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Abstract 
 

The sine and cosine functions used as the bases in Fourier analysis are very smooth 
(infinitely differentiable) and very broad (nonzero almost everywhere on the real line) 
and hence they are not effective for representing functions that change abruptly (jumps) 
or have highly localized support (diffusive). In response to this shortcoming, there has 
been intense interest in recent years in a new type of basis functions called wavelets. A 
given wavelet basis is generated from a single function, called a mother wavelet or 
scaling function, by dilation and translation. By replicating the mother wavelet at many 
different scales, it is possible to mimic the behavior of any function; this property of 
wavelets is called multiresolution.  Wavelet is a powerful integral transform technique 
for studying many problems including financial derivatives such as options. Moreover, 
the approximation error is much smaller than that of the truncated Fourier expansion.  
Therefore, one can get better approximation of a function at jump discontinuity with the 
use of wavelet expansion rather than Fourier expansion.  
 
In the current study, we employ wavelet analysis to option pricing problem manifested as 
partial differential equation (PDE) with jump characteristics.  We have used wavelets to 
develop an optimum finite differencing of the differential equations manifested by 
financial models.   In particular, we apply wavelet optimized finite-difference (WOFD) 
technique on the partial differential equation. We describe how Lagrangian polynomial is 
used to approximate the partial derivatives on an irregular grid.  We then describe how 
to determine sparse and dense grid with wavelets. Further work on implementation is 
going on.  
 

1. Introduction 
Recently the subject of “wavelet analysis” has drawn much attention from both 
mathematicians and engineers alike.  Many studies [4, 5, 7] have emerged applying 
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wavelets to multitude of situations, and all seem to report favorable results. Broadly 
defined, a wavelet is simply a wavy function carefully constructed as to have certain 
mathematical properties. An entire set of wavelets is constructed from a single wavelet 
called ”mother wavelet” function and this set provides useful building block functions 
that can be used to describe any in a large class of functions. Roughly speaking, wavelet 
analysis is a refinement of Fourier analysis. The Fourier transform is a method of 
describing an input function in terms of its frequency components. The frequency 
analysis using the Fourier decomposition of a function becomes “scale analysis” using 
wavelets. This means that it is possible to examine features of the function of any size by 
adjusting a scaling parameter in the analysis. With the wavelet analysis it is very easy to 
reveal the position of a function where the function is discontinuous. Because of the way 
wavelets work, the approximation error is much smaller than that of the truncated Fourier 
expansion and very significantly localized at the point of discontinuity. So we get better 
approximation of a function at discontinuity when we use wavelet expansion rather 
Fourier expansion. The usefulness of the wavelet transform technique is evident from the 
large number of fields to which it has been applied. Wavelet based techniques to solve 
partial differential equations (PDE) are a relatively new area of  research; they have been 
discussed in papers by Dempster and Eswaran [12], Siddiqi and Manchanda [9],  
Jameson [1,2,3], Nielson [6]. This paper focuses on the methodology to the solution of 
Burger’s Equation in Wavelet Optimized Finite Difference Method (WOFD).  We closely 
follow the work reported in [6] for the fundamentals and then apply he methodology to 
option pricing problem.   
 
The rest of the paper is presented as follows. In section 2 we introduce the simplest 
wavelets, the Haar wavelets. We also introduce the basic concepts such as wavelet 
transforms and multiresolution analysis for the sake of completion. We then introduce 
Daubecheies wavelets, which have played a key role in the explosion of activity of 
wavelet analysis. In section 3 we discuss two of our recent studies on option pricing using 
fast Fourier transform and solving Black-Scholes equation using Pade approximation.  In 
section 4 we explain how the wavelet transform framework can be used to solve PDEs 
especially Burger’s type equation that manifests an option pricing problem using wavelet 
optimized finite difference (WOFD) technique. We first describe how Lagrangian 
polynomial is used to approximate derivatives on an irregular grid. We then describe how 
to determine sparse and dense grids with wavelets. The implementation work is 
continuing.  In section 5 we briefly describe our expectation on the implementation 
results for the solution of Burgers type equation. Finally, in section 6 we conclude our 
current study with a brief discussion on further work. 
 

2. Wavelet Transform 
In this section we shall introduce the basic concepts related to the Harr transform which 
is the basic or other wavelets like Daub 4 Wavelet. We will discuss the later wavelet 
transform in the subsequent subsection. 
 

2.1.  Harr Transform 
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Let us consider a function ),.....,,,( 321 Nffff=f where N is a positive even integer which 

we refer to as the length of f . The values of f are the N real numbers Nffff ,.....,,, 321 .    

The Harr transform decomposes a discrete function into two sub-functions of half of its 
length. One sub-function is a running average or trend; the other sub-function is a 
running difference or fluctuation. 
 
The first trend sub-function ),.....,,,( 2/321 Naaaa=1a   is computed by taking a running 

average as  2m-1 2m
m

f + f
a =

2
 .for m= 1,2,3,…….,N/2.  The other sub-function is called first 

fluctuation, 
2

1
1 2 3 N/2d = (d ,d ,d ,.....,d )  is computed by taking a running difference as: 

2m-1 2m
m

f - f
d =

2
 for m=1,2,3,…….,N/2.   The Harr transform is performed in several 

stages or levels. The first level is the mapping H1 defined by a discrete function to its first 
trend a1 and first fluctuation d1.  That is,     

)d|(af 111H→  
The inverse of H1 maps the transformed function (a1|d1) back into the original function f 
via the following formula: 

.
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2.2.  Harr Wavelets 
 

The scalar product f.g of the functions f=(f1,f2.f3,..,fn) and g =(g1,g2,g3…gn) is defined by   
).........2..( 211 nn gfgfgf +++= f.g .  The 1-level Haar wavelets are defined as 
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Using 1-level Haar wavelets, we can express the values for the first fluctuation sub 
function d1 as scalar products 1. mm Wfd = .   Next,  1-level  Haar Scaling function is 

defined as 
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Using 1-level Haar scaling function, we can express the values for the first trend sub 
function a1 as scalar products 1. mm Vfa =  

 
2.3.  Multiresolution Analysis 
 

From the pervious section it is clear that a function is synthesized by starting with a very 
low resolution function and successively adding on details to create higher resolution 
versions and ending up with a complete synthesis of the original function at the finest 
resolution. This is known as multiresolution analysis (MRA). MRA is the heart of 
wavelet analysis. A function can be expressed by the sum of two functions:  a first 
averaged signal and a first detailed signal as  1 1f A D= + .  Using Haar scaling function 
and wavelets, the averaged and detail functions can be expressed as 

1
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Applying the scalar product formulas for the coefficients, we can write these two 
formulas as follows: 
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The second level of a MRA of a function f involves expressing f as   122 DDAf ++=   
where, A2 is the second averaged function and D2 is the second detail function 
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In general, if the number N of function values is divisible k times into two sub functions 
then a k-level MRA : 2 1.......k kf A D D D= + + + +    

 
2.4.  Duab4 Wavelets 

 
The Daubechies wavelet transforms are defined in the same way as the Haar wavelet 
transform but the main difference is in the scaling function and in wavelets. Both the 
wavelets and scaling function has longer support that is with few more values they 
produce averages and differences. There are many Daubechies transforms, but all are 
very similar. We here just concentrate on the Daub4 wavelet as it is simplest one as well 
as it is used in WOFD technique for the solution of partial differential equation. 
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The 1-level Daub4 transform is the mapping ( )11 |1 daf D→  from the function f to its 
first trend sub function a1 and first fluctuation sub function d1. Each value am of 
a1=(a1,…..aN/2) is equal to a scalar product: 1. mm Vfa = .  Similarly each value dm is equal 

to a scalar product of f with a 1-level wavelet 1
mW .  The scaling numbers [7] 

4321 ,,, αααα  and wavelet numbers 4321 ,,, ββββ are defined by  
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Using these numbers the scaling function and wavelets are defined by 
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Let us define DN to be matrix such that the rows of DN are the first-level Daub4 scaling 
function and wavelets. 
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The Equation shows that the rows of DN form an orthonormal set of vectors. That is,  DN 
is an orthogonal matrix. Comparing the definition of the matrix DN and the definition of 
the 1-level Daub4 transform we see that ( ) T

N
T

NN fDdadada =2/2/21211 ,,.......,,,, .  

3. Option pricing using FFT and Pade Approximation 
 
In this section we briefly describe two methodologies in option pricing. Experience 
acquired through the use of fast Fourier transform for option pricing and the use of Pade 
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approximation in reducing the severity of the mathematics behind the finance models for 
option pricing has been a driving force and motivation for the current study.  In other 
words, these two studies are precursors to the current study using wavelets.  While the 
FFT has limitations as mentioned before but could be easy to understand, limitations of 
the use of Pade scheme stems from the requirement of fundamental mathematical 
knowledge on the approximation theory, which may not be that easy for a finance 
practitioner.  Hence we resort to the wavelet transform in this study.  However, we 
present some fundamental background of these two methodologies  
 

3.1. Fast Fourier Transform for Option Pricing  
 
Since the sine and cosine functions used as the bases in Fourier analysis are very smooth 
(infinitely differentiable) and very broad (nonzero almost everywhere on the real line), 
they are not very effective for representing functions that change abruptly (jumps) or 
have highly localized support (diffusive). Moreover, the approximation error is generally 
large due to truncation of Fourier expansion.  However, in one of the recent studies [13], 
this truncation error is avoided to a large extent. The computational cost of longer Fourier 
expansion is handled by developing a parallel algorithm for the study.    
 
Fast Fourier Transform (FFT) has been used in many scientific and engineering 
applications. In the recent study [13], the FFT has been applied for a novel application in 
finance. Based on a previous study [14] the authors have improved a mathematical model 
of Fourier transform technique proposed in [15] for pricing financial derivatives so as to 
help design an effective and efficient parallel algorithm.  They have then developed a 
new parallel algorithm for FFT using a swapping technique that exploits data locality 
[13]. They have also analyzed their algorithm theoretically and have reported the 
significance of the new algorithm. This algorithm was implemented on a 20 node 
SunFire-6800 high performance computing system and compared the new algorithm with 
the traditional Cooley-Tukey [16] FFT algorithm both as stand alone comparison of the 
performance and in relation to our theoretical analysis and showed higher efficiency of 
the new algorithm.  The computation of the longer Fourier expansion not only reduces 
the error bounds inherent with Fourier transform but use high performance algorithm 
reduces the time required to do the computation to a very large extent.  
 

3.2. Pade Approximation  
 
Option pricing is one of the prominent and challenging problems in computational 
finance.  Various explicit and implicit schemes were developed for the option pricing 
problem. Explicit methods usually need less computation because it does not entail 
solving a set of linear equations at each time step. Implicit methods, on the other hand, 
have better stability and convergence properties but are computationally more 
demanding. Many of the schemes used in finance are first order in time.  Courtedon [17] 
developed a second order accurate finite difference method for valuing options. For 
simplest problems, one can generally transform the Black-Scholes model to the simple 
heat equation for which well developed solution schemes are available. Mayo [18] 
developed a fourth order method in the log of asset prices to evaluate American options.  
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The readers are directed to the book [19] for further information on finite-differencing for 
financial derivatives.    
 
In general, it is often difficult to reduce the mathematical severity of the finance model to 
a simpler form.  Towards this perspective, a recent study [20] has developed a second 
order L0 stable discrete parallel algorithm  using Pade approximation for experimentation 
towards high performance architectures.  This algorithm is suitable for more complicated 
option pricing problems although in [20, 21] the authors have applied to the Black-
Scholes model. For simulation purposes, the authors have implemented this algorithm 
and evaluated the European options.  Numerical results are compared with those obtained 
using other commonly used numerical methods and shown that the new algorithm is 
robust and efficient than the traditional schemes.  
 
A popular finite-difference method for solving PDEs is the Crank-Nicholson method 
which is based on (1,1)  Pade approximation.  Higher order Pade approximation gives 
higher accuracy in time. However, this could lead to higher computational complexity.  
Therefore, a balance of accuracy and available resources dictated our 
selection of (2,0)  Pade to illustrate the higher order finite difference method in solving 
the option pricing problems. This is a new contribution in the use of Pade approximation 
to the field of computational finance in [20]. Moreover, the (2,0)  method is 0L -stable, 

and hence it has better stability than the  Crank-Nicholson scheme which is only 0A -

stable.  Moreover, with the 0L -stability, the error remains bounded, which is not 

guaranteed in 0A -stable algorithms, one of which is Crank-Nicholson scheme.  

Employing the Pade scheme to the B-S model leads to [20]  

( ) ( ) [ ( ) ( )], 0, , 2 .....
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BU t k U t BC t k C t t k k− = − − + =  
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2 2
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A

a b c

b c
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− − −

 
 
 
 
 =
 
 
 
  

, 

 

1( ) [ (0, ),0,.....0]TC t a u t=  and U is a vector of asset prices.  This discretized form of the 

Black-Scholes model can be implemented with some careful consideration on the 
parametric conditions, as described in [20].  The disadvantage of this scheme is the 
requirement of fundamental knowledge on the approximation theory.   
 

4. Wavelet Optimized Finite-Differencing 
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In this section we outline an approach to solve a type of partial differential equation with 
the aid of wavelets. This method is due to Jameson [1,2,3] and is called wavelet 
optimized finite difference (WOFD) technique. Wavelets provide a perfect mechanism 
for grid selection where sparse grids are placed in regions of the domain where the 
activities are smooth (for example in a fluid mechanics problem, where flow is smooth; 
or  in an option pricing problem the underlying asset price behave smoothly)  and fine 
grids are placed in regions of the domain where the activities are chaotic (for example, in 
fluid mechanics problem, flow features are rough or perhaps highly oscillatory; or in 
option pricing problem with high frequency underlying asset price behavior).   In other 
words, if a portion of the computational domain of an option pricing problem where asset 
price behavior is composed of large smooth features, then a high order low grid point 
density is optimal.  If another portion of the same option pricing problem is composed of 
high frequency features, then optimality is obtained by increasing the density of the grid 
points and decreasing the order. Before describing the wavelet optimized finite-
differencing scheme we describe two other differencing techniques based on interpolation 
and finite-differencing, which lays foundation for the focus of the current study.  
 

4.1. Generating Difference Equation: Interpolation 
 

For a vector f of N numbers, we can get a better approximation of the derivative f’ at ith 
point if there are more elements around the ith  point of f. Common finite difference 
formulas are found by fitting an algebraic polynomial of degree q locally around the ith 
point of a vector f of evenly spaced elements to obtain difference approximations of 
accuracy q-1. Interpolations with algebraic polynomials are probably the most common 
and popular way to generate differencing coefficients. One simply fits the polynomial to 
the data, followed by differentiation of the polynomial, and finally one evaluates the 
polynomial at the point of interest. The well known Lagrange interpolation formula [11] 
for algebraic interpolation is 

)().(.......)().()().()( ,1,10,0 xLxfxLxfxLxfxP nnnnn +++=  
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for each k=0,1,…..,n.   Differentiation of the above equation d times yields 
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We are interested here with the first and second order derivatives. It can be easily shown 
that the first and second order derivatives can be found by the following equation. 

∏

∏∑

≠=

≠=≠=

−

−
==

n

kii
ik

n

lkmm
m

n

kll
knkn

xx

xx

xL
dx

d
xL

,0

,,0,0
,

1
,

)(

)(

)()(  



 9

∏

∑ ∑ ∏

≠=

≠= ≠= ≠=

−

−
==

n

kii
ik

n

kll

n

lkmm

n

mlknn
n

knkn

xx

xx

xL
dx

d
xL

,0

,0 ,,0 ,,,0
.,2

2
2

,

)(

)(

)()(  

 
4.2.  Generating  Difference Equation: finite-differencing 

 
We describe the discretization using finite-differencing here following the steps 

reported in [21].  Consider the B-S model 
2 2 2

2
0

2

u S u u
rs ru

t S S

σ∂ ∂ ∂+ + − =
∂ ∂ ∂

 where u is the 

option price, t is time, σ is volatility, S is the asset price, and r is the interest rate. By 
changing the variables, we can reduce the above B-S equation to the diffusion equation.  
The B-S equation is discretized as follows: A finite number of equally spaced time steps 
between the current date (t = 0) and the maturity date of the option, (t = T) are chosen. 
That is,  /t T N∆ =   and the total of (N + 1) times are considered. Similarly, a finite 
number of equally spaced asset prices ( jN ) are also chosen. We suppose that  maxS  is the 

maximum price an asset can reach. We define max / 2 jS S N∆ =   and consider a total of 

2 1jN +   asset prices including the current asset price. By the above discretization, a grid 

consisting of a total of ( 1)(2 1)jN N+ +  points can be constructed [21] . The grid point 

( , )i j   corresponds to time i t∆   and price j S∆ . The variable, ( , )u i j  refers to the value of 
the option at the grid point ( , )i j . The accuracy of the original system will be dictated by 

the convective term 
u

S

∂
∂

  rather than the diffusion term  
2

2

u

S

∂
∂

.  Therefore, central-

differencing for the convection term and forward or backward-differencing for the 
diffusion term would be sufficient. However, if central differencing is applied to the 
diffusion term as well, the additional cost incurred due to central-differencing could be 
recovered with the multithreaded implementation of the algorithm [21].  The solution 
scheme is marched in the time direction until it reaches a steady state.  The computed 
values of the layer (c-1) are used to calculate the values of layer c, the number of 
computational layers depend on the relative error. The value ,

c
i ju   denotes the option 

value at ( , )i j  grid point in   thc  computational time layer. To compute the option values 

at the  thc   layer we use the values from the   ( 1)thc −  layer, which can be expressed as 
1 1 1

, 1, 1 1, 1, 1(1 2 )c c c c
i j i j i j i ju u u uρ ρ ρ− − −

+ − + + += + − + .   Here 2/l hρ = , where l denotes time stepτ  and 

h denotes space step x. If τ   is from 0 to T and x is from  minx  to  maxx , then N l T× =  

and min max2 jN h x x× = − . Therefore, the terminal condition  t T=  is reformed to the 

initial condition 0τ = . The relative err is calculated as 1
, ,
c c
i j i jerr u u −= − . The computation 

is stopped once the err falls below a certain preset threshold value.   
 
We employ similar steps in wavelet assisted discretization of the transformed Black-
Scholes equation.  
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4.3. Grid Generation with Wavelets 

 
WOFD technique applies finite difference on a grid which is defined by the magnitude of 
wavelet coefficients at various scales. That is wavelet can detect oscillations in a function 
at any location and scale. The function f(x) may be decomposed into a set of wavelet 
coefficients that depend on two parameters, one for location and one for scale, say j

kd , 

where k is the location parameter and j is the scale parameter. For example, if coefficient  
,2

5 ε>d  where ε  is a user-defined sensitivity threshold, then one can add a grid point at 

location 20x , since the wavelet coefficients at scale j=2 represent local high frequencies 

in the physical space at scale ,4 x∆  i.e., 204*5 xx =∆ . ix  represents the numerical value 

of the ith grid point. One can add more grid points in any region around large wavelet 
coefficients, and it is more efficient to do so.  
 

4.4.  Burgers equation 
 
We now focus on Burgers equation which is frequently used to study adaptive methods 
because it models formation of shocks. Shocks in a physical phenomenon such as fluid 
mechanics could be a sudden jump in the flow behavior while in a finance problem it 
would mean sudden changes in an important parameter such as the underlying asset price. 
This single equation has terms that closely duplicate the physical properties of many 
engineering problems such flow equations.  For our purpose, Burgers’ equation can be 
seen a manifestation of, for example,   Black-Scholes model.  That is, the model equation 
should have a convective term, a diffusive term, and a time-dependent term (or reaction 
term). Further discussions in this section are based on the Burgers equation, a convective, 
diffusive, reactive equation.  Black-Scholes model can be transformed into the Burgers’ 
equation.  Burgers (1948) introduced a simple nonlinear equation that meets these 
requirements [8] 
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∂
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The equation can be discretized and we get the following system  
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We can use a standard finite difference technique such as Crank-Nicholson [22] for time 
stepping, though Crank-Nicholson is an A0 stable algorithm as mentioned before.  
 
However, in the current study since we are optimizing the finite-difference by wavelet 
transform, we presume that the Crank-Nicholson scheme would be sufficient enough in 
the academic setting.  Moreover, we presume that applying Pade approximation to 
equation (2) would not be difficult.  

 
Applying the Crank-Nicholson scheme to eq.(2) can be written as:  
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and we obtain time-stepping procedure 
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4.5.  Algorithm for WOFD Method 

 
1. Initialize model parameters such as such as domain size (L=1), grid size             

(N=210), diffusion parameter ( )002.0=µ  time stepping (dt=0.0009), initial time 
(time=0). 

2. Initialize N sample points (0:h:L-h), h=L/N. Initialize u=sin(2*pi*x) 
3. Generate Finite Difference (FD) operators. With this finite difference operators 

and Crank-Nicholson matrices construct Matrices A and B. Make LU 
decomposition of A. 

4. Reconstruct u on the finest grid with the Lagrange Interpolation. 
5. Define new grid by wavelet methods 
6. Restrict u to new grid  (depending on the new points or deleted points selected 

by wavelet grid evaluator) 
7. Update finite difference operators according to new grid. 
8. Solve the values of ui+1. If we  LU decompose A then the solution of the 

restricted grid can be found  
temp= B*ui –dt( u*µ )*D2 

LUui+1=temp 
Uui+1=L\temp 
ui+1=U\L\temp 
 

9. Advance time step time=time+dt 
10. Do step 3 -9 until time > 0.5. 
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5.  Conclusions  
 
Implementation of the above algorithm is still going on and the preliminary result from 
solution of the Burgers equation is encouraging.  However, at present we do not have 
substantial results to report.  

In this paper we have attempted to apply the wavelet multi-resolution analysis to solve a 
partial differential equation. For this purpose a well known partial equation known as 
Burger Equation was chosen and applied wavelet optimized finite difference technique 
for the solution of this model equation. The main goal for this study is to overcome the 
difficulties encountered in the fast Fourier transform technique and the classical Pade 
approximation technique in solving the option pricing problem and to discover the 
possibility of application of WOFD technique. We are encouraged from our current 
theoretical endeavor so far and expect to get substantial results in the near future. 
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