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1 Introduction

Advances in computing power have opened the way for the use of intensive computational tech-

niques to solve and estimate nonlinear models, specifically those arising from nonlinear panel data

such as Probit and Tobit. These models are very valuable tools in the applied economic research. In

these models, sometimes the dependent variable is dichotomous, reflecting the decision whether to

purchase or not a durable good, participate or not into the labour force. In other circumstances the

decisions are related to statements such as “whether or not, and if so how much”. This case arises in

many investment decisions, like the construction of a new plant, and money market decisions, like

the borrowing requirements of individual banks from the central bank. For these models, allowing

a flexible specification for the correlation induced by firm/individual heterogeneity leads to models

involving T-variate multiple integration whose numerical approximation can sometimes be very

poor. In these cases, when the value of T (number of periods for each individual) is greater than 4

or 5, maximum-likelihood estimation can be cumbersome if not analytically intractable. Different

solutions are offered based variously on integral approximation through simulation, some form of

Generalized Method of Moments (GMM), or Markov Chain Monte Carlo (MCMC) methods. This

paper compares the outcomes of those methods available in standard econometric packages, provid-

ing illustrations that compare prepackaged algorithms and a MCMC Gibbs sampler for nonlinear

panel data. Using Chib (1992) and Chib and Carlin (1999), I derive a sampler for Probit/Tobit

panel models and provide easy-to-use software for implementing the Gibbs sampler with data aug-

mentation in panel data with discrete/limited dependent variable. We show that, when dealing

with a large dataset and in presence of serial correlation, MCMC methods can fill the gap present

in the procedures provided by standard econometric packages.
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The structure of the paper is as follows. Section 2 presents the panel Tobit model under

investigation. In Section 3 it is presented the Gibbs sampling methodology along with the data

augmentation process. Section 4 shows an empirical application from the U.S. the labour market.

Section 5 and 6 present two different Monte Carlo exercises with independent and serially correlated

residuals. Finally section 7 draws some conclusions and lines of evolution.

2 The Panel Tobit Model

Panel datasets provide a very rich source of information for empirical economists, providing the

scope to control for individual heterogeneity. While there is a large literature on linear panel

data models, less is known about limited dependent variable models. This is especially true for

computational comparisons among different methods.

Extending the work of Chib (1992) and Contoyannis et al. (2002) this paper is concerned

with the Bayes estimation in the panel Tobit model. The purpose of the paper is three-fold: first

to develop an easy-to-use Bayesian estimation approach, second to compare the efficacy of this

method relative to others available in some econometric packages and finally to check its numerical

features in presence serial correlation in the residuals.

I am concerned with a standard Panel data Tobit model:

y∗it = β′xit + uit, i = 1, 2, . . . , N, t = 1, 2, . . . , Ti, (2.1)

uit = νi + εit, (νi ∼ NID(0, σ2
ν)), (εit ∼ NID(0, σ2

ε )), (2.2)

where the observed variables are
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yit =


y∗it if y∗it > 0

0 otherwise
. (2.3)

In general the common error term uit in equation (2.2) can be freely correlated over time. Here

I consider the error-components model that splits the error uit into a time-invariant individual

random effect (RE), νi and a time-varying idiosyncratic random error, εit.

In this case, assuming independence between the ν’s and the ε’s, letting dit = 1 for uncensored

observations and dit = 0 for censored observations, the likelihood contribution for each individual,

marginalized with respect to the random effect νi, is

lit =
∫ ∞

−∞

[
1
σε

φ

(
yit − β′xit − νi

σε

)]dit

·
[
Φ

(−β′xit − νi

σε

)](1−dit)

f(νi, σi)dνi , (2.4)

where φ(·) and Φ(·) are, respectively, the probability density function (pdf) and the cumulative

distribution function (cdf) of the standard normal distribution, f(νi, σi) is the normal pdf with

mean νi and standard deviation σi.

In general, for Ti observations belonging to individual i, one has the following likelihood con-

tribution

Li =
∫ ∞

−∞


t=Ti∏
t=1

[
1
σε

φ

(
yit − β′xit − νi

σε

)]dit [
Φ

(−β′xit − νi

σε

)](1−dit)
 f(νi, σi)dνi. (2.5)

The likelihood function for the whole sample is the product of the contribution Li over the N

individuals, and the log-likelihood is

L =
N∑

i=1

ln(Li), (2.6)

from this expression one sees that the log likelihood in equation (2.6) does not collapse in a

sum, as it would in the case of a time-series or a simple cross-sectional Tobit model, because the
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likelihood function for individual i is an integral of a product instead of just a product and the log

operator cannot be carried through the integral sign.

The situation gets even more complex in presence of serial correlation in the disturbance εit

for each individual. In this case, the lack of independence among the observations prevents the

possibility of factoring out the likelihood contribution of the Ti periods for individual i and we end

up with a T-dimensional integral that makes classical estimation methods numerically infeasible

when the number of time periods is more than three or four.

3 Gibbs sampling with data augmentation

The Gibbs sampler is a Monte Carlo Markov Chain method for sampling from probability densities

that are analytically intractable (see for example (see for example Chib (2001) or Casella and

George (1992) for an introductory presentation).

This method, also called alternating conditional sampling, has made possible the Bayesian ap-

proach to the estimation of nonlinear panel-data models providing accurate finite-sample estimates.

Gibbs sampling is based on a preliminary splitting of the parameter vector into s groups,

θ = (θ1, . . . , θs). In our panel Tobit model the parameter vector is already subdivided according to

θ = (β, σε, σν). Then one can obtain draws from the posterior distribution of the parameter vector

conditional on the data by means of an iterative sampling scheme. Each one of the draw is built

up by drawing each group of parameters from its own probability distribution conditional on the

data and the rest of the other parameters. In our case we have the following procedure:

1) pick arbitrary initial values for Θ0 = β0, σ0
ε , σ

0
ν (one possibility could be the GLS random

effects even if biased and inconsistent),
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2) draw βk from the distribution π(β|y,x, σk−1
ε , σk−1

ν ),

3) draw σk
ε from the distribution π(σε|y,x, βk, σk−1

ν ),

4) draw σk
ν from the distribution π(σν |y,x, βk, σk

ε ).

Under general assumptions, after a certain number of iterations, this process produces samples from

the desired posterior distribution. Then point estimates and confidence intervals are computed as

averages from the generated sample.

To implement the sampler one needs to specify the different conditional pdf’s. For each one

of the three groups of parameters I use non-informative conjugate priors for simplifying all the

computations. That is, I adopt the following distributions:

β ∼ N (β0,Ω0) , (3.7)

σ2
ν ∼ IG(η0, γ0), (3.8)

σ2
ε ∼ IG(ν0, δ0), (3.9)

here all the variables indexed by 0 are the hyperparametes of our distributions, N (µ,Σ) is

the multivariate Normal distribution with mean vector µ and variance-covariance matrix Σ, and

IG(ν, δ) is the inverse Gamma distribution with shape ν and scale δ.

A peculiar feature of nonlinear panel-data models such as the Tobit, is the presence of unob-

servable latent data that would make the previous sampling loop very complex. Thus, following

the suggestion of Tanner and Wong (1987), adopted by Chib (1992) in a cross-sectional context,

I enrich the Gibbs sampler by means of the data-augmentation strategy. Given the assumptions

underlying the model, the distributions of the latent variables are truncated normals. So I can

augment the dataset with an estimate for the censored variables. Using the augmented dataset
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renders this problem a classic linear panel-data model.

The Gibbs sampler as previously described has been modified by adding at the beginning a

step for sampling the censored variables. For example, in case (2.3), I have to simulate a random

sample from a truncated normal distribution with support (−∞, 0) and pdf given by

y∗it ∼
N (x′itβ + νi, σ

2
ν + σ2

ε )

1− Φ
(

x′
itβ√

σ2
ν+σ2

ε

) . (3.10)

To sample from this truncated normal, I use the one-for-one draw technique described in Hajivas-

siliou and McFadden (1990) that is much more cost effective than the acceptance-rejection method.

Here, then, is a complete description of the algorithm for estimating the random-effects Tobit

model:

1) run a GLS estimation with the original truncated data to fix the initial values for β0, σ0
ε , σ0

ν ;

2) sample the censored variables from the pdf (3.10) to build the augmented dataset;

3) run a GLS estimation on the panel with the augmented dataset for computing new mean

values for β, σε, σν ;

4) draw βk from the distribution π(β|y,x, σk−1
ε , σk−1

ν ) = N (β,Ω);

5) estimate the individual effects using the residuals from the previous step ;

6) draw σk
ν from the distribution π(σν |y,x, βk−1, σk−1

ε ) = IG (ν0, δ0);

7) draw σk
ε from the distribution π(σε|y,x, βk−1, σk−1

ν ) = IG (η0, γ0).

The implementation of this sampler is written in the language and computing framework provided

by the Modeleasy+ software.
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4 The empirical application

To illustrate the behaviour of this sampler, I use a dataset available from the web site of the STATA

package 1. This is an unbalanced panel dataset taken from the National Longitudinal Survey on

economic and demographic variables. It includes 4140 women of age comprised between 14 and 46

years leaving 19151 observations once those with at least one missing values have been removed.

Each individual is observed on a time interval spanning from 1 to 12 time periods starting from

1968 (the average is 4.6 periods).

The application studies the determinants of wages. Using the example provided in the STATA

manual, I fit a random-effects Tobit model on the log of wages against a set comprising the following

explanatory variables:

1) union, dummy variable equal to 1 if the individual belongs to a workers’ union;

2) age, the individual’s age ;

3) grade, the years of schooling completed;

4) not smsa, dummy variable equal to 1 if the individual does not live in a standard metropoli-

tan statistical area (smsa);

5) south, dummy variable equal to 1 if the individual lives in the south;

6) southXt, interaction-term variable indicating how long the individual has lived in the south;

7) occ cod, a categorical variable indicating the occupational code of the individual (larger

numbers mean a lower rank);
1The dataset nlswork.dta is downloadable from the URL http://www.stata-press.com/data/r8
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This model has been estimated using the random-effects methods in LIMDEP and STATA. Even

if both package use the Maximum Likelihood procedure with the Hermite quadrature formulae, I

got results that are numerically quite different. The Gibbs sampler was run for 500, 1000, 1500

iterations, the first 10% iterations are discarded as a burn-in phase. I chose to present the outcome

of the 1000 iteration sampler. The results are summarized in the following table:

Table 1: Parameter Estimates for the nls dataset (19151 observations and 4140 individuals)

LIMDEP STATA Gibbs Sampler

const β0 .75297 (.02649) .56572 (.03308) .63202(.02953) [-.28331]

union β1 .15946 (.00533) .15449 (.00698) .14632 (.00684) [.36156]

age β2 .00785 (.00038) .00871(.00054) .00788 (.00005) [.82761]

grade β3 .06653 (.00179) .07803 (.00216) .07332 (.00191) [.08662]

nots msa β4 -.13871 (.00609) -.12669 (.00898) -.12408 (.00843) [-.43407]

south β5 -.12874 (.00887) -.11686 (.01224) -.11764 (.01133) [-.32051

southxt β6 .00263 (.00060) .00309 (.00084) .00358 (.00008) [.74192]

occ code β7 -.01952 (.00078) -.01829 (.00111) -.01749 (.00106) [-1.4917]

σε .2542 (.0010) .2483 (.0018) .2378 (.00010)

σν .3341 (.0039) .2911 (.0048) .2582 (.00219)

Notes: Standard errors in parentheses, Convegence Diagnostic in brackets

The similarity between the estimates provided by the Gibbs Sampler and those of LIMDEP

and STATA is remarkable. Here it is important to highlight the simplicity of the sampler with

respect to the classical algorithms, including quadrature approximations and maximization.
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5 Monte Carlo Simulation

Starting from the previous results, I wish to establish a kind of a benchmark. I generate a dataset

according to the following process (see Harris et al (2000)) :

y∗it = β0 + β1x1it + β2x2i + νi + εit νi ∼ NID(0, 1.0), εit ∼ NID(0, 1.0), (5.11)

where the mapping from the latent variable to the observed variable is

yit =


y∗it if y∗it > 0

0 otherwise
. (5.12)

The values for the three β’s are 0.5, −1, and 1 respectively. These values result in a roughly 50%

split between censored and non-censored variables.

Values of xit follow an auto-regressive process given by

x1it = 0.1 · trend + 0.5 · x1i,t−1 + uit, (5.13)

where uit ∼ U(−.5, .5).

The time-invariant variable x2i is generated according to

x2i =


0 if 0 ≤ x∗2i < 0.5

1 if 0.5 ≤ x∗2i ≤ 1
, (5.14)

where the latent variable is generated according to x∗2i ∼ U(0, 1).

The individual specific effects are generated according to νi ∼ NID(0, σ2
ν), where σν is specified

as 1 and 2 to provide two values of correlation over time. For the idiosyncratic random error term

I choose εit ∼ NID(0, 1). I carry out the simulation using a panel of 100 and 200 individuals with

3, 6, and 12 time periods.

From the following tables one can observe that, for small T the Maximum Likelihood method

outperforms the Gibbs sampler. When T is increased, the Gibbs sampler produces estimates with
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standard errors smaller than those achieved by Maximum Likelihood. LIMDEP is the package that

gives the smallest bias in this experiment. Further investigation should be done to pin down the

reason of that.

These results seem to indicate that the MCMC method may be preferred when T is large.
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Table 2: Monte Carlo Parameter Estimates for T= 3

true parameters N = 100 N = 200

σ2
ν 1 2 1 2

β0 = .5 .49251 .50126 .49963 .50492
(.17447) (.40942) (.13044) (.31964)

LIMDEP β1 = −1 -1.00833 -1.00189 -1.0005 -.99568
(.15673) (.21836) (.12094) (.16022)

β2 = 1 1.00614 1.02014 .99512 .99185
(.23524) (.57546) (.17795) (.43363)

β0 = .5 .50665 .58218 .48599 .53866
(.18361) (.43688) (.12084) (.30257)

STATA β1 = −1 -.99535 -.99622 -1.008711 -1.00074
( .17466) (.22397) (.12614) (.15656)

β2 = 1 .98447 .90551 .99246 .972846
(.23816) (.54675) (.16304) (.41163)

β0 = .5 .34488 .25174 .40712 .27154
( .19324) (.3223) ( .12252) (.23569)

Gibbs Sampler β1 = −1 -1.4212 -1.5717 -1.0413 -1.1164
( .17854) (.26103) (.10936) (.1666)

β2 = 1 1.4782 1.3316 1.2843 1.3979
( .25057) (.42141) (.1541) (.29773)

Notes: Average parameter estimates over 1000 Monte Carlo replications with Mean Squared errors in

parentheses
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Table 3: Monte Carlo Parameter Estimates for T= 6

true parameters N = 100 N = 200

σ2
ν 1 2 1 2

β0 = .5 .50077 .60865 .50191 .56321
(.15350) (.45406) (.11994) (.34987)

LIMDEP β1 = −1 -1.00293 -1.0009 -1.00338 -.99789
(.10386) (.12187) (.07276) (.08684)

β2 = 1 1.00381 .95696 1.0005 .98633
(.23508) (.61510) (.16837) (.49703)

β0 = .5 .48925 .73507 .50136 .71314
( .17993) (.51041) (.12651) (.43339)

STATA β1 = −1 -.99317 -.99398 -.98986 -.99998
( .10384) (.12044) (.07018) (.09130)

β2 = 1 1.0046 .76978 .98526 .82756
(.23267) (.65634) (.16087) (.53801)

β0 = .5 .44098 .22519 .46997 .31492
(.16824) (.3081) (.11271) (.21301)

Gibbs Sampler β1 = −1 -1.0914 -1.0801 -.94969 -.94218
(.10101) (.14672) (.07052) (.09632)

β2 = 1 1.2695 1.1548 1.1752 1.2777
(.22202) (.39303) (.14297) (.28197)

Notes: Average parameter estimates over 1000 Monte Carlo replications with Mean Squared errors in

parentheses
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Table 4: Monte Carlo Parameter Estimates for T= 12

true parameters N = 100 N = 200

σ2
ν 1 2 1 2

β0 = .5 .49836 .51373 .50552 .55766
(.18473) (.42772) ( .13403) ( .33558)

LIMDEP β1 = −1 -1.00137 -1.0001 -1.00004 -.99499
(.05735) (.06967) (.0403) (.04589)

β2 = 1 .99662 .88625 .98522 .86962
(.26741) (.55242) (.20670) (.47691)

β0 = .5 .51550 .84474 .50769 .74664
( .21648) (.49741) (.20163) (.47334)

STATA β1 = −1 -.99929 -.99316 -.99649 -.99346
(.051797) (.06029) (.04159) (.04356)

β2 = 1 .97826 .65932 1.02023 .78933
(.27569) (.63651) (.22279) (.58367)

β0 = .5 .50481 .24922 .51361 .37178
( .1593) (.31227) (.10384) (.20215)

Gibbs Sampler β1 = −1 -1.1088 -1.0583 -.99628 -.97195
(.06301) (.092724) ( .04319) (.05606)

β2 = 1 1.1271 1.0106 1.0897 1.1451
( .1995) (.39059) ( .13083) (.26029)

Notes: Average parameter estimates over 1000 Monte Carlo replications with Mean Squared errors in

parentheses
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6 Monte Carlo Simulation with serial correlation

I extended the framework of the previous Monte Carlo set-up by introducing an autoregressive

term in the error structure of the disturbance.

This time in the equation (2.2) the error term will be characterized by the following structure:

uit = νi + εit, (νi ∼ NID(0, σ2
ν), εit = ρεi,t−1 + δit, δit ∼ NID(0, σ2

δ )), (6.15)

With this error structure the variance-covariance matrix of the disturbances for will imply

the need of a T-variate integral for evaluating the likelihood of the individual i, thus rendering

infeasible classical estimation methods.

Therefore, I have modified my original Gibbs sampler for taking into account the presence of

autocorrelation in the disturbance term. This problem has been considered in the framework of

panel probit model in Contoyannis et al. 2002). In this case it is not straighforward to draw sample

from the distribution of the autocorrelation coefficients ρ conditional to the other parameters of

the model.

Sampling for ρ has been carried out by inserting a Metropolis-Hastings step within the Gibbs

sampler (see Chib and Greenberg (1995), Chib (1993)) . In the panel tobit model with serial

correlation the censored observations will be transformed according to the estimated variance-

covariance matrix. After the introduction of this feature this sampler has been used for a Monte

Carlo experiment by introducing a serial correlatin of order one in the same model described in

5.12 in which the idiosyncratic shock is described by equation (6.15). Four examples have been

considered by using two different values of first order autocorrelation ρ = .3 and ρ = .5 and two

different level of censoring 20% and 50%.

For this Monte Carlo experiment, because of the lack of a benchmark provided by the numerical

14



results of a commercial package, we need to find some accuracy measures and convergence checks.

The Gibbs sampler, and in general, all the MCMC methods produce sequences that are neither

independent nor identically distributed. Therefore particular care has to be exerted in deriving

asymptotic results. In this work we have adopted the approach suggested in Geweke (1992) where

the Numerical Standard Error (henceforth NSE) and the Convergence Diagnostic (henceforthCD)

have been put forward as a computationally efficient mean for dealing with numerical accuracy and

convergence checks in the MCMC framework.

For our purposes it is enough to say that the NSE is given by the square root of the spectral

density of the sequence of draws, while assuming θ is a sequence of draws for a given parameter

CD = (θ̄a − θ̄b)/
√

[NSE2
a + NSE2

b ] where θ̄a and θ̄b are, respectively, the average of the first 10%

and the last 50% of the whole sequence of draws, the denominator of CD is given by the total

NSE of the two subsequences. The CD statistics is asymptotically distributed as a standard normal

distribution and therefore absolute values greater than 3 are a clear symptom of lack of convergence.

The preliminary results are shown in the following tables.
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Table 5: Monte Carlo Parameter Estimates for a censoring level = 20%

true parameters N = 100 N = 200

β0 = .5 .48963 .49961
( .06802) (.04673)

NSE ( .00214) (.00147)
CD ( .07846) (.66355)

β1 = −1 -.96141 -.97946
Gibbs Sampler ( .04061) (.02899)

NSE ( .00128) (.00085)
CD ( .57035) (-2.2845)

β2 = 1 .71648 .98482
( .08107) (.05734)

NSE ( .00257) (.00178)
CD ( -.04088) (.80533)

ρ = .2 .1043 .10816
( .03429) (.02548)

NSE ( .00110) (.00069)

Table 6: Monte Carlo Parameter Estimates for a censoring level = 50%

true parameters N = 100 N = 200

β0 = .5 .51462 .58084
( .07841) (.05645)

NSE ( .00246) (.00171)
CD ( -2.0979) (-.24265)

β1 = −1 -.91923 -.93922
Gibbs Sampler ( .05012) (.03516)

NSE ( .00151) (.00107)
CD ( .60973) (-.19055)

β2 = 1 .63481 .87037
( .09252) (.06445)

NSE ( .00293) (.00208)
CD ( .93937) (-.26784)

ρ = .2 .07142 .08461
( .03529) (.016339)

NSE ( .00093) (.00075)

Notes: Averages over 1000 Monte Carlo replications with Mean Squared errors in parentheses, NSE is the
Numerical Standard Error, CD is the Convergence Diagnostic



Table 7: Monte Carlo Parameter Estimates for a censoring level = 20%

true parameters N = 100 N = 200

β0 = .5 .47997 .49182
( .07818) (.05622)

NSE ( .00256) (.00179)
CD ( 1.0794) (.11975)

β1 = −1 -.97775 -.99698
Gibbs Sampler ( .04302) (.03201)

NSE ( .00137) (.00102)
CD ( .15844) (-.91087)

β2 = 1 .71063 1.0114
( .09228) (.06963)

NSE ( .00293) (.00209)
CD ( -.98468) (.21645)

ρ = .5 .33332 .33404
( .03094) (.014627)

NSE ( .00106) (.00066)

Table 8: Monte Carlo Parameter Estimates for a censoring level = 50%

true parameters N = 100 N = 200

β0 = .5 .47526 .54075
( .08448) (.05894)

NSE ( .00264) (.00186)
CD ( -1.9756) (-1.427)

β1 = −1 -.92801 -.95228
Gibbs Sampler ( .05616) (.03629)

NSE ( .00167) (.00114)
CD ( .53347) (-1.2541)

β2 = 1 .66679 .92862
( .09747) (.06867)

NSE ( .00324) (.00216)
CD ( 1.7469) (1.1878)

ρ = .5 .22888 .18282
( .03349) (.00673)

NSE ( .00099) (.00023)

Notes: Averages over 1000 Monte Carlo replications with Mean Squared errors in parentheses, NSE is the
Numerical Standard Error, CD is the Convergence diagnostic



By looking at these tables we see that the coefficient estimates are very close to the correct

values while the autocorrelation coefficient shows a downward bias. The bias is increasing with

the censoring level. The numerical standard errors (NSE) seem to indicate a good accuracy of the

estimates. The Convergence Diagnostic statistics (CD) is always less than 3 in absolute value for

all the parameters. These CD values indicate that convergence of the MCMC algorithm has been

achieved. It seems that further modifications on the Metropolis-Hastings sampling procedure for

the autocorrelation coefficient could provide some improvements.

7 Concluding remarks and further research

In the paper we have compared two methods for the estimation of nonlinear panel data models. The

first method is the Classical Maximum Likelihood (ML) with quadrature for the computation of the

likelihood function. Both the LIMDEP and STATA canned procedures have been used. Moreover a

Bayesian approach based on the Gibbs sampling has been developed in the Modeleasy+ computing

environment. We have taken advantage of the data augmentation technique proposed in Tanner and

Wong (1987) for simplifying the analytics involved in the computation of the conditional posterior

pdf’s. The three procedures have been applied to a segment of the national longitudinal survey

on labour statistics. Although the parameters estimates have always the right signs there are

remarkable numerical difference among to two procedures implementing the ML with the same

quadrature formulae. Estimates from the Gibbs sampler are close to the range defined by the two

ML estimates. The Gibbs sampler is much easier than ML from the computational standpoint but

so far computing time is still something that needs some improvements.

Finally to validate the methods some Monte Carlo experiments were presented. For a given
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level of T, increasing N has produced an increased precision.

It should be remarked that when there is a more complex correlation structure in the distur-

bance, such as a first order autocorrelation, quadrature formula become cumbersome and inaccurate

making the MCMC methods simple practical solutions to the estimation problem.

In presence of serial correlation in the residuals the proposed method produced accurate es-

timates for the covariate coefficients while a certain bias seems affecting the estimation of the

autocorrelation coefficient. This bias increases with the level of censoring and the value of the

autocorrelation coefficient. This result is coherent with Zangari and Tsurumi (1996). A thorough

set of convergence diagnostics for the posterior simulator will be inserted in a next release of the

code. A future line of study should explore the behaviour of the method against actual empirical

applications.
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