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Abstract

We propose a multivariate nonparametric technique for generating reliable historical yield

curve scenarios and confidence intervals. The approach is based on a Functional Gradient De-

scent (FGD) estimation of the conditional mean vector and volatility matrix of a multivariate

interest rate series. It is computationally feasible in large dimensions and it can account for

non-linearities in the dependence of interest rates at all available maturities. Based on FGD

we apply filtered historical simulation to compute reliable out-of-sample yield curve scenarios

and confidence intervals. We back-test our methodology on daily USD bond data for fore-

casting horizons from 1 to 10 days. Based on several statistical performance measures we find

significant evidence of a higher predictive power of our method when compared to scenarios

generating techniques based on (i) factor analysis, (ii) a multivariate CCC-GARCH model,

or (iii) an exponential smoothing volatility estimators as in the RiskMetricsTM approach.

Key words: Conditional mean and volatility estimation; Filtered Historical Simulation; Func-

tional Gradient Descent; Term structure; Multivariate CCC-GARCH models
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1 Introduction

The quality and the effectiveness of interest rate risk management depends on the ability to gen-

erate relevant forward looking yield curve scenarios that properly represent the future. Based on

such scenarios, future distributions of interest rate dependent portfolio exposures and associated

risk measures like VaR or Expected Shortfall can be ultimately derived from the future distri-

butions of the underlying interest rates. In this paper we propose a new procedure to construct

reliable out of sample yield curve scenarios and interval estimates for interest rate short-term

risk management purposes.

One broadly used approach to the estimation of interest rate scenarios and associated risk

measures is based on the historical/Monte Carlo simulation of the standardized residuals in

a yield curve model with state dependent conditional means and volatilities; see for instance

Barone-Adesi et al. (1998) and Barone-Adesi et al. (1999), for an introduction to the filtered

historical simulation method and Jamshidian and Zhu (1997) and Reimers and Zerbs (1999) for

the Monte Carlo method applied to generating term structure scenarios. While in a pure Monte

Carlo setting parametric assumptions on the conditional distribution of standardized residuals

have to be introduced, the historical simulation method is nonparametric and can incorporate

a quite broad variety of historical distributional patterns. Since we do not want to rely on

parametric assumptions on the distribution of interest rates we apply in the paper this last

method to compute out-of-sample interest rate scenarios.

A necessary ingredient of the filtered historical simulation method is a dynamic model for

conditional means and/or volatilities of the joint interest rate dynamics. Conditioned on an

estimate of the model parameters, standardized interest rate residuals can be bootstrapped to

generate out-of-sample scenarios for interest rates at different maturities. From such scenarios,

confidence intervals for the prices of interest rate dependent securities can be easily derived.

The estimation of a dynamic model for the joint interest rate dynamics is a challenging task

because term structures are typically high dimensional objects. Moreover, in many relevant

applications it can be necessary to model not only the term structure dynamics but also those

of further important risk factors like for instance exchange rates. To overcome this problem,

several authors have proposed some form of dimension reduction technique to reduce the esti-

mation problem to an acceptable dimension. Examples of such methodologies are presented and

discussed, among others, in Engle et al. (1990), Loretan (1997), Rodrigues (1997) and Alexander

(2001). An even simpler approach to the problem is adopted by the RiskMetricsTM approach,
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which applies a multivariate exponential smoothing volatility estimator to estimate conditional

volatilities.

This paper proposes a multivariate nonparametric technique based on Functional Gradient

Descent (FGD, Audrino and Bühlmann, 2003) to generate out-of-sample historical yield curve

scenarios. The methodology is computationally feasible in large dimensions and avoids dimension

reduction techniques. It allows us to estimate jointly the whole term structure dynamics, from

the very short maturity segments (i.e. the overnight maturity) up to its very long end (i.e. 10

to 30 years maturity rates).1 Moreover, the non parametric nature of our approach can account

for non-linearities in the dependence of interest rates at all available maturities. As we show

below, this last feature is important in order to produce satisfactory one day ahead forecasts for

interest rates in the short maturity spectrum and to predict accurately longer term maturities

interest rates over horizons longer than one day.

Based on the estimated FGD dynamics we apply filtered historical simulation to USD bond

data and compute short-term out-of-sample yield curve scenarios for horizons from one to ten

days. We back-test the out-of-sample accuracy of our method and compare it to the one of filtered

historical simulation techniques based on (i) a factor analysis of the yield curve dynamics, (ii)

a multivariate AR-CCC-GARCH (Bollerslev, 1990) model and (iii) a multivariate exponential

smoothing volatility estimator as in the RiskMetricsTM approach.

Based on several out-of-sample performance measures and formal statistical tests, we find

generally empirical evidence of a higher predictive potential of FGD-based scenarios generat-

ing techniques. More specifically, we observe that approaches based on factor analysis or an

exponential smoothing volatility estimator deliver very inaccurate interval forecasts, both with

respect to the expected number of back-test exceedances and the expected durations between

consecutive exceedances. The improvement of FGD upon the CCC-based approach is smaller

than the one for the factor analysis and the RiskMetricsTM approaches, but it is statistically

significant. Furthermore, the FGD-approach provides out of sample confidence intervals with

a smoother behavior over time. On the contrary, the CCC-GARCH based confidence intervals

can be often very unstable over time, especially when estimating the out-of-sample interest rates

quantiles at the confidence levels typically used in risk management applications.

The paper is organizes as follows. Section 2 presents the basic model and the FGD estima-

tion procedure needed to estimate it. A short description of the filtered historical simulation
1The incorporation of a possibly high number of further risk factors can be easily accomplished by FGD.
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procedure is also included. Section 3 presents our application to daily USD yield curve data and

the results of our back-tests. Section 4 concludes and summarizes.

2 The yield curve scenarios generating methodology

This section introduces first our multivariate model for the conditional mean and volatilities of

the joint yield curve dynamics. In a second step, the FGD estimation procedure is presented,

together with a computationally feasible algorithm that can be applied to estimate the model.

Finally, the filtered historical simulation approach relevant for our setting is briefly reviewed.

2.1 The general model

We consider a multivariate time series R = {rt}t∈Z, rt = (rt,t+T1 , .., rt+Td
)′, of spot interest rates

for a given set of fixed times to maturity T1 < . . . < Td. Therefore, rt is the yield curve at

time t. Denote by X = {xt}t∈Z, xt = rt − rt−1, the corresponding time series of interest rate

changes. It is assumed that R is a strictly stationary process. Denoting by Ft−1 the information

available up to time t − 1, we model the dynamics of the conditional mean µt = E (xt|Ft−1)

and the conditional variance Vt = Cov(xt|Ft−1) by modelling explicitly the joint yield curve

dynamics for all available maturities. No dimension reduction technique is used in the whole

procedure. The basic idea is to extend the classical constant conditional correlation (CCC)–

GARCH model firstly introduced by Bollerslev (1990) in order to take into account possible

nonparametric nonlinearities in the functional dependence of µt and Vt on variables in the

conditioning information set Ft−1.

We start from a time series process of the form

xt = µt + Σtzt, (2.1)

under the following assumptions:

(A1) (Innovations) {zt}t∈Z is a sequence of i.i.d. multivariate innovations with zero mean and

covariance matrix Cov(zt|Ft−1) = Id.

(A2) (CCC construction) The conditional covariance matrix Vt = ΣtΣ′t is almost surely positive

definite for all t. A typical element of Vt is given as

vt,ij = ρt,ij(vt,iivt,jj)1/2 ,
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where i, j = 1, .., d. The parameter ρt,ij = Corr(xt,Ti , xt,Tj |Ft−1) is the conditional cor-

relation between the coordinates i and j of the process X . It is assumed in the sequel

that ρt,ij is constant over time: ρt,ij = ρij for some scalars −1 ≤ ρij ≤ 1. Recall that by

construction we have ρii = 1.

(A3) (Functional form for conditional variances) The conditional variances have a nonparametric

functional form given by

vt,ii = σ2
t,i = Var(xt,Ti |Ft−1) = Fi({rt−j,Tk

: j = 1, 2, . . . ; k = 1, . . . , d})

where Fi is a function taking values in R+.

(A4) (Functional form for conditional means) The conditional mean µt has a nonparametric

functional form given by

µt = (µt,1, . . . , µt,d)
′
,

µt,i = Gi({rt−j,Tk
: j = 1, 2, . . . ; k = 1, . . . , d})

where Gi is a function taking values in R.

Assumption (A1) is standard, for instance when working with multivariate time series models of

the GARCH family. For estimation purposes a specific pseudo log likelihood for zt (for instance

a multivariate normal one) is introduced; see Section 2.2 below. Under Assumption (A2), the

conditional covariance matrix Vt of model (2.1) is of the form

Vt = ΣtΣ
′
t = DtRDt,

where Dt = diag(σt,1, . . . , σt,d) and R = [ρij ]di,j=1 is the matrix consisting of all (constant)

correlations between the coordinates of the process X . The nonparametric functional forms

(A3)-(A4) permit a rich specification of conditional means, variances and (indirectly) condi-

tional covariances. For instance, cross-dependencies across the different interest rates can be

modelled. Similarly, a mean reversion or a nonlinearity in conditional means can be easily ac-

counted for, as well as functional forms for conditional volatilities that are dependent on the

level of current and past interest rates. Several models in the literature are included in the

above setting. For instance, the standard parametric CCC-GARCH model is encompassed by

(2.1). Similarly, multivariate AR-CCC-GARCH models where conditional means µt,i incorpo-

rate mean reversion in the standard way are special cases of the above setting. Finally, also
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multivariate CCC-GARCH–type models with asymmetric volatilities are encompassed by the

above specification. By Assumption (A2) model (2.1) avoids a time varying conditional correla-

tions structure. Models with time varying correlations have been recently advocated by Engle

and Sheppard (2001), among others, in a parametric Dynamic Conditional Correlations (DCC)

multivariate GARCH setting. In contrast to DCC–type models the dynamics (2.1) is based

through (A3), (A4) on a nonparametric functional form for conditional means and volatilities.

This feature of the model can account for quite flexible (nonparametric) structures in the as-

sociated time varying conditional covariances. This is an important distinction of model (2.1)

from parametric DCC-GARCH-type models that assume a parametric GARCH-type dynamics

for conditional variances and correlations. Moreover, in our back-testing exercise on real data

applications, we estimate all models using a rolling window. This empirical approach takes into

account in a simple and effective way a possibly time-varying correlation structure in our time

series of interest rate changes.

A nonparametric estimation of multivariate models of the form (2.1) in full generality is an

unfeasible task, because of the curse of dimensionality problem which arises when the dimension

d is not a very low one. A computationally tractable but still very general version of the

nonparametric model (2.1) can be formulated and estimated within the Functional Gradient

Descent (FGD) framework (Friedman et al., 2000, and Friedman, 2001). Applications of this

methodology to the estimation of multivariate equity dynamics (see Audrino and Barone-Adesi,

2002 and Audrino and Bühlmann, 2003) have demonstrated that FGD is a powerful methodology

which allows to construct accurate estimates and predictions for the multivariate conditional

mean µt and volatility matrix Vt also for very large dimensions d. In this paper we apply

the FGD technique to estimate the joint yield curve dynamics, from the very short maturity

segments (i.e. the overnight maturity) up to its very long end (i.e. 10 to 30 years maturity

rates). Unlike several studies on the estimation and the prediction of the yield curve, this

approach avoids relying on dimension reduction technique like Principal Components or Factor

Analysis (PCA and FA, respectively). This has several advantages. First, we do not need to rely

on restrictive assumptions necessary to apply consistently PCA or FA in a general time series

context based on stochastic conditional means and volatilities (see for instance Mardia, 1971, for

an exposition of PCA and FA). Second, we can estimate the joint yield curve dynamics also over

its very short term maturity spectrum where the high variability of short term interest rates

can make the application of dimension reduction techniques cumbersome. Third, the joint term
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structure dynamics estimated by FGD are directly interpretable in terms of observable interest

rate variables and can be naturally related to the prices of further interest rates derivatives, as for

instance forward rates. By contrast, in PCA or FA the estimated factors are typically interpreted

ex post as some abstract shift-, slope- or curvature factors in the spot yield curve. These factors

cannot be however naturally reconverted into forward rate factors without introducing implicitly

strong restrictions in the estimated forward curve dynamics (see for instance Lekkos, 2000) for a

discussion of this point). Finally, our full multivariate FGD approach allows us to account also

for (possibly nonlinear) short-term feed-back effects of shocks in the very short end of the yield

curve on conditional means and variances of medium and long term interest rates.

The next section introduces the FGD modelling approach in a version of model (2.1) under

the Assumptions (A1)–(A4).

2.2 Conditional mean and volatility estimation using FGD

The main idea of FGD is to compute estimates Ĝi(·) and F̂i(·) for the nonparametric functions

Gi(·) and Fi(·), i = 1, .., d, which minimize a joint negative pseudo log likelihood λ under some

constraints on the form of Ĝi(·) and F̂i(·). More specifically, given an initial estimate Ĝi0(·) and

F̂i0(·), i = 1, .., d – computed for instance from a parametric AR-CCC-GARCH model – estimates

Ĝi(·) and F̂i(·) are obtained as additive nonparametric expansions around Ĝi0(·) and F̂i0(·). Such

nonparametric expansions are based on some simple estimates of the gradient of the loss function

λ in a neighborhood of the initial estimates Ĝi0(·) and F̂i0(·). These simple estimates are derived

from a base learner S least squares fitting.2 From the simple estimates of the gradient of the

loss function λ, FGD determines Ĝi(·) and F̂i(·) as additive nonparametric expansions of Ĝi0(·)
and F̂i0(·) which minimize the joint negative pseudo log likelihood λ. Therefore, FGD aims at

producing estimates which improve locally the pseudo log like likelihood of some initial estimates

Ĝi0(·) and F̂i0(·) by means on nonparametric additive expansions Ĝi(·) and F̂i(·).
Conditionally on the first p observations, the negative pseudo log likelihood implied by a

2Well known examples of base learners are regression trees, projection pursuit, neural nets or splines; see also

Friedman et al. (2000), Friedman (2001), Audrino and Barone-Adesi (2002), Audrino and Bühlmann (2003) and

Bühlmann and Yu (2003) for more details.

8



”nominal” Gaussian distribution assumption for zt in (2.1) is given by:

−
n∑

t=p+1

log
(
(2π)−d/2det(Vt)−1/2 exp(−ξT

t V −1
t ξt/2)

)

=
n∑

t=p+1

(
log(det(Dt)) +

1
2
(D−1

t ξt)
′
R−1(D−1

t ξt)
)

+ n′d log(2π)/2 + n′ log(det(R))/2 (2.2)

where ξt = xt − µt, Dt is a diagonal matrix with elements √vt,ii and n′ = n − p. Therefore, a

natural conditional loss function for our FGD estimation procedure is

λR(x,G,F) = log(det(D(F)) +
1
2
(D(F)−1(x−G))

′
R−1(D(F)−1(x−G))

+
1
2

log(det(R)) +
d

2
log(2π),

D(F) = diag(
√

F1, . . . ,
√

Fd),

x−G = (x1 −G1, . . . , xd −Gd)
′
, (2.3)

where the terms d log(2π)/2 and log(det(R))/2 are constants that do not affect the optimization.

As highlighted by the subscript R, the loss function λR depends on the unknown correlation

matrix R. At any step of our FGD optimization procedure, the updated optimal values of R,

G, F will be constructed by a two step procedure. For a given initial correlation matrix R,

updated estimates for all Gi’s and Fi’s are obtained by minimizing λR with respect to G, F.

In a second step, given the updated estimates Ĝ and F̂ the correlation matrix is updated using

the empirical moments of the resulting standardized multivariate residuals. Therefore, given

estimates Ĝ = (Ĝ1, . . . , Ĝd) and F̂ = (F̂1, . . . , F̂d), we compute the standardized residuals

ε̂t,i =
(
xt,i − Ĝi(rt−1, . . .)

)
/F̂i(rt−1, . . .)1/2, t = p + 1, . . . , n

to obtain the empirical correlation matrix

R̂ = (n− p)−1
n∑

t=p+1

ε̂tε̂
T
t , ε̂t = (ε̂t,1, . . . , ε̂t,d)′, (2.4)

as an updated estimate of R.

The optimization of λR with respect to G, F is performed by calculating the partial deriva-

tives of the loss function λR with respect to all Gi’s and Fi’s. In our setting, they are given for

any i = 1, . . . , d, by
∂λR(x,G,F)

∂Gi
= −

d∑

j=1

γij(xj −Gj)

F
1/2
i F

1/2
j

, (2.5)
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and
∂λR(x,G,F)

∂Fi
=

1
2

( 1
Fi
−

d∑

j=1

γij(xi −Gi)(xj −Gj)

F
3/2
i F

1/2
j

)
, (2.6)

respectively, where [γij ]di,j=1 = R−1. This step of the optimization suggests the name Functional

Gradient Descent. Indeed, given initial estimates Ĝi0(·) and F̂i0(·), i = 1, .., d, the above gradi-

ents are used by FGD to define a set of simple additive expansions of the functions Ĝi0(·) and

F̂i0(·). Such expansions improve the optimization criterion precisely in the directions of steepest

descent of the loss function λR. Moreover, since they define a nonparametric estimate of G and

F the resulting optimization is a functional one.

Details on the FGD algorithm used in the paper are presented below. In Step 2 of the

algorithm the above gradients are fitted by means of a base learner S. In Step 3 and 4, the

estimated gradients are used to define a set of additive expansions Ĝi0(·) and F̂i0(·) which

improve the optimization criterion precisely in the directions of steepest descent of λ.

Algorithm: Estimating conditional means and volatilities

Step 1 (initialization). Choose appropriate starting function Ĝi,0(·) and F̂i,0(·) and define for

i = 1, .., d and t = p + 1, .., n:

Ĝi,0(t) = Ĝi,0(rt−1, rt−2, . . .)

F̂i,0(t) = F̂i,0(rt−1, rt−2, . . .).

Compute R̂0 as in (2.4) using Ĝ0 and F̂0. Set m = 1. Natural starting functions in our

application are univariate AR-GARCH estimates for the single components, i = 1, . . . , d, of

the process X . In particular, we remark that the conditional mean of interest rate changes in

the initializing estimate depends on past multivariate interest rate levels in its autoregressive

structure. Moreover, the GARCH structure of the chosen initializing variance functions implies

FGD volatility estimates that are functions of the whole process history.

Step 2 (projection of component gradients to base learner). For every component i = 1, . . . , d,

perform the following steps.

(I) (mean) Compute the negative gradient

Ut,i = −
∂λR̂m−1

(xt,G, F̂m−1(t))

∂Gi
|G=Ĝm−1(t), t = p + 1, . . . , n.
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This is explicitly given in (2.5). Then, fit the negative gradient vector Ui = (Up+1,i, . . . , Un,i)′

with a base learner S, using the first p time-lagged predictor variables (i.e. rt−1
t−p = (rt−1, .., rt−p)

′

is the predictor for Ut,i):

ĝm,i(·) = SX(Ui)(·),

where SX(Ui)(x) denotes the predicted value at x from the base learner S using the response

vector Ui and a predictor variable X (say). In our application, we use as predictor variables the

first two lags of multivariate interest rate levels, i.e. p = 2.

(II) (volatility) Compute the negative gradient

Wt,i = −
∂λR̂m−1

(xt, Ĝm−1(t),F)

∂Fi
|F=F̂m−1(t), t = p + 1, . . . , n.

This is explicitly given in (2.6). Then, analogously to (I) fit the negative gradient vector Wi =

(Wp+1,i, . . . , Wn,i)′ with the base learner S, using again the first p time-lagged predictor variables

f̂m,i(·) = SX(Wi)(·).

As for the conditional mean function, in our application we use as predictor variables the first

two lags of multivariate interest rate levels.

Step 3 (line search). Perform a one-dimensional optimization for the step-length,

ŵ
(me)
m,i = argminw

n∑

t=p+1

λR̂m−1
(xt, Ĝm−1(t) + wĝm,i(rt−1

t−p), F̂m−1(t)),

ŵ
(vol)
m,i = argminw

n∑

t=p+1

λR̂m−1
(xt, Ĝm−1(t), F̂m−1(t) + wf̂m,i(rt−1

t−p)) ,

where Ĝm−1(t) + wĝm,i(·) and F̂m−1(t) + wf̂m,i(·) are defined as the functions which are con-

structed by adding in the i−th component only. This can be expressed more explicitly using

the functional form (2.3).3

Step 4 (up-date). Select the best component for the conditional mean and volatility, respectively,

as

i∗(me)
m = argmini

n∑

t=p+1

λR̂m−1
(xt, Ĝm−1(t) + ŵ

(me)
m,i ĝm,i(rt−1

t−p), F̂m−1(t))

i∗(vol)
m = argmini

n∑

t=p+1

λR̂m−1
(xt, Ĝm−1(t), F̂m−1(t) + ŵ

(vol)
m,i f̂m,i(rt−1

t−p)).

3The line search guarantees that the negative log-likelihood is monotonically decreasing in the number of

iteration steps.
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If the improvement in minimizing the empirical criterion (2.2) for the component i
∗(me)
m in the

conditional mean is larger than the one for the component i
∗(vol)
m in the conditional variance,

then up-date as

Ĝm(·) = Ĝm−1(·) + ŵ
(me)

m,i
∗(me)
m

ĝ
m,i

∗(me)
m

(·),

F̂m(·) = F̂m−1(·)

and set j∗m = 1. Else, up-date as

Ĝm(·) = Ĝm−1(·),

F̂m(·) = F̂m−1(·) + ŵ
(vol)

m,i
∗(vol)
m

f̂
m,i

∗(vol)
m

(·)

and set j∗m = 2. Then, compute the new estimate R̂m according to (2.4) using Ĝm and F̂m.

Step 5 (iteration). Increase m by one and iterate Steps 2–4 up to an optimal level m = M . More

details on the determination of M are given in Remark 4 below. The resulting functions ĜM ,

F̂M are our FGD estimates for conditional means and volatilities. More formally, they are given

by:

ĜM (·) = Ĝ0(·) +
M∑

m=1

ŵ
(me)

m,i
∗(me)
m

ĝ
m,i

∗(me)
m

(·)I{j∗m=1}

F̂M (·) = F̂0(·) +
M∑

m=1

ŵ
(vol)

m,i
∗(vol)
m

f̂
m,i

∗(vol)
m

(·)I{j∗m=2}.

Remark 1. The base learner S in Step 2 determines the FGD estimates ĜM (·) and F̂M (·) via

the predicted values of the gradient of the objective function λ. The base learner should be

a “weak” one - not involving a too large number of parameters to be estimated - in order to

avoid an immediate overfitted estimate at the first iteration of the algorithm. The complexity

of the FGD estimates ĜM (·) and F̂M (·) is increased by adding further nonparametric terms at

every step of the above iterations. In our application, such additional terms are nonparametric

functions of the first two lags of multivariate interest rate levels. We use decision trees as

base learners, because particularly in high dimensions they are able to perform a very effective

variable selection by selecting only a few explanatory variables as predictors. This is not an

exclusive choice: further base learners could be applied and compared based on some form of

cross-validation.
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Remark 2. As mentioned, it is desirable to use sufficiently “weak” base learners in the above FGD

algorithm. A simple effective way to reduce the complexity of a base learner is via shrinkage

towards zero. In this case, the up-date Step 4 of the FGD algorithm can be replaced by an

updating step given by:

Ĝm(·) = Ĝm−1(·) + ν · ŵ(me)

m,i
∗(me)
m

ĝ
m,i

∗(me)
m

(·) or

F̂m(·) = F̂m−1(·) + ν · ŵ(vol)

m,i
∗(vol)
m

f̂
m,i

∗(vol)
m

(·), (2.7)

where ν ∈ [0, 1] is a shrinkage factor. This reduces the variance of the base learner by the factor

ν2.

Remark 3. The initialization Step 1 in the above algorithm is crucial, since FDG aims at

improving locally by means of nonparametric additive expansions the pseudo log likelihood

criterion of an initial model estimate. Therefore, it is important to start from adequate initial

estimates, in order to obtain a satisfactory performance. In our application we make use of the

fit of a diagonal VAR(pi)-CCC-GARCH(1,1) model4 to initialize the FGD algorithm by means

of functions Gi,0, Fi,0, i = 1, .., d, given by

Gi,0(rt−1, rt−2, . . .) = µt,i =
pi∑

k=1

φk,ixt−k,Ti ,

Fi,0(rt−1, rt−2, . . .) = σ2
t,i = α0,i + α1,i(xt−1,Ti − µt−1,i)2 + βiσ

2
t−1,i,

where the autoregressive parameter pi is selected in order to optimize the Akaike’s Information

Criterion (AIC) for each individual series i. In particular, since such initial estimates depend on

the whole history of the process in the GARCH–part of the model, the resulting FDG estimates

also imply volatility structures that depend on the whole process history. Using a Gaussian

pseudo likelihood function, we estimate by pseudo maximum likelihood this model for each of

the d individual series, thereby neglecting in the first step the structure of the correlation matrix

R. This causes some statistical loss in efficiency but has the advantage that the model estimation

remains fast and therefore computable also in very high dimensions d.

Remark 4. The stopping criterion in Step 4,5, is important. It can be viewed as a regularization

device which is very effective when fitting a complex model. We determine the stopping criterion

by means of a cross validation scheme: for a give sample size n, we split the (in-sample) esti-

mation period into two subsamples, the first of sample size 0.7 ·n (used as training set) and the
4See Bollerslev (1990) for more details.
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second of sample size 0.3·n (used as test set). The optimal value M to stop the algorithm is then

chosen as the one which optimizes the cross-validated log-likelihood. In our 12-dimensional real

data application, typical values of the selected parameter M ranged from M = 10 to M = 20.5

Consistency results for the above FGD estimation procedure based on convex risk minimiza-

tion are available; see, among others, Bühlmann (2002), Mannor et al. (2003), Zhang and Yu

(2003), Zhang (2004) and Lugosi and Vayatis (2004). Most of these works consider regression

or classification trees as base learners. We remark that such FGD–consistency proofs hold for

additive expansions of the form (2.7) where the terms of order m ≥ 1 are functions defined on

a fix finite-dimensional domain. This is why in our algorithm we work with additive expansions

where the higher order terms are functions only of a finite number p of lags in our multivariate

interest rate series.

Our FGD procedure, connected with tree-structured base learners, provides a computation-

ally feasible and simple method aiming at improving the pseudo log likelihood criterion, given

a set of initial model estimates. FGD performs a one-dimensional sequence of estimated non-

parametric mean and volatility functions which are optimized by selecting the optimal stopping

value M with the above cross validation scheme. Based on the FGD estimates for the multivari-

ate conditional mean vector µt and for the covariance matrix Vt, we apply a filtered historical

simulation procedure to generate out-of-sample scenarios for the term structure of interest rates.

Such a procedure is briefly reviewed in the next section.

2.3 Simulation of future yield curve scenarios

We generate future scenarios for the time series R of interest rate changes (and consequently the

time series X of interest rate levels). To this end, we apply a multivariate version of the filtered

historical simulation procedure proposed first by Barone-Adesi et al. (1998). Our historical

simulation is based on a model-based bootstrap of multivariate filtered historical residuals,

implied by an FGD estimation of the yield curve dynamics. Using the bootstrapped residuals,

we construct out of sample scenarios for the term structure. The FGD model estimate is used

as the filter for the estimation of standardized multivariate residuals.

More details on the complete simulation methodology are as follows. In a first step, we filter
5This cross-validation scheme has been shown to work well in empirical applications of FGD; see again Audrino

and Barone-Adesi (2002) and Audrino and Bühlmann (2003).
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the multivariate standardized innovations zt with our model (2.1):

zt = (Σt)−1(xt − µt),

Vt = ΣtΣT
t = DtRDt, t = 1, . . . , n,

where the individual conditional mean functions µt,i = Gi(·) and (squared) volatility functions

σ2
t,i = Fi(·), i = 1, . . . , d are estimated by means of our FGD technique, as described in detail by

the algorithm of Section 2.2. Under Assumption (A1), the standardized multivariate innovations

are i.i.d. and can be therefore bootstrapped. The historical standardized residuals are drawn

randomly (with replacement) and are used to generate pathways for future interest rate changes

(and, consequently, for future interest rate levels). Hence, we apply a model-based bootstrap

(Efron and Tibshirani, 1993) where from an i.i.d. resampling of the standardized multivariate

residuals zt we recursively generate a time series of interest rates using the structure and the

fitted parameters of the estimated optimal model (2.1).

Specifically, we draw randomly dates with corresponding standardized innovations

z∗1, z
∗
2, . . . , z

∗
x, (2.8)

where x is the time horizon at which we want to generate future scenarios (typically, from 1 up

to 10 days). We then construct for each time to maturity Ti pathways for future conditional

means and (squared) volatilities and interest rate levels, from time n+1 up to time n+x (say),

based on the model structure (2.1). More formally we compute the quantities

µ̂∗t+b,i = Ĝi({r∗t+b−s,k; s = 1, 2, . . . , p, k = 1, . . . , d}),

v̂∗t+b,ii = (σ̂∗t+b,i)
2 = F̂i({r∗t+b−s,k; s = 1, 2, . . . , p, k = 1, . . . , d}),

v̂∗t+b,ij = ρ̂ij

√
v̂∗t+b,iiv̂

∗
t+b,jj ,

x∗t+b,Ti
= µ̂∗t+b,i + (Σ̂∗t+bẑ

∗
b)i,

r∗t+b,Ti
= r∗t+b−1,Ti

+ x∗t+b,Ti
, b = 1, . . . , x, i, j = 1, . . . , d, (2.9)

where all quantities denoted by “̂” are based on the model structure estimated by means of

the FGD algorithm in section 2.2.

The “empirical” distribution of simulated model-based interest rate levels at the chosen

future time point n+x for each series i = 1, . . . , d, is obtained by replicating the above procedure

a large number of times, e.g. 2000 times. Confidence bounds for the term structure of interest

rates at the future time point n+x for a confidence level q are finally estimated by the lower and
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upper 1−q
2 -quantiles of the simulated “empirical” distribution of interest rates. In our exposition

we focus for brevity on confidence levels q = 0.90, 0.95, 0.99. However, any other quantile of the

simulated interest rates distribution could be estimated in the same way.

3 Empirical Results

In this section we back-test on real data our FGD scenario generation technique for forecasting

horizons x = 1, 3, 5, 10 days and for three different confidence levels q = 0.90, 0.95, 0.99.

We compare the performance of our approach with three historical simulation procedures

based on (i) a three factor analysis for the yield curve dynamics as in Diebold and Nerlove (1989),

(ii) the industry standard benchmark6 used by RiskMetricsTM and (iii) a standard multivariate

AR-CCC-GARCH model. The third comparison is particularly useful, because it highlights the

exact contribution of the FGD technique in enhancing the accuracy of VaR predictions for the

yield curve relatively to a standard multivariate GARCH model.

3.1 Data

We consider multivariate time series for the yield curves of daily interest rate levels rt,Ti at

twelve different maturities Ti. For the lowest maturity segments, i.e. overnight, 1 week, 2

weeks, 1 month, 2 months, 3 months, 6 months and 1 year, we make use of Euro dollar interest

rates. For the higher maturities, i.e. 2 years, 5 years, 10 years and 30 years, we make use

of interest rates of US government bonds. The data span the time period between January

1, 1996 and September 30, 2002, for a total of 1760 trading days, and have been downloaded

from Data Stream International. We split our sample in a back-testing period used to test

the predictive accuracy of our FGD methodology and an in-sample estimation period used to

initialize the model parameter estimates. The back-testing period goes from January 3, 2000

to September 30, 2002, for a total of 716 trading days. In our back-testing exercise the model
6RiskMetricsTM uses an EWMA conditional variance estimator of the form

Vt = (1− λ)ξt−1ξ
T
t−1 + λVt−1, λ = 0.94, (3.1)

where V0 can be fixed to be the sample covariance matrix or some presample data selection used to initialize the

smoother. This model is extremely easy to estimate since it contains only one parameter of interest. One obvious

drawback is that it forces all assets to have the same smoothing coefficient λ = 0.94, irrespectively of the specific

dynamic features of a given interest rate.
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parameters are re-estimated every 20 working days, as new data become available for prediction

purposes, using all multivariate past observations in the estimation of the model dynamics. The

updated conditional mean and volatility dynamics are then used to compute out of sample VaR

predictions based on historical simulation for the whole back-testing period.

Table 1 presents summary statistics of the time series of interest rate changes in our sample.

Figure 1 plots the yield curves in our sample as a function of time and maturity.

TABLE 1 AND FIGURE 1 ABOUT HERE.

Table 1 shows that the sample means of all interest rate changes in our sample are negative,

highlighting the fact that in our back-testing period the Fed reduced several times the target

interest rate. This effect is more pronounced for interest rates up to 2 years times to maturity

and is clearly visible in Figure 1. In particular, we can expect a back-test based on such a time

span to be a quite hard test for a VaR prediction model. Finally, the volatilities for interest rates

up to 1 month time to maturity tend to be larger than those of interest rates corresponding to

further time to maturities. The Ljung-Box statistics LB(20) testing for autocorrelations in the

level of interest rate changes up to the 20th order are strongly significant for maturities up to 1

year, showing evidence of some autocorrelation at shorter times to maturity for the euro bonds

interest rates in our sample. For higher times to maturity they are not significant at the 5%

confidence level.

The |LB(20)| statistics for testing the null hypothesis of no autocorrelation in the absolute

interest rate changes are all highly significant, supporting a volatility clustering hypothesis.

Finally, when analyzing the sample correlations between interest rates of different maturities

(not reported here) we observe that, as expected, the time series of interest rate changes of

different times to maturities are positively correlated, with higher correlations for the longer

times to maturity; for example, the sample correlations of interest rate changes at 3 and 6

months and at 2 and 5 years are 0.73 and 0.91, respectively.

Starting from these summary statistics, it is reasonable to model the joint yield curve dy-

namics based on some multivariate GARCH-type model of the general form (2.1). We apply the

FGD technique of Section 2 and investigate the accuracy of its VaR predictions. In particular,

using FGD we can account for a possibly non-linear dependence between multivariate interest

rate series. Moreover, we do not need any dimension reduction technique like FA. In fact, his-

torical simulation combined with a FA of the joint yield curve dynamics provides very poor,
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typically too conservative, VaR predictions in our study. This holds also for forecasts of interest

rates in the long term maturity spectrum. To investigate this issue we estimated a three factor

model as in Diebold and Nerlove (1989) with our yield curve data and computed the implied

out-of-sample VaR predictions using historical simulation. We applied such FA to several sub-

sets of times to maturity in our sample, in order to control for the impact of the highly variable

short-term interest rates on the prediction results implied by such a FA. However, we always

obtained poor, typically too conservative, interes rate interval estimates.

As an illustration, Figure 3 presents the estimated one day ahead 95%-confidence intervals for

the 10-years maturity interest rate when using the FGD– (dot dashed curves) and the FA–based

(dotted curves) approaches. Similar findings arise for the other maturities.

FIGURE 2 ABOUT HERE.

In Figure 3 it appears clearly that the interval estimates provided by the FA-based approach

are very large and much broader than those obtained with the FGD–based approach. For in-

stance, at some dates – especially after periods of suddenly higher interest rate volatility – the

length of the intervals provided by the FA–methodology is almost 200 basis points (see for in-

stance the intervals around March 1, 2001 and March 1, 2002). Such confidence intervals lengths

are too large for applied risk management purposes. Moreover, they are also too conservative.

Indeed, in a formal back-testing analysis not reported here the realized number of exceedances

of confidence intervals produced by the FA–based approach was most of the times significantly

lower than the one expected under the given confidence level. Intuitively, this conservative

behavior happens because the part of volatility dynamics that is not filtered by the FA-based

approach inflates the variability of the filtered interest rates residuals in the resulting historical

simulation procedure: when bootstrapping such residuals to compute out-of-sample interest rate

confidence intervals their excess variability generates too conservative interval estimates. Such

effects arise also when applying FA to lower dimensional subsets of the maturities available in

our data set. Since the interest rate interval estimates and the back-testing results implied by

the FA-based approach are so poor, we do not discuss them in more detail in the rest of the

paper.

The next sections present our back-testing results for one day prediction intervals and analyze

in a second step those for longer forecasting horizons. We focus on the comparison of our

FGD–based approach with the one used by RiskMetricsTM and a filtered historical simulation
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procedure based on a standard multivariate AR-CCC-GARCH model.

3.2 Yield curve confidence envelopes: some preliminary evidence

We examine and compare the out-of-sample performance and the accuracy of ahead confidence

bounds for the yield curve, computed by means of three historical simulation-based procedures:

the industry standard benchmark used by RiskMetricsTM, one based on a standard multivariate

AR-CCC-GARCH model dynamics and, finally, one based on the FGD approach. For any

available time to maturity and any time in the back-testing sample we compute by historical

simulation confidence intervals on the value of the corresponding future interest rates. By

plotting these confidence bounds as a function of time to maturity we can obtain for each

methodology a set of out-of-sample confidence ”envelopes” for the whole yield curve at any

relevant date. Examples of such yield curve confidence envelopes are presented in Figure 3, where

we plot the realized yield curves at some given dates, together with the 95%-confidence envelopes

obtained by means of filtered historical simulation based on the RiskMetricsTM approach (the

dotted lines in Figure 2) and the FGD technique (the dash-dotted lines in Figure 2), respectively.

FIGURE 3 ABOUT HERE.

The term structure realizations presented in Figure 2 suggest at first sight that both method-

ologies yield reasonable confidence envelopes. In particular, in almost all graphs of Figure 2,

the realized yield curves lie inside the corresponding 95%-confidence envelopes. A small ex-

ceedance of the FGD-based envelope bounds is observed for instance in the term structure on

March 13, 2001, at weekly maturities. For the RiskMetricsTM approach one relatively large

exceedance is observed on January 5, 2001, at the two months maturity. The FGD-based pro-

cedure seems to replicate better some particular shapes of the observed yield curves, especially

at the shorter times to maturity. Indeed, in some cases the term structure envelopes based on

the RiskMetricsTM methodology appear to be too smooth as a function of time to maturity (see

again for instance the graph in Figure 2 for the term structure on January 5, 2001).

In contrast to the results for the factor analysis, neither the RiskMetricsTM nor the CCC–

based confidence intervals seem to be systematically more or less conservative than those under

the FGD-methodology. To illustrate this point Figure 4 presents Box-Plots of the confidence

interval lenghts produced by RiskMetricsTM and by FGD for the ten years maturity interest

rates and at confidence levels 95% and 99%.

19



FIGURE 4 ABOUT HERE.

From these graphs the median interval length under the RiskMetricsTM methodology ap-

pears to be lower than under FGD at the 95% and the 99% confidence levels. At the same

time, the variability of the arising interval lenghts for the RiskMetricsTM methodology is higher

than for FGD, especially at the 95% confidence level. Such patterns are a direct consequence

of the different implicit dynamic structures of confidence intervals estimated by means of the

RiskMetricsTM and the FGD approaches. A comparison related to the one in Figure 4 is pre-

sented in Figure 5, presenting Box-Plots of the one-day up to 10 days ahead 95% confidence

interval lenghts estimated for the 5 years maturity interest rates by an AR-CCC-GARCH–based

and a FGD-based methodology.

FIGURE 5 ABOUT HERE.

In Figure 5 we observe that the median interval lengths implied by an AR-CCC-GARCH ap-

proach are all lower than those implied by FGD. In contrast to the comparison with RiskMetricsTM

in Figure 4, the AR-CCC-GARCH–based methodology implies also lower interquartile ranges

of interval lenghts than FGD for the 5 years maturity interest rate under scrutiny. However,

the AR-CCC-GARCH–based approach also implies quite a few extreme interval lenghts that

are much larger than the corresponding ones under FGD (see for instance the top left panel

in Figure 5). This is mainly a consequence of the higher time instability of interval lenghts

computed by the AR-CCC-GARCH–based methodology when large changes in interest rates

occur; see also Section 3.5 below.

3.3 Back-testing one-day ahead confidence bounds

To compare more consistently and more precisely the effective performance or the above VaR

prediction methodologies it is necessary to perform some more formal statistical back-tests. To

test the predictive performance of confidence envelopes of the yield curve we use two types of

statistical tests, which are based on the frequency and the duration of yield curve envelope

exceedances, i.e. the actual interest rate observations rt,Ti that happen to fall outside the

predicted confidence envelopes.

The first type of tests are standard overall frequency tests. Such tests test the hypothesis

that the expected number of exceedances is compatible with the given confidence interval. For
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example, for a 95%-confidence envelope and a sample of 1000 back-testing days, one should

expect 50 exceedances at any give time to maturity. In Table 2 we report for all methodologies

under scrutiny the observed number of exceedances of one-day ahead confidence bounds for each

time to maturity Ti, from 1 month to 30 years, i.e. i = 4, .., 12. For shorter times to maturity

no methodology could provide accurate VaR estimation procedures in our sample. We report

the observed number of exceedances at the confidence levels 0.9, 0.95, 0.99 for the FGD-based

methodology (CCC-FGD), the RiskMetricsTM approach (RM) and the historical simulation

methodology based on a standard multivariate AR-CCC-GARCH dynamics (CCC). Under the

null hypothesis, the observed number of exceedances is binomially distributed with a standard

deviation ranging from 8.027 (for the 90%-confidence level) to 2.662 (for the 99%-confidence

level). Back-testing results marked by one and two asterisks, respectively, denote a significant

difference from the expected number of exceedances under the null hypothesis at the 5% and

the 1% test nominal level, respectively.

TABLE 2 ABOUT HERE.

From Table 2, we observe that the FGD-based historical simulation strategy is the one that

produces the lowest number of null hypothesis rejections when using overall frequency tests. In

particular, for the 95% and the 99%-confidence envelopes we remark that only in one case a

significant difference from the expected number of exceedances is observed. The RiskMetricsTM

approach yields very often confidence intervals that are too tight and are therefore often violated

a significantly larger number of times than expected under the null hypothesis. Similarly, also a

standard CCC-GARCH-based historical simulation produces often too tight confidence intervals,

especially for short and intermediate time to maturities. Based on the results of pure overall

frequency tests we conclude that the joint non-linear dependence of the yield curve dynamics

estimated by FGD improves the accuracy of one day ahead interest rate confidence intervals

computed by historical simulation.

A second type of tests that can be applied in our back-testing exercise are likelihood-ratio

Weibull duration tests; see Christoffersen and Pelletier (2004). The basic idea of these tests relies

on the fact that if a model for constructing the VaR confidence intervals at a confidence level q

is correctly specified, then the conditional expected duration between consecutive exceedances

- i.e. the expected no-hit duration - is constant and equal to 1/q days. Such an hypothesis can
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be tested as follows7. Let Dj = tj − tj−i be the no-hit duration for time tj , where tj denotes

the day of exceedance number j. Then, under the null hypothesis that the model is correctly

specified, E(Dj) = 1/q days for any j = 1, 2, ... This hypothesis can be tested together with the

independence hypothesis on the process of no-hit durations against some specific dependence

alternative. To this end, we consider alternatives where the distribution of no-hit durations is a

Weibull distribution with density given by

fW (D; a, b) = abbDb−1 exp
(− (aD)b

)
,

where a, b > 0. The exponential distribution with parameter a then implies the only memoryless

(continuous) random distribution in this class, which emerges as the special case b = 1. Thus,

the null hypothesis of the likelihood-ratio Weibull duration test is

H0 : b = 1 and a = q, (3.2)

where b = 1 is implied under the null hypothesis of independence. Let {Cj : j = 1, . . . , n}
be the hit sequence of {0, 1} random variables that indicate if a no-hit duration Dj is censored

(Cj = 0) or if it is not (Cj = 1).8 For a given hit sequence and a given sequence of no-hit

durations D = {Dj : j = 1, .., n} the log-likelihood is given by

log L(D; θ) = (1− C1) log
(
S(D1)

)
+ (1− Cn) log

(
S(Dn)

)
+

n∑

j=1

(
Cj log

(
fW (Dj)

))
, (3.3)

where in the case of a censored observation we merely know that no hit has been observed

between time 0 and D1 or between time
∑n−1

j=1 Dj and Dn, respectively. In this case, the

contribution to the likelihood is given by the survival function S(Dj) = exp
( − (aDj)b

)
. The

standard likelihood-ratio test statistic for testing (3.2) is then given by

LR = −2
(
log L(D; â, b̂)− log L(D; q, 1)

)
, (3.4)

where â, b̂ are the maximum likelihood estimators of the parameters a, b. This statistic is asymp-

totically chi-square distributed with two degrees of freedom.9

7See also Kiefer, 1988 or Gourieroux, 2000 for a general introduction to duration modelling.
8If the hit sequence {Cj j = 1, . . . , n} starts (ends) with 0 then D1 (Dn) is the number of days until we get

the first exceedance (number of days after the last exceedance) and C1 = 0 (Cn = 0). If instead the hit sequence

starts (ends) with a 1, then C1 = 1 and D1 is simply the number of days until the second exceedance (then Cn = 1

and Dn = tn − tn−1).
9It is also possible to compute finite sample critical values for the above statistics by means of Monte Carlo

simulation. Our results do not change in an essential way when doing that. We therefore further use standard

asymptotic critical values.
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Results of the above likelihood-ratio Weibull duration tests for 1-day ahead yield curve con-

fidence bounds are reported in Table 3 below for our FGD-based historical simulation procedure

(CCC-FGD), for the RiskMetricsTM one (RM) and for a multivariate AR-CCC-GARCH model

based approach (CCC).

TABLE 3 ABOUT HERE.

As for the overall frequency tests an FGD-based historical simulation procedure is the one that

clearly produces the lowest number of rejections of the relevant null hypothesis. Indeed, the

only rejections are observed at the 95% confidence level for the one month and the six months

times to maturity. The RiskMetricsTM approach yields confidence bounds which, especially

for the 99% confidence level, are inconsistent with the hypothesis of independent durations

between consecutive exceedences. The AR-CCC-GARCH model based approach produces 8

null hypothesis rejections at the different confidence levels, especially for time to maturities up

to one year. These findings confirm that the joint non-linear dependence of the yield curve

dynamics estimated by FGD improves the accuracy of VaR confidence intervals computed by

historical simulation.

3.4 Back-testing confidence bounds for longer forecasting horizons

Accuracy of the above interest rates prediction methodologies for forecasting horizons longer

than one day is investigated next. In this context, we found that for times to maturity up to

about one year all historical simulation approaches under scrutiny produced a poor predictive

power and inaccurate confidence interval estimates, with confidence bounds that were often vio-

lated several times in a row. A more detailed data inspection showed that this is due principally

to a sequence of multiple big interest rate shocks on the Euro market (often with changes larger

than 0.3%-0.4%) caused by several adjustments in the Fed’s target rate during the second part

of our back-testing period. In the sequel we therefore focus on several days ahead interest rate

predictions for longer terms to maturity between two years and thirty years. We remark, how-

ever, that interest rates in the short maturity spectrum still affect the forecasts of longer term

interest rates, because they typically influence the conditional mean vector and the conditional

covariance matrix in our estimated multivariate model for interest rate changes.

Results of overall frequency tests on the total number of exceedances at prediction horizons

of 3,5 and 10 days are summarized in Table 4 for the FGD-based approach (CCC-FGD), the
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RiskMetricsTM approach (RM) and the approach based on a multivariate AR-CCC-GARCH

model (CCC).

TABLE 4 ABOUT HERE.

To correct for the autocorrelation in the series of exceedances under overlapping measurement

intervals, we estimated the relevant standard errors using a Newey and West (1987) covariance

matrix estimator with truncation parameter x− 1, where x is the forecasting horizon.

From Table 4 we see that also for longer forecasting horizons the FGD-based approach pro-

duces clearly better back-testing results, with only one null hypothesis rejection at the ten days

forecasting horizon for the two years maturity interest rate. At the same time, the RiskmetricsTM

and the AR-CCC-GARCH methodologies provide a very bad back-testing performance, with 17

and 20 null hypothesis rejections, respectively, across the different forecasting horizons and con-

fidence levels. These findings suggest that the joint non-linear dependence of the yield curve dy-

namics estimated by FGD improves even more crucially the VaR confidence intervals computed

by historical simulation for longer forecasting horizons. Indeed, in terms of the pure number

of null hypothesis rejections a standard AR-CCC-GARCH-based approach without FGD does

not perform better in our study than a very simple RiskmetricsTM approach. It is interesting

to remark that the nonparametric conditional mean and variance functions estimated by FGD

for maturities from 2 to 30 years typically contain also lagged interest rates in the short-term

spectrum of the yield curve. Therefore, the inclusion of such lagged short-term interest rates

as instruments in a nonparametric FGD–approach enhances the quality of several days ahead

interval predictions for longer term interest rates. A comparable quality in the forecasting abil-

ity of longer term interest rates could not be attained by means of (i) a three factor analysis of

the yield curve dynamics, (ii) a RiskmetricsTM–type approach or (iii) a parametric AR-CCC-

GARCH–based historical simulation procedure.

3.5 Confidence intervals for bond returns

An accurate yield curve scenarios generation technique can be used to compute the implied

confidence intervals and risk measures for, in principle, any interest rate derivative. To this

end, any generated yield curve scenario can be mapped into a corresponding derivative price

scenario, to obtain an historically simulated distribution of derivative prices. For instance, such

an historically simulated distribution of derivative prices can be used to compute the VaR or the
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Expected Shortfall of a derivative return for different short-term forecasting horizons. Such an

exercise gives insight into the potential losses that are associated with the underlying interest

rate risk factors. For derivative prices that depend on several interest rate points on the yield

curve (for instance, a simple spread portfolio) it is important to have a procedure generating

accurate interest rates scenarios at the same time for (i) several interest rate maturities and

(ii) several quantiles of the historical interest rate distribution.10 From the empirical results in

the last sections, the FGD–based historical simulation approach is the one which, among the

methodologies studied in the paper, better fulfills these two requirements.

To illustrate the computation of the loss distribution for a simple derivative in the above

historical simulation setting, consider the problem of computing three days ahead confidence

intervals for the returns of a simple 10 years maturity US Treasury Notes. From the simulated

10 years interest rates we can easily compute the corresponding simulated three days bond

returns and, from their simulated distribution, compute the associate return confidence intervals.

The resulting dynamic three days ahead 99%-confidence intervals and the associated realized

returns are presented in Figure 6 for (i) the RiskmetricsTM–type approach, (ii) the parametric

AR-CCC-GARCH–based historical simulation procedure and (iii) the technique based on FGD.

Figure 6 ABOUT HERE.

In the top panel of Figure 6 the comparison between the RiskmetricsTM and the FGD-

methodology shows that the first one tends to produce too liberal confidence intervals over time,

especially in the lowest estimated quantiles of bond returns. This pattern causes a large number

of realized losses that violate strongly and too often the estimated confidence bounds (see for

instance the time periods around January 2001, May 2001 and November 2001). The realized

number of exceedances (19) is consistent with the results in Table 4 and is significantly too

high. The FGD–based methodology, instead, produces wider confidence bounds and less severe

exceedances. The realized number of exceedances (7) is consistent with the results in Table 4

and is not statistically significantly different from the one expected under the null of a correct

VaR prediction model.

The comparison between the AR-CCC-GARCH– and the FGD–based approaches is pre-

sented in the bottom panel of Figure 6. As a general remark, we observe an approximate
10Clearly, not all interest rate derivatives will have a distribution of prices where upper and lower quantiles are

associated only with the upper and lower quantiles of the interest rates affecting the derivative prices.
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tendence of both approaches to estimate confidence intervals with similar interval lengths. How-

ever, the confidence intervals estimated by the AR-CCC-GARCH–based approach can happen

to be too tight and are also more variable over time, especially in periods of very variable inter-

est rates and bond returns (see for instance the time period between May 2001 and May 2002).

Such a higher variability of the estimated confidence interval lengths implies in some cases a

too liberal confidence interval estimate and a corresponding back-testing exceedance. The re-

alized number of exceedances (14) is consistent with the results in Table 4 and is statistically

significantly different from the one expected under the null of a correct VaR prediction model.

4 Conclusions

We proposed a multivariate nonparametric technique based on FGD and historical simulation to

generate more reliable scenarios and confidence intervals for the term structure of interest rates

from historical data. The methodology is computationally feasible in large dimensions and can

account for a non-linear time series dependence of interest rate at all available maturities. We

back-tested our methodology on daily USD bond data and found that its out-of-sample accu-

racy is higher than the one of further scenario generating technologies based on factor analysis, a

multivariate AR-CCC-GARCH model, or the exponential smoothing volatility forecasting tech-

nique used by the RiskMetricsTM approach. At forecasting horizons of one day, FGD provided

accurate multivariate VaR computations for time to maturities between one month and thirty

years. For longer horizons (i.e. ten days) accurate VaR predictions are obtained for time to

maturities between roughly one and thirty years.
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Figure 1: Term structure data: the sample consists of 1760 daily observations between January

1, 1996 and September 30, 2002 for twelve times to maturity Ti= overnight, 1 week, 2 weeks, 1

month, 2 months, 3 months, 6 months, 1 year, 2 years, 5 years, 10 years, 30 years.
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Maturity sample mean sample sdev min max LB(20) |LB(20)|
overnight −0.0022 0.1374 −2.3200 1.5312 236.76∗ 450.44∗

1 week −0.0022 0.0701 −0.7501 1.3437 149.26∗ 291.54∗

2 weeks −0.0022 0.0606 −0.8331 0.8437 64.098∗ 177.50∗

1 month −0.0022 0.0724 −0.9800 1.0200 148.78∗ 260.16∗

2 months −0.0022 0.0422 −0.5800 0.9376 61.023∗ 179.52∗

3 months −0.0022 0.0354 −0.5900 0.6250 75.219∗ 302.35∗

6 months −0.0021 0.0382 −0.5500 0.2000 61.514∗ 318.80∗

1 year −0.0020 0.0567 −0.5312 0.6650 31.589∗ 189.59∗

2 years −0.0020 0.0607 −0.5190 0.3240 30.034 294.27∗

5 years −0.0016 0.0623 −0.3720 0.3400 29.634 200.26∗

10 years −0.0011 0.0592 −0.2240 0.3340 26.079 137.92∗

30 years −0.0007 0.0492 −0.3240 0.2460 20.816 54.186∗

Table 1: Summary statistics on time series of interest rate changes (in %) at twelve different

maturities for the time period between January 1, 1996 and September 30, 2002, for a total of

1760 observations. Sample sdev, LB(20) and |LB(20)| are the sample standard deviations and

the Ljung-Box statistics testing for autocorrelation in the time series of interest rate changes

and absolute interest rate changes, respectively, up to the 20th lag. Asterisks indicate statistical

significance at the 5% confidence level.

30



Term Structure on 1/7/2000

Maturity index i

Y
ie

ld
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

4
.5

5
.5

6
.5

Term Structure on 2/4/2000

Maturity index i

Y
ie

ld
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

5
.5

6
.0

6
.5

7
.0

Term Structure on 11/9/2000

Maturity index i

Y
ie

ld
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

5
.8

6
.2

6
.6

Term Structure on 1/5/2001

Maturity index i

Y
ie

ld
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

4
.5

5
.5

6
.5

Term Structure on 1/10/2001

Maturity index i

Y
ie

ld
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

4
.5

5
.5

6
.5

Term Structure on 3/13/2001

Maturity index i

Y
ie

ld
 (

in
 %

)

1 2 3 4 5 6 7 8 9 10 11 12

4
.4

5
.0

5
.6

Figure 2: Realized yield curves (solid line) and one day ahead 95%-confidence envelopes using (i)

the FGD–based setting (dot dashed lines) and (ii) the RiskMetricsTM approach (dotted lines) in

the estimation of conditional means and volatilities for the corresponding historical simulation

procedure. The plotted yield curve envelopes are for some selected dates in the backtesting

period from January 1, 2000, to September, 30, 2002. The maturity index i = 1, .., 12 in the

graphs corresponds to twelve ordered maturities: overnight, 1 week, 2 weeks, 1 month, 2 months,

3 months, 6 months, 1 year, 2 years, 5 years, 10 years, 30 years.
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CCC-FGD vs. Factor Analysis

Figure 3: Out-of-sample one day ahead 95% interest rate interval estimates for the 10–year

maturity bond. The straight line is the realized interest rate level. The two dotted lines are

the estimated upper and lower interest rate quantiles when using the FA–based approach. The

two dot dashed lines are the estimated upper and lower interest rate quantiles when using the

FGD–based approach.
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Figure 4: One day ahead confidence interval lenghts for the 10–years maturity interest rate

under a 95% (left panel) and a 99% (right panel) confidence level. In each panel, the right (left)

Box Plot is for the RiskMetricsTM–based (the FGD–based) approach.
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Figure 5: One day (left top panel), three days (right top panel), five days (left bottom panel)

and ten days (left right panel) ahead confidence interval lenghts for the 5–years maturity interest

rate under a 95% confidence level. In each panel, the right (left) Box Plot is for the CCC-AR-

GARCH–based (the FGD–based) approach.
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Figure 6: Three days ahead confidence intervals for the 10–years maturity zero bond return

under a 99% confidence level. In each panel the straight line is the realized bond return. In

the upper panel, the two dotted lines are the estimated upper and lower return quantiles when

using the RiskmetricsTM–based approach. The two dot dashed lines are the estimated upper

and lower return quantiles when using the FGD–based approach. In the bottom panel, the

two dotted lines are the estimated upper and lower return quantiles when using the parametric

AR-CCC-GARCH–based approach. The two dot dashed lines in the bottom panel are again the

estimated upper and lower return quantiles when using the FGD–based approach.
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Maturity

Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

Expected 71.6 35.8 7.16

1 month 61 49∗∗ 86∗ 26 39 31 5 25∗∗ 3

2 months 75 59 99∗∗ 37 43 55∗∗ 8 22∗∗ 8

3 months 76 55∗ 104∗∗ 40 42 57∗∗ 7 26∗∗ 15∗∗

6 months 77 74 88∗ 44 53∗∗ 47∗ 9 37∗∗ 13∗

1 year 84 69 106∗∗ 53∗∗ 47∗ 56∗∗ 10 31∗∗ 13∗

2 years 83 80 91∗ 39 50∗ 40 8 20∗∗ 4

5 years 87∗ 80 93∗∗ 39 49∗ 43 4 21∗∗ 6

10 years 91∗ 80 85 40 51∗∗ 43 7 22∗∗ 7

30 years 85 78 81 38 43 42 4 16∗∗ 6

Table 2: Overall frequency tests: exceedances for one-day ahead confidence bound forecasts

recorded for times to maturity between one month and 30 years in the backtesting period from

January 3, 2000 to September 30, 2002 (for a total of 716 trading days). The predictions are

constructed using the FGD algorithm of Section 2 (CCC-FGD), the RiskMetricsTM approach

(RM) and a standard multivariate AR-CCC-GARCH model. Results marked with one and two

asterisks show significance at the 5% and the 1% confidence levels, respectively, for binomial

tests investigating differences from the expected number of exceedances.
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Maturity

Confidence level

90% 95% 99%

FGD RM CCC FGD RM CCC FGD RM CCC

1 month 5.58 13.9∗∗ 4.02 8.52∗ 8.06∗ 1.32 2.06 29.8∗∗ 5.82

2 months 0.08 6.99∗ 9.81∗∗ 0.17 2.95 9.13∗ 0.13 17.5∗∗ 0.02

3 months 5.78 5.01 12.4∗∗ 2.02 0.72 10.6∗∗ 0.30 27.2∗∗ 6.27∗

6 months 0.47 1.85 3.31 1.36 7.30∗ 4.57 0.37 58.9∗∗ 2.91

1 year 7.05 0.19 13.8∗∗ 5.95 2.92 9.22∗∗ 0.61 40.9∗∗ 3.13

2 years 5.95 0.85 5.76 0.45 4.51 0.49 1.18 13.8∗∗ 3.14

5 years 3.12 1.13 6.14∗ 0.17 3.75 1.34 3.41 18.7∗∗ 1.39

10 years 4.46 0.80 2.77 0.57 5.06 1.31 1.85 18.4∗∗ 0.85

30 years 2.15 1.68 0.95 0.06 1.60 0.98 3.41 8.14∗ 1.36

Table 3: Likelihood-ratio Weibull duration tests: exceedances for one-day ahead confidence

bound forecasts recorded for the same maturities of Table 2 in the backtesting period from

January 3, 2000 to September 30, 2002 (for a total of 716 trading days). The predictions are

constructed using the FGD algorithm of Section 2 (FGD), the RiskMetricsTM approach (RM)

and a standard multivariate AR-CCC-GARCH model (CCC). Results marked with one and two

asterisks show significance at the 5% and the 1% confidence levels, respectively.
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3-day predictions

Maturity

Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

Expected 71.6 35.8 7.16

2 years 86 91∗ 92∗ 40 57∗∗ 56∗∗ 11 26∗∗ 14∗

5 years 76 88 94∗ 41 62∗∗ 52∗ 11 23∗∗ 16∗

10 years 69 75 84 30 42 53∗ 7 19∗∗ 14∗

30 years 59 75 74 29 40 36 10 15∗ 9

5-day predictions

Maturity

Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

2 years 82 96∗ 100∗ 43 58∗ 55∗ 16 27∗∗ 17∗

5 years 80 96∗ 104∗∗ 43 64∗∗ 58∗ 16 26∗∗ 17∗

10 years 65 81 87 32 39 48 7 15 9

30 years 64 80 78 42 44 50 8 13 11

10-day predictions

Maturity

Confidence level

90% 95% 99%

CCC-FGD RM CCC CCC-FGD RM CCC CCC-FGD RM CCC

2 years 86 99 108∗ 54 68∗ 65∗ 26∗ 35∗∗ 28∗

5 years 81 97 112∗ 46 63∗ 66∗ 21 36∗∗ 26∗

10 years 67 82 94 32 50 45 8 17 10

30 years 62 81 77 38 51 45 12 21 14

Table 4: Overall frequency tests: number of exceedances for 3-days (top panel), 5-days (middle panel)

and 10-days (bottom panel) ahead confidence bound forecasts recorded for maturities between 2 and 30

years in the back-testing period from January 3, 2000 to September 30, 2002 (for a total of 716 trading

days). The predictions are constructed using the FGD algorithm of Section 2 (CCC-FGD), the risk

RiskMetricsTM approach (RM) and a standard multivariate AR-CCC-GARCH model (CCC). Results

marked with one and two asterisks show significance at the 5% and the 1% confidence level, respectively,

for binomial tests investigating differences from the expected number of exceedances. Standard errors

have been computed by means of a Newey and West (1987) covariance matrix estimator to correct for

the autocorrelation in the exceedances time series.
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