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ABSTRACT 

We develop an estimated time-series model of revisions of U.S. payroll 
employment in order to obtain more accurate filtered estimates of the 
"true" or underlying condition of U.S. employment.  Our estimates of 
"true" employment are filtered, according to an estimated signal-plus-
noise (S+N) model, so as to remove serially correlated observation 
errors. We are motivated by the perception that raw unfiltered 
employment estimates based on payroll surveys often overestimate true 
employment in business-cycle downturns and underestimate it in upturns. 
Our analysis and estimates operate in real time in the sense that they 
explicitly account for the timing of initial data releases and revisions 
and do not simply consider a historical sample of the most revised data 
as is often done. We view each datum as the sum of a true signal value 
plus an observation error or noise. Accordingly, we estimate a S+N time-
series model, in which each true signal value in the sample is observed 
multiple times as an initial release followed by revisions, such that 
the signal and noises are generated by separate autoregressive 
processes. The signal follows a univariate process and the noises follow 
a vector process whose dimension depends on the number of vintages of 
observations in the sample. We use payroll employment data from 1969-
2003 to estimate by maximum likelihood an S+N model and use the 
estimated model to obtain filtered estimates of true employment for each 
period in the sample. Intuitively, the S+N model structure is 
sufficiently restrictive to allow us to exploit own- and cross-serial 
correlations in the data to estimate separate models of the signal and 
the noises and, thereby, to obtain more accurate estimates of true 
employment than are indicated directly by raw and unfiltered data. 
 
JEL Classification: E44, C53 
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*Opinions expressed herein are ours, not necessarily those of the 
Federal Reserve Bank of Atlanta, Federal Reserve System, or Bureau of 
Labor Statistics.  We thank Dean Croushore and the Federal Reserve Bank 
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comments.
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1. Introduction. 
 

1.1. Motivation. 

 

Business journalists as well as monetary and fiscal policymakers pay 

close attention to the condition of the labor market, a key indicator of 

economic activity, which gets special attention during business cycle 

transition periods. In the United States, the Bureau of Labor Statistics 

(BLS) produces aggregate labor market indicators from two different 

sources of labor market information: the household survey, the source 

data for the unemployment rate, and the establishment survey, the source 

data for the payroll employment statistics. Historically, business 

analysts have utilized both aggregate labor market indicators to infer the 

most recent status of the job market. In economic downturns and 

recoveries, however, the weaknesses of each series are magnified and 

their signals of whether employment is growing or shrinking can 

conflict. Recent research by Kitchen (2003) questions the adequacy of the 

payroll employment data as an effective real-time measure of true 

employment during business-cycle transitions. He suggests that processing 

and reporting delays in released payroll data could introduce biases that 

would thereby hide changes in “true” labor market conditions, relative to 

timely releases of other data series that are more quickly available. 

 We study whether information concealed in payroll employment 

revisions could be exploited to refine real-time payroll employment 

estimates. We apply the established statistical technique of estimating a 

signal from noisy observations, such that both the signal and the noises 

are assumed to be generated by estimated autoregressive processes (cf., 

Hillmer and Tiao, 1984). In particular, we consider the estimated signal 

as representing an estimate of true employment, which is observed noisily 

in real time in an initial release followed by revisions. New and revised 

payroll information is combined in an estimated time-series model to 

obtain a presumably more accurate estimate of the signal or true value of 

aggregate employment. The method should be especially useful in business-

cycle transitions, such as in the past two cycles, during which unfiltered 
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estimates of employment have been considered poor indicators of true 

employment. 

 The paper first outlines the elements of the payroll employment 

survey and the institutional explanation for the lag in final payroll 

reports. Next, we illustrate graphically under and over estimation of 

payroll employment during recession and recovery periods, along with the 

magnitude and variability in the revision process. We show that most 

data revisions occur within 24 months of a benchmark revision, although 

benchmark revisions following a decadal census can extend beyond 24 

months. The graphs show that the signal from revisions may be 

particularly important during business cycle contractions. Then, we 

state a Kalman filtering based method for extracting information from 

the historical revisions. The resulting estimated state-space model 

produces time-series estimates of the underlying employment conditions, 

which are measured imperfectly in real time by the payroll employment 

survey. To date, this approach offers signal estimates of true 

employment with accuracy comparable to real-time household data. 

Currently, the model is set up to only to handle month-to-month 

revisions of the Current Employment Statistics (CES) and does not yet 

handle the annual benchmark revisions. In future work, we plan also to 

model benchmark revisions. In such an extension, we could possibly also 

incorporate other real-time data series, like household employment, into 

the state-space model to enhance the real-time signal for the employment 

market. 

 

1.2. Background. 

 

Kitchen (2003) suggests that real-time initial releases of household 

survey employment provide a noisy yet reliable signal about underlying 

labor market conditions. For example, his chart 3e shows that the real 

time household employment measure matches the most recently revised 

payroll data for 1990-93, the present best estimate of true employment. In 

contrast, real-time payroll employment data are much different from final 

revised payroll employment data. Also, revisions in payroll employment 
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reflect notable fluctuations in perceived employment conditions from 

successive benchmark revisions. 

 Accepting Kitchen’s conclusion, one might conclude that the 

household survey produces the more reliable real time signals of current 

and recent employment conditions. Nevertheless, released BLS payroll data 

aims to be the best gauge of the employment market. BLS payroll employment 

data has other properties, such as a larger sample and eventual 

benchmarking to a population estimate, that make it the preferred 

indicator in discussions of labor market conditions. Also, there may be 

unexploited information in the serial correlations of revisions for the 

payroll employment. 

 The household employment estimate is taken from the household 

survey, a statistical sample of 50,000 households. Typically, the survey 

is revised only in terms of its level, based on the Census of Population. 

This revision does not affect the data’s turning points, a key point noted 

by Kitchen. The household survey data are used mainly to produce the 

unemployment rate and other ratios such as the labor force participation 

rate and the employment to population ratio. Nevertheless, the statistical 

sample for household employment has been used to estimate aggregate 

employment, an estimate that Kitchen considers useful, especially in 

providing a real-time signal of cyclical business cycle conditions. 

 The CES survey, typically called the payroll survey, is initially a 

random sample of firms from a population of firms registered with the 

Internal Revenue Service that pay unemployment insurance (UI). Using a 

sample of establishments to estimate the CES payroll employment allows BLS 

to produce an estimate of payroll employment that is often released with 

less than a week’s time lag. Each year, BLS releases a benchmark revision 

of payroll employment that matches population data. U.S. population data, 

collected with by State Employment Security agencies, includes about 8 

million business establishments of all registered firms and more fully 

reflects the aggregate labor market. The benchmark revision updates 

payroll employment to incorporate information on the level of the 

population in March of each year.1 

                                                           
1The payroll survey is separate from the population data. BLS uses population data to calculate 
business employment dynamics data, which emphasize the sources of changes in employment levels. 
Although attractive as population data, business employment dynamics data are released as long as three 
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 We can explain why signals from payroll employment data failed to 

describe accurately the US labor market in the early 1990s because payroll 

employment data did not account for job losses caused by establishment 

closures. After several months, BLS investigated non-reporting 

establishments.2 In addition, there was difficulty accounting for the 

level of employment increases caused by creation of new firms, i.e. births 

of firms. Although Business Employment Dynamics data for 1991-1992 are not 

easily available for verification, it has been suggested that employment 

was underestimated in the June 1993 benchmark revision because it failed 

to account sufficiently for employment created by new firms. 

 Recently, BLS attempted to overcome the inherent inability to 

account for net new firm changes in real-time by estimating a model of 

net employment changes over the past 5 years using the Business 

Employment Dynamics data. Although these methods should improve payroll 

estimates by reducing their error, it remains likely that lags in 

accounting for net changes in firms will still persist, although perhaps 

less than in the past. In effect, models of net job changes are unlikely 

to account fully for net changes in employment at turning points.3 

 The data revisions that followed the 1990-91 recession are likely to 

have reinforced the perception that raw payroll employment is an 

unreliable real-time signal of true employment during business cycle 

transitions. Figure 1 displays peak-to-peak payroll employment in the 

period after the 1990-1991 recession. The three lines report three 

different vintages of employment: May 1992, May 1993, and June 1993. The 

June 1993 vintage includes a benchmark revision that indicates that 

previously reported employment undercounted creation of new jobs. 

                                                                                                                                                                                                
quarters after payroll data are published and released. For example, although the payroll survey for 
April 2004 is available in early May 2004, at that same time the business employment dynamics data are 
available only through the second quarter of 2003. 
 

2BLS currently uses a sampling procedure to overcome this problem. The exact wording on the BLS 
website is: "Effectively, business deaths are not included in the sample-based link portion of the 
estimate, and the implicit imputation of their previous month’s employment is assumed to offset a 
portion of the employment associated with births. There is an operational advantage associated with 
this approach as well. Most firms will not report that they have gone out of business; rather, they 
simply cease reporting and are excluded from the link, as are all other non-respondents. As a 
result, extensive follow-up with monthly non-respondents to determine whether a company is out-of-
business or simply did not respond is not required." 
3Until March 26, 2003, there was no indication that net new job creation from firm births less 
deaths had changed measurably following the March 2003 benchmark revision. In addition, net changes 
in employment levels from net firm births less deaths followed a different pattern in the 1993-94 
recoveries. 
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Presumably, ex-post, the revision reduced uncertainty about the state of 

the US economy in 1991-1993. The May 1993 data incorporates a benchmark 

revision that took place in June 1992 and reflects a downward revision 

relative to May 1992 payroll employment.  Much of that downward revision 

was offset by the June 1993 benchmark revision. 

 Nevertheless, the sizes of the revisions in Figure 1 are small. Even 

revisions of 1 million jobs represent less than one percent of the 

employment levels of about 110 million persons. The purpose of this study 

is to exploit the temporal correlations of revisions in order to obtain 

more accurate employment estimates, regardless of the average sizes and 

directions of individual revisions. 

 

1.3. The Process of Revising Payroll Employment Data. 

 

As mentioned above, the revision of payroll employment has two components. 

The first revision process occurs monthly at the same frequency as the 

initial releases, consisting of correcting for the delayed responses of 

surveyed firms. The initial release of a previous month’s payroll 

employment includes information from about 65 percent of surveyed firms. 

The first revision, released after another month passes, includes about 80 

percent of surveyed firms. After a third month passes, employment is 

further revised to include information from about 90 percent of surveyed 

firms. For example, in May of a year BLS releases an initial estimate of 

April employment, a first revision of March employment, and a second 

revision of February employment. 

 The second revision process of payroll employment reflects less 

frequent, annual and decadal, revisions introduced by benchmarking payroll 

employment to an estimate of "population" employment. The benchmarking 

process matches the level of estimated payroll employment to the March 

level of the population data for the previous year. The difference between 

survey- and population-based estimates is divided evenly between months 

before and after the March benchmark. Benchmarking may produce large 

changes in the level of estimated employment, which would often be 

insignificant as month-to-month changes. 
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 The CES payroll survey is a large sample that covers about 37 

percent of establishments of US firms. Although a large sample indicates 

small sampling errors, benchmarking introduces information that may be 

overlooked either by sample composition relative to establishment 

population changes or by information from late survey submissions 

defined as the last 10 percent of the survey. 

 Non-sampling errors arise in payroll employment from three sources: 

(1) coverage or composition of the sample, (2) response of the last 10 

percent of the survey respondents, and (3) processing errors mentioned 

by BLS, but not considered in this discussion until now. From the 

perspective of real time business cycle analysis, one error in payroll 

employment is not including employment of newly created establishments. 

This fact is known and BLS has advanced in overcoming this gap. As noted 

above, this gap in payroll employment becomes more prominent at business 

cycle troughs. However, probability weight sampling and forecasting net 

new jobs from births and deaths of establishments reduces this gap and 

improves estimates. 

 Benchmarking matches the level of payroll employment based on the 

CES survey to the estimated employed population the previous March. The 

difference between the most recent benchmark and previous March estimates 

is spread evenly or linearly over the previous 12 months.4 This technique 

attributes one twelfth of the level difference to each of the prior 12 

months (see the BLS website named "Benchmark Article"). Sometimes, the 

benchmark revisions significantly change estimated employment up to 24 

months earlier. Decadal revisions that incorporate information in the 

decadal Census can significantly change estimates of employment even 

further back. 

 If we focus mainly on the survey-response error rate, then, we can 

limit the analysis to the first three data releases, the initial release 

and two subsequent monthly revisions. Such an approach greatly simplifies 

the analysis, although it limits the revision information that the study 

considers. As a first pass of the method, we consider only two revisions 

on the presumption that including additional revisions would not 

significantly alter estimates of true employment, although, in the future, 

                                                           
4See BLS web page on employment for a description of the linear "wedge back" procedure. 
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we shall consider adding revisions going further back, including benchmark 

revisions.5 

 

2. Signal-Plus-Noise Model. 

 

2.1. Structure of the Model. 

 

The S+N model described here extends the S+N model of three noisy 

observations per period on a variable, considered by Chen and Zadrozny 

(2001), to the general case of any number of m noisy observations per 

period on a variable. Throughout, the following three sets of terms are 

synonymous: "observations", "data", and "estimates"; "true" and 

"signal"; and "observation errors" and "noises". 

Let yt = (y1,t, ..., ym,t)
T and ut = (u1,t, ..., um,t)

T denote m×1 

vectors of observations and their unobserved observation errors or 

noises, at vintages v = 1, ..., m, on unobserved true values or signals 

of a scalar variable, denoted *
ty , in sample periods t = 1, ..., T 

(superscript T denotes vector or matrix transposition). Thus, yv,t 

denotes a so-called vintage v observation in period t on *
1vty +−  made with 

noise uv,t. For now, to simplify notation, we assume that there are no 

missing observations in any sample period t, so that in every period the 

observation vector yt contains observations on all vintages 1, ..., m. 

For all periods t = 1, ... T, the observations, signals, and noises 

are linked by the scalar observation equations yv,t = *
1vty +−  + uv,t or 

equivalently by the m×1 vector observation equation 

 

(2.1)     yt = (1, ..., L
m-1)T *

ty  + ut, 

 

where L denotes the lag operator whose multiplication of a variable 

moves it back one period. It simplifies notation to allow the first 

element, y1,t, in the observation vector, yt, to be contemporaneous with 

                                                           
5 Harvey and Chung (2000) employ the state-space form and a Kalman filter to estimate the underlying 
change in unemployment in the UK.  Their application exploits the structure of the sampling design 
for the data series to aid the design and estimation of the time-series model.  In addition, their 
application also introduces an additional data series that is released in a more timely manner to 
improve the forecast accuracy of the estimated model. 
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the first element, *
ty , in the vector of signals (1, ..., Lm-1)T *

ty . Only 

relative lagged positions of elements of (1, ..., Lm-1)T *
ty  are relevant, 

so that (1, ..., Lm-1)T could be multiplied by any positive or negative 

power of L and its inverse merged into a redefinition of *
ty . Whether *

ty  

represents a current, past, or future signal depends on the application. 

We proceed as if *
ty  represents a current signal. 

In an application, when a model is estimated using maximum 

likelihood, some or all elements of yt could be missing in some sample 

periods. However, this causes no problems if, as we propose, the 

likelihood function is formed using an appropriate missing-data version 

of the Kalman filter (MDKF). We could algebraically describe the correct 

handling of missing-data with an appropriate MDKF (Zadrozny, 1988, 1990) 

and this algebra could be implemented variously. When some observations 

are missing in a period, the rows of equation (2.1) with missing values 

are deleted and the standard non-missing-data Kalman filter (Anderson 

and Moore, 1979) is correspondingly reduced. For example, if all 

vintages are observed in periods 2, ..., T, but only vintages 2, ..., m-

1 are observed in period 1, then, in period 1, equation (2.1) becomes 

(y2,1, ..., ym-1,1)
T = (L, ..., Lm-2)T *

ty  + (u2,1, ..., um-2,1)
T and, in periods 

2, ..., T, equation (2.1) is unchanged. 

The data may be visualized in the following T×m data matrix: 

 

Table 1: Data Matrix Indexed by Sample Periods and Vintages. 

 

yv,t, v = vintage, t = sample period 

y1,1 y2,1 y3,1 y4,1 y5,1 ... ym,1 

y1,2 y2,2 y3,2 y4,2 y5,2 ... ym,2 

y1,3 y2,3 y3,3 y4,3 y5,3 ... ym,3 

y1,4 y2,4 y3,4 y4,4 y5,4 ... ym,4 

y1,5 y2,5 y3,5 y4,5 y5,5 ... ym,5 

... ... ... ... ... ... ... 

y1,T y2,T y3,T y4,T y5,T ... ym,T 

 

In the table, row 1 contains period 1 observations y1 = (y1,1, ..., ym,1)
T 
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on signals *
1y , ..., *

m2y −  at vintages 1, ..., m, row 2 contains period 2 

observations y2 = (y1,2, ..., ym,2)
T on signals *

2y , ..., *
m3y −  at vintages 1, 

..., m, and so forth; column 1 contains T first observations (y1,1, ..., 

y1,T)
T on *

1y , ..., *
Ty , column 2 contains T second observations (y2,1, ..., 

y2,T)
T on *

0y , ..., *
1Ty − , and so forth. Going from left to right and top to 

bottom in table 1, namely, in the order y1,1, ..., ym,1, ..., y1,T, ..., 

ym,T, is a natural order for inputting data from a storage file into a 

program for estimating the model. 

We assume signals, *
ty , are generated by the scalar autoregressive 

moving-average model, 

 

(2.2)     *
ty  = *

1t1y −α  + ... + *

1pt1p
y −α  + *

tε  + *
1t1 −εβ  + ... + *

1qt1q −εβ , 

 

denoted ARMA(p1,q1), with scalar autoregressive coefficients, 1α , ..., 

1p
α , scalar moving-average coefficients, 1β , ..., 

1q
β , and scalar 

disturbance, *
tε , distributed normally, independently, identically, with 

mean zero, and constant variance 2
εσ  or *

tε  ~ NIID(0, 2
εσ ). 

We make the following basic assumptions on the parameters of signal 

model (2.2): (i) ARMA degrees p1 and q1 are finite and nonnegative 

integers, such that min(p1,q1) = 1, but max(p1,q1) could be <, =, or > m, 

the maximum number of observations per period; (ii) model (2.2) could be 

stationary or nonstationary but is invertible, which means that any 

complex number, λ, which satisfies 1 + λβ1  + ... + 1p

1p
λβ  = 0 also 

satisfies |λ| > 1; and, (iii) 2
εσ  > 0. 

Similarly, we assume noises, ut, are generated by the m×1 vector 

autoregressive moving-average model, 

 

(2.3)     ut  = A1ut-1 + ... + 
2pt2p

uA −  + ηt + B1ηt-1 + ... + 
2qt2q

B −η , 
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denoted VARMA(p2,q2), with m×m autoregressive coefficient matrices, A1, 

..., 
2p

A , m×m moving-average coefficient matrices, B1, ..., 
2q

B , and m×1 

disturbance vector, ηt, distributed NIID(0,Ω) and independently of *
tε . 

We make the following basic assumptions on the parameters of noise 

model (2.3): (iv) VARMA degrees p2 and q2 are finite and nonnegative 

integers, such that min(p2,q2) = 1, but max(p2,q2) could be <, =, or > m; 

(v) model (2.3) is stationary, which means that any complex number, λ, 

which satisfies det[Im - A1λ - ... - 
2p

A 2pλ ] = 0 also satisfies |λ| > 1, 

where det[⋅] denotes the determinant of a square matrix and Im denotes 

the m×m identity matrix; (vi) model (2.3) is invertible, which means 

that any complex number, λ, which satisfies det[Im + B1λ + ... + 2q

2q
B λ ] = 

0 also satisfies |λ| > 1; and, (vii) Ω is positive definite, which is 

denoted by Ω > 0. 

Thus, we have made basic assumptions (i)-(vii) on S+N model (2.1)-

(2.3). In (ii), we assume signal model (2.2) is nonstationary, but, in 

(v), we assume noise model (2.3) is stationary, so that any observed 

nonstationarity arises in the signal model. In practice, we expect any 

observed nonstationarity can be accounted for by unit autoregressive 

roots in the signal model. 

Equations (2.2)-(2.3) purposely have no constant terms. In the 

absence of constant terms, if true model (2.2) is stationary, equations 

(2.2)-(2.3) imply that Eyt = 0. Thus, we assume that all data have been 

normalized before being used to estimate a model. This is the simpler 

way to proceed because it avoids estimating the constant terms jointly 

with the other ARMA and VARMA parameters. Strictly, when the true model 

and the data are nonstationary, the means of the data do not exist, but 

we ignore this subtlety and always normalize the data before estimating 

a model. In essence, the normalization can be viewed as only a temporary 

translation and rescaling of the data to facilitate estimation, so that 

the estimated model can be transformed back to the form of the original 

unnormalized data. In section 2.3, we further discuss estimation of mean 

values when we discuss identification of parameters. 
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2.2 State-Space Representation of the Signal-Plus-Noise Model. 

 

We now restate equations (2.1)-(2.3) as an single overall state-space 

representation in terms of the state vector xt. 

Let **
ty  = ( **

t,1y , ..., **
t,1s

y )T = ( *
ty , ..., *

11rty +− , *
tε , ..., *

11qt +−ε ) be 

an s1x1 state vector for true model (2.2), where s1 = r1 + q1 and r1 = 

max(m,p1). In terms of 
**

ty , observation equation (2.1) is  

 

(2.4)     yt = M
**

ty  + ut, 

 

where M = [Im, )m1s(m0 −× ] and )m1s(m0 −×  denotes the m×(s1-m) zero matrix. When 

m ≥ p1 and q1 = 0, as in the application in section 3, M = Im. 

Let **
tε  = ( *

t,1ε , ..., *
t,1s

ε )T denote an s1×1 disturbance vector whose 

first element *
t,1ε  ≡ *

tε , the disturbance in true model (2.2), and whose 

remaining elements are "almost" identically equal to zero in the 

following sense. Theoretically, we would like the second to last 

elements of **
tε  to be identically equal to zero. Practically, **

tε  is part 

of the overall state-space representation to which a Kalman filter will 

be applied and we can generally guarantee the filter's numerical 

accuracy only if the covariance matrix of **
tε  is positive definite. Thus, 

we assume that **
tε  ~ NIID(0, **

εΣ ), where **
εΣ  = 2

εσ T

1s,11s,1
ee  + δ

1s
I , 

1s,1
e  = (1, 

0, ..., 0)T is the s1×1 vector with one in position one and zeroes 

elsewhere, and δ is a small positive number, small enough not to 

noticeably affect Kalman filtering with the overall state-space 

representation, but large enough to guarantee the numerical accuracy of 

the filtering. [Note to Ellis: think carefully about the role of δ in 

the estimation. The gist is to use it as a trick to guarantee positive 

definite covariance matrix for the signal process error.  Look at the 

estimate of the value from the empirical estimates of the model.] 

Then, the following state equation in **
ty  incorporates true model 

(2.2) as its first element, 
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(2.5)     **
ty  = *

1A
**
1ty −  + *

0B
**

tε ,  *
1A  = 
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where *
11,1A , *

12,1A , and *
22,1A , have the dimensions r1×r1, r1×q1, and q1×q1. 

Stacking equations (2.4), (2.5), and (2.3) on top of each other 

implies 
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where ζt is an m×1 disturbance vector with a role analogous to the second 

to last elements of **
tε . In theory, we want ζt to be identically equal to 

zero, but, in practice, we want its covariance matrix to have some 

positive definiteness. Thus, we assume ζt ~ NIID(0,Σζ), where Σζ = δIm and 

δ is a small positive number, such that this δ can be identical to the 

previously introduced one in **
εΣ . 

Let zt = (
T
ty , T**

ty , T
tu )T be a (2m+s1)×1 vector and let ξt = ((ζt + 

M **
t

*
0B ε  + ηt)

T, T**
t

*
0B ε , T

tη )T be its (2m+s1)×1 innovation vector. The inverse 

of the leading matrix in equation (2.6) is just the same matrix with the 

minus signs deleted. Thus, we can write equation (2.6) equivalently as 

 

(2.7)     zt = F1zt-1 + ... + 
2pt2p

zF −  + ξt + G1ξt-1 + ... + 
2qt2q

G −ξ , 

 

          Fi = 



















××

××

×

i1smmm

m1s
*
im1s

i
*
imm

A00

0A0

AMA0

,  Gj = 



















××

×××

××

j1smmm

m1s1s1sm1s

j1smmm

B00

000

B00

, 

 

where *
iA  = 

1s1s
0 ×  for i > 1, Fi = )1sm2()1sm2(0 +×+  for i > p2, Gj = )1sm2()1sm2(0 +×+  

for j > q2, ξt ~ NIID(0,Σξ), and 

 

(2.8)   Σξ = 























ΩΩ

δ+σδ+σ

Ωδ+σΩ+δ+σ+δ

×

×εε

εε

1sm

m1s
T*

01s
T

1s,11s,1
2*

0
TT*

01s
T

1s,11s,1
2*

0

T*
01s

T

1s,11s,1
2*

0
TT*

01s
T

1s,11s,1
2*

0m

0

0B)Iee(BMBIee(B

B)Iee(MBMB)Iee(MBI

. 

 

As desired, Σξ is positive definite (Σξ > 0) and, when m ≥ r1 and q1 = 0, 

Σξ reduces to 
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(2.9)     Σξ = 























ΩΩ

δ+σδ+σ

Ωδ+σΩ+δ+σ+δ

×

×εε

εε

mm

mm
T
m,1m,1

2T
m,1m,1

2

T
m,1m,1

2T
m,1m,1

2
m

0

0ee)(ee)(

ee)(ee)(I

. 

 

 Let xt = (
T
t,1x , ..., T

t,2r
x )T denote the n×1 overall state vector, 

partitioned into r2 subvectors xi,t of dimension ν×1, where r2 = 

max(p2,q2+1) and ν = 2m+s1, so that n = r2⋅ν. Following Ansley and Kohn 

(1983), VARMA representation (2.7)-(2.8) has the state-space 

representation, with the observation equation 

 

(2.10)    yt = Hxt, 

 

with no observation error, where H = [Im, 0m×(n-m)], and the state equation 

 

(2.11)    xt = Fxt-1 + Gξt, 

 

          F = 





























ν×νν×ν

ν×ν

ν×ν

ν×νν×νν

0....0F

I...

0....

......

......

...0F

0...0IF

2r

v

2

1

,  G = 



























−12r

1

v

G

.

.

.

G

I

, 

 

where ξt ~ NIID(0,Σξ) and Σξ is given by equation (2.8). 

 The objective is to estimate *
ty . To do this using the Kalman 

filter, we need to know where *
ty  is in xt. Backwards recursive 

substitution in equation (2.11), in the order t,2r
x , ..., x1,t, shows that 

x1,t = zt = (
T
ty , T**

ty , T
tu )T and *

ty  is the first element of **
ty . Thus, 

because yt is m×1, *
ty  is element m+1 of xt. This holds in general, 

regardless of the values of m, p1, p2, q1, and q2. 
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 Overall state-space representation (2.10)-(2.11) is inefficient 

because xt and ξt could be made much smaller by eliminating zeroes in the 

coefficient matrices F and G. However, we use this representation 

because it has the structure required by the FORTRAN estimation program 

that we use to estimate the S+N model and to estimate the true values 

*
ty . Because computers operate so quickly today, it is not worth the 

trouble to rewrite the estimation program in terms of a more concise 

version of representation (2.10)-(2.11). 

 

2.3. Identification of Structural Parameters. 

 

We now state assumptions for identifying the structural parameters of 

S+N model (2.1)-(2.3) and prove that they are sufficient for this 

purpose. Unless the parameters are identified, they cannot be estimated 

uniquely. We now discuss identification of the structural parameters in 

their order of estimation, first, the non-mean-value parameters and, 

then, the mean-value parameters. 

 

2.3.1. Identification of Non-mean-value Parameters. 

 

Let θ and φ, respectively, denote vectors of structural and reduced-form 

non-mean-value parameters. To estimate θ by maximum likelihood, we must 

define θ so that it can vary in an open set. We can directly include the 

true ARMA parameters and the noise VARMA coefficients in θ, but cannot 

directly include the noise disturbance-covariance matrix, Ω, in θ, 

because, being symmetric, Ω's upper and lower triangular elements would 

duplicate each other. Similarly, because Ω must be positive definite, we 

cannot just include its upper- or lower-triangular elements in θ. Thus, 

we reparameterize Ω to its lower-triangular Cholesky factor, Ω1/2, which 

satisfies Ω1/2ΩT/2 = Ω, and define θ = (α1, ..., 
1p

α , β1, ..., 
1q

β , 2
εσ , 

vec(A1)
T, ..., vec(

2p
A )T, vec(B1)

T, ..., vec(
2q

B )T, vech(Ω1/2)T)T, where 

vec(⋅) denotes the columnwise vectorization of a matrix and vech(⋅) 
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denotes the columnwise vectorization of the lower-triangular part of a 

matrix, including its principal diagonal. 

State-space form (2.10)-(2.11) always has the VARMA form 

 

(2.12)    yt = Φ1yt-1 + ... + 
2rt2r

y −Φ + ξ1,t + Θ1ξ1,t-1 + ... + 
2rt,12r −ξΘ , 

 

where ξ1,t, the first m×1 subvector of ξt, is the innovation vector of zt 

in VARMA form (2.7). The covariance matrix of ξ1,t is the (1,1) block of 

Σξ in equation (2.8), namely, 
1ξΣ = δIm + M T*

01s
T

1s,11s,1
2*

0 B)Iee(B δ+σε MT + Ω. Let 

T
11RR  = 

1ξΣ , where R1 is lower triangular. Then, we define φ = (vec(Φ1)
T, 

..., vec(
2r

Φ )T, vec(Θ1)
T, ..., vec(

2r
Θ )T, vech(R1)

T)T. 

A model maps each admissible structural parameter values to one or 

more reduced-form parameter values. We denote this mapping by φ = f(θ) ∈  

Xφ ⊂   Rdim(φ), for θ ∈  Xθ ⊂  Rdim(θ). If f(⋅) maps each admissible value of θ ∈  

Xθ to a unique value of φ ∈  Xφ ⊂  Rdim(φ), then, f(⋅) can be inverted 

uniquely as θ = g(φ) ≡ f-1(φ) ∈  Xθ, for φ ∈  Xφ, and θ ∈  Xθ is identified 

in terms of φ ∈  Xφ. If θ ∈  Xθ is identified in terms of φ ∈  Xφ and dim(θ) 

< dim(φ), then, θ is over identified in terms of φ; otherwise, if θ is 

identified in terms of φ and dim(θ) = dim(φ), then, θ is just identified 

in terms of φ. Priestley (1981, pp. 801-804) states Hannan's (1976) 

sufficient conditions for identifying VARMA parameters -- the reduced-

form parameters here -- in terms of theoretical covariances of observed 

variables. Strictly, identification concerns theoretical quantities, 

but, in practice, we estimate parameters using sample covariances. 

Presumably, sufficient conditions, such as stationarity, also hold so 

that sample covariances converge in probability to their theoretical 

counterparts as the number of sampling periods goes to infinity. It 

remains for us to state and verify sufficient conditions for identifying 

the S+N structural parameters in terms of the reduced-form VARMA 

parameters. 

For simplicity, we discuss identification in the special case of m 

= 3, p1 = 2, p2 = 1, and q1 = q2 = 0. The general case of any m, p1, p1, 
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q1, and q2 follows similarly. In this special case, structural AR 

coefficients are mapped to reduced-form AR coefficients according to 

 

(2.13)    Φ1 = α1I3 + A1,  Φ2 = α2I3 - α1A1,  Φ3 = -α2A1. 

 

2.3.2. Identification of Mean-value Parameters. 

 

To be completed. 

 

3. Application. 

 

We apply the signal plus noise model to payroll employment data in 

a real-time data exercise.  The initial application exploits the 

institutional features of the BLS employment release, namely that the 

employment data estimates each measured data period three times in 

sequence, an initial release and two subsequent revisions.  In each 

month, the new information consists of the initial release and the 

revisions of the two prior months of payroll data.  For concreteness, 

suppose we have the first release estimate of March 2001 and then have 

the first revision of February 2001, and the second revision of January 

2001.  These three measures comprise an observation of the data in our 

analysis.  We employ observations of this form – three observations per 

observation – for the sample period November 1964 to October 2004.  The 

interpretation of the Data matrix table is analogous to the description 

of Table 1 above.   

Table 2: Data Matrix For Application 

yv,t, v = vintage, t = sample period 

Y1,1964:11 y2,1964:10 y3,1964:09 

Y1,1964:12 y2,1964:11 y3,1964:10 

y1,1965:1 y2,1964:12 y3,1964:11 

Y1, 1965:2 y2, 1965:1          y3,1964:12 

y1,1965:3 y2,1965:2 y3,1965:1 

... ... ... 

y1,2004:10 y2,2004:09 y3,2004:08 



 18

With three releases per period as “data,” we estimate a signal plus 

noise model assuming that the signal is an AR(3) and that the noise 

process is a VAR(1). We allow the covariance matrix of the disturbance 

terms in the measurement error equation to be unrestricted; that is, we 

need to estimate only 6 parameters for the variance-covariance matrix 

[(3 * 4)/2].6   In this case, the number of structural parameters that we 

estimate is 19 (3 for the AR, 1 for the standard error of the signal 

process, 9 for the VAR parameters, and 6 for the covariance matrix of 

the disturbance terms in the measurement error process).   

We display the parameter estimates for a specification using 

differences from the previous period (consistent within vintages – not 

across vintages).  We are investigating alternative normalizing 

transformations of the data.  Differencing across vintages, though in 

conflict with most real-time data analysis intuitions, may capture more 

effectively the correlations among the measurement errors for subsequent 

formal analysis for the time-series processes.  We have also estimated 

specifications that use differenced logs and they offer similar 

insights.  The sample period is from November 1964 to October 2004, and 

the forecast comparison periods are from November 1989 to October 2004.  

Table 3 (below) lists the complete set of parameter estimates for the 

full sample period model.  We emphasize the analysis of the coefficients 

in the measurement error process below. 

 

TABLE 2:  VAR Coefficients For The Measurement Error Process (A Matrix) 
       
ut  = A1ut-1 + ηt  in the VAR(1) case,   ut  = [ u1,t u2,t u3,t ]` 

 
 

 

1, 1, 1 1,11 12 13

2, 21 22 23 2, 1 2,

31 32 333, 3, 1 3,

t t t

t t t

t t t

u ua a a

u a a a u

a a au u

η

η

η

−

−

−

= +

      
      
      
            

 

 

                                                           
6 Recall that the disturbance vector, ηt, assumed to be distributed NIID(0,Ω) and independently of 
*
tε . 
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A =        0.1050457E-01    0.7531286     0.3105490 

0.4954400      -0.6363300     -0.1728135 
0.9205456E-01   0.7701526    -0.1726643 

 
The VAR coefficients from the measurement error process provide 

interpretable relationships between the revision errors.  For example, 

the first coefficient (
11

a ) is small (.01) suggesting that there is 

little correlation between subsequent “first release” measurement 

errors.  This finding is reassuring in that such measurement errors 

should be unsystematic.  In contrast, the coefficient (
21

a ) measuring 

the relationship between the second release measurement error and the 

first release error from the prior period (e.g., both measuring the same 

data period) is relatively large (.495).  Note that each measure 

(today’s second release and last month’s first release) calculates 

employment for the same measurement period, so that the sizable 

coefficient estimate is plausible.  Unfortunately, the other large 

coefficients in the estimation are less clearly interpretable.  

Specifically, the entire second column of the A matrix relates the 

measurement error for the second release from the prior month to the 

measurement errors for all releases in the current period.  The 

coefficient estimates for this column are large for all releases.  The 

interpretation of each is ambiguous.  One could forego interpretation 

and suggest that these coefficients may reflect multicollinearity among 

the measurement error series.  For example, the measurement error for 

the second release of the prior month has a sizable positive coefficient 

for the measurement error for the first release of the current month.  

However, the second release measurement error coefficient relating to 

this month’s second release measurement error is sizably negative.  

Finally, the second release measurement error last month has a large 

positive coefficient with respect to the measurement error for the third 

release for the current month. This coefficient (
32

a ) can be explained 

in the same way as 
21

a  noted above, that is, the measurement of 

employment in the same month.  The other two coefficients in the second 
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column, however, are discomforting.  The coefficients of the third 

column offer a less intuitive interpretation as well. Here again, we may 

infer the multicollinearity of the measurement errors hinders precise 

coefficient estimates, and that there strength of correlation is 

minimal. 

 

 

Estimates of the model using 5 releases display the same degree of 

fluctuation in coefficient estimates.  We need to look further into this 

issue. 
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Initial results suggest that we are capturing some of the 

correlations in the model 

Still thinking about how best to introduce the benchmark process  

(clearly the most substantial source of data revision) 

Business cycle phase – recession, recovery have largest revisions 

 
  

 

 

 

 

[to be completed] 

 

4. Conclusion. 

 

[to be completed] 
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TABLE 1:  DATA DESCRIPTION 
 

Sample consists of first, second and third releases of payroll 
employment aggregate figures. 

Data Period – 1964:November ending in 2004 October. 
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TABLE 2:  VAR Coefficients For The Measurement Error Process (A Matrix) 
       

ut  = A1ut-1 + ηt  in the VAR(1) case 

 
ut  = [ u1,t u2,t u3,t ]` 
 

 

1, 1, 1 1,11 12 13

2, 21 22 23 2, 1 2,

31 32 333, 3, 1 3,

t t t

t t t

t t t

u ua a a

u a a a u

a a au u

η
η
η

−

−

−

      
      = +      
            

 

 
A =        0.1050457E-01    0.7531286      0.3105490 

0.4954400      -0.6363300        -0.1728135 
0.9205456E-01   0.7701526    -0.1726643 
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TABLE 3:  Estimates For The Signal Process 
 
 
 
Autoregressive parameter estimates for the Signal process 

   
 

Order   Estimate     Asymptotic SE    T Ratio     Marg. Sign. Level 
 
1     0.4532663      1.238658        0.3659333         0.7144149 
2     0.2913920E-01  1.510261        0.1929414E-01     0.9846065 
3     0.2308405   0.8777201      0.2630001         0.7925505 
 
Estimated standard error for the signal process 
 
Standard Error    Asymptotic SE    T Ratio     Marg. Sign. Level 
 
0.7567297      0.5468428         1.383816         0.1664149 
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TABLE 3:  FORECAST ERRORS FROM THE ESTIMATED MODEL 
 

Summary Statistics 
 

Series          Obs   Mean     Std Error  Minimum    Maximum 
FIRSTREL        177   100.83 175.75 -415.00   705.00 
JULY04RELEASE   177   129.01   178.23  -361.00   506.00 
UNDERLYING      177    67.83     96.51  -205.29   266.30 
UNDERLYERR      176    60.32   132.12  -300.36   460.49 
MEASERR         177    28.18   104.26  -321.00   291.00 
RELEASERR       176    32.36   147.44  -342.84   730.49 
 
 

Mean error  RMSE   rho(1) rho(2) 
  

Final less first release 32.36  107.0  -.08  0.09 
 
Final-underlying   60.32  124.3  .22  .34 
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APPENDIX 1:  ESTIMATED PARAMETERS FOR FULL SAMPLE (1964:11-2004:10) 
 
MAXIMUM LIKELIHOOD ESTIMATES, ASYMPTOTIC STANDARD ERRORS,T-RATIOS, 
AND MARGINAL SIGNIFICANCE LEVELS FOR THE 19 STRUCTURAL PARAMETERS 

 
  NO.    PARAM. EST.     ASY. STD. ERR.    T RATIO     MARG. SIGN. LEVEL 
   1     0.4532663         1.238658        0.3659333        0.7144149 
   2     0.2913920E-01     1.510261        0.1929414E-01    0.9846065 
   3     0.2308405        0.8777201        0.2630001        0.7925505 
   4     0.1050457E-01     1.390194        0.7556190E-02    0.9939711 
   5     0.4954400         1.290463        0.3839243        0.7010346 
   6     0.9205456E-01    0.7594781        0.1212077        0.9035266 
   7     0.7531286         2.737687        0.2750967        0.7832420 
   8    -0.6363300         1.924749       -0.3306041        0.7409435 
   9     0.7701526         1.282707        0.6004119        0.5482318 
  10     0.3105490         2.291353        0.1355309        0.89219 
  11    -0.1728135         1.101437       -0.1568982        0.8753251 
  12    -0.1726643         1.051789       -0.1641625        0.8696032 
  13     0.7567297        0.5468428         1.383816        0.1664149 
  14     0.3485250        0.6253198        0.5573548        0.5772851 
  15     0.6274749E-01    0.6276029        0.9997960E-01    0.9203605 
  16     0.3583206E-01    0.2635071        0.1359814        0.8918360 
  17     0.1728637        0.4403241        0.3925829        0.6946276 
  18    -0.7561716E-01    0.4597150       -0.1644870        0.8693478 
  19     0.1552349        0.3130848        0.4958238        0.6200187 



Figure 1 

Payroll Employment Data -- Key Revision in 1993
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Figure 2: Preliminary Forecast Comparison
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