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Abstract 
 
How is the design of efficient climate policies affected by the potentials for induced 

technological change and for future learning about key parameter uncertainties? We address 
this question using a new integrated climate-economy model incorporating endogenous 
technological change to explore optimal technological portfolios against global warming in 
the presence of uncertainty and learning. We explicitly consider the interplays between 
induced innovation, the stringency of environmental policies, and possible environmental 
risks within the general equilibrium framework of probabilistic integrated assessment. We 
find that the value of resolving key scientific uncertainties would be non-trivial in the face of 
binding climate limits, but at the same time it can significantly decrease with induced 
innovation and knowledge spillovers that might otherwise be absent. The results also show 
that scientific uncertainties in climate change could justify immediate mitigation actions and 
accelerated investments in new energy technologies, reflecting risk-reducing considerations.    

 
 
Key words: Uncertainty; Learning; Optimal technological portfolios; Endogenous 
technological change; Stochastic growth model; Probabilistic integrated assessment; Carbon-
free technology; Expected value of information  
 
JEL classification:  Q28; D81; O33; C68   
 
 
 
                                                 
*  This paper is prepared to present at the 11th International Conference for the Society for 
Computational Economics (SCE), June 23-25, 2005, Washington, DC.  I thank David Bradford, Simon 
Donner, Jeff Greenblatt, Klaus Keller, Rob Socolow and Michael Oppenheimer for their helpful 
comments and suggestions on an earlier version of this paper. Financial support from the Carbon 
Mitigation Initiative, Princeton University is gratefully acknowledged. The usual disclaimer applies. 

  

 1



1     Introduction  
 

How will the design of efficient climate policies be affected by the potentials 
for induced innovation and for future learning about key parameter uncertainties? 
One of the most pressing problems facing the world economy nowadays is the 
design of climate-change policies in the presence of enormous uncertainty. And, this 
necessarily involves identifying efficient and diverse technological options for 
global emission reductions (e.g., required to prevent dangerous anthropogenic 
interference with the uncertain climate system by the UN Framework Convention on 
Climate Change, Article 2, 1992).1  In particular, the optimal policy options may 
depend critically on the uncertainty and information about the relation between 
greenhouse gases and climate change. Moreover, it has often been suggested that 
induced innovation and environmental risk are closely related, although these factors 
are usually studied separately.  

Several authors have made important contributions to the climate change 
policy under uncertainty, focusing on the questions of how optimal policies would 
change under uncertainty (Nordhaus, 1994; Nordhaus and Popp, 1997; Pizer, 1999; 
Webster et al., 2003) and of what happens if uncertainty is resolved over time 
(Manne and Richels, 1992; Nordhaus, 1994; Kolstad, 1996; Nordhaus and Popp, 
1997; Ulph and Ulph, 1997; Kelly and Kolstad, 1999; Gollier et al., 2000). 
However, note that most of the existing studies on these issues are typically based on 
the modeling framework of a single policy option that is also simply subject to 
exogenously assumed technological change against global warming, which implies 
that there is no explicit close-loop interaction between induced technological 
progress and the stringency of environmental policies under uncertainty.   

This paper explores the implications for optimal global change policy of the 
scientific uncertainties about the climate system within a dynamic integrated 
assessment framework of the world economy in which we allows for endogenous 
technological portfolios and the diffusion of innovative technologies in response to 
uncertainty and learning. First, we introduce the competing roles of alternative 
                                                 
1  Climate change is a long-term, global problem featuring complex interactions between 

environmental, socioeconomic, and technological processes over time, thereby involving uncertainties 
related to the coupled natural-human system and mitigation policies.   
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carbon mitigation options into in the framework of dynamic optimization problems.2 
The technological portfolios here refer to what kind of carbon mitigation efforts 
would occur in a carbon-constrained world, as compared to the business-as-usual 
world. We categorize these mitigation efforts into two broad clusters of options: 
conventional (fossil-fuel based) versus new carbon-free technologies.3  Then, we 
integrate their related bottom-up cost information and technological improvement 
components into a simple Arrow-Romer type economic growth framework that is 
built on a recent Nordhaus’ climate-economy model (Nordhaus and Boyer, 2000).  

If innovation and environmental risk are endogenous, the direct impact of 
climate change on the economy would not be the only way in which global warming 
affects future economic welfare; the different rate and direction of technological 
progress (based on optimal intertemporal behavior) might also enhance capital 
accumulation, the society’s propensity to save, and the rate of economic growth in a 
different way. Therefore, as compared to the literature, the analytical and numerical 
model developed here captures explicitly the possible links between endogenous 
technological change and the stringency of environmental policies in the presence of 
environmental risk.  Despite its high-level abstractions, the modeling framework can 
thus help provide us with a better understanding for sources of technology-
dependent domains of innovation and their interactions with the uncertain climate 
system.   

Taking into account the possible competitions between the two stylized 
mitigation options, we first present a framework for evaluating systematically how 
the major scientific uncertainties, risks and alternative political preferences would 
affect the optimal technological portfolios strategies against global warming. We 
then examine the economic implications of scientific uncertainty and learning: How 

                                                 
2    Since the problems of choosing cost-efficient energy technologies are ones of scarcity and choice, 
appropriate response strategies that capture this behavior are intertemporal optimization techniques in 
the framework of dynamic general equilibrium.  
   
3   A somewhat stylized difference between conventional and new (carbon-free) energy technologies 
is that the latter are initially much costlier in mitigation than the former, but their costs are assumed to 
be decrease more rapidly with their diffusions, making the new technologies more competitive 
(Nakicenovic et al., 1998).  In addition, the possibility of a carbon tax biases the technological 
portfolio more in favor of the new technologies.  Note also that technological changes that govern the 
technological portfolios are inherently dynamic and uncertain in nature.  
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would the learning affect the society’s precautionary investment strategies (e.g., 
investment in non-carbon energy technologies or in carbon abatement efforts)?  
What would be the value of new scientific knowledge about climate change in the 
presence of induced innovation and endogenous environmental risk? 4       

The rest of this paper is organized as follows. Section 2 sets up a theoretical 
background of the uncertainty analysis and describes the numerical model. Section 3 
discusses optimal technological portfolios polices under uncertainty and risk, the 
effects of learning, and the value of information about uncertain climate change. 
Section 4 contains some concluding remarks. 
 
 
2    The Model  
 
2.1  Theoretical background of the model 

In this section we present a simple stochastic growth model with externalities 
due to learning-by-doing, knowledge spillovers and climate-change control to 
explore analytically how the presence of environmental risk affects the economic 
performance and welfare in a carbon constrained world. In the model, environmental 
risk enters the economy as a multiplicative income disturbance while the economy-
wide capital stock exerts a labor-augmenting technical progress (via learning-by-
doing effect) in the spirit of Arrow (1962) and Romer (1986).  In the Arrow-Romer 
economy, individual firms neglect their own contribution to the economy-wide stock 
of technical knowledge, but the “aggregate” capital stock in the economy is taken to 
represent the stock of knowledge in the economy so as to generate a positive 
externality on the production possibilities for individual firms. For this reason, 
aggregate production can exhibit increasing returns to scale as a whole, while a 
representative producer is subject to constant returns to scale with respect to capital 
and labor.    

We then combine the Arrow-Romer technological change framework into a 
coupled natural-human system in the Nordhaus’ Dynamic Integrated Climate and 

                                                 
4  Note that the value of early knowledge can be extremely large to the extent that man-made 
investments and efforts are expensive and the stringency of policy goal is non-negligible. 
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Economy (DICE) model (Nordhaus, 1994; Nordhaus and Boyer, 2000).5  In the 
DICE framework, the linkage between economic activity and climate change is 
summarized as an adjustment to labor productivity term that is purely exogenous to 
the standard neoclassical growth model without a climate sector. Production creates 
pollution and this pollution reduces properly measured output. As in the DICE 
model, global warming is assumed to reduce output through its impact on weather 
patterns and sea level rise. The net (environmentally-adjusted) labor productivity is 
then distinguished from the purely exogenous labor productivity term by describing 
the adjusted amount of output available for consumption and investment after gross 
output has been reduced by mitigation costs and climate damages. In addition, we 
assume there is some critical level of global warming that would result in an abrupt 
change in climate and its damage.  

To be specific, the flow of instantaneous output of the individual firm i , , 
over the time period ( ,  is produced according to the stochastic DICE 
technology (i.e., Cobb-Douglas production with climate damage and controls):   

( )iY t
)t t dt+

 

                ( ) ( )1( ) ( ( ), ) ( ) ( ) ( ) ( ) ( )i i iY t u t K t K t L t u t dt dz tγγθ σ−⎡ ⎤= Ω +⎣ ⎦                  (1)  

 
where  is the privately owned capital stock and ( )iK t ( ) [0,1]u t ∈  is an index of the 
“emission standard”. Labor input  is supplied inelastically and normalized to 
unity. The labor-augmenting technical progress available to individual firms is 
assumed to be proportional to the “aggregate” capital stock 

( )iL t

( )K t  as in Romer 
(1986). ( ( ), )u t θΩ  denotes the environmental externality factor (in terms of 
productivity shock) common to all firms, subject to the environmental standard  
and environmental variable 

( )u t
θ . In addition, assume that  is the increment to a 

standard Wiener process with zero mean and unit variance, and 
( )dz t

σ  measures the risk 
of the productivity shocks due to uncertain environmental parameter θ   embedded in 

                                                 
5   The DICE model is a Ramsey-style optimal growth model of the world economy including future 
CO2 emissions, concentration and global mean temperature dynamics from economic activity. It has 
been widely accepted in the literature because of its simplicity, elegancy and transparency in 
modeling framework.     
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the coupled environmental-technological feedback factor ( ( ), )u t θΩ .6 For analytical 
simplicity, capital depreciation is neglected.  

Note that compared to the DICE framework in (1),  is defined as the rate of 
emission standard (i.e., an index of the technology used), and 1

( )u t
(u t)−  thus measures 

its resource cost in terms of output loss.  Higher values for  yields more goods 
(via less mitigation costs) but also more pollution. In the original DICE model,  
corresponds to  where 

( )u t
( )u t

1
01 ( cc tµ− ) ( )tµ  is the rate of emissions abatement, and  and 

 are its cost coefficients. For example, 
0c

1c ( ) 1u t =  (i.e., ( ) 0tµ = ) implies the business-
as-usual case (no policies) for the economy. The term ( ( ), )u t θΩ in (1) can be 
thought of as the climate feedback term, 3

1 21/ 1 ( ) ( )dd T t d T t⎡ ⎤+ +⎣ ⎦  specified in the 
DICE model, where  is the average surface temperature relative to pre-
industrialization in 0 , and , and are its related damage coefficients (which 
are related to the policy variables vector  and environmental variables vector 

( )T t
C 0d 1d 2d

( )u t θ  
here). Due to the trade-offs between environmental feedback and policy variables, 
we assume the augmented productivity impact function ( ( ), ) ( )u t u tθΩ ⋅  in (1) to be 
hill-shaped with respect to  and subject to ( )u t ( , ) / 0u uθ∂Ω ∂ < . 

Consider now a continuum of identical infinitely-lived individuals who 
maximize expected lifetime utility 

     

                           [ ]10 0

1(0) ( )
1

tV E e C t αρ

α
∞ −−=

−∫ dt                                              (2)                                  

 
where   is the expectation operator conditional on time 0 information, 0E ρ  is the 
rate of time preference,  is the instantaneous rate of consumption, and ( )C t α  is the 
degree of relative risk aversion. With the nonstochastic consumption, , the 
individual agent’s capital accumulation evolves stochastically according to 

( )C t dt

                    
   (3)  1 1( ( ), ) ( ) ( ) ( ) ( ) ( ( ), ) ( ) ( ) ( )( ) ( )i ii t K t K t t C t t K t K t tdK t u u dt u u dz tγ γ γ γθ θ σ− −Ω − Ω⎡ ⎤= +⎣ ⎦

 
while the stochastic aggregate resource constraint is given by  
                           

                                                 
6    If the uncertainty about climate change resolves over time, σ in (1) will fall over time.  σ = 0 
implies no uncertainty case. 
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                 [ ]( ) ( ( ), ) ( ) ( ) ( ) ( ( ), ) ( ) ( ) ( )dK t u t K t u t C t dt u t K t u t dz tθ θ= Ω − +Ω σ 7        (4)  
   

The representative agent’s stochastic optimization problem is then to choose 
his  consumption-capital ratio and his rate of capital accumulation to maximize the 
expected intertemporal utility function (2), subject to the individual capital 
accumulation constraint (3), while taking the “aggregate” resource constraint (4), the 
initial values for capital and the stochastic process , and emissions standard 

 as given. 
oK oz

( )u t
Using the Ito’s lemma and its related Bellman equation, solving this stochastic 

optimization is straightforward and leads to the following stochastic equilibrium 
relationship for the maximal expected life-time utility8   

 

          
1

1
2 2 2

( ( ) / ( )) (0)
(1 ) (1 )( (1/ 2) ( ( ), ) ( )

C t K tV K
g u t u t

α
α

α ρ α α θ σ

−
−=

⎡ ⎤− − − − Ω⎣ ⎦
         (5)  

 
where the consumption-capital ratio is 

 

          
2 2 2

(1 ) ( ( ), ) ( ) (1 ) ( ( ), ) ( )( ) / ( )

1( ( ), ) ( )
2

u t u t u t u tC t K t

u t u t

ρ α γ θ α γ θ
α

αθ σ γ

− − Ω + − Ω
=

+⎡ ⎤+Ω −⎢ ⎥⎣ ⎦

             (6)                                  

 
and the growth rate of capital (and ‘knowledge’ stock) accumulation is 

 
                                                 
7   Note that ( )iK t is equal to the average level of economy-wide capital stock at the equilibrium and 
due to knowledge spillover aggregate production becomes linear in capital. For a discussion on this 
type of models with learning-by-doing and knowledge spillovers, see Barro and Sala-i-Martin (2004, 
Ch.4., pp.212-218). For analytical convenience, normalizing the number of firms to be unity, we can 
have ( ) ( )iK t K t=  in equilibrium. In this case the aggregate and average values coincide in 
equilibrium, given all agents being identical and the aggregate and individual proportional shocks 
being identical and perfectly correlated. 
 
8  As is well known for the isoelastic preferences above, the maximized value function can be 
assumed to be of the time-separable form 

i
V K in a generalized power 

function and the optimal choice 
i iKC t  and the value function must satisfy the 

usual Bellman equation of the problem. For details of solving this class of problem, see Malliaris and 
Brock (1982), Turnovsky (1995) or Corsetti (1997). The necessary conditions from this individual 
optimization can be then employed to determine the macroeconomic equilibrium and, using the 
resource constraint (4) and the equilibrium condition

( ( ), ( ), ) ( ( ), ( ))t

i
t K t t e X K t K tρ−=

X K t K t tα− =( ) ( ( ), ( ), )

( ) ( )iK t K t= , we can obtain (6) and (7). 
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    2 2 2( )1 ( ( ), ) ( ) 1( ) ( ( ), ) ( )
( ) 2

tE dK t u t u tg u t
K t dt

γ θ ρ αu tθ σ
α

Ω − +⎡ ⎤ ⎡≡ = +Ω⎢ ⎥ ⎢⎣ ⎦⎣ ⎦
γ ⎤− ⎥ .  (7)                                  

 

As shown in (5), we can identify various channels through which uncertainty 
about climate change and policy measures could affect welfare in the presence of 
endogenous technological change due to learning-by-doing and knowledge spillovers 
in our model. In particular, we can see in (5) that, given arbitrary environmental 
objective , the welfare impact of a change in the environmental risk ( )u t 2σ  depends 
critically on the relative size between the capital elasticity γ ,  the degree of relative 
risk aversion α , and the environmental-technological performance factor ( , )u uθΩ .  

More specifically, the results indicate that optimal savings rate and knowledge 
accumulation under uncertainty may differ from the results derived for the case of 
certainty if (1 ) / 2α γ+ ≠ .  For example, if we consider cases α > 1  (i.e., highly risk 
averse as suggested in much of the recent empirical evidence including Obstfeld, 
1994; Campbell, 1996) or α = 1 (i.e., logarithmic preferences as in the DICE 
model), the presence of the environmental drift and risk factor would significantly 
enhance the (so-called) “precautionary savings effect” in aggregate knowledge 
accumulation in (7) and welfare change in (5). Note that in most cases, (1 ) / 2α+  
usually exceeds the capital elasticity γ  (= 0.30 in DICE). Then, we can see that the 
size of the stochastic premium terms in eqs. (5) - (7) increase significantly with the 
environmental-technological performance factor ( , )u uθΩ ⋅  and its related risk 2σ .    

Unlike the implications suggested by Nordhuas (1994, p.187-188), in this 
Arrow-Romer economy with endogenous technological change, (6) shows that 
greater uncertainty could lead to lower consumption rather than higher consumption 
for a reasonable range of parameter conditions, and that the extent of the change can 
be substantial, depending on the magnitude of environmental impact and policy 
objective embedded in ( , )u uθΩ ⋅ .9     

                                                 
9   Nordhaus (1994) concludes that the surprising result in his DICE model is that greater uncertainty 
leads to higher consumption (although the extent of the change is modest) and perhaps the ultimate 
surprise is that great uncertainty about climate change has little effect on the optimal savings rate.   
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In fact, in light of current knowledge about the scope and consequences of 
climate change, uncertainty is likely to raise the stakes in future climate change. The 
coupling of endogenous technological progress and environmental risk in an optimal 
growth model may then change significantly the implications for the stringency of 
climate-change policies and the value of improved information about uncertain 
climate change.  In the numerical model that follows, we implement these ideas and 
insights to calculate the effects and policy responses of uncertainty and risk under 
different assumptions.   

 
 

2 .2  The extended DICE model:  DICE-LBD  

Based on the theoretical background of the environmentally-extended, 
stochastic growth framework described above, this section specifies a numerical 
model for evaluating the effects of uncertain climate change on economic 
performance and welfare in a more realistic setting. The main building block of the 
numerical model developed here is the latest version of Nordhaus’ DICE model 
(Nordhaus and Boyer, 2000).10  It is an optimal growth model with a climate sector 
we call it DICE-LBD model, which is an extension of the DICE model. In essence, 
the DICE-LBD model adopts the Arrow-Romer type approach of the new growth 
theory (as described in Section 2.1) and adds to this the original DICE climate 
module to incorporate a closed-loop interaction between uncertain climate change 
and endogenous technological progress. It is further extended to add another 
dimension (namely, different state of the world) for different states of the world in 
uncertainty analysis.  

The basic structure of the original DICE model will be familiar from the 
previous work (Norhaus, 1994; Nordhaus and Boyer, 2000), so we will pause only to 
highlight the key extensions in our setup in the numerical model. We begin by 
modifying the macroeconomic growth block of the DICE model to incorporate 
technological competitions between the two broad groups of carbon mitigation 

                                                 
10   The DICE model is a Ramsey-style optimal growth model of the world economy including future 
CO2 emissions, concentration and global mean temperature dynamics from economic activity. It has 
been widely accepted in the literature because of its simplicity, elegancy and transparency in 
modeling framework.     
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options under uncertainty, taking into account the possible learning-by-doing and 
knowledge spillovers in energy technologies. In particular, we explicitly incorporate 
endogenous links between the stringency of climate policy and the direction and 
composition of future technological innovations to combat the global warming 
problem.11      

In the model, the economy produces a single final good. Individual utility 
depends on consumption of the final good and on the quality of the environment (i.e., 
global mean temperature). Unlike the single (smeared) mitigation option in the 
original DICE model, the environmental quality can be now augmented by 
reductions in carbon emissions both via conventional mitigation technology and via 
the supply of new carbon-free alternatives. 12  Due to the learning-by-doing and 
knowledge spillover effects in mitigation technologies, the numerical model is closer 
to the spirit of the Arrow-Romer endogenous growth framework as described in the 
previous section, whereas the original Nordhaus’ DICE model is in the traditional 
Ramsey (1928)’s exogenous growth framework applied to climate change. 

Economic activity is described by a production function in (8) and its uses side 
of output. Output at time t, Y(t), depends on the inputs of labor  and general 
physical capital :  

( )L t
( )CK t

 
                          (8)                       1( ) ( ( )) ( ) ( ( ) ( )) ( ) ( ) ( ) ( )CY t D t K t A t L t C t I t I t I tγ γ

µ ζ
−= Ω = + + +

 
where A(t), purely exogenous labor productivity, is assumed to increase with 
decreasing rate over time following ( ) [1 ( )] ( 1)AA t g t A t= + − . Labor is supplied 
inelastically, and is determined by exogenous population growth (with its rate of 
decline Lδ ) and physical capital stock is accumulated in the usual fashion. , 
included in the environmental  feedback term 

( )D t
( ( ))D tΩ , is climate damage which is 

an increasing function of global temperature change. Output (net of climate damage 

                                                 
11   In the context of dynamic economy, technological change is likely to be endogenous and it may be 
connected to the stringency of environmental policy. Technological change in mitigation technologies 
can be fundamentally related to uncertainty.       
12  Here, conventional technology implies policy-induced efficiency improvement and substitution 
into less carbon-emitting fossil fuel sources, while new carbon-free technology includes non-carbon 
activities to production such as backstop-like, hydrogen or renewables. 
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effect) is available for private consumption , private investment , and the 
two forms of carbon mitigation efforts including investments in conventional 
technology  and in carbon-free technology . Similarly to the usual capital, 
these energy-specific knowledge stocks are assumed to be generated by the 
accumulation of previous investment efforts.  

( )C t ( )I t

( )I tµ ( )I tζ

In the economy, emissions from burning fossil fuels are identified as carbon, 
and they can be now reduced either by the direct carbon abatement effort ( )tµ  or the 
indirect supply effort of carbon-free activities ( )tζ .  The carbon emissions are thus 
written as 

 
                     ( ) ( )[1 ( ) ( )] ( )E t t t t Y tσ µ ζ= − −                                                        (9) 

 
where ( )tσ , the business-as-usual carbon intensity of production, is regarded as 
declining exogenously due to “autonomous energy-efficiency improvement” (AEEI) 
following ( ) ( 1) /[1 ( )]t t gσ tσ σ= − + . 
 

On the other hand, the cost of each of the carbon mitigation options, ( )tµ  and 
( )tζ  in terms of output is assumed to be 

 
                [ ] [ ] 1

0( ) ( ) ( ) ( ),i ic
i i iI t c K t i t Y tα−=   where  i(t) = ( ) ( )t and tµ ζ             (10) 

 
respectively and where  is a normalization parameter and 0ic iα  is the learning 
elasticity index (e.g., Messner, 1997; Anderson, 1999). We assume that the 
technological progress is represented as a decreasing function of cumulative installed 
capacity and pertains to investment costs for each of the technologies. Note that the 
accumulation of knowledge here occurs in part not as a result of direct deliberate 
efforts, but as a side effect of conventional economic activity. This type of 
knowledge accumulation is typically known as “learning-by-doing” (Arrow, 1962) 
and its simplest case is when the learning occurs as a side effect of the production of 
new capital.  It is assumed that, as is typical in the relevant growth literature, the 
stock of knowledge can be formulated as a usual power function of the stock of 
capital, since the increase in knowledge is a function of the increase in capital, i.e., 
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( ) ( ) i
i CK t K t φ=  for each technology µ  and.ζ .13 At each point in time t, depending 

on the rate of technological improvement and accumulated knowledge stocks, the 
economy determines the optimal portfolio for the mitigation options toward a 
specific environmental goal.  

Having added distinct mitigation technologies and their accumulated 
knowledge stocks, productivity change in the economy is now modeled as a 
combination of mitigation efforts, induced technological progress, and climate 
change effects. Using the environmental feedback term [ ]( ( )) 1/ 1 ( )D t DΩ ≡ + t

⎤⎦

 
, the potential output  in (8) can be now rewritten in 

terms of effective output  (i.e., net of mitigation costs

3
1 21/ 1 ( ) ( )dd T t d T t⎡= + +⎣ ( )Y t

*( )Y t ( ) ( )I t and I tµ ζ ):  
 

  
3

* 1

1 2

1( ) ( ) ( ( ) ( )) ( ) ( ) [ ( ) ( )]
1 ( ) ( ) CdY t K t A t L t I t I t C t I t

d T t d T t
γ γ

µ ζ
−≡ − −

+ +
= + (8 )′  

 
Then, combining (10) with the relation ( ) ( ) i

i CK t K t φ= and defining the technological 
learning rates parameters *

i i iα α φ=   (as defined in Appendix B) into (8 , we can 
get the following effective production function and labor-augmenting technical 
progress component in the spirit of Arrow-Romer growth framework: 

)′

 

                  
1* *( ) ( ) ( ) ( )CY t K t A t L t
γγ −

⎡ ⎤= ⎣ ⎦ ,  

where     

* *
1 1

3

1
1

0 0*

1 2

1 ( ) ( ) ( ) ( )
( ) ( )

1 ( ) ( )

c c
C C

d

c K t t c K t t
A t A t

d T t d T t

µ µ ζ ζα α γ
µ ζµ ζ− − −⎛ ⎞− −⎜ ⎟≡ ⋅

⎜ ⎟+ +⎝ ⎠
.               (8 )′′  

 
In the Arrow-Romer economy, individual firms take the above adjusted labor 

productivity term as given, together with the “aggregate” knowledge stock, the two 
policy instruments, and environmentally-related variables. Here, the rate of emission 
standard function  in (1) can be now thought of as having the two policy controls 
arguments 

( )u t
( ( ), ( ))u t tµ ζ  and the vector θ  in (1) summarizes the environmentally-

                                                 
13  Following Romer (1996), pp.116-117, iφ  represents the degree of the knowledge spillover (hence, 
its resulting technological learning rate for the economy) and this externality can be internalized by 
appropriate subsidies to production in the sense of Barro (1990).    
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related variables such as climate sensitivity, climate thresholds, climate damages, 
and temperature changes. As the technological learning rate increases, however, the 
economy-wide technology can start to escape from diminishing returns to scale to 
broad capital at the “aggregate” level. 

The remaining portion of our DICE-LBD model explains simply the link 
between carbon emissions, global warming and climate damage which is directly 
adopted from the DICE’s climate sector in Nordhaus and Boyer (2000).  The climate 
sector in the DICE model is summarized in Appendix A and a further detail of the 
equations can be found in Nordhaus and Boyer (2000).     

In the model the dynamic equilibrium path of the coupled natural-human 
system is characterized as the solution to an intertemporal optimization problem, 
maximizing discounted utility of per capita consumption in (2) subject to economic 
and environmental resource constraint and policy instruments (for the complete 
equations of the model, see Appendix A). There are three control variables in the 
numerical model: the rate of physical investment , the rate of direct carbon-
emissions mitigation options 

( )I t
( )tµ  and the rate of supply for non-carbon activities 

( )tζ . However, the policy recommendation of the model is now highly dependent 
on the choice of uncertain parameter values and their probability distributions in the 
complex, non-linear relations of the model, which is also closely related to the what 
extent the rates and directions of technological change interact with environmental 
policies under uncertainty.    

In effect, elements of uncertainties and the way of propagating uncertainties 
throughout the economy could affect significantly the optimal technological 
portfolios (and their policy implications), and it would be desirable to take into 
account this factor when reporting the model outcomes. Thus, desirable advice based 
on such a model outcome is not just in the form “if society sets its environmental 
goal in this way, then the outcome will be as follows,” but “if society sets its 
environmental goal in this way, then the outcomes will be within the ranges shown, 
together with how likely it is that it will happen.” Moreover, as knowledge about the 
uncertainties improves, our decisions and responses can be more focused and 
potentially wasteful decisions can be avoided significantly. So it would be useful to 
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take a close look at the effects of the resolution of uncertainty over time on optimal 
policies and economic welfare.   

Since the DICE-LBD model uses the Nordhaus and Boyer (2000)’s global 
economy model as its basic building block, coefficients already present in the 
original model are left unchanged.  For the new parameters, we need to identify all 
possible underlying technological options to represent their plausible technological 
changes over time that become important in the carbon-constrained cases.  To this 
end, we follow the relevant literature to adopt plausible parameters values for the 
dynamics of the energy-economic system to curb future greenhouse warming. 
Specifically, the assumptions on the new technology parameters and their plausible 
ranges are made from some of previous studies including McDonald and 
Schrattenholzer (2001), Popp (2002), Gerlagh and Lise (2003) and Sims et al. 
(2003). 14  In particular, for a plausible range of the technological learning rate 
parameters, we adopt McDonald and Schrattenholzer (2001)’s study that presents a 
range of 8 - 30% learning rate for a large set of new energy technologies at large.  
However, note that in general, no good empirical estimates exist for this kind of 
technological parameters due to the lack of sufficient, empirical data so far. As 
Weyant (1997) emphasizes, there dose not exist single, established information on 
most of the uncertain technological parameters on this calibration issue. Obtaining 
good empirical estimates for these parameters would be one of the most difficult 
challenges of dealing with endogenous and induced technological change, and the 
analysis can be improved further as we get more technological information and 
experience later.  

As far as uncertain climate change and its policy implications are concerned, 
one of the most important parameters is climate sensitivity. “Climate sensitivity” is 
defined as the equilibrium global-mean temperature change in response to a doubling 
of CO2 concentrations.  For this key uncertain climate parameter, we refer to several 

                                                 
14   The global general R&D by OECD countries is $500 billion and, for US, 2% of R&D expenditure 
is for energy technology (= $10 bil.) (Popp, 2002). According to Popp (2002) and Anderson (1997), 
the R&D investment in backstops is assumed to be about 1/10 of that of the conventional energy 
technologies in the base year.  So, for the initial knowledge stocks of conventional and new 
technologies, we assume US $10 billion and US $1 billion, respectively. Following Gerlagh and Lise 
(2003) and Sims et al. (2003), the initial cost for new carbon-free technology is assumed to be 4 - 5 
times (or $400 - 500/tC avoided) higher than conventional technology.   
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previous studies surveyed in Dessai and Hulme (2003). Assumptions made on the 
plausible distributions for all other uncertain variables (except for climate sensitivity) 
are adopted from Norhaus (1994), Nordhaus ands Popp (1996), and Pizer (1997).  

 
 

3     Results and Discussions  
 

Current policy decisions must be made despite layers of uncertainties and the 
possibilities of the resolution of uncertainties. In light of this concern we explore the 
implications of uncertainty and learning for policies, focusing particularly on the 
optimal technological portfolios to cope with the uncertainties of climate change. 
Unlike many previous studies relying on a limited set of simple scenarios (or 
deterministic outcomes), this study allows explicitly for a “probabilistic” integrated 
assessment framework with uncertain climate change and induced technological 
progress, taking into account the possibility of policy-important climate threshold 
effects.15  We first examine the range of possible outcomes and policy responses to 
see the consequences of uncertainties. In particular, we provide some metrics for 
assessing how to link the potential for dangerous climate change to desirable 
technological portfolio strategies when the future is uncertain. To see the 
implications for possible intertemporal conflicts between “wait-and-see” strategy and 
the precautionary principle in climate change policy, we then proceed to examine the 
effects of resolving uncertainties about climate change early rather than late, 
depending upon technological and environmental constraints.   

First of all, to define our metric for the main determinant of uncertain climate 
change, we adopt a recent estimate from Andronova and Schlesinger (2001) on a 
probability distribution for uncertain climate sensitivity. Fig. 1 displays the density 
for climate sensitivity (with mean 3.4 and variance 8.6) adopted for our present 
study. As indicated in many other recent studies (e.g., surveyed in Dessai and 
Hulme, 2003), it shows wider distributions than the Intergovernmental Panel on 
Climate Change (IPCC)’s range of 1.5 to 4.5oC (Cubashi et al., 2001).  
                                                 
15  In the simulation induced technological progress is measured as the increased role of new carbon-
free technology (e.g., share of “hydrogen” economy) that would respond to the impact of uncertainty 
and learning in the presence of environmental risks.   
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         Fig. 1.  Distribution of uncertain climate sensitivity for our study 
 

Under this probabilistic range of climate sensitivity, Fig. 2 shows band 
estimation for carbon emissions, global warming and technology choice over time 
for two scenarios: BAU vs. WAIS.  In Fig. 2(a) and (b), BAU represents “no policy” 
and WAIS is “2.5 oC temperature stabilization policy.”16  Shown are the estimated 
probabilistic ranges for (a) global carbon emissions, (b) global mean temperature 
increase, and (c) carbon mitigation technology portfolio over time.  Lower and upper 
dashed lines in each panel refer to the first quartile and third quartile values in the 
distribution for each variable, respectively. In Fig. 2(c), MIU refers to “conventional 
technologies” and ZETA refers to “carbon-free technologies” (e.g., non-carbon 
activities including solar/wind powers, carbon sequestration, hydrogen, biomass, and 
renewables) under the WAIS case. With the policy-relevant threshold chosen, we can 
see in Fig. 2(c) that carbon-free technologies would play an important role for carbon 
emission reductions over the this century (with wider variances in the middle of the 
century), which portrays the need for a substantial acceleration in the transition of 

                                                 
16  For a specific environmental threshold to avoid dangerous anthropogenic interference, in this paper 
we consider technology policies designed to limit the globally-averaged warming below 2.5oC that 
has been suggested as the temperature at which a collapse of the “West Antarctic ice sheet” (WAIS) 
might occur.  For a detail on this issue, see Oppenheimer (1998) or Petit et al. (1997).        
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the energy system to non-fossil-fuel energy sources in comparison to the BAU 
reference scenario. 

 
 

 
 

Fig. 2.  Band estimation for (a) carbon emissions, (b) global warming  
and (c)  technology choice over time: BAU vs. WAIS. 

 

For the plausible distribution of the economic effects of the WAIS policy, we 
investigate the implication of alternative conjectural forces related to labor 
productivity growth and autonomous energy-efficiency improvement. Note that, in 
general, the cost and performance of carbon mitigation polices depend crucially on 
the evolution of purely exogenous labor productivity (A), which is a critical 
determinant for the future economic growth, and on the evolution of autonomous 
energy-efficiency improvement (σ ). For this purpose, we compare four alternative 
cases about uncertain future economic environments surrounding the trends of two 
fundamental productivity-related parameters,  and  that would dominate 
various economic and technological environments for the technological portfolios. In 
Fig. 3, the “WAIS wedge” is defined as the gap between global carbon emissions of 
BAU and WAIS in a specific year, which in turn implies the degree of policy 
stringency to minimize the negative impact of the BAU global warming. Not 
surprisingly, we can see in Figure 3 that the lower the labor productivity growth (or 
the higher the autonomous energy-efficiency improvements), the less costly for the 
economy to preserve the WAIS threshold constraint. 

( )Ag t ( )g tσ
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Note:  “Central” assumes the reference cases for labor productivity growth (1.4%/yr) and AEEI 
growth (1.3%/yr), based on the historical trends.  The extreme cases in the confidence region are 
then as follows:  (i) “HH” case is with higher labor productivity growth and higher AEEI growth  
(2.5%/yr and 2.2%/yr), (ii) “HL” case is with higher labor productivity growth and lower AEEI 
growth (2.5%/yr and 0.5%/yr), (iii) “LH” case is with lower labor productivity growth and higher 
AEEI growth (0.8%/yr and 2.2%/yr),  and (iv) “LL” case is with lower labor productivity growth 
and lower AEEI growth (0.8%/yr and 0.5%/y, respectively). 

 
Fig. 3.  Distribution of the economic effects of WAIS policy 

 
 
 
To see the effects of the scope of uncertainty on model outcomes, we simulate 

the distribution of the WAIS wedge in 2035 under alternative scope of parameter 
uncertainties in the model.  According to the model simulation, the role of uncertain 
climate sensitivity (in determining the WAIS wedge in 2035) accounts for about 60-
70% of total variation at the median WAIS wedge value. We also investigate the role 
played by each mitigation technology under alternative scope of parameter 
uncertainties. Fig. 4 compares the estimates for the distribution of the two 
technologies: conventional versus carbon-free technology.  Shown in the left and 
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right panels are the distributions of efficient choice for the two options under the 
WAIS case in 2035 and in 2075, respectively.  For each technology, the dashed line 
refers to the outcomes from “with only climate sensitivity uncertain” case, and the 
solid line from “with all parameters uncertain” case. Since the differences between 
the two cases are not large in both sample years, we can see that uncertainty about 
climate sensitivity would take a major part in determining the distribution of future 
technological portfolios. 

 
 

 
 

                                      
Fig.  4.  Distribution of mitigation options:  Conventional vs. Carbon-free  

 

 
In the DICE-LBD model, the propagation of uncertainty in climate sensitivity 

displayed in Fig. 1 on the WAIS wedge can vary significantly with the assumptions 
on other important model parameters. So it would be interesting to see how the 
uncertain model outcome would respond to each of the other parameters. Fig. 5 
depicts the sensitivity of the median “WAIS wedge” value in 2035 to some of the 
key model parameters: (a) decline rate of population growth, (b) scaling factor of 
labor productivity growth, (c) scaling factor of AEEI growth, (d) technological 
learning rate, and (e) pure rate of time preference.  Similarly, Fig. 6 shows the 
sensitivity of probability of BAU global warming in 2105 exceeding the temperature 
threshold 2.5 oC with respect to the same range of each of the other important 
parameters values.   
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(a)   (b) (c)

  

   
Fig. 5.  Sensitivity of the median WAIS 
“wedge” value in 2035 to various 
uncertain model parameters:   
(a) rate of population growth decline, 
(b) scaling factor of labor prod. growth, 
(c) scaling factor of AEEI growth, 
(d) technological learning rate, and 
(e) pure rate of time preference.  

(d)  (e) 
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(a)   (b) (c)

 

 
Fig.  6.  Sensitivity of  Prob [BAU global 
warming in 2105  > 2.5 oC]  to various 
uncertain model parameters:   
(a) rate of population growth decline, 
(b) scaling factor of labor prod. growth, 
(c) scaling factor of AEEI growth, 
(d) technological learning rate, and 
(e) pure rate of time preference. 

(d)  (e) 
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More specifically, to shed some light on the relative importance of future 
technological options under the uncertainties, we compare the estimates and 
possibilities distributions for each of the two technological options under various 
situations.  First, the left panel of Fig.7a displays how the optimal technological 
portfolio values (in median) for MIU and ZETA respond to the uncertain rate of 
future population growth decline. Here, MIU35 and ZETA35 refer to 
“conventional technology” and “carbon-free technology” in 2035, respectively, 
and MIU75 and ZETA75 denote “conventional technology” and “carbon-free 
technology” in 2075, respectively. The right panel of Fig.7a shows that the 
probability of ZETA’s exceeding MIU (in the role of carbon mitigation) 
decreases with the rate of population growth decline, which implies a strong 
coupling between demography and technology substitution required to curb 
carbon emissions under the WAIS policy. The smaller population growth we 
have, the smaller chance of a new technology to dominate in the carbon 
constrained world. 

The results for the same sensitivities to the major uncertain economic 
parameters about a range of the trends of future labor productivity and AEEI 
growth are shown in Fig.7b and Fig.7c. The left panels in the figures depict how 
the optimal median technological portfolio values for MIU and ZETA respond to 
the degree of uncertain future labor productivity growth and to the degree of 
uncertain future AEEI growth, respectively. The results imply that the probability 
of ZETA’s exceeding MIU increases with the labor productivity growth (right 
panel of Fig.7b), whereas it decreases with AEEI growth (right panel of Fig.7c).  
While higher labor productivity growth requires more accelerated transition 
toward new carbon-free technologies required to preserve the temperature limit, 
the purely exogenous AEEI factor, as a substitute, weakens the potential of 
induced technological innovation.  

The left panel of Fig.7d displays how the optimal median technological 
portfolio values for MIU and ZETA respond to the uncertain technological 
learning rate for ZETA.  Note that, as expected, we can see that the median 
fraction of ZETA mitigation effort rises exponentially with the learning rate.  The 
right panel of Fig.7d indicates that the probability of ZETA’s exceeding MIU (in 
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the role of carbon mitigation) increases with the technological learning rate for 
ZETA. The same analysis with respect to the uncertain pure rate of time 
preference is shown in Fig.7e. The left panel implies that the optimal median 
technological portfolio values for ZETA are highly responsive to the uncertain 
pure rate of time preference. Moreover, the right panel shows that the chance of 
ZETA’s dominance in the role of carbon mitigation decreases greatly with the 
society’s pure rate of time preference.   
 
 
 

 
(a) Sensitivity to the rate of population growth decline 
 
 

 
(b) Sensitivity to labor productivity growth  
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(c)  Sensitivity to AEEI growth 

 

 
(d)  Sensitivity to technological learning rate  

 

 
                                    (e)  Sensitivity to pure rate of time preference 

 
Fig. 7.  Effects of uncertainty on technological portfolios 
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Next, we examine the effects of learning about uncertainty and estimate the 
value of early information. The decisions are made in light of currently available 
information and they reflect the range of possible outcomes given the degree of 
uncertainty and risk aversion. As in the relevant literature (e.g., Manne and 
Richels, 1991; Nordhaus, 1994; Nordhaus and Popp, 1997), we consider cases in 
which policymakers must undertake decisions before knowing which particular 
state of the world they are in. Before learning occurs, decisions must be made in 
ignorance of the true states of the world. However, they can become state 
dependent after the learning point since policymakers can then act with perfect 
information about the true states and the actual value of uncertain parameters.    

Fig. 8(a) and (b) display the impact of learning about uncertain climate 
sensitivity in 2065 (compared to late learning in 2155) on optimal mitigation 
policies, MIU and ZETA, respectively. We assume equal probability of three true 
states of the world about climate sensitivity.  Note that before learning in 2065, 
policies cannot be state contingent, and thus are constrained to be equal in all 
three states of the world.  As seen in Fig 8, the presence of late learning requires 
more stringent mitigation policies, which implies that uncertainty can raise the 
costs of optimal policies significantly.  
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       (a)  Conventional technology           (b)  Carbon-free technology 

 
Fig. 8. Learning, hedging and the value of early information 
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The consequences of scientific uncertainty on policy stringency have been 
explored previously in models of no endogenous technological progress, 
including Manne and Richels (1992), Nordhaus (1994), Nordhaus and Popp 
(1997), and Pizer (1999).  However, they found that learning has little or 
relatively modest effects on decisions. It is not surprising to see that that our 
experiments indicate relatively large consequences since the economy now 
responds more elastically to the stringency of environmental polices. More 
generally, in terms of overall macroeconomic policy, we compare the impact on 
consumption of uncertainties from the DICE-LBD and original DICE models. 
Greater uncertainty here is measured in the sense of later resolution of 
uncertainty. Table 1 shows the percentage difference between the expected value 
of a near-term consumption (2010-2020) for each of different years of resolution 
as compared to the value of consumption using late information. Contrary to 
previous result (Nordhaus, 1994, p.188, Table 8.4), our study shows that greater 
uncertainty lead to lower consumption rather than higher consumption. The result 
is broadly consistent with the precautionary savings principle implied in (6).  

 

Table 1.  Comparison of optimal polices under learning with the DICE model 
(in impact of resolution on near-term consumption, 2015) 

 
                                                          Impact of resolution on consumption, 2015 (%) 
           Scenario                   
                                                              DICE-LBD                                DICE        
 
          Perfect information                          0.016                                    -0.011                                                           
          2015 information                              0.015                                   -0.010 
          2025 information                              0.005                                    0.000  
          2035 information                              0.000                                    0.000  
 

Note:  Shown is the percentage difference between the expected value of a near-term 
consumption (2010-2020) for each of different years of resolution as compared to the value 
of consumption using late information. 

 

Fig. 9 quantifies the expected value of perfect information about the climate 
sensitivity depending upon the year in which uncertainties are revealed. We 
compare the present value of increased consumptions for each case relative to the 
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case where perfect information is attained in 2085 across alternative 
environments about the technological learning rate and the climate threshold. The 
results indicate that the value of early information is highly sensitive to how fast 
the uncertainty will narrow over time. Not surprisingly, the value of information 
can be extremely large with tight climate thresholds. However, it can 
significantly decrease with policy-induced technological progress that may occur 
in the presence of stringent climate goals. 

     

 
Fig.  9.  Range of values of scientific knowledge about the climate sensitivity  

for different years of resolution  
 

The result implies that ignoring induced innovation can overstate 
significantly the welfare cost of reducing carbon emissions in a carbon 
constrained world, since endogenous technological progress in new carbon-free 
technologies lowers the cost of achieving a given environmental goal. Notice that 
unlike some previous studies with costly R&D efforts and their crowing-out 
effects (e.g., Nordhaus, 2002; Popp, 2004), innovation in our model has a wider 
effect under a restrictive policy because a tighter climate threshold can trigger 
induced learning-by-doing and knowledge spillovers effects in the economy. 
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4    Conclusions  

Using a simple climate-economy model of technology choice, this paper 
presents probabilistic integrated assessments and uncertainty analyses of optimal 
timing, costs and technology choice of carbon emission reductions in a carbon-
constrained world.  The key feature of the model developed here includes its 
extension of the existing integrated assessment (IA) modeling capabilities by 
incorporating environmental risk, endogenous technological choice and the 
diffusion of innovative technologies in the presence of uncertainty and learning, 
so that policymakers can gain clear insights into future energy technology 
strategies. This new approach enables us to explore the potential competitions (or 
trade-offs) between carbon mitigation technologies, while it captures a closed-
loop interaction between environmental risk and induced innovation.  

Uncertainty analysis in our study reveals that the endogenous portfolios 
between the traditional and new energy technologies are highly dependent on 
assumptions about the plausible range of uncertainties surrounding climate, 
technological and socioeconomic parameters and the stringency of the society’s 
environmental goals. Moreover, the results imply that analyses ignoring this 
considerable uncertainty could lead to inefficient and biased technology-policy 
recommendations for the future. In particular, while ignoring the linkage between 
induced innovation and environmental risk can overstate significantly the welfare 
gains of wait-and-see strategies in combating global warming, innovation has a 
wider effect under a more stringent environmental goal.  This study also find that 
the value of resolving key scientific uncertainties would be non-trivial under 
potentially catastrophic climate risks, but at the same time it can significantly 
decrease with induced innovation and knowledge spillovers that might otherwise 
be absent. In addition, the results indicate that scientific uncertainties could 
justify immediate mitigation actions and accelerated investments in new energy 
technologies, reflecting risk-reducing considerations.          

We keep the underlying technology-choice model of the integrated 
assessment processes as simple as possible for its transparency and tractability. 
However, the probabilistic risk-management framework used for this study can 
be applied to all levels of model complexity and high dimensionality of the 
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problem. So the present work can be extended further to include: (i) endogenous 
technological portfolio component with emphasis on international technology 
spillovers in a disaggregated global economy, (ii) more diversification of 
technological portfolios (e.g., “demand-side” efficiency technologies as well as 
“supply-side” technologies) to combat climate change, and (iii) state-of-the-art 
combination of the two traditions of endogenizing technological change via both 
R&D (learning-by-searching) and LBD (learning-by-doing) in the stochastic 
integrated assessment framework.  Based on the availability for reliable data and 
parameter calibration in this direction, it would be useful to analyze the 
competition between carbon mitigation technologies in the presence of multi-
regional, technological spillovers and catch-ups, and trade of carbon permits, 
which is left for future research.   
 
 
 
 
 
 
Appendix A:  Equations of the model  

  
This appendix presents the complete equations of the simple state-contingent model of 
endogenous technological change and choice for climate-change policy.   
 
Sets:  t  =   time periods  (0 to 40) 
          i (subset) =  two broad, stylized categories of mitigation options    
                             (µ = conventional, ζ = carbon-free)    
 
1).  Equations of the model:  
 
 
Utility   

[ ]0
1 ( ) ln ( ) / ( )

1 ( )

t

t
L t C t L t

tρ
⎡ ⎤

= ⎢ ⎥+⎣ ⎦
∑W E                                                              (A1)   

 
Economic and technological constraints   
 
                          (A2) 1( ) ( ( )) ( ) ( ( ) ( )) ( ) ( ) ( ) ( )CY t D t K t A t L t C t I t I t I tγ γ

µ ζ
−= Ω = + + +

  where  [ ] 3
1 2( ( )) 1/ 1 ( ) 1/ 1 ( ) ( )dD t D t d T t d T t⎡ ⎤Ω = + = + +⎣ ⎦                                 
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  ( ) ( ) (1 ) ( 1)i i i iK t I t K tδ= + − − ,            , ,Ci µ ζ=                                                (A3) 
  ( ) ( )[1 ( ) ( )] ( )E t t t t Y tσ µ ζ= − −                                                                                
(A4) 

[ ] [ ] 1
0( ) ( ) ( ) ( ),i ic

i i iI t c K t i t Y tα−=     ,i µ ζ=                                                          (A5) 

( ) (1 ) ( 1)t tζ ε ζ= + −                                                                                                  (A6) 
 
Stochastic processes on generic productivities 
 
                                                                (A7)   *( ) ( 1) (1 ) ( 1) ( )AA t A t A t tϕ ϕ= − + − − +ε

t                                                                (A8)     *( ) ( 1) (1 ) ( 1) ( )t t t σσ πσ π σ ε= − + − − +
  and other uncertain parameters. 
 
Environmental constraints 
 
                                                    (A9) 11 21( ) ( 1) ( 1) ( 1)AT AT UPM t E t a M t a M t= − + − + −
                                        (A10) 22 12 32( ) ( 1) ( 1) ( 1UP UP AT LOM t a M t a M t a M t= − + − + )−

−                                                                  (A11) 33 23( ) ( 1) ( 1)LO LO UPM t a M t a M t= − +

  
{ }( ) 4.1ln ( ) / ( ) / ln 2 ( )

( ) 0.1965 0.13465 , 12; 1.15, 12

PI
AT ATF t M t M t O t

where O t t t t

⎡ ⎤= +⎣ ⎦

= − + < = ≥
                     (A12) 

   [ ]{ }1 2( ) ( 1) ( ) (4.1/ ) ( 1) ( 1) ( 1)LOT t T t F t CS T t T t T tκ κ= − + − − − − − −           (A13) 

   { }3( ) ( 1) ( 1) ( 1)LO LO LOT t T t T t T tκ= − + − − −                                                       (A14) 
 
 
2).  Parameters:  adopted mostly from Nordhaus and Boyer (2002), except for the 
assumptions on the technological and climate parameters and their plausible ranges 
made from Sims et al. (2003), McDonald and Schrattenholzer (2001), and Dessai and 
Hulme (2003). Assumptions on the probability distributions for all other uncertain 
variables are adopted from Norhaus(1994), Nordhaus ands Popp(1996), and Pizer 
(1997), etc.  
  
 µα             Technological learning index (or progress ratio) for MIU                     /.0816/                         

 ζα             Technological learning index (or progress ratio) for ZETA                   /.2485/   

 0c µ            Scaling parameter for cost curve of MIU technology                              /.045/  

 1c µ             Exponent parameter for cost curve of MIU technology                          /2.15/ 

 0c ζ             Scaling parameter for cost curve of ZETA technology                           /.180/ 
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 1c ζ             Exponent parameter for cost curve of ZETA technology                            /1/  

 ρ               Initial rate of social time preference per year                                            /.03/  
  A               Level of total factor productivity                                                         /.01685/ 
 σ               CO2-equivalent emissions-GNP ratio                                                      /.272/ 
 iδ               Depreciation rate for technology i                                                             /.10/ 
 γ                Capital elasticity in production function                                                    /.30/ 
 ε                Technological inertia                                                                                 /.05/  
     Concentration in atmosphere 1990 (b.t.c.)                                                /735/ (0)ATM
     Concentration in upper strata 1990 (b.t.c)                                                /781/ (0)UPM
     Concentration in lower strata 1990 (b.t.c)                                            /19230/ (0)LOM
  a11            Carbon cycle transition matrix                                                             /.66616/              
  a12            Carbon cycle transition matrix                                                             /.33384/ 
  a21            Carbon cycle transition matrix                                                             /.27607/ 
  a22            Carbon cycle transition matrix                                                             /.60897/ 
  a23            Carbon cycle transition matrix                                                             /.11496/ 
  a32            Carbon cycle transition matrix                                                             /.00422/ 
  a33            Carbon cycle transition matrix                                                             /.99578/ 
        1985 lower strat. temp change (C) from 1900                                          /.06/ (0)LOT
           1985 atmospheric temp change (C)from 1900                                          /.43/ (0)T
          1990 value capital trill 1990 US dollars                                                     /47/ (0)K
                Speed of adjustment parameter for atm. temperature                             /.226/ 1κ
   CS             Equilibrium atm temp increase for CO2 doubling (deg C)                      /2.8/ 
                Coefficient of heat loss from atm to deep oceans                                     /.44/ 2κ
                Coefficient of heat gain by deep oceans                                                   /.02/ 3κ
   d1              Damage coeff 1                                                                                   /.00071/ 
   d2              Damage coeff 2                                                                                   /.00242/ 
   d3              Exponent of damage function                                                                     /2/ 
  
    

Appendix B:  Learning rates and unit cost functions 
 

In the stylized learning mechanism, a commonly used learning-by-doing (LBD) 
component for each technology i is 
 

                                    [ ]0 ( ) i

i i iC c K t α−
= ,   ,i µ ζ=                                                (A5’) 
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where  is  a normalization parameter and 0ic iα  is the learning elasticity index.  Every 
doubling of installed capacity( ) reduces the technology costs ( ) by a factor of  ( )iK t iC
2 iα− , which is also called “progress ratio” (PR).  The complementary “learning rate” 
(LR) is 1 1 2 iPR α−− = − , which gives the percentage reduction in the capital investment 
costs of newly installed capacity for every doubling of cumulative capacity (c.f., 
Anderson, 1999). And, the unit cost function for each technology i (in the form of a 
generalized power function as a dual to the Cobb-Douglas production) can be estimated 
as   
 

                  [ ]
10

( )ln ln ln ( ) ln ( )
( ) i

i
i i

COST t c c i t K t
GDP t

α
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

i ,          ,i µ ζ= .      (A5”) 
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