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Abstract

This paper aims at quantifying the economic value of knowledge spillovers by

exploring information contained in patent citations. I estimate a market valuation

equation for semiconductor …rms during the 1980s and early 1990s, and …nd an

average value in the amount of $0.6 to 1.2 million “R&D-equivalent” dollars for the

knowledge ‡ows as embodied in one patent citation. For an average semiconductor

…rm, such an estimate implies that the total value of knowledge spillovers the …rm

received during the sample period could be as high as half of its actual total R&D

expenditures in the same period. This provides a direct measure of the economic

value of the social returns or externalities of relevant technological innovations. I

also …nd that self citations are more valuable than external citations, indicating a

signi…cant amount of tacit knowledge or know-how spillovers that occur within the

…rm.
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1. Introduction

Knowledge spillovers among di¤erent economic units are one of the most intriguing aspects

of technological innovations and are of great importance for public policy making. Numerous

studies have analyzed the patterns and the e¤ects of such spillovers, at both microeconomic

and macroeconomic levels (the endogenous growth theory by Romer (1986) and Grossman and

Helpman (1991), for instance). However, we still know very little about how to quantify the

economic value of such spillovers.1 This study, by exploring …rm-level data on R&D, patents,

patent citations, and …rm values, seeks to provide some answers.

I use the number of citations a patent applicant makes to measure the amount of knowledge

‡ows he has received in developing the patented technology, and estimate a market valuation

equation for semiconductor …rms during the 1980s and early 1990s. I …nd a signi…cantly positive

monetary value for this measure of knowledge ‡ows, after controling for various relevant factors.

In particular, model estimation reveals an average value in the amount of $0.6 to 1.2 million

“R&D-equivalent” dollars for the knowledge ‡ows as embodied in one patent citation, implying

that the total value of knowledge spillovers an average semiconductor …rm received during the

sample period could be as high as half of its actual total R&D expenditures in the same period.

This provides a direct measure of the economic value of the social returns or externalities of

relevant technological innovations. I also …nd that self citations are more valuable than external

citations, indicating a signi…cant amount of tacit knowledge or know-how spillovers that occur

within the same …rm.

Patent citations, by identi…ying the previous relevant technologies on which the current

patented technology builds, convey important information on knowledge spillovers that the

current inventor has received from the earlier inventors. A number of authors have used patent

citations to explore spillovers across geographical locations (Ja¤e, Trajtenberg, and Henderson

1993), among …rms in a research consortium (Ham, Linden, and Appleyard 1998), and spillovers

from public resaerch facilities to the whole economy (Ja¤e and Trajtenberg 1996, Ja¤e and

Lerner 2001). This study proceeds along this approach and tries to quantify such spillovers in

terms of monetary value, in an attempt to directly evaluate the social returns or externalities of

the technological innovations as identi…ed by previous studies.
1Trajtenberg (1990) estimates the social surplus from innovations in CT scanners technology based on a

discrete-choice model, and …nds high correlations between patent citations and the estimated social surplus.
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The quantitative analysis of this paper is conducted in a Tobin’s q framework. Following

Hall, Ja¤e, and Trajtenberg (2005) (hereinafter HJT 2005), I consider a …rm’s knowledge assets

as being accumulated in a continuously ongoing innovative process in which R&D expenditures

re‡ect innovative input, patents record the successful innovations that can be appropriated by

the …rm, and citations received by the …rm’s patents (forward citations) measure the relative

“importance” of the patents. The extention and fresh contribution of this study is to include

the citations made by the …rm’s patents (backward citations) as a proxy of the knowledge ‡ows

the …rm has received, which are considered an additional kind of innovative input to direct R&D

spendings on the belief that more knowledge in‡ows increase the …rm’s knowledge stock and

may boost the …rm’s R&D productivity.

Moreover, instead of a general analysis on all technology …elds and industries aggregated like

HJT (2005), this study focuses on a very narrowly de…ned industry, the semiconductor industry

(SIC code 3674). While analyzing an aggregate sample of di¤erent technology …elds provides

a broader picture, focusing on one industry allows more intensive and thorough examination

of the technological competition and di¤usion processes. The semiconductor industry is chosen

because of the strategic importance of knowledge assets and the intensive R&D activities in this

industry. Moreover, technological innovations in semiconductor industry have been the focus

of several recent studies, including Megna and Klock (1993)’s work on R&D and patent stocks

and Tobin’s q, Ham, Linden, and Appleyard (1998)’s study on the knowledge spillovers in the

research consortia in this industry, and Hall and Ziedonis (2001)’s extensive analysis of the shift

in the patenting preferences of the semiconductor …rms in early 1980s. This quantitative study

on the economic value of knowledge spillovers in this industry based on patent citations data

complements these previous studies and has a direct bearing on the existing literature.

The paper is organized as follows. Section 2 pictures the relationship between patent citations

and knowledge spillovers, section 3 speci…es the market value equation to be estimated, and

section 4 describes the data. Section 5 presents the empirical results, and section 6 concludes.

2. Patent Citations and Knowledge Spillovers

Patent Citations as Indicators of Knowledge Spillovers

A patent grants it owner an exclusive right for the commercial use of the patented invention

for a pre-determined period of time (20 years in the U.S.). Upon patent approval, a public
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document is created containing detailed information on various aspects of the invention and the

inventor(s), including “references” or “citations.” The citations serve an important legal function

of delimiting the scope of the property right granted to the patent owner, since the patent only

protects the exclusive use of the “novel and useful contribution over and above the previous

state of knowledge, as represented by the citations” (Ja¤e, Trajtenberg, and Henderson 1993).

Thus, the cited patents represents a piece of previously existing knowledge upon which the citing

patent builds, and over which the citing patent cannot have a claim. The patent applicant has

a legal duty to disclose any knowledge of prior art, although the patent examiner will make the

…nal decisions on which previous patents to be included in citations.2

The fact that patent citations reveal the “prior art” the inventor has learned makes them

potential measures of the knowledge spillovers from the past inventions to the current inven-

tion. Undoubtedly, there are substantial noises in using patent citations to measure knowledge

spillovers. To assess the validity of this analysis, let us …rst examine the relationship between

patent citations and knowledge spillovers more carefully. There are three possibilities: spillovers

accompanied by citations, citations that occur where there is no spillover, and spillovers that

occur without generating a citation (Ja¤e, Trajtenberg, and Henderson 1993). The validity of

this empirical analysis relies on the …rst one. So the key question here is whether and to what

extent the other two possibilities may a¤ect the evaluation of spillovers.

A recent survey study of inventors provides some direct evidence. Ja¤e, Trajtenberg, and

Fogarty (2000) interviewed approximately 160 patent owners with questions about their inven-

tions, the relationship of their patents to the patents they cited, as well as the relationship to

other patents that were technologically similar to the cited patents but not cited. The study

concludes that about half of the citations correspond to some knowledge ‡ows from the cited

patents to the citing patents, and the rest half does not seem to correspond to any kind of knowl-

edge ‡ow between them. This con…rms that citations do contain important information about
2As noted by Ja¤e, Trajtenberg, and Henderson (1993), one should be careful in making analogy between

patent citations and academic article citations: the price of making an academic citation is almost zero or even

negative if a long list of references may make the research papers seem more solid and thorough. However, under

the patent system, the more citations a patent applicant makes, the less novelty or signi…cance he is able to claim

over his invention. Therefore, he may have an incentive to under-cite instead of over -cite the precedents, and the

patent examiner will use his expertise to identify the ones neglected by the patent applicant. On the other hand,

even if the inventor did cite some irrelevant patents in the application (which is rare given his incentives), the

examiner should exclude them in the …nal grant.
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knowledge spillovers (“spillovers accompanied by citations”), but with a substantial amount of

noises (“citations that occur where there is no spillover”).3 As there is no better alternatives

readily available, I follow the literature and continue to use the citations to measure the spillovers

but keep caution in interpolating the estimation results.4

Meanwhile, there are an enormous amount of spillovers not re‡ected in patent citations,

since only a fraction of research ouput is patented (“spillovers that occur without generating a

citation”). For instance, results from basic research are seldom patented, although they may

generate huge amount of spillovers. Thus, I view my results as more relevant to applied research

than basic research. On the other hand, I believe that the R&D projects in semiconductor

industry are more oriented toward applied rather than basic science and technology, especially

the ones funded and owned by private …rms as in my sample. Therefore, my estimation results

will provide a lower bound of the total value of spillovers received by the whole industry, and

the estimates of total spillovers within the semiconductor industry may su¤er less from bias of

this kind.

Knowledge Spillovers Within and Beyond the Firm and the Industry

In the empirical analysis I classify the patent citations into three groups: citations occur

within the same …rm (self citations), external citations to other semiconductor patents, and

citations to non-semiconductor patents. I make such distinction because the economic value of

each kind of citations may be di¤erent, for the following two reasons:

First, the content and thus the economic value of knowledge tranfer as represented by each

type of citations may be di¤erent. When applying for a patent, the inventor has some discretion

over how to codify and disclose the new knowledge (Arora and Fosfuri 1998). He may choose not

to disclose every piece of the new knowledge and keep part of it “tacit,” in order to discourage
3In this case we encounter the usual “proxy variables” problem, which is often solved by implementing the

instrumental variables (IV) estimations. However we are lack of reliable instrument variables for backward cita-

tions (ideal instrumental variables should be highly correlated with knowledge spillovers but not with citations

measurement errors). In the following quantitative analysis I choose not to conduct the IV estimation, and

keep in mind that the estimated coe¢cient of backward citations will be biased toward zero (Greene 2000). In

other words, the estimated average value of patent citations will indicate a lower bound of the economic value of

spillovers.
4Royalty payments from unilateral licensing agreements apparently provide another possible estimate of the

lower bound of knowledge spillovers between …rms. But such data are not readily available. Moreover, it is the

cross-licensing agreements that are prevalent in semiconductor industry, in which no net royalty payment is made.
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potential followers in the same or similar technological areas (or imitators when the patent

protection is not perfect). Therefore a self citation re‡ects an internal transfer of both the

codi…ed and the tacit knowledge (“know-how”), while an external citation to another …rm may

only indicate a transfer of codi…ed knowledge but not know-how.5

Secondly, in the process of sequential innovation in the same narrow technology …eld, succes-

sive inventors compete away each other’s excess returns (Scotchmer 1991). In that sense, a self

citation would imply that the …rm is now gaining a more competitive position in that …eld, while

an external citation to another semiconductor patent may suggest that the …rm is entering a

technological competition where the cited …rm might has already built a strong competitive po-

sition. On the other hand, the knowledge ‡ows from a non-semiconductor patent (as embodied

in an external citation to that patent), may have much weaker implication on the technological

competition as the cited patent is outside the same technology …eld.

In summary, I regard the patent citations as a fairly useful although imperfect indicator of

knowledge spillovers, and the estimated market value of patent citations as containing important

information about the size of the economic values of knowledge spillovers, in particular the lower

bound of such values. In addition, it is useful to make distinctions between di¤erent types of

citations, as the di¤erences in the estimated average value may shed light on the value of know-

how as well as the intensity of technological competitions in the semiconductor industry.

3. Model Speci…cation

Consider the following market valuation equation from Griliches (1981):

Vit = qt(Ait + bKit)
σ (3.1)

where Vit denotes …rm i’s stock-market value in year t, Ait the book value of its physical assets,

and Kit the knowledge assets. qt represents the shadow value of …rms’ assets, and the coe¢cient

b measures the shadow value of knowledge assets relative to physical assets.
5This distinction is somehow obscured by the knowledge transfers between di¤erent …rms in a cross-licensing

agreement or between collaborators within the same research consortium, which are prevalent in semiconductor

industry. It is likely that in such occasions not only the codi…ed knowledge but also some know-how knowledge

is shared. Therefore, some observed patent citations between di¤erent semiconductor …rms may also include

a know-how transfer. However, we do not have a reliable and complete record of all the semiconductor …rms

involved in such cross-licensing agreements or research consortia.
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Taking logarithm of equation (3.1) yields

log Vit = log qt +σ log Ait + σ log(1 + b
Kit

Ait
) (3.2)

When the value function exhibits constant returns to scale (which holds approximately in the

cross section), I have the following estimation equation:

log Qit = log(
Vit

Ait
) = log qt + log(1 + b

Kit

Ait
) + εit (3.3)

where Qit denotes Tobin’s q.

There is little guidance in theory on the speci…cation of knowledge assets Kit. Accumulated

knowledge spillovers into the …rm directly increase the …rm’s knowledge base and boost the …rm’s

R&D productivity, thus the accumulated backward citations, as a proxy of the spillovers, should

be included. On the other hand, literature has found that the accumulated R&D spendings

are quite e¤ective in predicting the market value of the …rms. This is not surprising, as the

accumulated R&D spendings measure the past e¤orts the …rm has made in inventive activities,

and even if some of the R&D projects turn out to be “dry holes,” the spendings on those

projects still increase the …rm’s knowledge assets through building …rm’s know-how. Therefore

the accumulated R&D expenditures should also be included.

In addition, there is a high degree of heterogeneity in the R&D productivity across di¤erent

…rms. This heterogeneity also should be taken into account, because the market will use infor-

mation on a …rm’s R&D productivity to evaluate its knowledge assets. A natural choice of R&D

productivity measure is the number of patents owned by the …rm, as patent counts indicates

the “success” of R&D projects and thus the patent/R&D ratio measures the R&D productivity,

similar to an output/input ratio (Scherer 1965, Griliches 1984, among others). However, the

quality and value of di¤erent patents varies a lot, and the raw patent counts simply ignores this

heterogeneity. HJT (2005) suggest using the number of forward citations (citations received by

the patent) to weigh the patent counts and re…ne this measure, as a more frequently cited patent

is technologically more important than other patents and potentially more valuable.

Thus, I assume the market uses the following value function to evaluate the …rm’s knowledge

assets

Kit = f(R&Dit,BCITit, ωit) (3.4)

where R&Dit denotes the accumulated R&D spendings, BCITit the accumulated backward
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citations the …rm has made as a proxy of the knowledge in‡ows received by the …rm, and ωit

the accumulated idiosyncractic productivity shocks in the …rm’s inventive activities.

Taking …rst-order Taylor expansion of equation (3.4) yields

Kit = f1 ¤ R&Dit + f2 ¤ BCITit + f3 ¤ ωit (3.5)

As there is no directly observable measure of the idiosyncractic productivity shocks ωit, I adopt

HJT (2005)’s speci…cation and proxy it by the patent/R&D ratio, weighed by the average number

of forward citations the …rm’s patents receive over their entire lives (30 years after applications).

This could be viewed as an approximate measure of the output-input ratio in the …rm’s R&D

production.6

Thus equations (3.3) and (3.5) imply the following basic estimation equation

log Qit = log qt + log(1 + b1
R&Dit

Ait
+ b2

BCITit

Ait
+ b3

PATit

R&Dit
+ b4

FCITit

PATit
) + εit (3.6)

where PATit and FCITit are …rm i’s patent stock and forward citations stock in year t. Here b2

represents the value of knowledge ‡ows brought by an additional backward citation, and b2/b1

is a direct measure of the monetary value of knowledge spillovers in terms of “R&D equivalent

dollar.” A full model estimation will further categorize the backward citations stock into stocks

of self citations, external citations to other semiconductor patents, and external citations to

non-semiconductor patents, as discussed in Section 2.

4. Data

The empirical estimation is based on the universe of 120 semiconductor …rms publicly traded

in the U.S. during 1979 and 1998. I only include …rms whose primary business is in SIC 3674

(semiconductors and related devices). I exclude conglomerates whose principle products are not

semiconductors such as IBM, AT&T, etc — although these …rms are heavy users and important

owners of semiconductor patents, I do not observe the R&D resources primarily devoted to

semiconductor-related R&D projects by them, nor the market valuation of their semiconductor

sector.
6An alternative speci…cation is to include number of backward citations BCIT in the numerator of the output-

input ratio, and equation (3.6) becomes

logQit = log qt + log(1 + β1
R&Dit

Ait
+ β2

BCITit

Ait
+ β3

PATit

R&Dit + β2/β1 ¤ BCITit
+ β4

FCITit

P ATit
) + εit

To keep parsimony and make the results directly comparable to the existing literature, I choose equation (3.6).
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I combine information from two data sources to construct my sample. For market valuation

of …rms I use the popular Compustat database. As market value and book value of the …rms

are readily available in Compustat, the calculation of Tobin’s Q is quite easy and straightfor-

ward. R&D expenditures, based on which R&D stocks are constructed, are also obtained from

Compustat.

For patent and patent citations, I use the U.S. Patent Citations database, recently con-

structed by Hall, Ja¤e, and Trajtenberg (2001). The database keeps a complete record of

citations made by each U.S. patent upon approval since 1975, as well as other patent character-

istics such as application date, approval date, and detailed International Patent Classi…cation

(IPC) code describing the technological classi…cations of the patent. In this study I …rst identify

all the patents owned by each of the 120 semiconductor …rms,7 and for each patent I count the

backward and forward citations each year; then I aggregate them on the …rm level to construct

the patent stocks as well as backward and forward citations stocks.8

Dealing with Truncation9

In constructing the patent and patent citations stocks I encounter two kinds of data trunca-

tion problems. The …rst regards patent and backward citations counts. There is substantial time

delay in granting of the patents: the average and median length of patent application review in

the U.S. are approximately two years. Therefore, for the last two years of the Patent Citations

database (which ends in 1999), we can only observe a fraction of the total patents that will be

…nally granted, as a lot of them were still being examined by the end of 1999 and were therefore

not included in the database. In the estimation I solve this problem by focusing on a sample

period that ends in 1995 — my sample on U.S. semicondustor patents indicates that, over the

past three decades, 95% of the grant decisions were made within three years since the initial
7Because the patent assignees obtain patents under a variety of names, and the US PTO does not keep a

unique identi…er for each patenting organization, I perform an extensive name-matching exercise to identify the

patent assignees in the citation daba base and link them to the …rm names in the Compustat. I identify the

subsidiary relationship according to the Directory of Corporate A¢liations, and keep track of major mergers and

acquisitions events according to CRSP database.
8In constructing the backward citations stock, 10 citations made to the same patent (by a …rm’s 10 di¤erent

patents) are considered to indicate a knowledge spillover that is 10 times as big as when the patent were cited

only once.
9I follow the pioneering work of Hall, Ja¤e, and Trajtenberg (2005) in dealing with the truncation problem on

patent citations data as well as in constructing patent and patent citations stocks.
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applications, and within four years more than 98% of the decisions were reached. My selection of

sample period guarantees that, even for the last year of my sample, at least 98% of the granted

patents and backward citation counts is included, and thus keeps this truncation problem to a

minimal degree.10

The second truncation problem concerns the forward citation counts and is due to the time

lags in observing the forward citations. Such lags can be very long, as it is not unusual for a

patent to be cited 10 or even 20 years after its initial application or approval. Since the Patent

Citations database ends in 1999, it only has a truncated record of the forward citations: for

instance, for a patent belonging to cohort 1985 (i.e., application submitted in 1985), we are only

able to observe 14 years of its forward citations history, and for a 1995 patent, only 4 years.11

To address this problem, I follow Hall, Ja¤e and Trajtenberg (2004) and estimate a citation-lag

model. Based on the model estimates and conditional on the forward citations as observed in

the data, I then project the number of forward citations received by each patent for the years

not observed in the database, up till 30 years after their initial applications. The details of the

citation-lag model estimation and projection are laid out in the appendix.

A by-product from estimating the structural citation-lag model is that I can parse out an

important time e¤ect on the overall changes in citation practice since mid-1970s. I notice that

the average number of citations made by each patent in my sample increased substantially
10In fact, at the beginning of the sample period I also encountered some truncation problem regarding patent

and backward citations counts: as the U.S. PTO did not begin to keep records of patent ownership until 1969,

all the patents I included for the 120 semiconductor …rms in the sample were granted after 1969 but none before.

That is, for those …rms who existed and possessed granted patents before 1969, their patent stocks are under-

estimated in the sample. However, the total number of semiconductor patents granted before 1969 is quite small

(for instance, only 372 semiconductor patents were granted in 1967 and 376 patents in 1968), and under an annual

depreciation rate of 15%, the mis-measurement of the accumulated patent stock and backward citations stocks

for years after 1979 is small.
11What makes it worse is that, for relatively younger patents, most of their citing patents had not yet been

granted by 1999. For instance, for a 1996 patent, we only observe a fraction of total forward citations from cohort

1998 patents, as more than half of cohort 1998 had not been granted by 1999 and are thus excluded from the

database. So for this patent we only have a reliable citations record of the …rst year after its approval, at most.

This is another reason why I restrict the sample period to end in 1995, as 95% of cohort 1996 and 80% of cohort

1997 had been granted by 1999. Therefore even for the latest cohort in my sample (1995), I am still able to

observe at least a couple of years of reliable forward citations records, based on which I can then project the

life-long forward citation counts, as explained later.
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during the sample period, from 3.9 in 1975 to 5.1 in 1985 and 10.1 in 1995. This increasing

trend may not necessarily re‡ects a similar increase in the substance of knowledge ‡ows an

average inventor receives, and may partly due to some technical reasons. For instance, with

the development of machine-readable patent databases and more accessible patent-searching

tools over this period, the patent attorneys and examiners are better equipped to identify the

relevant previous patents in making citations. If so, this “citation in‡ation” would imply that

a typical backward citation indicates less actual knowledge spillover in 1990s than in 1970s. I

construct two samples, one “de‡ated” sample making adjustments for this “citation in‡ation”

(on both backward and forward citations) and one “unde‡ated” sample without making such

adjustments.

Construction of R&D, Patent and Patent Citations Stocks

The construction of R&D stock is fairly straightforward, as it is simply accumulated past

R&D expenditures. Therefore,

R&Dit =
T0X

j=0

δj ¤ r&di,t¡j (4.1)

where r&di,t¡j is the R&D spendings by …rm i in the year of t ¡ j. δ is an annual depreciation

rate assumed to be a constant 15%, as in much of the literature. T0 is the beginning of the

database. The patent stock is de…ned in the same fashion.

Knowledge that the …rm acquires in the past also depreciates over time. I depreciate the

number of patent citations according to the age of the cited patents (throughout the paper

the age of a patent is de…ned as the time elapsed since the patent application instead of the

patent approval). For instance, if a …rm cites a 1975 patent in one of its 1980 patents, then the

knowledge that the …rm learned in 1980 from the 1975 patent was already 5 years old and needs

to be discounted (subject to the same 15% depreciation rate). As time goes by, the value of that

piece of knowledge continues to depreciate, and in 1990, it will be 15 years old and worth only

8.7% as a new citation made to a 1990 patent. I then aggregate such accumulated backward

citations over the …rm’s patent portfolio each year, and obtain the …rm’s backward citations

stock.

The forward citations stock measures the relative importance or value of the …rm’s patent

portfolio. For each year, I aggregate over the entire patent portfolio the number of forward

citations received by each patent during its entire life (30 years since application), and discount
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them according to the age of the patents. For instance, suppose the …rm has one 1980 patent

and one 1985 patent which are projected to receive 10 and 8 citations during their entire lives,

respectively. Then in computing the forward citations stock for the …rm in 1990, I would

discount the forward citations received by …rst patent by 10 years as 10 £ 0.8510 = 1.97 and

those received by the second patent by 5 years as 8£0.855 = 3.55, so the entire forward citations

stock is 1.97 +3.55 = 5.52 in 1990. In other words, I do not distinguish as to when the forward

citations arrive, but rather discount the sum of them according to how old the cited patent is.

First look at the Sample

Market valuation of semiconductor …rms can be quite volatile.12 To reduce the idiosyncractic

shocks especially from young start-up …rms, I eliminate …rms with less than three years of

complete observations in the Compustat from the sample. I also delete a few (4 to 5) observations

in which Tobin’s q seems too high (greater than 10). This generates a sample of 64 …rms

(possessing a total of 26,143 patents during the sample period) in an unbalanced panel, or 636

…rm-year observations.13 Table 1 presents some summary statistics of the estimation sample.

The market value and the book value of the …rms are extremely skewed to the right, with means

several times larger than medians. The skewness is even heavier for all the determinants of

knowledge stocks (R&D, patents, backward and forward citations), with the means usually ten

times larger than medians or more. On the other hand, variables such as Tobin’s Q, R&D

stock/total assets, backward citations/total assets, patents/R&D and forward citations/patents

are much more symmetrically distributed, with means usually only two times as large as medians

or even less. Finally, about 14 percent of all the …rm-year observations have a zero patent stock.

Therefore I also construct another “patenting” sample of 545 …rm-year observations whose patent

stocks are positive.

Table 1 also indicates that the mean and median of the projected lifetime forward citations

stock are several times larger than those of backward citations stock. This is rather surprising
12For instance, during the stock-market bubbles in late 1990s, the market values of semiconductor …rms were

substantially blown up , in many cases by several times. This is another reason why I choose to let the sample

period end in 1995 and delete those young start-up …rms, in order to minimize the distortions in market valuation

of the …rms.
13The eliminated …rms are either small start-ups short of three years of public-trading history or …rms without

three years of complete trading data, or foreign …rms, and they only possess a total of 1,789 patents during the

sample period.
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as in the long run these two measures should be comparable. I believe this is closely related

to the rapid growth of the number of patents in this industry since 1970s (both because of the

rapid expansion of this industry and a shift in the patenting preferences of the semiconductor

…rms starting in early 1980s (Hall and Ziedonis 2001)): even if each patent makes the same

number of backward citations over time, the average number of forward citations received by

each earlier patent may be much larger than the average number of backward citations, simply

because now there are more later patents citing earlier patents. This is another kind of “citation

in‡ation” indicating that in an industry where the total number of patents change substantially

over time, the forward citations count is a more “noisy” measure of technological or economic

“importance” than in other industries.14 The distortion on backward citations count, on the

other hand, is quite small.

Top panel of Table 2 shows that R&D, patents, backward and forward citation stocks are

highly correlated with each other, with the correlation between R&D and patent stocks being

0.83, and that between backward and forward citations even higher. This is not surprising, since

all of them are di¤erent measures of knowledge stock. However, the correlations between di¤erent

regressors of the estimation equation such as R&D/total assets, backward citations/total assets,

patents/R&D, and forward citations/patents, are much lower (less than 0.5), indicating that

each of the regressors possess independent information content and the colinearity problem is

not severe.

5. Estimation Results

The market value equation (3.6) and its variants are estimated using maximum likelihood esti-

mator. Following HJT (2005) I do not include …xed …rm e¤ects, while year dummies are included

to allow Tobin’s q vary over time.

First take of model estimation

Table 3 displays the estimation results of equation (3.6) based on two samples: the top

panel uses all 636 …rm-year observations and the bottom panel focuses on the 545 …rm-year
14Adding a time trend in the citation-lag model estimation, either a linear trend or some kind of …ltered trend

of the growth rate of patent number over time may help solve this problem. However in this paper I do not pursue

this possibility, as the focus here is on knowledge spillovers proxied by backward citations, which are much less

a¤ected by this kind of distortion.
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observations with positive patent stock. For each sample I start by regressing the market value

on R&D stock, and then gradually add other regressors into the equation, one at a time. This

procedure facilitates the examination of the signi…cance and the marginal contribution of each

regressor. As discussed in Section 4, I make distinctions on whether the “citation in‡ation” is

adjusted when constructing the citations stock, and run separate estimations for each case.

The coe¢cient estimates are all signi…cant and positive, suggesting that all regressors have

signi…cant impact on market value. Moreover, the likelihood ratio tests indicate that all of them

adds information on top of others, and thereby have a signi…cant contribution to the overall …t

of the estimated model.

Most of the coe¢cient estimates are very similar in both panels and when backward citations

are not included in the equations, are quite close to those previously estimated for a broader set

of industry, for instance HJT (2005)’s estimates on computer sector (where backward citations

are not included as well). In particular, the coe¢cient estimate of R&D/assets is around 0.26,

close to 0.32 in HJT (2005); and of patents/R&D is around 0.13, compared with 0.06 in HJT

(2005). The coe¢cient estimate of forward citations/patents, on the other hand, is about 0.003

to 0.004 in the table, much smaller than the estimate of 0.028 in HJT (2005) at the …rst look.

However, it should be noted the average size of forward citations stock/patents in my sample is

much larger — a mean of 68 for patenting …rms in Table 1 versus a mean of 8 in their sample,

or a median of 33 versus 6.3. As discussed in Section 4, this probably comes from the citation

in‡ation associated with the rapid increase in the number of patents in semiconductor industry

over the past two decades. This distortion in forward citations counts leads to a decrease in

the estimated value of each forward citation, and if corrected, my estimate of the patent quality

should be close to HJT (2005)’s estimates.

However, when backward citations/assets is added to the equation, the coe¢cient estimates

of R&D/assets and patents/R&D decline: the R&D/assets coe¢cient falls from approximately

0.26 to around 0.17, and the patents/R&D coe¢cient falls from around 0.13 to about 0.10. The

coe¢cient estimate of backward citations/assets is signi…cantly positive and is around 0.08 in the

top panel and even higher (0.12) in the “patenting sample” estimation as shown in the bottom

panel.

Next we examine the quantitative impact of the regressors on market value using these
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coe¢cient estimates. Consider the following semi-elasticity:

∂ log Q

∂(R&D / A)
=bb1(1 +bb1

R&Dit

Ait
+bb2

BCITit

Ait
+bb3

PATit

R&Dit
+bb4

FCITit

PATit
)¡1 (5.1)

This provides a rough estimate of the elasticity of Tobin’s q with respect to an increase in

R&D /A ratio (HJT 2005). I evaluate this elasticity around the mean and median value of the

regressors as in Table 1, based on the estimated coe¢cients in column (4) in the top panel (all

…rms with patent citations not de‡ated) and column (6) in the bottom panel (patenting …rms,

with citations de‡ated) of Table 3.

As shown in Table 4, a one-percentage point increase in R&D/assets ratio leads to a 0.1%

appreciation in the …rm value. An increase in the …rm’s R&D productivity, as measured by

an extra patent per million dollar R&D spendings, boost the …rm value by 6% to 7%, about

three times as high as the elasticity of 2% for all manufacturing sector as in HJT (2005). This is

consistent with the strategic importance of patents in semiconductor industry (Hall and Ziedonis

2001). A rise in the average quality of the …rm’s patent portfolio also raises the …rm’s market

value — if every patent receives one more forward citation over their entire lives (30 years since

applications), the …rm’s value will rise by about 0.3%.

Of particular interest to us is the impact of backward citations on …rm value as it proxies the

value of knowledge spillovers. As displayed in Table 4, one extra backward citation per million

dollar of physical asset makes the …rm about 5% more valuable, and the amount of appreciation

is even larger (7.5% to 9%) when citation in‡ation is adjusted.

Another way to quantify the value of spillovers is to calculate how much R&D spendings

has to be increased in exchange for one less backward citation,keeping the …rm value unchanged

(bb2/bb1). Estimates in Table 3 indicates that this …gure ranges between $0.6 million and 0.7

million (in 1998 value). This translates into a total value of about $12 million for a …rm with

a median size of backward citations stock (about 20 as in Table 1), which is about half of the

accumulated R&D stock for a median …rm ($26 million).

Controling for Firm Characteristics

In Table 5 I control for several …rm characteristics that may also a¤ect the …rm value and

the value of knowledge spillovers. The logarithm of net sales of the …rm is included to examine

the impact of …rm size. We also introduce a dummy on whether the …rm entered the industry

after 1982 (“post-82 entrant”). As Hall and Ziedonis (2001) points out, semiconductor …rms
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that entered the industry after 1982 have a signi…cantly higher tendency to seek for patent

protection for their inventions than …rms entering before 1982, because of the more “pro-patent”

legal environment (the creation of Court of Appeal for Federal Circuit in 1982 and other legal

changes such as the Semiconductor Chip Protection Act in 1984). I also include another dummy

for Texas Instruments Inc. (“TI”), for its well-known strategy of aggressively pursuing for patent

protection as well as its large size of patent portfolio (it owns about 30% of all the patents in

my sample).

Columns (2) and (7) of the table indicate a slightly positive premium for larger semiconductor

…rms, although the premium is not statistically signi…cant and diminishes when “TI” and “post-

82 entrant” are added. Texas Instruments has a signi…cantly negative premium on market

value which lowers its Tobin’s q by about 20% to 25%. On the other hand, …rms entering the

semiconductor industry after 1982 have a signi…cantly positive premium, in the amount of about

30% to 35% of the …rm value for a median …rm.

In Table 5 I also interact the log sales and “post-82 entrant” with backward citations/assets

and examine how di¤erently the knowledge ‡ows are valued in di¤erent types of …rms. Columns

(5) and (10) shows that knowledge ‡ows are evaluated quite di¤erently in regard to the timing

of …rm’s entrance into the semiconductor industry. For older …rms entering the industry before

1982, each backward citation is worth about $0.6 million, whereas for those entering the industry

after 1982, the value is about one and half times larger, at around $1.4 million. In other words,

younger …rms are not only more prone to patenting (Hall and Ziedonis 2001), they also appear

to bene…t from the knowledge spillovers more.

Columns (4) and (9) show that the larger the …rm size, the less valuable the backward

citations are. For instance, for a median-sized …rm (with sales around $110 million each year),

each backward citation is worth about $0.5 million or $1 million, depending on whether the

citations are de‡ated, and for a …rm whose net sales are at the top 25 percent quantile ($328

million annually), each backward citation is only worth $0.06 million (column (9)) or less. Note

that larger …rms in this industry usually hold more patents. To single out the true “…rm-size”

e¤ect apart from “patent-portfolio size” e¤ect, I include in Table 6 the size of the …rm’s patent

portfolio (de…ned as the raw count of patents that the …rm had ever acquired, which is di¤erent

from the patent stock) in the estimation equation.

I …nd that …rms with larger patent portfolio value backward citations less, as the coe¢cient
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estimate of BCIT/assets interacted with patent portfolio size is signi…cantly negative in Table

6. Moreover, the coe¢cient on net sales becomes insigni…cant, even when net sales is interacted

with the BCIT/assets (columns 5 and 10). This indicates that the …rm-size e¤ect on the value of

knowledge spillovers in Table 5 is indeed spurious and simply re‡ect a negative patent-portfolio

size e¤ect. The positive premium on spillovers for post-82 entrants, however, remains signi…cant.

Finally, when the patent portfolio size is included in the equation, the estimated coe¢cient of

the dummy for Texas Instruments Inc. becomes positive because of the huge number of patents

the …rm possesses.

Table 7 presents a direct look into how the estimated value of backward citations decline as

the size of patent portfolio increases. For …rms with patent portfolio size at the lowest 25 percent

quantile (holding 8 patents), each backward citation is worth approximately $1.5 million or $2.85

million depending on when the …rm entered the industry; for …rms with median-sized patent

portfolio (28 patents), the average value of backward citations is $0.4 million or $1.7 million;

and for …rms with a patent portfolio size at the top 25 percent quantile (holding 95 patents), the

average value is much less, lower than $0.6 million and even less for …rms entered the industry

before 1982. This leads us to conclude that the knowledge spillovers are more valuable for

younger …rms with few patents, and for older …rms with a large patent portfolio, the value of

knowledge in‡ows added on top of their already abundant knowledge base is relatively small.

Spillovers within and beyond the …rm and industry

As discussed in Section 2, backward citations within and beyond the …rm and industry

may have di¤erent values, because they may di¤er in the amount of knowledge ‡ows they carry

(whether including tacit knowledge or not), and in the implications on technological competitions

they may have.

I …rst divide backward citations into two groups: citations to non-semiconductor patents and

those to semiconductor patents. In particular, a new variable, non-semiconductor backward ci-

tations stock/assets (NSCBCIT/assets), is introduced. As the non-semiconductor backward cita-

tions enter both BCIT/assets and NSCBCIT/assets, the estimated coe¢cient of NSCBCIT/assets

is indeed a premium over semiconductor backward citations.

Table 8 presents the estimation results based on the “patenting” sample, when all citations

are de‡ated. Backward citations to non-semiconductor patents apparently have a lower average

value than citations to semiconductor patents, by about 50% (column (2)). This negative
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premium may be attributed to the lack of tacit knowledge carried in these citations.15

Table 8 also reveals that the value of non-semiconductor citations do not vary a lot as the

size of the …rm’s patent portfolio increases. However, the value of semiconductor citations

decline as the number of patents increases. This seems to suggest that, when the knowledge

spillovers occur within the same technological …eld, the value of such spillovers decline with the

size of the receiving …rm’s knowledge base, as …rms with large patent portfolio may have already

accumulated a lot of similar knowledge in that area; on the other hand, …rms with di¤erent

patent portfolio sizes may be equally unfamiliar with knowledge outside their expertise, and

thus the value of citations to such patents does not vary much.

Next, I distinguish self citations from citations made to other semiconductor patents. I

introduce the share of self citations in total backward citations into the equation, and summarize

the estimation results in Table 9.

Columns (1) and (2) of Table 9 suggest that, among the external citations that a …rm

makes, citations to non-semiconductor patents tend to have a lower average value than citations

to semiconductor patents, but the di¤erence is not statistically signi…cant. As discussed in

Section 2, external citations to semiconductor patents may imply that the citing …rm is entering

a technological competition with the cited …rms which might have already built a strong leading

position in that area, whereas such implications are much less relevant to external citations to

non-semiconductor patents as the cited patents are less likely to be in a competitive position.

Therefore, the di¤erence between the estimated value of these two kinds of citations may shed

light on the intensity of technological competition in this industry. If such an arguement holds,

then the insigni…cant estimate of this di¤erence may suggest that the disadvantage of being late

in the technological competition in semiconductor industry is not signi…cant. In other words,

the incumbent …rms (which possess earlier patents in this area) are not able to build and keep

a position that is strong enough to e¤ectively deter other …rms from entering the competition.
15There is another possibility among others, i.e., the knowledge embodied in a non-semiconductor backward

citation maybe less technologically relevant than a citation to semiconductor patent. However, I check the IPC

code of those non-semiconductor patents that the patents in my sample cite, and …nd that the majority of them

are in quite relevant technology …elds, such as “electrical computers and digital data processing systems” (IPC

codes 710, 711, and 712, which include processors and memory) and “static information storage and retrieval”

(IPC code 365), etc. Therefore, the di¤erences in the technological relevance of the knowledge ‡ows as embodied

in these two kinds of backward citations should not be very large.
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This is consistent with the rapid technology pace in this industry and more importantly, the

fact that technological innovations in this industry are a “cumulative” process (Levin, Klevorick,

Nelson, and Winter 1987, Scotchmer 1991) in which innovations are built successively on previous

inventions and therefore often require access to hundreds of patents owned by a diverse set of

entities (Hall and Ziedonis 2001). Cumulative innovations, rapid change, and multiple owners

of overlapping technology rights make it very di¢cult to build and keep a leading position that

is strong enough to e¤ectively deter challengers.

The estimated coe¢cient of self-citations stock/total citations stock is signi…cantly positive

in Table 9. Since self citations are also included in total backward citations, this coe¢cient

estimate represents the premium of self citations over external semiconductor citations. In

particular, column (2) indicates that, for a median …rm that entered the industry after 1982, a

10-percentage point rise in the share of self citations increases the …rm value by about 6% (or 4%

for …rms entering the industry before 1982). And the premium over external non-semiconductor

citations may be even higher.

The estimated positive premium on self citations con…rms the conjecture in Section 2, that

self citation could be more valuable because of the additional tacit knowledge or know-how

transfer that took place within the …rm, and a value in the strengthening of the …rm’s position

in the technological race. As we have learned from previous discussion that the latter seems

to be relatively small in this industry, the bulk of the positive premium on self citations would

be the value added brought by the internalized know-how spillovers. For a median …rm, this

translates into a monetary value of about $0.4 million for …rms entering the industry after 1982,

or $0.28 million for …rms entering before 1982. Moreover, columns (4) and (5) show that such

premiums increase as the size of the …rm’s patent portfolio increases, suggesting a higher load

of tacit knowledge for …rms with more patents.

6. Concluding Remarks

This paper aims at quantifying the economic value of knowledge spillovers by exploring infor-

mation contained in patent citations. I estimate Tobin’s q equations on various determinants of

semiconductor …rm’s knowledge assets, and …nd an average value in the amount of $0.6 to 1.2

million “R&D-equivalent” dollars for the knowledge ‡ows as embodied in one patent citation.

For an average …rm, this implies that the total value of knowledge spillovers it had received
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during the sample period could be as high as half of its actual total R&D investment during the

same period.

I also …nd that the value of backward citations decline when the …rms holds more patents,

and that citations are more valuable for …rms entering the semiconductor industry after 1982. In

addition, self citations are more valuable than external citations, indicating a signi…cant amount

of tacit knowledge or know-how spillovers that occured within the same …rm.
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Table 1: Sample Statistics for Semiconductor Firms: 1979-1995, 636 …rm-year

observations
Mean Median Min Max Std. dev.

Market value ($M) 935.93 114.34 0.0367 48,799.96 3,177.15
Total assets ($M) 630.37 100.13 0.876 18,333.60 1,705.74
Sales ($M) 729.78 110.50 0.1232 16,969.89 1,872.85
Tobin’s Q 1.75 1.34 0.085 9.52 1.25
R&D stock ($M) 214.78 26.01 0.0736 4,965.09 593.54
Patent stock 76.61 6.72 0 2,633.78 257.99
Backward citation stock (all obs.) 260.17 19.35 0 9,158.79 859.60
Forward citatoin stock (all obs.) 4,568.46 244.54 0 177,990.56 15,463.84
D(patent stock = 0) 0.14 0 0 1 0.35
R&D stock/Total assets 0.38 0.27 0.0024 7.56 0.56
R&D stock/Total assets (D(pat > 0))16 0.39 0.30 0.0075 7.56 0.59

Backward cites/Total assets 0.48 0.22 0 8.17 0.92
Backward cites/Total assets (D(pat > 0)) 0.56 0.29 0 8.71 0.97
Patents/R&D 0.60 0.28 0 19.85 1.34
Patents/R&D (D(pat > 0)) 0.70 0.36 0.0025 19.85 1.43
Forward cites/Patents 58.36 24.24 0 2,466.28 151.03
Forward cites/Patents (D(pat > 0)) 67.93 32.92 2.27 2,466.28 161.15
Self bwd. cites/total bwd. cites (D(pat > 0)) 0.0705 0.0472 0 0.5028 0.0864

16Based on 545 …rm-year observations whose patent stock is positive. Same below.
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Table 2: Correlations between di¤erent measures of knowledge stocks: 1979-

1995, 636 …rm-year observations

R&D stock Backward cites Patents Forward cites

R&D stock 1.0000 0.8739 0.8337 0.8043
Backward cites 1.0000 0.9459 0.9603
Patents 1.0000 0.8707
Forward cites 1.0000

R&D/Assets BCIT/Assets PAT/R&D FCIT/PAT
R&D/Assets 1.0000 0.3248 -0.1341 -0.0073
BCIT/Assets 1.0000 0.4744 0.1187
PAT/R&D 1.0000 -0.374
FCIT/PAT 1.0000
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Table 3: Estimation of Tobin’s Q equation

All-…rm sample: 636 …rm-year observations, 1979 - 1995.

Citations not de‡ated Citations de‡ated
(1) (2) (3) (4) (5) (6)

R&D/Assets 0.2597 0.2533 0.2720 0.1683 0.2728 0.1682
(0.0970) (0.0908) (0.0899) (0.0879) (0.0902) (0.0817)

Patents/R&D 0.1339 0.1271 0.1070 0.1231 0.1033
(0.0789) (0.0726) (0.0694) (0.0701) (0.0685)

Fwd cites/Patents 0.0030 0.0040 0.0045 0.0037
(0.0015) (0.0016) (0.0023) (0.0013)

Bwd cites/Assets 0.0753 0.0965
(0.0250) (0.0261)

D(Pat = 0) 0.2036 0.1152 0.1345 0.1684 0.1423 0.1447
(0.0820) (0.0733) (0.0781) (0.0771) (0.0778) (0.0772)

LLH -584.28 -578.53 -561.24 -555.14 -563.93 -558.44
LR test —– 10.60 34.58 12.20 29.20 10.98

Patenting sample: 545 …rm-year observations with positive patent stock.

Citations not de‡ated Citations de‡ated
(1) (2) (3) (4) (5) (6)

R&D/Assets 0.2587 0.2668 0.2766 0.1752 0.2735 0.1742
(0.0975) (0.0971) (0.0960) (0.0945) (0.0964) (0.0877)

Patents/R&D 0.1459 0.1390 0.0987 0.1368 0.0983
(0.0872) (0.0806) (0.0492) (0.0791) (0.0492)

Fwd cites/Patents 0.0037 0.0036 0.0058 0.0053
(0.0016) (0.0015) (0.0025) (0.0021)

Bwd cites/Assets 0.1176 0.1172
(0.0395) (0.0318)

LLH -489.18 -484.90 -463.93 -458.01 -466.29 -460.52
LR test χ2(1) —– 8.56 41.94 11.84 37.22 11.54

Note: MLE estimation; Heteroskedastic-consistent standard errors shows the parentheses;
Time dummies included in all equations.

24



Table 4: Impact of Knowledge Stocks on Tobin’s Q

All …rms, citations not de‡ated Patenting …rms, citations de‡ated
Mean Median Mean Median

R&D/Assets 0.38 0.27 0.39 0.30
BCIT/Assets 0.48 0.22 0.56 0.29
PAT/R&D 0.60 0.28 0.70 0.36
FCIT/PAT 58.36 24.24 67.93 32.92

∂ logQ
∂(R&D / A) 0.1075 0.1240 0.1115 0.1334

∂ logQ
∂(BCIT / A) 0.0481 0.0555 0.0750 0.0904

∂ logQ
∂(PAT / R&D) 0.0683 0.0788 0.0629 0.0758

∂ logQ
∂(FCIT / PAT)

0.0026 0.0029 0.0034 0.0041
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Table 5: Estimation of Tobin’s q equation: Controling for Firm characteristics

Citations not de‡ated Citations de‡ated
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

R&D/Assets 0.1752 0.1392 0.1226 0.1235 0.1286 0.1742 0.1405 0.1367 0.1263 0.1291
(0.0945) (0.0717) (0.0605) (0.0576) (0.0776) (0.0877) (0.0707) (0.0458) (0.0484) (0.0365)

BCIT/Assets 0.1176 0.1135 0.0978 0.4605 0.0759 0.1172 0.1206 0.1189 0.6039 0.0742
(0.0395) (0.0381) (0.0450) (0.0773) (0.0524) (0.0318) (0.0394) (0.525) (0.0923) (0.0412)

interacted with
log sales -0.0839 -0.1029

(0.0163) (0.0184)
Post-82 entrant 0.1095 0.1120

(0.0270) (0.0387)
Patents/R&D 0.0987 0.0679 0.0478 0.0685 0.0834 0.0983 0.0795 0.0568 0.0503 0.0584

(0.0492) (0.0358) (0.0267) (0.0225) (0.0675) (0.0492) (0.0337) (0.0254) (0.0234) (0.0302)
Forward cites/Patents 0.0036 0.0054 0.0038 0.0041 0.0039 0.0053 0.0054 0.0043 0.0052 0.0048

(0.0015) (0.0023) (0.0024) (0.0019) (0.0019) (0.0021) (0.0023) (0.0022) (0.0023) (0.0022)
log sales 0.0918 0.0160 0.0256 -0.0228

(0.0472) (0.0163) (0.0142) (0.0336)
Texas Instruments E¤ect -0.2515 -0.2132 -0.2774 -0.1836

(0.0774) (0.0515) (0.0781) (0.0544)
Post-82 entrant 0.6034 0.6077

(0.0617) (0.0611)

LLH -458.01 -454.52 -443.27 -448.66 -447.34 -460.52 -457.65 -448.11 -451.67 -446.15
χ2 statistics (LR test) —— 3.49 11.25 9.35 10.67 —— 2.87 12.41 8.85 14.37



Table 6: Estimation of Tobin’s q Equation: Examining Impacts of Patent Port-
folio Size

Citations not de‡ated Citations de‡ated
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

R&D/Assets 0.1752 0.1724 0.1711 0.1778 0.1747 0.1742 0.1770 0.1674 0.1878 0.1888
(0.0945) (0.0653 (0.0614) (0.0758) (0.0805) (0.0877) (0.0672) (0.0637) (0.0857) (0.0769)

BCIT/Assets 0.1176 0.8238 0.5857 0.5534 0.6075 0.1172 0.7582 0.6132 0.6389 0.7309
(0.0395) (0.3124) (0.1254) (0.1264) (0.1334) (0.0318) (0.1363) (0.1290) (0.2967) (0.1586)

interacted with
log sales 0.0896 0.1123

(0.1239) (0.1318)
log pat portfolio size -0.1545 -0.1028 -0.1438 -0.2536 -0.1922 -0.1274 -0.1711 -0.3051

(0.0650) (0.0217) (0.0241) (0.1506) (0.0288) (0.0269) (0.0729) (0.0661)
Post-82 entrant 0.2333 0.2905 0.2504 0.4310

(0.0576) (0.1645) (0.1031) (0.0893)
Patents/R&D 0.0987 0.0858 0.0983 0.0703 0.0712 0.0592 0.0603

(0.0492) (0.0356) (0.0492) (0.0305) (0.0293) (0.0235) (0.0252)
Forward cites/Patents 0.0036 0.0052 0.0053 0.0048 0.0032 0.0038 0.0041

(0.0015) (0.0024) (0.0021) (0.0020) (0.0017) (0.0020) (0.0021)
Texas Instruments E¤ect 0.1808 0.1336 0.2380 0.2861 0.2520 0.1786 0.3223 0.3732

(0.2032) (0.0839) (0.0889) (0.0940) (0.0966) (0.0937) (0.2160) (0.1033)
Post-82 entrant 0.5168 0.5165

(0.0596) (0.0597)

LLH -458.01 -446.56 -441.15 -439.77 -437.33 -460.52 -446.68 -442.84 -441.66 439.95
χ2 statistics (LR test) —— 11.45 16.86 18.24 20.68 —— 13.84 17.68 18.86 20.57



Table 7: Average Value of Backward Citations and Patent Portfolio Sizes

Patent portfolio size Column (8), Table 6 Column (9), Table 6
Pre-82 …rms Post-82 …rms

bb2 bb2/bb1 bb2 bb2/bb1 bb2 bb2/bb1
Lower 25% 8 0.3483 2.08 0.2831 1.51 0.5305 2.85

Median 28 0.1887 1.13 0.0688 0.37 0.3195 1.70

Top 25% 95 0.0330 0.20 -0.1403 -0.75 0.1101 0.59
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Table 8: Spillovers Within and Beyond the Firm and Industry:
Non-semiconductor Versus Semiconductor Citations

(1) (2) (3) (4)
R&D/Assets 0.1752 0.1685 0.1779 0.1889

(0.0945) (0.0921) (0.0828) (0.0929)
BCIT/Assets 0.2534 0.2165 0.7566 1.2856

(0.1039) (0.0927) (0.1803) (0.2664)
interacted with

log pat portfolio size -0.1773 -0.3961
(0.0274) (0.0692)

Post-82 entrant 0.3449 -0.0502
(0.0725) (0.1606)

NSCBCIT/Assets -0.0748 -0.1354 -0.1767 -1.2819
(0.0702) (0.0631) (0.657) (0.3376)

interacted with
log pat portfolio size 0.3747

(0.0986)
Post-82 entrant 0.3714

(0.1006)
Patents/R&D 0.0687 0.0548 0.0603 0.0546

(0.0362) (0.0210) (0.0211) (0.0224)
Forward cites/Patents 0.0056 0.0042 0.0040 0.0037

(0.0027) (0.0024) (0.0020) (0.0017)
Texas Instruments E¤ect -0.1950 0.3448 0.3274

(0.0479) (0.0967) (0.0945)
Post-82 entrant 0.5963

(0.0588)
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Table 9: Spillovers Within and Beyond the Firm and Industry:
Non-semiconductor, External Semiconductor, and Self Citations

(1) (2) (3) (4)
R&D/Assets 0.1807 (0.0885) 0.1779 (0.0878) 0.1857 (0.0905) 0.1742 (0.0874)
BCIT/Assets 0.2418 (0.1068) 0.1685 (0.0603) 0.6660 (0.1782) 0.9081 (0.2091)
interacted with

log pat portfolio size -0.1763 (0.0268) -0.2096 (0.0391)
Post-82 entrant 0.3793 (0.0717) 0.1297 (0.0860)

NSCBCIT/Assets -0.0602 (0.1734) -0.0748 (0.0622) -0.1048 (0.0640) -0.0957 (0.0485)
interacted with

log pat portfolio size
Post-82 entrant

SelfBCIT/BCIT 0.1475 (0.1007) 0.6101 (0.2777) 0.6851 (0.3008) -0.7785 (0.3309)
interacted with

log pat portfolio size 0.2660 (0.2447)
Post-82 entrant 3.9619 (0.7153)

Patents/R&D 0.0705 (0.0232) 0.0685 (0.0252) 0.0668 (0.0304) 0.0743 (0.0302)
Forward cites/Patents 0.0055 (0.0026) 0.0041 (0.0019) 0.0047 (0.0022) 0.0038 (0.0014)
Texas Instruments E¤ect -0.2534 (0.0547) 0.2864 (0.1008) 0.2130 (0.1546)
Post-82 entrant 0.6078 (0.0582)
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Appendix

Construction of Tobin’s Q and R&D stocks from Compustat

I extract the market and book value as well as R&D expenditures of the 120 semiconductor

…rms from Compustat database, from 1979 to 1995. Tobin’s Q is de…ned as

Q =
MKV ALM +DT +PSTK

AT
(A.1)

where MKVALM is the “sum of all the company’s trading issues multiplied by their respective

monthly closing price” by the end of each year, DT refers to the amount of total debt including

both the long-term and short-term debt, PSTK is the market value of preferred shares of the

company, and AT represents the “current assets plus net property, plant and equipment plus

other noncurrent asssets.” All monetary values are adjusted for in‡ation based on U.S. GDP

de‡ator and are in units of million 1998 U.S. dollars.

The R&D capital stock is constructed as the accumulated current and past R&D expen-

ditures, assuming an annual depreciation rate of 15%. However, I do not have data on R&D

expenditures before 1979 and thus assume them to be zero. This unambiguously leads to a

under -estimation of the R&D stocks for …rms actively engaged in R&D activities before 1979.

However, only 18 semiconductor …rms in this sample had nonzero R&D expenditures in 1979,

and only 4 of them had R&D expenditures more than 6 million dollars in 1979 (Advanced Micro

Devices, Intel, National Semiconductor Corp., and Texas Instruments), implying that the bias

in the sample estimation should be quite limited.

Truncation of Citation Counts and Citation In‡ation

To deal with the data truncation problem of forward citations, I follow HJT (2005) and

estimate a structural citation-lag model. In particular, I assume that the fraction of lifetime

forward citations in each year after the initial patent application follows a stationary double-

exponential distribution and is independent of the overall lifetime citation intensity, and the

frequency of a cohort t patent being cited by a cohort t + s patent is

ct,t+s = β0αtγt+s exp(¡β1s)(1 ¡ exp(¡β2s)) (A.2)

where β0 measures the overall citation intensity, s denotes the citation time lag, exp(¡β1s)

describes a di¤usion process and (1¡exp(¡β2s)) characterizes an obolescence process (Ja¤e, and

Trajtenberg (1996)). αt and γt+s are two time dummies for cited and citing year, respectively.
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In this study I further distinguish between citations occured within the same …rm (self cita-

tions), beyond the …rm but still in the samenarrowlyde…ned technological …eld of semiconductor,

and citations made by patents from di¤erent technological …elds. I make such distinctions based

on the belief that knowledge ‡ows may occur at di¤erent speed in these cases. Therefore, I

formulate the following estimation equation

log(ct,t+s,j) = log(βj
0) + log(αt) + log(γt+s) ¡βj

1s +log(1 ¡ exp(¡βj
2s)) + εt,t+s,j (A.3)

where ct,t+s,j is the frequency of a cohort t patent being cited by a cohort t + s, and j indicates

whether the citation occurs within the same …rm, from a di¤erent …rm but within the same

technological …eld of semiconductor, or from a di¤erent …rm and in a di¤erent technological

…eld.

Equation (A.3) is estimated using maximum likelihood, assuming εt,t+s,j is i.i.d., normally

distributed. Based on the model estimation I can then construct the model-implied citation

frequency in the years observed in the dataset, net of time dummies and overall citation intensity,

as

Dt,1996,j =
1996¡tX

s=1

exp(¡βj
1s)(1 ¡ exp(¡βj

2s)) (A.4)

where 1996 is the last year of citation records that I use (citations from cohorts 1997 to 1999

are incomplete in the database because many of those patents had not been granted by the

end of 1999). I can thus project the citation frequency for years not observed in the database

conditional on the citations observed in the database

ct,t+s,j =
Nt,1996,j

Dt,1996,j
exp(¡βj

1s)(1 ¡ exp(¡βj
2s)) (A.5)

where Nt,1996,j is the sum of actual number of forward citations observed in the database.

For the late 1980s and 1990s patents, there is an additional problem: because the forward

citations are often zero in the …rst several years, Nt,1996,j could be zero, so equation (A.5) will

project zero lifetime citations for them. However, citation counts are bounded below by zero,

and the expected number of lifetime citations should be positive. Thus in such cases I use

the empirical expectation of citations observed in the …rst 20 years after patent applications,

conditional on observing zero citations in the …rst M years, M = 1,2, ..,10 :

Ef
20X

j=0

Nt,t+j j
MX

j=0

Nt,t+j = 0g (A.6)
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as the prediction of total citations that will be observed in the …rst 20 years for those patents.

Speci…cally, I estimate the empirical expectation in equation (A.6) for cohorts 1975 to 1978, for

which I have an actual 20 years of citation observations in the citations database, and assume

that is the expected total citations any patent in cohort 1986 to 1995 will receive in their …rst

20 years, conditional on they had received zero citations by 1996.

33


