detrended (log) hours

per capita, CEV claim that the only sensible specification for hours was one assuming a reversion of hours (per

capita) to a mean, in which case a VAR including first-differenced hours is misspecified. In this respect, CEV find

consistent results with the RBC literature when the level of (log) hours worked per capita enters in the structural

VAR specification: hours are driven up after a positive technology shock hits the economy. The technology-hours

debate thus turns to the stationary transformation of the hours worked series, and its implications for the sources of

business fluctuations.

In this paper, we address the question of the specification of the hours in a structural VAR model and we examine

the robustness of results in the literature. Our approach differs remarkably from most of previous studies in the

sense that we use Bayesian econometrics and we propose a direct test to assess which specification should be used.

Specifically, given that it is well-known that standard unit root tests fail to discriminate the level-first differences

nature of hours, due to low power (see Sims, 1988; Phillips, 1991), and that the stochastic process driven hours affects

inference as well as impulse-response functions, the variance decomposition, etc, we rather outline that we can learn

from Bayesian specification of structural VAR models. In effect, a Bayesian approach to calculating moments from

a structural VAR model seems to have been rarely taken in the context of the technology-hours question in the U.S.

(two exceptions being Uhlig (2004) and Dedola and Neri (2004)), much less to picking the ”best” specified model of

productivity and hours (i.e. using level hours versus differenced hours).

In this respect, we take a Bayesian approach to estimating a bivariate technology-hours VAR by using a version

of the Normal-Wishart variant of the Minnesota prior of Litterman (1986), suggested by Kadiyala and Karlson

(1997). We then compare the first-differenced and level hours specifications. To do so, we propose a specification

test that encompasses the two SVAR models used in the literature. Our method is substantially similar to that of

Phillips and Ploberger (1994) and Phillips (1995), who calculated Bayes factors for competing specifications of AR

models of the series examined by Nelson and Plosser (1982) and Schotman and Van Dijk (1991). Unlike classical

2Standard criticisms of long-run restrictions include Lippi and Reichlin (1993), Cooley and Dwyer (1998), and Faust and

Lepper (1997).
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model-selection criteria, which are usually functions of the maximum likelihood, Bayes factors are measures of the

average likelihood, given a candidate model, the data and a prior distribution on model parameters. When competing

models are assumed a priori to be equally likely, the posterior probabilities of each model are proportional to the

Bayes factor.3 Two measures of the Bayes factor are used here to compare models, the first being the Laplace

approximation, the second being the Bayesian variant of Phillips’ own “posterior information criterion” or PIC, a

classical version of which is used to “pick” evolving Bayes models of time series in his 1995 paper and in Phillips

and Ploberger (1994). Phillips (1996) applied the Bayesian PIC to specification choice for Bayesian VARs. With

the “best” specification in hand, we then use our Bayesian VARs to calculate and examine posterior distribution of

moments of interest in examining the effect of technology shocks on hours. Among these are posterior distributions of

the Blanchard-Quah decomposed technology shocks and their conditional correlations with productivity growth and

hours, as well as more conventional metrics of the effect of technology on hours such as impulse response functions

and variance decompositions. Furthermore, we explore the robustness of our results using alternative data set (see

Chari, Kehoe and McGrattam, 2004), namely, the CEV data, the Francis-Ramey data and a dataset including the

U.S. real GDP and the unemployment rate. Then we experiment larger VAR specifications (using the models of CEV

and Gal̀ı, Lopez-Salido and Valles (2003)). We also analyze whether our results might be driven by the changes of

monetary policy in the United States or the existence of structural breaks (see Dedola and Neri, 2004; Fernald, 2004).

Finally, we address the question of how informative our priors are—we re-estimate the VARs using other informative

or non-informative priors.

Our results show that a specification of hours in levels rather than differences is rejected in a classical framework,

but is strongly supported when we use a reasonable informative or a non-informative prior (Bayesian framework),

even one centered on the hypothesis that the difference specification is best. This implies, in turn that the effect of

technology on hours is probably positive (and hours are positively correlated with lagged technology shocks). This

result strongly supports those of CEV, Delado and Neri (2004) and Uhlig (2004). However, at the same time, the

margin of error in the IRFs is too wide to allow a strong conclusion. Therefore, inference from IRFs regarding the

response of hours to technology shocks, positive or negative, is fragile to specification and data set used in estimating

VARs. The distributions of variance decompositions as well are also far too diffuse to allow a meaningful inference

regarding the importance of technology shocks in cycles. Therefore the uncertainty surrounding the impact effect

of technology shocks or their contribution support, to some extent, the conclusion of Gal̀ı (1999) in the sense that

technology might not be the primary source of business fluctuations. Such results are robust to use of VARs with

larger data sets (including inflation, interest rates and the investment/output ratio), to sub-sample stability, and the

choice of priors.

The rest of this paper is organized as follows. Section 2 describes the method of estimation of the Bayesian VAR

models used in this paper, as well as the means of calculating posterior distributions for moments of interest. After

briefly describing the data in section 3, we go on in section 4 to note the results of the specification tests for the

bivariate VARs, along with discussion of the estimated moments of interest and what they imply about the effect

of hours on technology. Section 5 takes a variety of approaches to checking the robustness of our results. Among

these are using larger data sets to estimate our VARs allowing us to examine how well technology shocks can explain

3For a useful survey of Bayes factors and how to calculate them, see Kass and Raftery (1995).
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the business cycle as a whole. We also look at the issue of subsample instability and the choice of priors. Section 6

concludes.

2 Methodology

In this section, we present the two competing approaches in the literature—the level- and first differences-based hours

SVAR models. Then, we propose a new test to disentangle for the level-first differences specification of hours. Finally,

we specify our priors and the information criteria used in the sequel.

2.1 The structural VAR procedure

We briefly review a version of the Blanchard and Quah (1989) structural VAR procedure used by Gal̀ı (1999,

2004) and Christiano, Eichenbaum and Vigfusson (2003).

Let consider a reduced vector autoregression of the form

A(L)Xt = ut.

where the errors terms have variance-covariance matrix Σ and are orthogonal at all leads and lags. The vector

Xt is given by (x1t, x2t)
′ where x1t is the first difference of the log of labor productivity and x2t is a measure of the

labor input.

Since this is a reduced form of an economic model, the error terms have no structural interpretation. To interpret

this shock, it is convenient to invert this vector autoregression in order to express it as a vector moving average

process


 x1t

x2t


 =


 C11(L) C12(L)

C21(L) C22(L)





 ext

eht


 .

where ex1t
and ex2t

are serially uncorrelated, orthogonal structural disturbances, whose variance is normalized

to unity. The polynomial |C(z)| is assumed to have all its roots outside the unit circle to rule out non-fundamental

representations.

To identify the structural parameters from the reduced form parameters, Gal̀ı (1999) assumed that the first shock

ex1t
has a permanent effect on labor productivity whereas the second shock ex1t

has no permanent effect on this

variable. In this respect, permanent shocks to productivity are interpreted as technology shocks and the transitory

shocks can captured demand effect and other driving forces behind output and labor input fluctuations. For the rest

of the paper, we interpret it as a demand shock.

Given this approach, two specifications are considered in the literature. On the one hand, Gal̀ı (1999) assumes

that x2t is the first-difference in the log of the labor input (ht), so that the reduced form is defined by

A(L)


 x1t

∆ht


 = ut

whereas CEV (2003) consider a level specification where x2t is the log of labor input
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A(L)


 x1t

ht


 = ut.

These two competing models yield two opposite conclusions regarding the effect of a positive technology shock.

In effect, while Gal̀ı (1999) claims that a positive shock to technology leads to a persistent and statistically significant

fall in hours, CEV find that hours significantly rise. This implies, in turn, different responses to the question of

the main force driven business fluctuations. Many recent papers have examined the robustness of these results (see,

for example, Chari, Kehoe and McGrattan, 2004) but none, to our knowledge, has tried to propose a test, which

encompasses the two specifications.

2.2 A new specification test

To disentangle for the level/first difference debate surrounding the labor input measure, we develop a new test based

on the following specification

A(L)


 x1t

∆ht


 + Cht−1 =


 ux1t

uht


 .

On the one hand, if the C matrix is null, then the first-difference specification of CEV is recovered. On the

other hand, if the C matrix is non null, then our test provides evidence for the level specification of Gal̀ı. Level

hours in this context, or rather its deviation from mean, can be thought of as an “error correction term” driving

employment/output back towards trend.

To test such restrictions on the C matrix and to estimate the different models, we use a Bayesian methodology.

This is motivated by the following points. First, as it is well-known, accurate estimations of he finite sample distribu-

tions of (A, C, Σ) is important for applications of the SVAR methodology. However, such finite sample distributions

of OLS estimators of the parameters of interest are unavailable. On the other hand, asymptotic theory may pose

some problems. VAR model generally involves a large number of parameters, and the data size is not enough large

to justify the use of such theory. In this respect, adding objective or subjective prior information to the data allows

us to get back some degrees of freedom that might be lost from estimating an otherwise realistic number of VAR

coefficients.4 Second, since we wish to estimate the impulse-response functions, the variance decomposition, and

the conditional correlations of interest, Kilian (1999) shows that the asymptotic theory involves approximation of

nonlinear functions, but this approximation becomes worse the more nonlinear the functions there are. One way to

4It is perfectly possible that some variables may enter any given equation of the VAR in the “true” model, but others

might not. In particular, hours might be best modelled in levels, but level hours might not enter into some or all of the other

equations of the VAR (or at least not prominently enough to be distinguished from sampling error). Hence if the difference

restriction were imposed, a classical model selection criterion such as the Akaike information criterion or the Schwarz criterion

might strongly accept the difference specification, simply because of the greater parsimony, when the true model included level

hours. Clearly, the resulting “best” model would be misspecified; the proper specification winds up being thrown out with the

excessive parametrization.
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attenuate this problem is to use classical bootstrapping methods. However, the Bayesian techniques used here yield

exact finite-samples densities of the features of interest and includes the uncertainty. As is shown by Koop (1992),

the measures of uncertainty are larger than their classical counterpart. Furthermore, Sims and Zha (1995) show that

Bayesian approach gives a sound basis to the computation of error bands of impulse responses functions. Third,

as is pointed out by Phillips (1998), impulse responses functions (as well as variance decomposition, etc) which are

estimated from unrestricted VARs with roots near unity yield inconsistent estimates. Given that the main issue here

is to choose among a a VAR specification with a unit root in hours against a stationary representation of the labor

input measure, our Bayesian approch allows us to tackle this problem. In effect, classical inference on unit root differs

substantially from the Bayesian one. In particular, as illustrated by Sims and Uhlig (1991) and established by Uhlig

(1994), the conditional likelihood function as a function of the model parameters is not affected by the presence of

unit roots, similar results hold for the conventional t and F statistics in their Bayesian interpretation. At the same

time, since a Bayesian estimator of (A, C, Σ) depends on the sampling distribution, the prior and the loss function,

suspicion can occur given some priors must be postulated. Nevertheless, we deal with this issue in two different ways.

On the one hand, we assess the robustness of our results using different sets of priors. On the other hand, we use

the contributions of Phillips and Ploberger (1996) and Phillips (1996) in which they develop a theory which reduces

the weight of the priors (for a given set of parameterized priors), by optimizing a well-chosen criterion over this prior

family. Moreover, Phillips and Ploverger (1996) derive a limiting representation of the Bayesian data density that

is of the same general exponential form for a wide class of likelihood functions and prior distributions. This result

is not affected by the presence of unit-roots. Fourth, as is explained below, we use a Laplace approximation of the

Bayes factor and the PIC criterion to conduct inference on the paramters of interest. However, we do not impose

a priori values of the hyperparamters but rather maximize the respecting criteria. This approach allows us to test

the robustness of our results over different sub-periods and to relax common criticisms of the Litterman priors etc.

Finally, the recent developments of Bayesian econometrics have conducted to similar efficient tests for the order of

cointegration (Kleibergen and Paap, 2002; Strachan and Inder, 2004).

2.3 The Bayesian approach

2.3.1 Priors selection

Our Bayesian VARs use a random walk prior inspired by the Minnesota prior suggested by Litterman (1986), imposed

on a classical VAR by combining the VAR likelihood with a Normal-Wishart prior distribution as suggested by

Kadiyala and Karlsson (1997).

Let β = vec(A) where B is the (cmax + m × lmax)×m matrix of coefficients of a VAR with m equations, lmax lags

and cmax deterministic variables. Given the covariance matrix of the residuals Σε, assume β to have a multivariate

normal prior distribution β|Σε ∼ N(βprior, Σε⊗Ωprior) and the prior distribution of the m×m disturbance covariance

matrix Σε to be inverse Wishart with α degrees of freedom, i.e. Σε ∼ IW (Σprior, α), giving Σε a prior mean of

1

α−m−1
× Σprior. The Normal-Wishart prior is particularly easy to use inasmuch as combining the priors with the

likelihood implied by a VAR using T data points results in a Normal-Wishart posterior,
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β|Σε ∼ N(βpost, Σε ⊗ Ωpost)

where Ωpost =
(
Ω−1

prior + X ′X
)−1

and βpost = Ωpost

(
Ω−1

priorβprior + X ′XβOLS

)−1
,

and

Σε ∼ IW (Σpost, T + α)

where Σpost = B′
OLSX ′XBOLS + B′

priorΩ
−1

priorBprior + Σprior + (y − XBOLS)′ (y − XBOLS) − B
′

postΩ
−1
postBpost.

One advantage of the Normal-Wishart posterior is that it makes drawing from the posterior distribution and

calculating moments on interest straightforward.

The variance-covariance matrix is assumed a priori to be diagonal with a mean of diag(s2
1, ..., s

2
m), where s2

i

is the variance in the disturbances of the ith equation estimated with a diffuse prior (that is, the corresponding

equation from a classical VAR). Hence we set Σprior to be the diagonal matrix (α − m − 1) × diag(s2
1, ..., s

2
m). The

degrees of freedom parameter α from the Inverse-Wishart prior will serve as one of the hyperparameters of the prior,

imposing more or less strictly the constraint that the posterior covariance matrix is diagonal. As in our case the cross

correlations of the disturbances are crucial to the results, we do not want to set that restriction too strictly; hence

we set α = m + 2, which ensures that the prior mean exists but adds relatively little information to the data.

The mean of the Minnesota prior is a random walk, hence βprior is set so as to give the first autoregressive lag

of each series entering the VAR in differences a prior mean of zero, while the first autoregressive lag of each series

entering the VAR in levels is given a prior mean of one. The prior means of all other elements of β, including non-

autoregressive lags and autoregressive lags beyond the first, are given a prior mean of zero, as are the prior means

for the deterministic variables. Ωprior is given as a diagonal matrix so as to set the mean for the prior covariance

matrix of β, Σε ⊗Ωprior, to be a diagonal matrix with element σ2
ij,l corresponding to the lth lag of variable j in the

ith equation being:

λ2
0

lλ1

for i = j, ∀l

λ2
0

lλ1

(
s2

i

s2
j

)
for i 6= j, ∀l

and the elements σ2
ic corresponding to the deterministic variable c in the ith equation being λ2

0λ2 for all c.

The overall tightness hyperparameter λ0 gives the prior standard deviation for the first autoregressive lag; the

ratio of variances serves to scale up or down the tightness for non-autoregressive lags. The hyperparameter parameter

λ1 tunes the rate at which the tightness of the imposition of the prior mean increases with increasing l. Finally, λ2

tunes the tightness of the imposition of the zero prior mean on the coefficients of the deterministic variables.

Given a specification, and with the posterior distribution of various candidate models in hand, it is fairly

straightforward to calculate posterior distributions of moments of interest such as impulse-responses, conditional cor-

relations, variance decompositions, and so forth, in the fashion suggested by Koop (1992). For each of a large number
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of draws (10000 draws in most of the exercises described here) from the posterior distribution for the disturbance

covariance matrix and corresponding draws from the conditional posterior distribution for the VAR coefficients, we

compute the moments of interest conditional on those draws, and from those draws obtain posterior distributions.

The derivation of the BQ impulse responses to technology were calculated using the Cholesky-decomposition method

suggested by Keating (2002), with technology shocks assumed to be the only shock with a permanent effect on

productivity levels.5

2.3.2 Specification test

The prior means on each coefficient in the C vector is taken to be zero (i.e. the “null hypothesis” is that the difference

specification is correct) and the prior covariance of the term in C corresponding to the ith equation is λ2
3

(
s2

i

s2

h

)
, where

s2
h is the disturbance variance from the hours equation of the classical VAR.

As an optimal Normal-Wishart prior is highly informative on the coefficients of the VAR, it is possible that it

could affect the results. Therefore, we also specify noninformative priors to assess the robustness priors (see further).

In a similar context, this is the methodology used by Kleibergen and Paap (2002) to test the order of the cointegration.

In what follows, the VAR using differenced hours only, imposing exactly the restriction that C = 0, will be

labelled the “differenced hours VAR” (e.g. “differenced CEV hours VAR”) and the VAR relaxing the zero restriction

will be labelled the “level hours VAR.”

2.3.3 Information criteria

Instead of parameterizing the set of hyperparameters, we maximize the lag length and the values of λ0, λ1 and λ3

using two information criteria: the Laplace approximation of the Bayes factors and the PIC developed by Phillips

(1996).

The Laplace approximation for the Bayes factor of model M , given data set D and a prior distribution for the

vector of the model parameters θ with pdf fprior is given by6

ln BFLaplace =
d

2
ln(2π) +

1

2
ln

∣∣∣Σ̃θ

∣∣∣ + ln L
(
D|θ̃, M

)
+ ln fprior

(
θ̃|M, α, λ0, λ1, λ2

)

where d = m× (c + l × m)+m× m+1

2
is the dimension of the model, and θ̃ is the value of θ at the posterior mode,

with Σ̃θ being the Hessian matrix of second derivatives at θ̃.

In this paper, we approximated the posterior mode of θ with the posterior mean and Σ̃θ with the posterior mean of

the covariance matrix.7 As the hyperparameters are few in number, we find their optimal values through an informal

grid search for plausible values of these hyperparameters.

5See Annex 1.
6As the restriction to zero of trend productivity growth was not relevant for the post 1959 period, the value for λ2 was set

for all VARs at 105, to represent a diffuse prior.
7Ni and Sun (2002) show that, with the constant prior on the VAR lag parameters, the asymmetric LINEX estimator for

the lag parameters does better overall than the posterior mean and that the posterior mean of the covariance matrix performs

well in most cases. We test the robustness of our results for the lag parameter using an asymmetric loss function and do not

find significant differences.
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On the other hand, Phillips (1996) proposes to construct optimized VARs with data-determined hyperparameters

using the following criterion:

PICBayesian = −
T

2
ln

∣∣∣Σ̃ε|T

∣∣∣ +
1

2

(
ln

∣∣∣Σ̃β|T

∣∣∣ − ln
∣∣∣Σ̃β|T0

∣∣∣
)

where Σ̃ε|T is the posterior mode of the disturbance covariance matrix given data up to time T and Σ̃β|T is the

covariance matrix of the coefficients of the VAR at the posterior mode. T0 is smaller than T and is used as reference

point in the computation of the criterion. It must be large enough to allow for the estimation of the model. The

intuition behind this additional term is that when the variance of the prior distribution is very small, the second term

of the criterion becomes larger and larger.

As previously, posterior and prior modes are approximated with posterior and prior means.

3 Data

An important issue of the hours-technology debate is the data sets. For instance, Chari, Kehoe et McGrattan (2004)

argue that the impulse response functions are very different depending on the data sets they used. Furthermore, they

show that the different results in the literature lie in the difference of the underlying data and not in the model. This

argument has been stated in several studies (Francis and Ramey, 2002; Gal̀ı, 2004). Therefore, we use three sets of

productivity and detrended hours data to estimate the bivariate BVARs:

- An index of US business productivity and an index of hours worked in the business sector deflated by population

to get an hours per capita series as suggested by Christiano, Eichenbaum and Vigfusson (2003) (hereafter “CEV

hours”);

- The same index of business productivity and the same hours index as in CEV, but with hours deflated into per

capita terms using the corrected population series proposed by Francis and Ramey (hereafter “FR hours”);

- US real GDP and the unemployment rate (as measured by the Current Population Survey), with productivity

calculated by dividing GDP by employment and detrended hours measured by the unemployment rate.

Our sample period is 1959:Q1 to 2004:Q2, except for VARs using FR hours, which use data up to 2002:Q4, the

latest quarter for which Francis and Ramey’s population series is available.

We report plots of the hours per capita series in Figure 1. The stationarity of CEV hours, FR hours and

unemployment are an open debate. In particular, CEV and FR hours were specifically constructed to produce a

stationary measure of hours per capita. But, visual inspection suggests, to some extent, deviations from a mean, if

any exists, are long and persistent. Also FR hours appears to exhibit a slight upward trend during the post 1959

period. One standard argument to invoke the stationary of hours works per person series is to say that in all economic

models this series is bounded and thus the stochastic process for hours cannot literally have a unit root (see CEV).

At the same time, one counterargument could be that the unit root specification can be best viewed as statistical

approximation for variables with high correlation (see Francis and Ramey, 2003; Chari, Kehoe and McGrattan, 2004).
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While the latter position can be defended, one limitation is that the implications of a near-unit root and a unit root

are sharply different in a VAR models for impulse-response functions, variance decompositions, etc. At the same

time, due to the low power of standard unit roots, no conclusion can be drawn from such tests. In this respect, one

advantage of our Bayesian setting is that it is no more sensitive to the unit root problem.

(Insert Figure 1 around here)

4 Results of bivariate VARs

In this section, we present the results in the case of bivariate VAR models. More specifically, we discuss the spec-

ification choice, the impulse-response functions, the variance decompositions, the conditional correlations, and the

dynamics of the shocks.

4.1 Specification choice

Results are reported only for VARs calculated with one deterministic variable (a constant) and lags of each series of

productivity growth and detrended hours.

Tables 1(a)-(b) report optimal lag length, hyperparameter values, PIC and Laplace Bayes factors for the bivariate

Bayesian BVARs. For CEV and FR hours the optimal lag length of three is more in line with those regularly used

in VAR exercises; for unemployment, it is more conservative, with two lags being best. The values for the overall

tightness parameter and the lag decay parameter are not far from Litterman’s original suggestions of λ0 = 0.2, and

λ1 = 2.

(Insert Tables 1(a)-(b) around here)

Our results show, first, that non-trivial absolute values of the optimal prior variance of the terms in C from zero,

with values for λ3 of around 0.025 (0.021 for FR hours). Therefore hours are clearly highly persistent, but not so

persistent as to make the difference specification necessarily the true one. Second, the ratios of the Laplace Bayes

factors imply for all three VARs that the level VAR is best, with probabilities from 80% (FR hours) to 89% (CEV

hours). Therefore, our specification test clearly supports the evidence reported by CEV, Dedola and Nieri (2004)

and Uhlig (2004); namely, hours worked enters in levels in the structural VAR model. This result is obtained with a

reasonable informative prior, even one centered on the null hypothesis that the difference specification is best.

As an optimal Normal-Wishart prior is highly informative on the coefficients of the VAR (even if the Wishart prior

is relatively uninformative on the variance-covariance matrix), we check whether this choice may affect the results.

Therefore we made the Minnesota prior diffuse by raising the overall tightness parameter to a large number (104.5)
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and set the lag decay to zero. We then re-estimated the Laplace Bayes factors for each specification, using (in the case

of the level specification) optimized values of the tightness parameter on C.8 Table 2(a) provides evidence that the

results using the “Diffuse-Wishart” prior are qualitatively similar to those for the more informative Normal-Wishart.

The most importance difference is a doubling of the Bayes factor in favor of the level model, to the degree that the

difference model is always rejected.

Finally, in the last section, we test the robustness of this result using other informative or other noninformative

priors. Conclusions are similar, that is, we find strong evidence for the level specification.

(Insert Table 2(a) around here)

4.2 Impulse response functions

Figures 2 through 4 depict the 95% confidence bands for the impulse responses of output and hours under either

the level (black) and difference (red) specification. Consistent with the results reported in Christiano et al., the

median IRFs, for each variable of interest (output and hours) from the differenced model is well in the tail of the

posterior distribution of the IRFs from the level model, and vice versa, neither median being well-nested in the other

model’s 95% confidence band.

(Insert Figures 2-4 )

As it is clear to the eye, the 95% confidence bands, however, do suggest that unbiasedness in the IRFs comes at

a large cost in precision. For all three bivariate VARs, the 95% confidence bands for the effect of a technology shock

on impact on hours significantly nests zero, making settling the technology-hours debate difficult no matter which

measure of employment we trust the most.

4.3 Variance decompositions

Given the relationship between IRFs and other moments often used to evaluate the role of technology shocks in

cycles, such as variance decompositions, it is worth looking at just how large the cost of unbiasedness can really be

for other moments as well.

In this respect, Table 3(a) follows CEV by reporting variance decomposition results for the bivariate VAR using

business productivity and CEV hours. Our studies of variance decompositions, and the examination of the shocks

themselves below, will in this paper only report results from the CEV hours VARs. This is in part to save space,

and also because much of our purpose here is to demonstrate the lack of information structural VARs can supply

regarding the technology-hours debate.9

8We also re-estimated the PIC criterion. Since the results look similar, we do not report them.
9Other results are available on request.
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(Insert Table 3(a) around here)

We do go beyond Christiano et al. (and for that matter scores of other papers reporting similar variance decom-

positions), however, and report a 95% confidence band for the percentage of variance in output and in hours explained

by BQ-decomposed permanent “technology” shocks. The posterior median of the distribution paints a substantially

similar picture to that of Christiano et al. More specifically, 76 percent of output disturbances in a given period

can be accounted for by technology shocks, with the percentage slowly rising to 100 percent (by construction) as the

lag length increases (following Christiano et al., we report results for one, four, eight, twelve, twenty and fifty steps

ahead). The explained fraction of variability in hours is generally below 15% with 50% probability in the short term

(less than four quarters). The median amount of hours fluctuations caused by technology shocks is much higher in

the long term: at business cycle frequencies (two to five years ahead), the median suggests that around 25 to 35

percent of hours fluctuations can be explained by technology. Strikingly, this finding is pretty much in line with the

results reported in Gal̀ı (1999). Therefore it may appear that the bulk of movements in hours worked should reflect

shocks different from those affecting technology.10

Nevertheless, the distributions of the reported percentages suggest more caution regarding the interpretations of

the previous results. While, again, the median estimate of the percentage of output movements caused by contempo-

raneous technology shocks is 76 percent, we cannot (with 95% confidence) rule out figures as low as 21 percent nor

estimates as high as 99 percent. The problem is apparently less severe at business cycle fluctuations, with (say) at

twelve steps ahead, no less than 60 percent of output fluctuations can be explained by technology.

However, similar problems exist for hours, and get worse and worse as time horizons expand. Again, the median

estimate of the percentage of hours fluctuations caused by contemporaneous shocks to technology is 6 percent;

however, estimates as low as zero and as high as 47 percent cannot be ruled out. At business cycle frequencies the

95% confidence band widens to the point where useful inference becomes almost impossible; possible values range

from zero to over 80 percent. Clearly, the productivity and hours data alone, restricted only by the BQ-identification

scheme do not have much to say on what the contribution of technology shocks might be to fluctuations in employment.

The great uncertainty in the variance decompositions is closely related to that plaguing the impulse response

functions, with the 95% confidence bands nesting both very large and very small responses of output and hours to

technology shocks, ranging from responses near 100% of the typical size of an output disturbance to near zero percent.

In this respect, while we can be fairly sure the CEV BVAR with level hours per capita is relatively free of specification

error (and the bias of unknown form that might result), the cost in precision seems too large. Therefore, the data

appear to be compatible with almost any hypothesis regarding the importance (or lack thereof) of technology shocks

in business cycles. This finding supports to some extent the conclusion of Gal̀ı (1999) regarding the role of technology

shocks as the main source of business fluctuations.

10Note that we obtain the same results if we estimate a first-differenced VAR.
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4.4 The shocks themselves and conditional correlations

Given the uncertainty of the variance decomposition results, one would like another way to assess the relationship

of our identified technology shocks to disturbances in economic variables (such as hours). One way is to calculate

a posterior distribution for the technology shocks identified from the BQ-decomposition scheme, as well as for the

disturbances in economic variables of interest.

Given a draw for the coefficients of the VAR B∗ and the disturbance covariance matrix Σ∗
ε , we can construct a

draw for the matrix of residuals from the equations of the VAR ,

u
∗ = y − XB

∗
,

where X is a T × (c + m × l) matrix of the values of the deterministic variables and the lags of the endogenous

variables at each time point, and the T ×m matrix y represents the present values of the VAR variables at each time

point.

Given B∗ and Σ∗
ε , e∗ is a linear function of the permanent technology shock ∆z and the other shocks u, both in

standard deviation terms, namely


 ∆z

u


 D = e,

where the decomposition matrix D is a function of B and Σε, so that the draw for the technology shock vector

∆z∗ is simply the first column of


 ∆z∗

u∗


 = D (B∗

, Σ∗
ε)

−1
e.

As we do not interpret the other structural shocks calculated by the Cholesky-decomposition algorithm, we collect

a posterior distribution only for ∆z, as well as for its correlations at up to five leads and lags with disturbances in

productivity growth and in hours. The 95% confidence intervals for the values of ∆z in the bivariate CEV VAR are

given in Figure 5, while the conditional correlations are given in Tables 4(a)-(b). The dynamics of the technology

shocks from the bivariate VAR do suggest substantial negative shocks around the periods of well-known recession

periods, most obviously around 1974-75 and 1979-82. The median correlation between the identified technology shocks

and disturbances in productivity growth is extremely high (around 0.975), and the correlation is almost certainly no

lower than 0.75. The correlation of technology shocks with disturbances in hours, however, like the hours IRF, is

much less suggestive of an overwhelming role of technology shocks in changes in hours. The median correlation is

weakly positive (0.20), but the 95% confidence band nests zero, with possible values as low as -0.34 and as high as

0.68.
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To sum up, our Bayesian specification test provides evidence for the level hours VAR whatever the data sets we

considered. This confirms the conclusions of CEV, Dedola and Nieri (2004) and Uhlig (2004). At the same time, the

uncertainty surrounding the impulse response function, the variance decompositions, and the conditional correlations

cast doubts on the role of technological shock as being the primary source of business fluctuations. Especially, the

fraction of variability in hours worked explained by technology shocks is rather weak. This confirms the Gali’s (1999)

results.

(Insert Tables 4(a)-(b) around here)

(Insert Figure 5 around here)

5 Robustness Issues

In this section, we test the robustness of our results. To do so, we experiment larger VAR specifications—using

the models of Christiano et al. (2003) and Gal̀ı et al. (2003)—and we examine the impulse-response functions, the

variance decomposition, the conditional correlations, and the dynamics of shocks. Furthermore, we analyze whether

our results might be driven by the changes of monetary policy in the United States and whether inference with

Canadian data yields similar results. Finally, we address the issue of informative priors versus non informative

priors.

5.1 Results from larger VARs Specification

The advantage of the level specification becomes clearer when larger VARs are used. In Table 1(c) we report

optimal hyperparameters, lag lengths and approximate Bayes factors for six-variable VARs containing each measure

of productivity and hours and the following other variables (following, with one exception, Christiano et al. 2003):

- The ratio per quarter of nominal gross private domestic investment and durable consumer goods purchases to

GDP (“investment/output ratio”);

- The ratio of nominal domestic demand (C+I+G) to nominal GDP, which, when logged, gives an approximate

percentage of the trade deficit as a percentage of GDP11;

- The rate of change of the GDP price deflator (“inflation”);

- The quarterly average of the federal funds rate (“federal funds”).

11Christiano et al. (2003) actually use a measure of the consumption-output ratio, constructed as the ratio of nondurable

spending plus nominal government purchases divided by nominal GDP. However, they assume implicitly that (i) all government

purchases are consumption and (ii) public consumption is equivalent, dollar for dollar, with private consumption. Both assump-

tions are discussable. Therefore, since the investment enters in the specification of the SVAR, we prefer using the following

measure, C+I+G
GDP

. As a practical matter, the qualitative results reported here are not so much affected by using one instead of

the other. Results (with the Christiano et al. specification) are available on request.
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(Insert Table 1(c) around here)

Table 1(c) details the optimal hyperparameter values for the six-variable VARs using various measures of produc-

tivity and hours, and the Bayesian PICs and Bayes factor ratios associated with each one. Again, for the CEV and

FR BVARs, estimated with levels or differences, three lags of productivity and hours seem to be optimal, while two

lags appear to be best for the unemployment BVAR. A rather tighter constraint around zero for the VAR parameters

appears best for the larger VARs (λ0 ≈ 0.09), in part because of the larger number of extraneous lagged variables.

However, a somewhat looser lag decay is best (λ1 ≤ 1).

Again, as well, the 6-variable VARs favor a level specification for hours. For CEV hours and unemployment, in

particular, the advantage of the level specification is decisive; the posterior probability of the difference specification

being best is less than one percent for CEV hours and about 0.01% for unemployment. For FR hours, however, the

advantage of the level specification actually falls; the differenced model has about a probability of 40% of being the

true model. Also, given the level model, the best value for the constraint around the zero prior mean of the C vector

a bit smaller for FR hours (λ3 ≈ 0.015) than for CEV hours or unemployment (λ3 ≈ 0.03).

As previously, to check the robustness of these results, we re-conduct our specification test using a “Diffuse-

Wishart”. Table 2(c) shows that the Normal-Wishart prior is slightly more informative for the six-variable VAR

model than for the bivariate VARs at the optimal overall tightness parameter. There are some differences when

we compare the results of Table 2(b)—informative priors—versus Table 2(c)—noninformative priors. However, the

Normal-Wishart, in all three cases, increases the odds in favor of the level specification. However, the “Diffuse-

Wishart” clearly favors the level model for all three specifications, so that the qualitative results are not changed.

(Insert Tables 2(b)-(c) around here)

5.1.1 Impulse responses and investment

Figures 6 through 8 report the impulse responses from the six-variable VARs using each measure of hours. All

three sets of IRFs are broadly similar, in that the median responses of economic variables to the identified permanent

shocks do not resemble most accounts of the stylized facts of US business cycles, viz. output should rise, employment

should rise and investment should also rise farther than output as a whole. Certainly it is far from obvious that

employment should rise in response to the permanent shock; as with the bivariate VARs, the 95% confidence bands

for the effect on impact of the permanent shocks on hours or employment comfortably nest zero. For the CEV hours

VAR, for example, hours only rise after a permanent shock 67% of the time. In the six-variable VARs, it is worse in

that for all three hours series even the sign of the effect on output on impact is not obvious (that is, the confidence

bands nest zero even for output). On the credit side, the output effect clearly turns positive after two or three

quarters; however, the effect on hours is not obviously positive even up to twelve quarters ahead.

(Insert Figures 6-8 around here)
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Also, investment does not obviously rise farther than output, as we would see in a business cycle. For the CEV

hours VAR, for example, the investment/output ratio only rises in response to a permanent shock about 26 percent

of the time. The IRFs for investment itself casts into doubt even the sign of the effect on technology on investment,

even up to twelve quarters ahead. What does appear to be a strong effect of permanent shocks is on inflation, at

least for CEV hours and unemployment (the effect is less strong for FR hours), the effect of permanent shocks on

inflation is negative more than 99% of the time.

For federal funds and the trade deficit, the effects are less obvious. The confidence bands for the effect on impact

on the nominal federal funds significantly nests zero, but becomes more and more negative with growing horizons as

inflation expectations, as much of the central bank as of the marketplace, slowly fall. As a result, in the short run

real interest rates rise. Higher real interest rates and lower investment/output ratios (i.e. higher consumption) make

the apparent decrease in the trade deficit/GDP ratio on impact (98% of the time) rather puzzling, however, though

this fairly strong effect gets weaker with increasing horizon.

A technology shock should, of course, raise real interest rates as the productivity of capital rises. However, if the

identified permanent shock does model technology shocks fairly well, then the wealth effect of a technology shock

clearly dominates the substitution effect, with consumption apparently outstripping investment, and the positive

employment effect from higher productivity more or less counteracted by the negative employment effect from higher

wealth. The jump in consumption, faster than output as a whole, may partly explain the sharp negative effect on

inflation. Many models of money demand (cash-in-advance models, for example) underline the relation of money

demand to consumption, which is boosted by a technology shock. Hence the price level ought to fall in response

to a technology shock. It does suggest, however, that monetary policy in the US might not have been sufficiently

accommodating to technology and other supply shocks (an obvious example is during the money-growth targeting

experiment in the 1979-1982 period) to prevent a drop (or rise) in prices in response to a positive (or negative)

aggregate supply shock, and possibly the resulting falls in employment through new Keynesian Phillips curve effects.

A natural question (explored farther below) is whether that sharp negative response disappears after 1982.

5.1.2 A reappraisal of Gal̀ı et al. (2003)

The level specification is also strongly favored with a four-variable VAR in productivity, CEV hours, inflation

and federal funds, similar to that used by Gal̀ı et al. (2003). The impulse response functions of this four-variable

VAR (reported in figure 9) have different implications for the response of hours to technology, however. Consistent

with the results in Gal̀ı’s work on this subject, the optimal four-variable VAR without investment results in a 90%

probability of a technology shock having a negative effect on hours on impact, an apparently strong finding for such

a negative effect. The result, however, dissipates when we look at the six-variable VAR including investment and

trade deficit data.12 For the six-variable VAR the probability is about 75% in favor of a positive effect of technology

on hours-inconclusive, but for all that illustrative of how sensitive the results of Gal̀ı and his various co-authors is to

inclusion of investment. Possibly this implies that a structural VAR model of the macroeconomy without investment

12A five-variable VAR without the trade deficit does not lead to very different results; inclusion of investment is what is

crucial.

17



is misspecified, a related problem to the problem of capital as an omitted variable pointed out by Chari et al. (2004)

and McGrattan (2004), who caution against use of structural VARs partly on these grounds.

(Insert Figure 9 around here)

5.1.3 Variance decompositions

Table 3(b) reports the variance decompositions for the six-variable VAR, while table 3(c) reports those for the

four-variable VAR. As both lead to substantially similar conclusions regarding what we can learn about technology’s

role in business cycles, we will only discuss in detail the variance decompositions from the six-variable BVAR. Again,

the posterior median estimates delivers a picture substantially similar to that painted by Christiano et al. The

amount of output fluctuations caused by contemporaneous technology shocks falls from 76 percent to 10 percent; the

amount caused by those shocks twelve steps ahead falls from 95 to 62 percent. The amount of hours fluctuations

is about the same at short horizons and actually somewhat higher at long horizons (49 percent five years ahead, as

opposed to 36 percent in the bivariate VAR). Particularly damning is the low percentage of investment (the bulk of

output fluctuations in most business cycles) that technology shocks can explain at business cycle frequencies (at the

median, at any rate), with the median estimate being only 20 percent three years out. The median estimates show

similar stories for federal funds and for the trade deficit. Technology shocks, as Christiano et al, do seem to do a

better job (at the median) explaining inflation, with the median estimator of the proportion of inflation explained by

technology being 64 percent three years out.

(Insert Tables 3(b)-(c) around here)

These estimates, however, must all be taken with a grain of salt when the large confidence bands around them

are taken into account. If anything, these bands are wider than those for the bivariate VAR. The amount of con-

temporaneous output fluctuations that might be explained by technology shocks is anywhere from 0 to 44 percent;

three years ahead that proportion could anywhere from seven percent to 93 percent! The situation for hours is not

much better (zero to 69 percent), and similar stories exist for all the variables in the VAR (investment, zero to 76

percent; inflation, 16 to 89 percent; federal funds, zero to 60 percent; trade deficit, 0 to 30 percent). Clearly, the

structure imposed on the data by the six-variable VAR is inadequate to allow meaningful inference about the role of

technology shocks for any of these variables using just the variance decompositions.

5.1.4 The shocks themselves and conditional correlations

Hence, we go back and look at the posterior distribution of the permanent shocks from the larger VARs and

their correlation with the disturbances in economic variables. The posterior distribution of the shocks from the

four-variable VAR using CEV hours (Figure 10) and that from the six-variable VAR using CEV hours (Figure 11)

lead to two results. First, neither look nearly as much like the US business cycle pattern than the shocks do from the

bivariate VAR. Second, as the IRFs suggest, the variance of the ”technology shocks” grows during the high-inflation

period of the 70’s and diminishes during the low-inflation of the 80’s and 90’s.
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(Insert Figures 10-11 around here)

Tables 4(b) and 4(c) report the 95% confidence bands for the conditional correlations of the identified permanent

shocks with inflation, as well as productivity growth and hours. One difference between the correlations from the

four-variable VAR and the six-variable VAR is the median correlation of technology shocks with hours disturbances;

the four-variable VAR suggests a negative correlation (-0.35), while the 6 variable VAR suggests a positive one (0.13).

However, the 95% confidence bands for both clearly nest zero. Another difference merely highlights a difference of

both from the bivariate VAR. The four-variable VAR displays a much weaker correlation (median 0.58) of permanent

shocks with productivity growth disturbances than does the bivariate VAR. However, that from the six-variable VAR

is even weaker (median 0.31), weak enough that a zero correlation cannot be ruled out.

(Insert Tables 4(b)-(c) around here)

What the four- and six-variable VARs do agree on, consistent with the evidence of our visual inspection, is a

fairly tight, negative relationship between permanent shocks and inflation disturbances. The median correlation for

both VARs is about 0.75, with the six-variable VAR differing mostly in its tighter 95% confidence band, being more

insistent on the negative effect of technology on inflation than Gal̀ı et al.’s four-variable VAR.

5.2 Has the US economy’s (or the Fed’s) response to technology shocks changed

over time?

Throughout our analysis, we have implicitly assume that there has been no structural change. However, authors

like Gal̀ı, Lopez-Salido and Valles, among others, have argued that systematic monetary policy have changed after

1979, and that resulted in a structural change in VARs parameters and in the effects of technology shocks, especially

on hours worked. Fernald (2004) shows that, once allowing for statistically and economically plausible structural

breaks in labor productivity, hours worked fall after a technology shock whether this series enters the VAR in levels

or in first-differences. In contrast, Dedola and Nieri (2004) argue that the hours response of a technology shock is

hump-shaped and does not depend on the presence of a trend break in data. To further assess the robustness of our

results, we examine the issue of subsample stability.

All the experiments above have used the full 1959-2004 data set. To check if the responses of economic variables

(including inflation) to technology shocks has changed over time, and to verify where that structural shift might have

been, we conducted the following experiment. We began by taking a thousand draws from the six-variable VAR

estimated using productivity and CEV hours from 1959:Q1 to 2004:Q2, and calculating the posterior probabilities

of a positive response of each variable in the VAR (productivity growth, hours, trade deficit/GDP ratio, invest-

ment/output ratio, inflation and federal funds). We then re-estimated the six-variable VAR, leaving hyperparameter

values constant, but this time dropping the first observation off the beginning of the data set, so that our data set

ran from 1959:Q2 to 2004:Q2, and re-estimated the posterior probabilities of positive responses to permanent shocks.

The rationale behind this diminishing window approach is that if there had been a large change in regime around
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1979-1982, the farther in the past an observation was, the less likely it was to be relevant for estimating the current

regime.

(Insert Figure 12 around here)

The resulting series for the posterior probabilities for positive responses is given in Figure 9; the year ticks indicate

the starting point of the data set used to calculate each probability. The posterior probability of a positive effect of

inflation on a technology shock shoots up from about 5 percent to 20 percent; that is, we can no longer conclusively

state that technology shocks lower inflation if we look just at the post-1984 data. With post-1984 data, a positive

permanent shock also more insistently raises productivity growth on impact (96 percent probability), while the high

probability of a lower trade deficit from a permanent shock disappears once data before about 1974 are dropped.

If, however, we look at the impulse responses to technology shocks from a six-variable VAR estimated using

only post-1984 data (given in Figure 6), it is not obvious that we can attribute the lowered inflation volatility to

markedly improved monetary policy.13 The most marked change in the IRFs as compared to those estimated for

the full sample is that the inflation response is no longer unambiguously zero. However, there is at least reasonable

doubt that monetary policy’s response to technology shocks has changed much at all. The median response of the

federal funds rate does seem to fall more quickly to accommodate lowered inflation expectations than did the median

response from the VAR estimated with the full data set. The confidence bands are, however, extremely wide, and

would comfortably nest the median federal funds response from the VAR with the full data set.

Our results show that the post-1984 IRFs are inconclusive in the sense that, after a technology shock, the effects

on hours and even on output remain ambigguous,and even the fairly strong negative effect of technology on the trade

deficit disappears. While, again, technology shocks do not obviously give us a business cycle, the contrary cannot

be ruled out either. While monetary regimes may well have changed, a very real risk in using only post-1984 data

to calculate the effects of permanent technology shocks on output is that we may wind up throwing out most of the

information the data have to offer on the economy’s behavior during business cycles. Given that the two recessions

during the post-1984 period were rather mild, it is actually little wonder IRFs have so little to say about the causes

of business cycles when we use only post-1984 data, given that even the full data set, giving information from the

much more volatile Sixties and Seventies, can give us only slightly less vague inferences. Supplementing the data

with an atheoretical Bayesian prior, though it might help avoid serious specification errors, are not enough to make

the data speak enough.

To further assess the subsample stability, we re-estimate the probabilities of a positive response after a technology

shock using an increasing rolling-over window. Furthermore, we use a diffuse-Wishart (noninformative) prior. The

13The BVAR used to calculate these IRFs is slightly different from that used to determine the posterior probabilities of

positive effects. With a shorter data set, the optimal lag length and hyperparameter values for the six-variable VAR change

somewhat. The “best” BVAR is now with two lags, an overall tightness parameter of 0.113 and a lag decay parameter of 1.70.

As hours is no longer so obviously stationary over the post 1984 period, the tightness of the C vector around zero must be

tighten somewhat, with the hyperparameter falling to 0.013.
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pre-sample is 1959-1983. Figure 13 depicts the results for the level SVAR with CEV data. To compare the results, we

update Figure 9 to take into account a diffuse-Wishart prior. The corresponding probabilities are presented in Figure

14. The main conclusion is that the data after 1984 do not update the posterior medians of the signs of the responses

to technology shocks very much. However, the size of output fluctuations after 1984 is somewhat smaller than those

before, suggesting that a researcher, before looking at post-1984 data, would be given strong prior beliefs by the

pre-1984 data. This could be misleading if there has been a regime shift. Therefore, the results from the increasing

rolling-over window might be dominated by the pre-1984 observations. In contrast, the decreasing window-based

procedure amounts to loosening the prior beliefs implied by the pre-1984 data.

(Insert Figures 13-14 around here)

A few patterns are also worthy of note. First, the trend of the probability of a positive response of the investment

output ratio to a technology shock trend upwards in the decreasing window regressions; in the post-1984 period the

probability is about 0.9. To the degree the identified permanent shocks measure true technology shocks, the post-1984

business cycle seems to look more like a technology-driven cycle, suggesting perhaps, that demand-side shocks have

been reduced in the post-1984 period. Second, the response of hours is going from mostly positive in the full sample

to mostly negative (probability of a positive response to technology os about 0.2) for post-1984 data. Third, the

response of the trade deficit to GDP seems to reverse after 1975, going from mostly negative for the whole post-1959

period to mostly positive for the post-1984 data. Fourth, inflation’s response remains negative, though this is less

certain for post-1984 data. This might indicate a more accommodating monetary policy. But, as previously, all these

results may only reflect greater sampling error due to the uncertainty surrounding all the nonlinear functions derived

from the BVARs.

5.3 Informative or non-informative priors?

An important issue regarding the robustness of our results may be the choice of the priors. As Kadiyala and Karlsson

point out, while our Normal-Wishart-based priors avoid the two main shortcomings of the Minnesota prior —the

forced posterior independence between equations and the fixed residual variance-covariance matrix— the structure

of the variance-covariance matrix is assumed to treat all equations symmetrically. More specifically, given the prior

variance-covariance matrix, the corresponding regression parameters can only differ by a scale factor in the different

equations. In this respect, the Normal-Diffuse prior, introduced by Zellner (1971), relaxes the Normal-Wishart type

restrictions on the variance-covariance matrix and allows for a non-diagonal residual variance-covariance matrix. In

this case, we need combining the multivariate normal prior on the regression parameters with a diffuse prior on the

residual variance-covariance matrix.

The main difficulty is now that no closed form solution for the posterior moments exists and thus we use the

method of Gibbs-sampling to generate the functions of interest (see Kadiyala and Karlsson, 1997). Figure 15 reports

the impulse-response function of the output and the hours worked after a positive technology shock hits the economy

in our benchmark bivariate VAR model. As it is clear to eye, the difference between the Normal-Wishart-based
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IRFs and the Normal-diffuse-based IRFs are fairly small. The same conclusion holds for the variance decomposition,

conditional correlations.14 This result is robust to the VAR specification and to the data sets used.

(Insert Figure 15 around here)

To further assess the robustness of our results, we also follow the methodology of Ni and Sun (2003). The authors

show that Bayesian estimators with a shrinkage prior on the VAR coefficients and the reference prior developed by

Yang and Berger (1994) dominate Bayesian estimators with the diffuse prior or the Normal-Wishart prior. Therefore,

we re-estimate our models and perform again our specification tests. Results are not changed: the level-based

specification outperforms the first difference model. This result is robust to the data used and the subsample

considered. In this respect, the degree of informativeness of our priors does not affect our main conclusions.

6 Concluding remarks

Our findings shed light on the proper way to specify structural VARs for analysis of business cycle issues; our use of

Bayesian VARs and Bayesian model choice methods allow more satisfying answers in this are than classical methods

could. However, we also are left with much evidence casting doubt on the practical usefulness of structural VAR

analysis of the effects of technology shocks on the business cycle.

Our finding that a level specification in hours per capita and/or unemployment is favored in the Bayesian VAR

models we have examined (regardless of the size of the data set), and the rejection of Gal̀ı’s result that hours fall

in response to a technology shock, support the results of Christiano, Eichenbaum and Vigfusson (2003), Deloda and

Neri (2004) and Uhlig (2004). However, in no case is it possible, in a well-specified structural VAR, to conclude that

technology shocks play a large role in business cycle fluctuations, except perhaps at very long horizons, much less

find strong evidence of a positive effect of permanent “technology” shocks on employment or hours. Our results for

larger VARs, in particular, imply responses to a technology shock, especially of investment, that look little like a

business cycle. The distributions of impulse responses from the structural VAR (and their close relative, the variance

decomposition of disturbances) are wide enough to prevent any useful inference regarding the effect of technology

shocks on hours, output and especially investment. In this respect, this result support to some extent the conclusion

of Gal̀ı that technology shocks might not be the primary source of business fluctuations.

The other measures of the effects of technology shocks on hours are at best only marginally more useful for

assessing the role of technology shocks in the cycle. An apparent strong finding of a positive correlation of the

permanent shock on productivity disturbances weakens considerably when larger and arguably better specified VARs

are used. For no VAR, either, is a strong finding of either a positive or negative correlation of technology shocks with

disturbances in hours.

In short, our structural VARs have little light to shed on the relationship of technology to hours, and by implica-

tion, to the business cycle in general. The appeal of structural VARs, which impose on technology shocks only that

14Results are not reported here but are available on request.
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they alone permanently affect productivity, is that such a restriction is compatible with a wide class of DSGE models.

However, in so doing, it may in fact be too unrestrictive a model; the class of models the data admits is apparently

one that allows for probable roles for technology ranging from negligible to overwhelming. For any progress to be

made on assessing the effect of technology shocks on employment (or anything else), researchers must look beyond

the minimally theoretical structural VAR approach for additional ways of imposing reasonable restrictions on impulse

responses from technology shocks.

Abandoning the structural VAR approach entirely is certainly possible, and now that the goodness of fit of

Bayesian DSGE models is now competitive with that of Bayesian VAR models (e.g. Smets and Wouters 2003),

results from such an approach would be more plausible empirically than they would have been in the past. However,

a hybrid approach is certainly possible; a VAR model estimated with a Bayesian prior based on a more simplified

DSGE model, allowing the data to make up for possible misspecification in the model, has promise for permitting

answers to the technology-hours question. We leave further exploration of such approaches to future research.
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Table 1a: Laplace-Bayes factors for Bayesian VARs

Lag Length λ0 λ1 λ3 Log Laplace (level) Log Laplace (diff) LB factor

Productivity 3 .24 1.80 .025 -462.61 -464.71 8.15

(CEV Hours)

Productivity 3 .24 2.10 .021 -452.66 -451.25 4.07

(FR Hours)

GDP per worker and 2 .28 1.90 .025 -289.13 -287.31 6.17

Unemployment

Note: The Laplace-Bayes (LB) factor is defined by Laplace(level): Laplace(diff).

Table 1b: PIC for Bayesian VARs

Lag Length λ0 λ1 λ3 Log PIC (level) Log PIC (diff) PIC factor

Productivity 3 .24 1.8 .025 69.44 67.61 6.23

(CEV Hours)

Productivity 3 .24 2.1 .021 63.76 62.53 3.42

(FR Hours)

GDP per worker and 2 .28 1.7 .025 243.71 242.15 4.76

Unemployment

Note: The PIC factor is defined by PIC(level): PIC(diff).

Table 1c: Bayesian PIC-Bayes factors and their ratios for six-variable BVARs

Lag Length λ0 λ1 λ3 Log PIC (level) Log PIC (diff) PIC factor

Productivity 3 .090 1.10 .031 223.84 218.09 313.15

(CEV Hours)

Productivity 3 .087 0.85 .015 196.78 196.23 1.73

(FR Hours)

GDP per worker and 2 .086 .71 .033 354.05 344.95 89.14

Unemployment
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Table 2a: Laplace-Bayes factors for Bivariate BVARs using a diffuse prior

Lag Length λ3 Log Laplace (level) Log Laplace (diff) LB factor

Productivity 3 .029 -619.24 -616.36 17.78

(CEV Hours)

Productivity 3 .020 -592.88 -591.76 3.04

(FR Hours)

GDP per worker and 2 .026 -380.17 -378.32 6.32

Unemployment

Note: The Laplace-Bayes (LB) factor is defined by Laplace(level): Laplace(diff).

Table 2b: Laplace-Bayes factor for six-variable BVARs using an informative prior

Lag Length λ0 λ1 λ3 Log Laplace (level) Log Laplace (diff) LB factor

Productivity 3 .60 .118 .038 -1440.26 -1433.14 1243.89

(CEV Hours)

Productivity 3 .61 .106 .018 -1410.81 -1409.12 5.44

(FR Hours)

GDP per worker and 2 .60 .103 .040 -1314.55 -1305.30 10331.98

Unemployment

Table 2c: Laplace-Bayes factor for six-variable BVARs using a diffuse prior

Lag Length λ3 Log Laplace (level) Log Laplace (diff) LB factor

Productivity 3 .039 -2707.23 -2701.33 366.13

(CEV Hours)

Productivity 3 .016 -2678.76 -2677.61 3.16

(FR Hours)

GDP per worker and 2 .040 -2168.20 -2159.85 4217.51

Unemployment
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Table 3a: Confidence intervals for percentage of variance from technology for bivariate BVARs

Level specification

Percentile 1 step 4 steps 8 steps 12 steps 20 steps 50 steps

Output 2.5% .2079 .2332 .4216 .5884 .8025 .9845

50% .7637 .7894 .9061 .9510 .9862 .9999

97.5% .9977 .9983 .9996 .9998 .9999 1.000

Hours 2.5% .0001 .0005 .0024 .0047 .0064 .0074

50% .0571 .1524 .2764 .3294 .3593 .3752

97.5% .4754 .6625 .7984 .8388 .8631 .8806

Difference specification:

Percentile 1 step 4 steps 8 steps 12 steps 20 steps 50 steps

Output 2.5% .0294 .0112 .0188 .0197 .0194 .0194

50% .2123 .1822 .2298 .2274 .2269 .2269

97.5% .4908 .4446 .5037 .5006 .5001 .5001

Hours 2.5% .0069 .0001 .00 .00 .00 .00

50% .1440 .0250 .0176 .0178 .0179 .0179

97.5% .4117 .2244 .1866 .1872 .1884 .1884
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Table 3b: Confidence intervals for percentage of variance from technology for six-variable

productivity/CEV hours BVARs

Percentile 1 step 4 steps 8 steps 12 steps 20 steps 50 steps

Output 2.5% .0005 .0051 .0424 .0740 .2244 .7352

50% .1020 .2120 .4878 .6232 .8086 .9843

97.5% .4471 .5759 .8370 .9307 .9791 .9998

Hours 2.5% .0001 .0002 .0004 .0016 .0148 .0409

50% .0535 .0645 .1228 .2365 .4943 .6950

97.5% .4429 .4733 .5754 .6907 .8590 .9731

Investment 2.5% .0001 .0001 .0003 .0006 .0027 .1849

50% .0217 .0289 .1063 .1931 .3864 .9267

97.5% .2262 .2834 .5894 .7632 .8871 .9986

Inflation 2.5% .1051 .1258 .1458 .1598 .1586 .1047

50% .5169 .5533 .5945 .6366 .7088 .7682

97.5% .8439 .8577 .8756 .8944 .9333 .9802

Federal Funds 2.5% .0001 .0001 .0002 .0003 .0013 .0330

50% .0376 .0508 .0747 .1123 .2306 .5759

97.5% .3875 .4729 .5375 .5854 .6894 .9018

Trade deficit 2.5% .0015 .0001 .0001 .0001 .0001 .0002

50% .0846 .0306 .0261 .0308 .0444 .0943

97.5% .2788 .2199 .2473 .3007 .4002 .6546
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Table 3c: Confidence intervals for percentage of variance from technology for four-variable

productivity/CEV hours BVARs

Percentile 1 step 4 steps 8 steps 12 steps 20 steps 50 steps

Output 2.5% .0002 .0016 .2247 .4869 .6511 .8968

50% .0607 .2037 .7579 .9071 .9628 .9968

97.5% .4233 .6155 .9510 .9917 .9986 .9999

Hours 2.5% .0004 .0002 .0001 .0002 .0011 .0068

50% .1296 .0773 .0449 .0718 .2610 .5038

97.5% .6081 .5346 .4375 .5379 .7900 .9512

Inflation 2.5% .0357 .0841 .0905 .0877 .0806 .0574

50% .5734 .6688 .6825 .6887 .6895 .6837

97.5% .9376 .9553 .9579 .9654 .9757 .9877

Federal Funds 2.5% .0015 .0061 .0149 .0327 .0767 .1665

50% .1966 .3251 .4018 .4719 .5911 .7260

97.5% .6414 .7888 .8260 .8459 .8932 .9635
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Table 4a: Conditional correlations corr(εyt,∆yt−j) of technology shocks for bivariate BVARs

Level specification

Productivity Hours

Lag/Lead Percentiles Percentiles

2.5% 50% 97.5% 2.5% 50% 97.5%

-5 -.1187 -.0078 .1016 -.2051 -.0941 0.0423

-4 -.0537 -.0188 .0302 -.0221 .0466 0.1215

-3 -.1635 -.0558 .0517 -.0182 .1102 0.2314

-2 -.1101 .0127 .1349 -.0983 .0342 0.1632

-1 -.1395 -.0037 .1360 -.1248 .0138 0.1512

0 .5794 .9571 .9999 -.4983 .2363 0.8197

1 -.1350 .0014 .1421 -.1195 .0109 0.1399

2 -.0929 .0275 .1514 -.1284 -.0101 0.1091

3 -.1600 -.0296 .1192 -.1122 -.0131 0.0903

4 -.0531 -.0183 .0350 .0124 .0676 0.1147

5 -.1056 -.0082 .1286 -.1623 -.0842 0.0248

Difference specification

Productivity Hours

Lag/Lead Percentiles Percentiles

2.5% 50% 97.5% 2.5% 50% 97.5%

-5 .0203 .0709 .1062 -.2401 -.1948 -.1375

-4 -.0800 -.0402 -.0087 -.0472 -.0059 0.0388

-3 -.1496 -.0505 .0526 .0115 .1181 0.2203

-2 -.0876 .0270 .1415 -.1014 .0184 0.1381

-1 -.1512 -.0141 .1249 -.1283 .0056 0.1399

0 .7861 .9266 .9935 -.6130 -.3685 -.1101

1 -.1469 -.0096 .1278 -.1314 .0024 0.1307

2 -.1072 .0121 .1333 -.1443 -.0319 0.0832

3 -.2089 -.1018 .0083 -.1295 -.0249 0.0848

4 -.0494 -.0259 .0026 -.0278 .0255 0.0773

5 .0178 .0807 .1501 -.2021 -.1669 -.1319
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Table 4b: Conditional correlations corr(εyt,∆yt−j) of technology shocks for the four-variable BVARs

Productivity Hours Inflation

Lag/Lead Percentiles Percentiles Percentiles

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

-5 -.0062 .0673 .1313 -.2629 -.1411 -.0063 -.1577 -.0415 0.0790

-4 -.1032 -.0246 .0638 -.0690 .0317 0.1207 -.2051 -.1316 -.0305

-3 -.1471 -.0473 .0494 -.0535 .0541 0.1642 -.0272 .0874 0.1954

-2 -.1012 .0267 .1517 -.0646 .0710 0.1978 -.0779 .0474 0.1715

-1 -.1694 -.0486 .0758 -.1657 -.0412 0.0875 -.1026 .0547 0.2001

0 .2005 .5848 .8785 -.7725 -.3485 0.1985 -.9669 -.7582 -.1893

1 -.1403 -.0133 .1144 -.1675 -.0391 0.0858 -.0847 .0693 0.2040

2 -.1411 -.0244 .0916 -.1230 .0002 0.1206 -.1093 .0131 0.1400

3 -.2123 -.0977 .0266 -.0781 .0401 0.1531 -.0801 .0374 0.1376

4 -.0796 -.0014 .0837 -.1103 -.0214 0.0739 -.1727 -.0906 0.0325

5 -.0356 .0730 .1817 -.1793 -.1077 -.0277 -.1089 .0067 0.0915
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Table 4c: Conditional correlations corr(εyt,∆yt−j) of technology shocks for the six-variable BVARs

Productivity Hours Inflation

Lag/Lead Percentiles Percentiles Percentiles

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

-5 -.0800 .0042 .0820 -.1776 -.0315 .1176 -.0813 .0656 0.1648

-4 -.0356 .0517 .1277 -.0371 .0703 0.1485 -.1874 -.1070 .0130

-3 -.0987 -.0102 .0728 -.0496 .0448 0.1419 -.0581 .0340 0.1258

-2 -.1043 .0143 .1428 -.0376 .0949 0.2085 -.0333 .0673 0.1634

-1 -.1107 -.0005 .1064 -.1280 -.0044 0.1182 -.0363 .1267 0.1634

0 -.1461 .3112 .7428 -.4885 .1313 0.6248 -.9182 -.7232 -.3538

1 -.1136 -.0050 .1268 -.1483 -.0234 0.1035 -.0508 .0909 0.2075

2 -.1277 -.0295 .0738 -.0486 .0810 0.1961 -.0528 .0877 0.2076

3 -.1485 -.0202 .1132 -.1669 -.0567 0.0559 -.0789 .0241 0.1131

4 -.1210 -.0522 .0301 -.1026 -.0171 0.0717 -.1959 -.1290 -.0327

5 -.0456 .0779 .1935 -.0875 .0506 .1566 -.1054 .0235 0.1131
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Figure 1: Measures of hours/employments (1959Q1-2004Q2)

Figure 2: Impulse responses functions from bivariate BVAR (productivity and CEV hours
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Note: IRFs from BVAR with hours in levels are black; those from the BVAR with hours in differences are in red.

Solid lines indicate 50th percentiles; dotted lines are the bounds of 95% confidence bounds.
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Figure 3: Impulse responses from bivariate VAR in productivity and FR hours
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Note: IRFs from BVAR with hours in levels are black; those from the BVAR with hours in differences are in red.

Solid lines indicate 50th percentiles; dashed lines are the bounds of 95% confidence bounds.
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Figure 4: Impulse responses from bivariate VAR in GDP per worker and unemployment rate
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Solid lines indicate 50th percentiles; dashed lines are the bounds of 95% confidence bounds. Upward movement in

”hours” here represents a fall in unemployment.
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Figure 5: 95% confidence bands for identified technology shocks from bivariate BVAR in productivity and

CEV hours.
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Figure 6: Impulse responses from 6-variable VAR using productivity and CEV hours
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Figure 7: Impulse responses from 6-variable VAR using productivity and FR hours
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Figure 8: Impulse responses from 6-variable VAR using GDP per worker and unemployment rate
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Figure 9: Posterior probabilities of positive effect from identified technology shock from shrinking regressions

using six-variable VAR with productivity growth and CEV hours
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Note: Solid lines indicate 50th percentiles, with dotted lines indicating borders of 95% confidence bands.
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Figure 10: 95% confidence bands for identified technology shocks from four-variable BVAR with productivity

and CEV hours.
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Figure 11: 95% confidence bands for identified technology shocks from six-variable BVAR with productivity

and CEV hours.
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Note: Solid lines indicate 50th percentiles, with dotted lines indicating borders of 95% confidence bands.
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Figure 12: Impulse responses for 6 variable VAR estimated with productivity growth and CEV hours, with

data from 1984:Q1 to 2004:Q2
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Figure 13: Posterior probabilities of positive effect from identified technology shock using an expanding

window and a diffuse-Wishart prior
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Figure 14: Posterior probabilities of positive effect from identified technology shock using a decreasing

window and a diffuse-Wishart prior
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Figure 15: Robustness to a Normal diffuse prior
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