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Abstract: 

Standard estimates of the NAIRU or natural rate of unemployment are subject to 

considerable uncertainty. We show in this paper that using multiple indicators to extract 

an estimated NAIRU cuts in half uncertainty as measured by variance. The inclusion of 

an Okun’s Law relation is particularly valuable. We estimate the NAIRU as an 

unobserved component in a state-space model and show that using multiple indicators 

reduces both parametric uncertainty and filtering uncertainty. Additionally, our 

multivariate approach overcomes the “pile-up” problem observed by other investigators. 
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1. Introduction 

A prerequisite for the conduct of countercyclical macroeconomic policy is to know 

where we are in the cycle – loosely, are we above or below the NAIRU? Measuring the 

natural rate and the corresponding cyclical fluctuations of the US economy with 

reasonable precision poses a significant challenge. Our aim in this paper is to reduce 

uncertainty about the NAIRU by employing a multiple indicator approach. The essential 

notion is that the concept of “a business cycle” is meaningful in that there is a single 

“gap” which drives cyclical behavior across sectors and across variables. By employing a 

number of indicators jointly we are able to significantly improve the precision of 

estimates of the NAIRU, reducing uncertainty by about half. 

While our primary interest is in reducing uncertainty about the NAIRU, we confront 

two related issues along the way. The first issue we discuss is the need for care in 

measuring uncertainty for a target, such as the NAIRU, which is itself unobserved. For 

our purposes the resolution is to use standard models from the literature as benchmarks. 

The second issue is the so-called “pile-up” problem, where the Kalman filter puts too 

little weight on the variance of the permanent component. Where the goal is to find point 

estimates of the NAIRU as an unobserved component, the pile-up problem is an 

annoyance that has been dealt with by imposing reasonable values on the variance 

parameters. This solution is unsatisfactory when the goal is to measure uncertainty, 

because picking a value for the variance comes too close to picking a value for total 

uncertainty. Fortunately, our multivariate approach seems to eliminate the pile-up 

problem. 
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We treat the NAIRU as an unobserved component to be estimated by the Kalman 

filter. Staiger, Stock and Watson (1997a, hereafter SSW (1997a)) points out three sources 

of uncertainty in a state-space setup. The first source of uncertainty is the model 

uncertainty arising out incomplete knowledge about the true model. The second source is 

the parametric uncertainty due to estimation of the parameters of the model from a 

sample. The final source is unpredictable stochastic shocks to the NAIRU, also called 

filtering uncertainty. 

We begin with a discussion of model uncertainty and identification in the context of 

trying to predict an unobserved component. Measuring uncertainty about an unobserved 

component adds a twist that isn’t present in the discussion about uncertainty in 

forecasting an ex post observable variable. Suppose the econometrician is attempting to 

predict an ex post observable variable. For an observable variable, it is only a mild 

exaggeration to say that whatever model gives the tightest forecast confidence intervals is 

the best model. For an unobservable variable the econometrician still wants a tight 

confidence interval, but confidence intervals are comparable only across models using the 

same stochastic specification for the unobserved NAIRU and gap. One needs to separate 

arguments about improved prediction from arguments that are really about appropriate 

models. In other words, a tight confidence interval for an incorrectly defined NAIRU 

isn’t very useful.1 However, for any given specification a multiple indicator approach has 

the potential to improve precision.2 Our solution is to start with standard models in the 

literature and show that using multiple indicators can significantly reduce the variance. 

                                                           
1 If tight confidence intervals alone were a sufficient criterion, then further research to identify the NAIRU 
would be unnecessary, at least for the United States. The Humphrey-Hawkins Act declared full 
employment to be exactly 4 percent. 
2 This approach has, of course, been employed in other settings. See for example, Avery (1979).  
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There are two genres of identification restrictions used in the literature. One set of 

restrictions describes the statistical behavior of the natural rate, for example that the gap 

averages zero. The other set of restrictions uses the Phillips curve and identifies the gap 

as the variable that drives a wedge between expected and realized inflation. In particular, 

we follow SSW (1997a) in making this distinction. Laubach (2001) showed that the 

NAIRU uncertainty can be reduced by using both kinds of identifying restrictions. We 

use Laubach’s models as a launching point. 

As a first model, suppose the natural rate is constant. A constant natural rate is a straw 

man rather than a seriously tenable model. (See, for examples of time-varying NAIRU, 

Summers (1986), Juhn, Topel and Murphy (1991), Gordon (1997, 1998), Shimer (1998), 

and Ball and Mankiw (2002), to name only a few.) Nonetheless, two different estimates 

of a constant NAIRU reinforce SSW (1997a)’s conclusion that it is very difficult to 

estimate the natural rate precisely. First, suppose the identifying restriction is that the gap, 

unemployment minus the NAIRU, averages zero. Then the estimate of the NAIRU is the 

sample mean of unemployment. In our data a regression of unemployment on a constant 

with an AR(2) error process gives an estimated NAIRU of is 5.90 with a standard error of 

0.41. Using the Phillips curve method, reported in Table 1 below, the estimate is similar, 

5.99 with a standard error of 0.50. 

In what follows we decompose total uncertainty within a given model into the 

components due to parametric uncertainty and filtering uncertainty. In general the portion 

due to parametric uncertainty is fairly large, a result which is not surprising given the 

large degree of uncertainty seen in the constant NAIRU model – where there is no 

filtering uncertainty. We show that moving to a multiple indicator model reduces both 
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parametric and filtering uncertainty as cross-equation correlations improve the efficiency 

of estimates. 

In section 2 we lay out our benchmark model, provide the estimates and show the 

results on reduction of filtering uncertainty when moving from a univariate to a bivariate 

approach. We augment our benchmark model in section 3 by estimating the NAIRU 

shock variance and thereafter extending our model to a multivariate framework adding 

four more variables; real GDP, GDP inflation, wage inflation and employment level. We 

summarize and conclude in section 4. 

 

2. Reduction of filtering uncertainty using multiple indicators 

2.1 Specifying the benchmark model  

 In modeling the NAIRU, we follow the standard set-up of Gordon (1997), SSW 

(1997a), Laubach (2001). The following equations form the basic model of NAIRU: 

(1) , , 1 1 ,( ) ( )C t C C t C U t C t C tL L g Xπ β π γ δ ε− −∆ = ∆ + + +  

(2) t t U tU N g= +  

where L  is the lag operator, tC ,π∆  is the first difference of inflation (calculated using the 

CPI-all items), tU  and tN  are the observed civilian unemployment rate and the NAIRU 

at time t . The term tX  denotes a vector of supply shocks and tUg  stands for the 

unemployment gap. The supply shocks used throughout this paper are a dummy variable 

for the Nixon price control era and the supply shocks measured by the difference between 

CPI inflation and food and energy price inflation3.   

                                                           
3 We follow Gordon (1990) to construct the dummies for Nixon era price control and King and Watson 
(1994) construct the supply shocks. The procedures are also mentioned in SSW (1997a).   
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 We specify the NAIRU to be a simple random walk (as in SSW (1997a), Gordon 

(1997) and Laubach (2001)) and specify the gap as following an autoregressive process 

of order two to allow for periodicity in the cycle measure: 

(3) tNtt NN ,1 ε+= −  

(4) tgtUUtUUtU U
ggg ,2211 εφφ ++= −−   

A special case of the random walk NAIRU is the constant NAIRU, where the variance in 

equation (3) equals zero. Equations (1) and (3) form the univariate model of NAIRU 

whereas equations (1) – (4) form the bivariate model of NAIRU. This approach of using 

information from inflation about output/unemployment gap in a bivariate set-up was 

initiated by Kuttner (1994) and was used to reduce NAIRU uncertainty by Laubach 

(2001). We assume ),0(~ 2
, NtN iidN σε  and ),0(~ 2

, UU gtg N σε , tgU ,ε  uncorrelated with 

tN ,ε  but correlated with tC ,ε 4. 

 In the univariate model of NAIRU, the maximum likelihood estimation of Nσ  

suffers from the ‘pile-up5’ problem. To maintain consistency with the earlier studies, we 

specify Nσ  = 0.2 in the univariate model. 

2.2 Data, estimation and uncertainty in the univariate NAIRU model  

We use quarterly data from the first quarter of 1955 to the third quarter of 2003, 

taken from Fred-II data base of the Federal Reserve Bank of St. Louis and the DRI 

database. We use maximum likelihood method to estimate the parameters of the models 

and the Kalman filter to extract the estimates of the state variables6. Two lags of 

                                                           
4 This structure is consistent with Laubach (2001) but we will generalize the covariance matrix of the 
shocks in the next section. 
5 See Stock (1994), Stock and Watson (1998) and Laubach (2001) for discussions on this problem. 
6 Algorithms for the procedure are outlined in Hamilton (1994), and Kim and Nelson (1999).  
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unemployment gap and two lags of CPI inflation difference proved to be sufficient in the 

models. (The selection of lags is based on significance of the last lag.) The starting value 

of the state variable NAIRU was the actual unemployment rate in the fourth quarter of 

1954, specified with a diffuse prior. The calculation of the total uncertainty – sum of 

parametric uncertainty and filtering uncertainty (in variances)7, conditional on the model, 

was based on 2000 Monte Carlo simulations as outlined in Hamilton (1986, 1994). 

 We start with estimating the constant NAIRU model and its uncertainty as a 

simple case. Note that the uncertainty in the constant NAIRU is just the parametric 

uncertainty – there is no filtering uncertainty. In Table 1, Panel A – we report the NAIRU 

estimate as 5.99 percent. The asymptotic standard error is 0.50, but because the estimate 

of the natural rate is derived by dividing the intercept by )1(Cγ  the asymptotic 

approximation is likely to be poor. Following SSW (1997a), we report the ‘Gaussian’ 

confidence interval of the NAIRU at the 95 percent level to be between 4.8 percent and 

7.5 percent. In Figure 1, we show the corresponding F-statistic values for our estimated 

model. 

 A time-varying, univariate, NAIRU model shows much higher reported total 

variance than does the constant NAIRU model. Filtering uncertainty is the dominant 

source of uncertainty about the NAIRU estimates. In Table 1, Panel B we present the 

estimation results8. The estimates show that the parametric variance is only about six 

                                                           
7 We concentrate only on two-sided filtering uncertainty in this paper.  
8 State-space models using the Kalman filter generally assume normal errors. In principle this is 
problematic because it implies that the unemployment rate is unbounded. One approach would be to model 
the log of unemployment and then back out estimate of the level of the natural rate. As a practical matter 
we found this to be an issue only in the univariate model. In calculating the filtering uncertainty using 
Monte Carlo methods, we resampled if the standard deviation of the filtering uncertainty turned out to be 
greater than 3 – which would put a less than zero NAIRU value within the 95 percent confidence interval 
based on a 6 percent NAIRU. This meant 9 percent resampling in the univariate model but no resampling in 
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percent of the total variance. In the table we also show the point estimates of NAIRU at 

the beginning of last three decades along with its total standard deviation, parametric 

standard deviation and filtering standard deviation.  

 In Figure 2, we present the two-sided estimates of the time-varying NAIRU, the 

unemployment gap and the 95 percent confidence interval of the NAIRU. The graph 

shows that the gap estimates pick up the shaded NBER recessions efficiently. The 

estimates of the NAIRU show a rise from the mid 1970s and a decline starting in mid 

1980s and keeping low throughout 1990s. These features of the natural rate estimate are 

consistent with studies like Ball and Mankiw (2002), Gordon (1997, 1998), Juhn, Topel 

and Murphy (1991), SSW (1997a, 1997b), Laubach (2001), Salemi (1999), Shimer 

(1998) Katz and Kruger (1999). It also illustrates the main point – that the NAIRU is very 

imprecisely estimated in the univariate model – by showing the large confidence interval 

of the NAIRU. 

2.3 A bivariate model reduces filtering uncertainty 

 We now add equations (2) and (4) to equations (1) and (3) to make a bivariate 

model of NAIRU. Estimates of the model are in Table 2. We observe a dramatic decrease 

in the average total variance coming from a decline in both average parameter variance 

and average filtering variance. Parametric uncertainty is reduced by a factor of five from 

the univariate model. But the drop in filtering uncertainty is even greater and most of the 

uncertainty in the previous model came from filtering, so reduction in filtering 

uncertainty dominates by being approximately 95 percent of the decline in total variance. 

                                                                                                                                                                             
the all the following multivariate models. So, the uncertainty in the univariate model might be downward 
biased, but there is no such bias in the multivariate models. 
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The unemployment gap is fairly persistent; the sum of the autoregressive coefficients is 

0.92. 

 In Figure 3, we show the estimates of NAIRU from the bivariate model along 

with the 95 percent confidence interval. The NAIRU estimates are quite similar to the 

previous ones showing a similar rise from late 1960s – a result consistent with Summers 

(1986), and a decline from the early 1980s. The confidence interval bands are much 

narrower now – the key result of Laubach (2001) – coming primarily from the decline in 

the filtering uncertainty. This decline is due to the bivariate – common factor approach 

since the NAIRU shock variance had the same value in both the models.  

 

3. The estimated NAIRU shock variance, its standard error and the NAIRU 

uncertainty  

3.1 The bivariate model with the estimated NAIRU shock variance 

 We now use the bivariate model described above in equations (1) – (4), generalize 

the variance covariance matrix of the three shocks, tC ,ε , tN ,ε  and tgU ,ε , and estimate the 

matrix. There are two motivations for this exercise. Firstly, we estimate the variance of 

the shock to the NAIRU. The bivariate model gives us enough cross-equation 

information to estimate the shock variance covariance matrix without the pile-up problem 

Estimation of the shock variance provides a better estimate of filtering uncertainty. The 

estimation also allows us to have the standard error of the estimated variance of the 

NAIRU shock – which enters the calculation of parametric uncertainty. The second 

motivation is due to the Morley, Nelson and Zivot (2003) (hereafter MNZ) result that the 

estimates of the trend and cycle can be very sensitive to the correlation structure of the 

shocks.  
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 We faced a computational issue regarding parametric uncertainty while estimating 

the above model. Estimation of the parameters did not pose any problems but the Hessian 

of the parameter estimates turned out to be very unstable with respect to some covariance 

parameter terms between the shocks (log likelihood function very flat for those 

parameters). We took the following approach to address this problem: we estimated the 

model with the generalized variance covariance matrix. We noted the off-diagonal 

parameters with estimated values being close to zero and imprecisely estimated. Then we 

restricted those off-diagonal parameters to zero and re-estimated the model. The 

restricted model was used if it was not significantly different at the 90 percent after 

comparing the log likelihood values. We follow this approach for the rest of the paper. 

 This effectively meant two restrictions in our model and the log-likelihood 

difference was not significant at the 75 percent even for one restriction. The results are in 

Table 3. The standard deviation of the shock to the NAIRU is 0.24, quite close to 

Laubach and ours imposed value of 0.20. The NAIRU – unemployment gap shock 

correlation is -0.77, precisely estimated and supports the MNZ result. The average total 

standard error is now 0.57 – a 20 percent rise over the bivariate model in section 2. The 

average parametric standard error doubles, from 0.14 in section 2 to 0.28 in this model, 

since we now incorporate uncertainty about Nσ  which was previously omitted. The 

filtering uncertainty increases marginally due to a higher value of the variance of the 

shock to the NAIRU. The NAIRU estimates along with the 95 percent confidence 

interval are shown in Figure 4. The estimates confirm our previous observations. 

 3.2 The multivariate model  
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 We now augment the bivariate model in section 3.1 to a multivariate model by 

using four more variables. We have two more inflationary measures – GDP (chained) 

deflator and wage (hourly compensation of labor in non-farm business), real GDP and 

civilian employment level (16 years or over, in millions).  The real GDP (in natural logs), 

tY , equation, following Watson(1986), Kuttner (1994), MNZ (2003), is specified as a 

sum of a permanent stochastic trend, tYT  and the output gap, 
tyg : 

(5) tYtYt gTY += . 

The permanent stochastic trend follows a random walk with a constant drift and 

the output gap follows a second order autoregressive process: 

(6) 
tTtYYtY Y

TT εµ ++= −1  

(7) tgtYYtYYtY Y
ggg ,2211 εφφ ++= −−  

Following Clark (1989), we link the output gap and the unemployment gap by a dynamic 

version of Okun’s Law: 

(8) ktY

K

k
kYtU gg −

=
∑=

0
,θ  

Similarly, the employment level (in logs), tL , equation is also a sum of a permanent, 

stochastic trend, tLT , and an employment gap variable driven by the current and lagged 

output gap: 

(9) ∑
=

−+=
M

m
mtYmLtLt gTL

0
,θ . 

We also assume the permanent, stochastic trend of the employment variable, tLT , follows 

a random walk with a constant drift: 
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(10) 
tTtLLtL L

TT εµ ++= −1  

Note that the lags chosen equations (8) and (9) are on the basis of significance of the last 

lag. 

 The GDP deflator inflation equation is quite similar to the CPI inflation equation 

except that we use the output gap instead of the unemployment gap. The wage inflation 

equation also has a similar structure as our equation (1) in section 2.  

(11) tGtGtYGtGGtG XgLL ,11,, )()( εδγπβπ +++∆=∆ −−  

(12) tWtWttWtWWtW XNULL ,111,, ))(()( εδγπβπ ++−+∆=∆ −−−  

In the above equations, tG ,π∆  is the first difference of the GDP inflation rate and tW ,π∆  

is the first difference of the wage inflation rate. Equations (1) – (12) now form our new 

multivariate model. We start our estimation with a generalized variance – covariance 

matrix of the seven shocks and then restrict the off-diagonal parameters as described 

previously. 

 Based on the significance of the last lag, we used one lag (along with the 

contemporaneous) for equations (8) and (9). This is consistent with the Clark (1989) 

framework. For equations (11) and (12) we had to use three lags of their respective 

inflation differences and two lags of the respect gaps. The estimates of the model are in 

Table 4. The parameter estimate of the standard deviation of the shock to the NAIRU is 

0.17 and much more precisely estimated. The estimate of the standard deviation of the 

GDP trend shock is large and precise. The standard deviation of the employment trend 

shock is lower than that of the GDP trend shock, but still precise. The correlation of the 

GDP trend shock to the gap shock is negative. The drift terms imply a 3.2 percent annual 

GDP growth and 1.7 percent annual employment growth. 
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 Comparisons of Tables 3 and 4 show the large increase in precision due to the use 

of multiple indicators. Overall variance drops in half, from 0.33 to 0.16. This overall drop 

comes from roughly equal proportional decreases in each component, the parametric 

variance dropping from 0.08 to 0.03 and the filtering variance dropping from 0.24 to 

0.13. Since filtering variance was considerably larger in terms of absolute level, most of 

the total decrease is due to the reduction in filtering uncertainty. Note that a considerable 

part of the improvement in the filtering uncertainty is due to the lower estimate of the 

NAIRU shock variance. In Figure 5, the NAIRU estimates are quite similar to previous 

estimates but the 95 percent confidence interval is narrower.  

 

4. Conclusion 

We show in this paper that using multiple indicators to extract a common unobserved 

factor helps to reduce the filtering uncertainty and parametric uncertainty around the 

extracted point estimates. We use this method to estimate the NAIRU and reduce its 

uncertainty. Specifically, we find that four variables, the GDP deflator, average wage, 

real GDP, and civilian employment level are valuable indicators of the gap in the 

business cycle. The improvement in precision cuts in half the uncertainty as measured by 

total variance. We chose these additional indicators because they did a good job and are 

consistent with theory. Use of this method opens the possibility for further research 

which might suggest yet more such useful indicators. 
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Table 1: Parameter and NAIRU Estimates from the Univariate Models 

Panel A: Constant NAIRU 

NAIRU Estimate Confidence Interval (95 percent) )1(Cγ  

5.99 4.80, 7.47 -0.20 

Panel B: Time-varying NAIRU 

Log L )1(Cγ  Average Total Variance 

-340.11 -0.14 1.72 

Average Parametric Variance Average Filtering Variance 

0.10 1.62 

Date 1980:1 1990:1 2000:1 

NAIRU 6.79 5.96 5.49 

Total Std. Dev. 1.20 1.20 1.32 

Parametric Std. Dev. 0.23 0.17 0.23 

Filtering Std. Dev. 1.17 1.18 1.29 

 

Table 2: Parameter and NAIRU Estimates from the Bivariate Model 

Time-varying NAIRU 

Log L )1(Cγ  )1(Uφ  Average Total Variance 

-196.00 -0.35 0.92 0.22 

Average Parametric Variance Average Filtering Variance 

0.02 0.20 

Date 1980:1 1990:1 2000:1 

NAIRU 7.22 6.19 4.99 

Total Std. Dev. 0.45 0.44 0.47 

Parametric Std. Dev. 0.10 0.06 0.13 

Filtering Std. Dev. 0.44 0.44 0.45 
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Table 3: Parameter and NAIRU Estimates from the Bivariate Model with Estimated 

NAIRU Shock Variance 

Time-varying NAIRU 

Log L )1(Cγ  )1(Uφ  Nσ  
UNgρ  

-186.35 -0.22 0.92 0.24 (0.07) -0.78 (0.12) 

Average Total Variance Average Parametric Variance Average Filtering Variance 

0.33 0.08 0.24 

Date 1980:1 1990:1 2000:1 

NAIRU 7.71 6.41 5.42 

Total Std. Dev. 0.62 0.51 0.59 

Parametric Std. Dev. 0.41 0.21 0.19 

Filtering Std. Dev. 0.47 0.47 0.56 

Note: The standard errors of the parameter estimates are in the parentheses. 

 

Table 4: Parameter and NAIRU Estimates from the Multivariate Model with 

Estimated NAIRU Shock Variance 

Time-varying NAIRU 

Log L )1(Yφ  Nσ  
YTσ  

LTσ  

-372.94 0.90 0.17 (0.02) 0.78 (0.07) 0.28 (0.02) 

Yµ  Lµ  
YNgρ  

YY gTρ  
YNTρ  

0.82 (0.05) 0.43 (0.02) 0.51 (0.19) -0.50 (0.13) -0.56 (0.10) 

Average Total Variance Average Parametric Variance Average Filtering Variance 

0.16 0.03 0.13 

Date 1980:1 1990:1 2000:1 

NAIRU 7.58 6.72 5.24 

Total Std. Dev. 0.39 0.37 0.40 

Parametric Std. Dev. 0.16 0.11 0.09 

Filtering Std. Dev. 0.35 0.35 0.39 

Note: The standard errors of the parameter estimates are in the parentheses.
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 Figure 1: The Constant NAIRU and Its 95 Percent “Gaussian” Confidence Interval 
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Figure 2: The Time-Varying NAIRU and Its 95 Percent Confidence Interval from 

the Univariate Model 
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Figure 3: The Time-Varying NAIRU and Its 95 Percent Confidence Interval from 

the Bivariate Model 
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Figure 4: The Time-Varying NAIRU and Its 95 Percent Confidence Interval from 

the Bivariate Model with Estimated NAIRU Shock Variance 
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Figure 5: The Time-Varying NAIRU and Its 95 Percent Confidence Interval from 

the Multivariate Model with Estimated NAIRU Shock Variance  
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Appendix: The NAIRU and its Uncertainty Estimates from the Multivariate Model 

Year Nairu TU PU FU Year Nairu TU PU FU 
1955:1 5.40 0.46 0.16 0.43 1965:4 4.56 0.39 0.16 0.35 
1955:2 5.64 0.46 0.17 0.42 1966:1 4.51 0.39 0.17 0.35 
1955:3 5.72 0.45 0.17 0.41 1966:2 4.62 0.39 0.17 0.35 
1955:4 6.06 0.44 0.18 0.41 1966:3 4.67 0.39 0.17 0.35 
1956:1 5.90 0.44 0.17 0.40 1966:4 4.54 0.40 0.18 0.35 
1956:2 6.06 0.43 0.18 0.40 1967:1 4.58 0.40 0.19 0.35 
1956:3 5.90 0.42 0.16 0.39 1967:2 4.70 0.40 0.19 0.35 
1956:4 5.90 0.42 0.17 0.39 1967:3 4.80 0.40 0.19 0.35 
1957:1 5.72 0.42 0.17 0.38 1967:4 4.87 0.40 0.20 0.35 
1957:2 5.73 0.42 0.17 0.38 1968:1 4.82 0.42 0.22 0.35 
1957:3 5.50 0.40 0.14 0.38 1968:2 4.82 0.42 0.22 0.35 
1957:4 5.27 0.39 0.12 0.37 1968:3 4.91 0.43 0.24 0.35 
1958:1 5.29 0.40 0.15 0.37 1968:4 4.90 0.44 0.26 0.35 
1958:2 5.51 0.40 0.15 0.37 1969:1 5.01 0.44 0.26 0.35 
1958:3 5.70 0.38 0.11 0.37 1969:2 5.12 0.44 0.26 0.35 
1958:4 5.34 0.38 0.10 0.37 1969:3 5.33 0.45 0.28 0.35 
1959:1 5.47 0.38 0.11 0.36 1969:4 5.21 0.44 0.26 0.35 
1959:2 5.19 0.37 0.09 0.36 1970:1 5.32 0.41 0.21 0.35 
1959:3 5.23 0.37 0.09 0.36 1970:2 5.35 0.40 0.19 0.35 
1959:4 5.47 0.38 0.12 0.36 1970:3 5.25 0.39 0.16 0.35 
1960:1 5.27 0.38 0.13 0.36 1970:4 5.49 0.38 0.15 0.35 
1960:2 5.44 0.38 0.12 0.36 1971:1 5.42 0.39 0.17 0.35 
1960:3 5.30 0.38 0.14 0.36 1971:2 5.38 0.39 0.16 0.35 
1960:4 5.36 0.40 0.17 0.36 1971:3 5.57 0.39 0.16 0.35 
1961:1 5.31 0.40 0.18 0.36 1971:4 5.72 0.39 0.18 0.35 
1961:2 5.28 0.40 0.17 0.36 1972:1 5.75 0.39 0.16 0.35 
1961:3 5.22 0.39 0.16 0.36 1972:2 5.87 0.39 0.17 0.35 
1961:4 5.09 0.38 0.13 0.36 1972:3 5.99 0.40 0.18 0.35 
1962:1 4.84 0.38 0.14 0.36 1972:4 6.14 0.41 0.21 0.35 
1962:2 4.78 0.38 0.14 0.36 1973:1 6.13 0.42 0.23 0.35 
1962:3 4.79 0.38 0.15 0.36 1973:2 6.48 0.43 0.24 0.35 
1962:4 4.61 0.39 0.16 0.35 1973:3 6.60 0.44 0.26 0.35 
1963:1 4.72 0.39 0.16 0.35 1973:4 6.67 0.43 0.25 0.35 
1963:2 4.76 0.39 0.15 0.35 1974:1 6.95 0.43 0.24 0.35 
1963:3 4.61 0.39 0.15 0.35 1974:2 6.91 0.44 0.26 0.35 
1963:4 4.67 0.39 0.16 0.35 1974:3 6.86 0.41 0.22 0.35 
1964:1 4.72 0.38 0.14 0.35 1974:4 6.47 0.37 0.12 0.35 
1964:2 4.69 0.38 0.14 0.35 1975:1 6.69 0.37 0.12 0.35 
1964:3 4.55 0.39 0.16 0.35 1975:2 6.91 0.37 0.12 0.35 
1964:4 4.52 0.39 0.17 0.35 1975:3 6.70 0.37 0.11 0.35 
1965:1 4.62 0.38 0.15 0.35 1975:4 6.80 0.37 0.11 0.35 
1965:2 4.66 0.39 0.15 0.35 1976:1 6.66 0.37 0.10 0.35 
1965:3 4.62 0.38 0.15 0.35 1976:2 6.68 0.37 0.10 0.35 
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Year Nairu TU PU FU Year Nairu TU PU FU 
1976:3 6.83 0.37 0.10 0.35 1987:4 6.55 0.38 0.14 0.35 
1976:4 6.96 0.36 0.09 0.35 1988:1 6.57 0.38 0.13 0.35 
1977:1 7.04 0.36 0.09 0.35 1988:2 6.48 0.37 0.12 0.35 
1977:2 7.02 0.37 0.10 0.35 1988:3 6.54 0.37 0.11 0.35 
1977:3 7.15 0.37 0.11 0.35 1988:4 6.57 0.37 0.11 0.35 
1977:4 7.34 0.37 0.12 0.35 1989:1 6.57 0.37 0.11 0.35 
1978:1 7.42 0.38 0.14 0.35 1989:2 6.57 0.37 0.10 0.35 
1978:2 7.36 0.38 0.15 0.35 1989:3 6.49 0.37 0.09 0.35 
1978:3 7.59 0.39 0.17 0.35 1989:4 6.67 0.37 0.10 0.35 
1978:4 7.68 0.40 0.18 0.35 1990:1 6.72 0.37 0.11 0.35 
1979:1 7.83 0.40 0.18 0.35 1990:2 6.56 0.37 0.11 0.35 
1979:2 7.70 0.40 0.18 0.35 1990:3 6.49 0.37 0.11 0.35 
1979:3 7.85 0.40 0.19 0.35 1990:4 6.39 0.37 0.11 0.35 
1979:4 7.88 0.41 0.20 0.35 1991:1 6.33 0.37 0.11 0.35 
1980:1 7.58 0.39 0.16 0.35 1991:2 6.27 0.37 0.11 0.35 
1980:2 7.77 0.38 0.14 0.35 1991:3 6.09 0.38 0.13 0.35 
1980:3 7.85 0.40 0.18 0.35 1991:4 6.03 0.39 0.16 0.35 
1980:4 7.66 0.41 0.21 0.35 1992:1 6.05 0.40 0.20 0.35 
1981:1 7.78 0.41 0.22 0.35 1992:2 6.10 0.42 0.22 0.35 
1981:2 7.70 0.42 0.22 0.35 1992:3 6.08 0.42 0.22 0.35 
1981:3 7.22 0.41 0.21 0.35 1992:4 5.97 0.40 0.19 0.35 
1981:4 7.31 0.41 0.21 0.35 1993:1 5.85 0.40 0.18 0.35 
1982:1 7.20 0.42 0.22 0.35 1993:2 5.90 0.39 0.17 0.35 
1982:2 7.22 0.43 0.25 0.35 1993:3 5.79 0.39 0.16 0.35 
1982:3 6.93 0.47 0.30 0.35 1993:4 5.70 0.39 0.17 0.35 
1982:4 7.16 0.46 0.30 0.35 1994:1 5.80 0.39 0.16 0.35 
1983:1 6.86 0.46 0.29 0.35 1994:2 5.68 0.38 0.14 0.36 
1983:2 7.11 0.44 0.26 0.35 1994:3 5.75 0.38 0.12 0.36 
1983:3 7.11 0.42 0.22 0.35 1994:4 5.69 0.37 0.11 0.36 
1983:4 7.01 0.40 0.19 0.35 1995:1 5.48 0.38 0.14 0.36 
1984:1 6.95 0.39 0.17 0.35 1995:2 5.45 0.38 0.14 0.36 
1984:2 6.80 0.40 0.18 0.35 1995:3 5.38 0.38 0.13 0.36 
1984:3 6.84 0.40 0.18 0.35 1995:4 5.28 0.38 0.13 0.36 
1984:4 6.80 0.39 0.17 0.35 1996:1 5.20 0.38 0.14 0.36 
1985:1 6.72 0.40 0.19 0.35 1996:2 5.29 0.38 0.12 0.36 
1985:2 6.67 0.40 0.19 0.35 1996:3 5.16 0.39 0.14 0.36 
1985:3 6.65 0.40 0.18 0.35 1996:4 5.23 0.38 0.13 0.36 
1985:4 6.56 0.40 0.20 0.35 1997:1 5.26 0.38 0.11 0.36 
1986:1 6.50 0.41 0.22 0.35 1997:2 5.18 0.38 0.11 0.36 
1986:2 6.68 0.41 0.21 0.35 1997:3 5.18 0.38 0.11 0.36 
1986:3 6.62 0.40 0.20 0.35 1997:4 5.02 0.38 0.12 0.36 
1986:4 6.69 0.40 0.18 0.35 1998:1 5.05 0.38 0.11 0.37 
1987:1 6.73 0.39 0.16 0.35 1998:2 4.86 0.39 0.12 0.37 
1987:2 6.67 0.38 0.15 0.35 1998:3 4.95 0.39 0.11 0.37 
1987:3 6.60 0.38 0.15 0.35 1998:4 4.96 0.38 0.10 0.37 
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Year Nairu TU PU FU      
1999:1 4.95 0.39 0.10 0.37      
1999:2 4.91 0.39 0.10 0.38      
1999:3 4.91 0.39 0.10 0.38      
1999:4 5.02 0.40 0.10 0.38      
2000:1 5.24 0.40 0.09 0.39      
2000:2 5.11 0.40 0.09 0.39      
2000:3 5.16 0.41 0.10 0.40      
2000:4 5.07 0.42 0.12 0.40      
2001:1 5.06 0.43 0.12 0.41      
2001:2 4.96 0.44 0.13 0.42      
2001:3 4.68 0.44 0.12 0.43      
2001:4 4.93 0.45 0.12 0.44      
2002:1 4.79 0.47 0.13 0.45      
2002:2 4.91 0.48 0.14 0.46      
2002:3 4.76 0.50 0.16 0.47      
2002:4 4.88 0.51 0.16 0.49      
2003:1 4.61 0.53 0.18 0.50      
2003:2 4.73 0.56 0.20 0.52      
2003:3 4.65 0.58 0.20 0.54      
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Not for Publication Appendix: 

A Simple Example of How to Reduce the Filtering Uncertainty of the State 

Estimates 

Let us consider the following unobserved components model where we observe ty1 , 

ty2  and ty3 . Our problem is to get estimates and the filtering uncertainty of the 

unobserved components ti1 , ti2 , ti3  and ti4  given that we know the parameters of the 

model. We know 4,3,1),1,0(~ =jiidNi jt  and ),0(~ 2
2 σiidNi t . 
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The common component in the three observed series is the unobserved component ti2  

and this makes the estimates of ti2  to have lower filtering variance. A special case is 

when 021 == γγ  and the resulting estimates of ti2  will be based on only ty1 . 

We can write the model in the state-space representation as: 

Measurement equations: 
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Transition equations: 
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In the above transition equations, F is the transition matrix of the state variables and 

Q  is the variance covariance matrix of the shocks to the state variables (which are 

variances of the states themselves in this special case since the states are all white noise).   

To start the Kalman filter iteration, we need the steady-state values of tI  as 0|0I  and 

uncertainty around tI  at time zero as 0|0P . We specify those initial values as  
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Starting the Kalman filter iteration, we have 
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We denote 1| −ttI  as the linear projection of the state variables based on time 1−t  

information. The uncertainty (or the variance-covariance matrix) around the projections 
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is denoted as 1| −ttP , also based on time 1−t . The forecast errors are denoted as 1| −ttη , and 

1| −ttf  is the conditional variance of the forecast errors. In the case we are considering 
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Updating the iterations to include time t  information, we have the Kalman gain 

component, tK : 

1_
1|1| −− ′= ttttt fHPK  
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Since the F matrix is a zero matrix, we have Tttt PP || = , where  
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It is obvious from the above matrix that for 021 == γγ , the variance of 

2

2

|2 1 σ
σ
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=Tti  is maximum. So, non-zero values of 1γ  and 2γ  will reduce the variance – 

filtering uncertainty improves with a multiple indicator - common factor approach. 

Moreover, the marginal effect of 2σ  is 
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As evident from the analysis above, the same argument applies to the precision of ti1 . 

This example highlights, ceteris paribus, the role a common factor approach can play by 

extracting information from multiple indicators in improving its precision.  

The above model also shows that impact of an additional indicator on improving 

filtering uncertainty goes down with increasing number of indicators if everything else is 

same. The reduction in filtering uncertainty when we augment the univariate model to a 

bivariate system is 
)1)(1( 222

1
2

42
1

σσγσ
σγ

+++
. Similarly, when we extend the bivariate to a 

trivariate system, the decline in filtering uncertainty is 
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+++++
. To simplify algebra, let us assume that 

γγγ == 21 - thereby making the assumption that ty2  and ty3  individually contain same 

amount of information about ti2 . Then, 
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. So, in the above model, the 

biggest reduction in the filtering uncertainty comes from extending the model from the 

univariate to the bivariate setup. 

 



 30

The Bivariate Model with Generalized Covariance Matrix of the Shocks 

In this section we re-estimated the bivariate model of the Section 3 (eqs. (1) – (4)) with a 

generalized variance covariance matrix of the three shocks. Specifically,   
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is the new variance – covariance matrix of the shocks. This implies estimation of two 

more parameters and examining the effects of their standard errors on the total 

uncertainty.  

 In Table A1, we show the estimation results of the new bivariate model with 

generalized covariance matrix. The estimate of the standard deviation of the shock to the 

NAIRU is 0.22, very similar to what studies like Gordon (1997), Laubach (2001) used 

before and what we have in our Table 3. The estimate of the correlation between the 

NAIRU and the unemployment gap, 
UNgρ , is -0.77 – strongly negative like the MNZ 

result. The comparison of the log likelihood values with Table 3 indicates that the 

inclusion of the two new parameters were insignificant at the 90 percent level. The 

estimate of persistence of the unemployment gap is quite similar to the previous estimate, 

0.92. 

 The surprising element of the generalized covariance matrix is in its effect on the 

total uncertainty. The average filtering variance remain almost the same as in Table 3, not 

a surprising result given the estimate of the standard deviation of the shock to the NAIRU 

is quite similar to what used before. However, the average total variance now has risen to 

1.33, primarily due to the big rise in the average parametric variance. In Figure A1, we 

show the new NAIRU estimates along with the new 95 percent confidence bands. The 
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NAIRU estimates are similar to our previous estimates but the confidence bands are a lot 

wider. This was happening because the log likelihood function is very flat with respect to 

the two new covariance parameters, making the Hessian and the variance – covariance 

matrix of the estimated parameters very unstable and resulting in a large increase in the 

parametric uncertainty.  
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Table A1: Parameter and NAIRU Estimates from the Bivariate and Trivariate 

Models with Generalized Variance Covariance Matrix of the Shocks 

Time-varying NAIRU (Bivariate) 

Log L )1(Cγ  )1(Uφ  Nσ  
UNgρ  

-185.78 -0.22 0.92 0.22 -0.77 

Average Total Variance Average Parameter Variance Average Filtering Variance 

1.33 1.12 0.21 

Date 1980:1 1990:1 2000:1 

NAIRU 7.36 6.31 5.41 

Total Std. Dev. 1.46 0.74 0.95 

Parametric Std. Dev. 1.39 0.61 0.82 

Filtering Std. Dev. 0.42 0.43 0.49 

 

Figure A1: The Time-Varying NAIRU and Its 95 Percent Confidence Interval from 

the Bivariate Model with Generalized Covariance Matrix of the Shocks 
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