
Identification Robust Confidence Sets Methods for Inference on
Parameter Ratios and their Application to Estimating

Value-of-Time and Elasticities

Denis Bolduc1

Université Laval
Lynda Khalaf2

Université Laval
Clément Yélou3

Université Laval

May 30, 2005

1Groupe de recherche en économie de l’énergie, de l’environnement et des ressources naturelles
[GREEN], Université Laval. Mailing address: Pavillon J.-A.-De Sève, St. Foy, Québec, Canada, G1K
7P4. TEL: (418) 656-5427; FAX: (418) 656-2707; Email: denis.bolduc@ecn.ulaval.ca.

2Groupe de recherche en économie de l’énergie, de l’environnement et des ressources naturelles
[GREEN], Université Laval. Mailing address: Pavillon J.-A.-De Sève, St. Foy, Québec, Canada, G1K
7P4. TEL: (418) 656 2131-2409; FAX: (418) 656 7412; Email: lkha@ecn.ulaval.ca.

3Groupe de recherche en économie de l’énergie, de l’environnement et des ressources naturelles
[GREEN], Université Laval. Mailing address: Pavillon J.-A.-De Sève, St. Foy, Québec, Canada, G1K
7P4. Email: cyelou@ecn.ulaval.ca.



Abstract

The problem of constructing confidence set estimates for parameter ratios arises in a variety
of econometrics contexts; these include value-of-time estimation in transportation research and
inference on elasticities given several model specifications. Even when the model under consider-
ation is identifiable, parameter ratios involve a possibly discontinuous parameter transformation
that becomes ill-behaved as the denominator parameter approaches zero. More precisely, the
parameter ratio is not identified over the whole parameter space: it is locally almost unidentified
or (equivalently) weakly identified over a subset of the parameter space. It is well known that
such situations can strongly affect the distributions of estimators and test statistics, leading to
the failure of standard asymptotic approximations, as shown by Dufour (1997). Here, we provide
explicit solutions for projection-based simultaneous confidence sets for ratios of parameters when
the joint confidence set is obtained through a generalized Fieller approach. The procedures are
applied and compared in illustrative simulated and empirical examples, with a focus on choice
models.

Key words: confidence set; generalized Fieller’s theorem; delta-method; Weak identifica-
tion; parameter transformation.
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1 Introduction

The problem of constructing confidence set estimates for parameter ratios arises in a variety
of econometrics contexts; these include value-of-time estimation in transportation research, or
inference on elasticities in demand or cost analysis. Even when the model under consideration
is identifiable, parameter ratios involve a possibly discontinuous parameter transformation that
becomes ill-behaved as the denominator parameter approaches zero. More precisely, the para-
meter ratio is not identified over the whole parameter space: it is locally almost unidentified
over a nonidentification subset of the parameter space. Important examples include inference
on elasticities (t-statistics and confidence intervals) in demand systems [Deaton and Muellbauer
(1980); Banks, Blundell and Lewbel (1997)], and inference on fixed value of time in discret choice
transportation models (Bolduc (1999)). It is well known that such situations can strongly affect
the distributions of estimators and test statistics, leading to the failure of standard asymptotic
approximations, as shown by Dufour (1997, 2003).

The delta-method, which is an asymptotically justified Wald-type method, provides a com-
mon procedure to construct Wald-type confidence sets (CI) for ratios of parameters or ratios of
linear combinations of parameters in econometric models. In the statistics literature, Fieller’s
theorem [Fieller (1940, 1954)] gives a simple way to obtain an exact confidence interval (CI) for
the ratio of two means of normal variates. Scheffé (1970) proposes a modification of Fieller’s
procedure, which avoids trivial confidence set, i.e. confidence sets which cover the entire real
line.1 Zerbe, Laska, Meisner and Kushner (1982) extend Fieller’s theorem in two directions.
First, they focus on ratios of parameters in the normal linear regression model. Secondly, they
construct multivariate confidence regions and simultaneous confidence sets for several ratios of
linear combinations of parameters. In this case, normality still guarantees exact confidence lev-
els. Young, Zerbe and Hay (1997) applies Zerbe et al. (1982)’s results to the context of linear and
nonlinear mixed-effects models, in which case the distribution of estimators and test statistics
are asymptotic.

Athough the solution provided by Fieller’s method has been analyzed to some extent in the
statistics litterature on location-scale, ANOVA and regression models [Darby (1980); Selwyn
and Hall (1984); Buonaccorsi (1985); Bucephala and Gatsonis (1988); Zerbe (1978); Zerbe et al.
(1982); Young et al. (1997)], its application to discret choice or limited dependent variable
models is rather little documented. There is substantial evidence that standard asymptotics
provides poor approximation to the sampling distribution of estimators and test statistics in
discret choice or limited dependent variable models, even when linear hypothesis tests are of
concern [see Davidson and MacKinnon (1999b), Davidson and MacKinnon (1999a), Davidson
and MacKinnon (2000) and Savin and Würtz (1998)]. Furthermore, Dufour (1997) shows that
mostWald-type confidence sets for a locally almost unidentified parameter in econometric models
where the parameter space contains a nonidentification subset deviate arbitrarily from their
nominal level, since they are almost surely bounded. In view of the recent literature on weak

1Scheffé (1970)’s procedure proceeds as follows: first test the null hypothesis that the numerator and the
denominator are jointly equal to zero. If this test does not reject, state that both the numerator and the
denominator jointly take on zero value. If the test rejects, state that the ratio is inside or outside a finite modified
Fieller confidence set.
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identification and weak instruments [Dufour (1997), Stock, Wright and Yogo (2002), Stock and
Yogo (2002), Dufour (2003), Stock and Wright (2000)], there has been a renewed interest in an
alternative method based on generalizing Fieller’s theorem [Fieller (1940, 1954)]. In this paper,
we consider Fieller-type simultaneous confidence sets for multiple ratio functions in econometric
models under (2.1)-(2.2) below, with a focus on discret choice models. Our contributions can
be classified into three categories.

First, we provide evidence based on two simulation studies that the delta method based
confidence set for one parameter ratio in a discret choice model performs very poorly when the
denominator approaches zero. One simulation study is based on a simple binary probit model,
and the other one is based on a more complex model, a multinomial probit model with first-order
generalized autoregressive errors [Bolduc (1992, 1999)].

Second, we use projection techniques to derive explicit form for simultaneous confidence sets
for scalar linear transformations of a finite number of parameter ratios in general econometric
models. Our characterization result shows that the confidence sets are not necessarily bounded,
which implies that they will not suffer from the fundamental limitations documented in Dufour
(1997). Our results hold asymptotically under mild regularity conditions and exactly for special
cases. This extends work by Zerbe et al. (1982) beyond the normal linear regression model.

Third, the proposed procedures are applied to the transportation behavior analysis using the
multinomial probit model specified and estimated in Bolduc (1999), where inference for three
value of time ratios was relies on t-statistics based on the delta method.

The paper is organized as follows. In section 2, we set notation and introduce the statistical
framework. In section 3, we discuss two methods for constructing a confidence interval for one
parameters ratio and examine their statistical performance in illustrative discrete choice models.
In section 4, we construct a Fieller-type joint confidence set for a finite number of ratios and
then we derive projection-based simultaneous confidence sets. Empirical applications of the
procedures are presented in section 5. Section 6 concludes.

2 Statistical Framework

In this section, we set notation and introduce the statistical framework. Consider the general
parametric model

(Y, {Pθ, θ ∈ Θ ⊂ Rp, p ≥ 1}) , (2.1)

where Y is the observations set, Pθ is a probability distribution over Y and θ = (θ1, θ2, ..., θp)
0

is the parameter vector. The model is regular and identifiable, so based on a sample of size T,
there exists a consistent and asymptotically normal estimator θ̂ = (θ̂1, θ̂2, ..., θ̂p)0of θ :³

θ̂ − θ
´
−→ N

¡
0,Σθ̂

¢
, T →∞, (2.2)

where det
¡
Σθ̂

¢ 6= 0. Let Σ̂θ̂ denote a consistent estimate of Σθ̂. For any constinuously differen-

tiable function g : Θ∗ −→ Rq, (q ≥ 1) , where Θ∗ ⊆ Θ, if θ̂ ∈ Θ∗, then g
³
θ̂
´
is asymptotically
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normal with mean g (θ) and estimated variance matrix Σ̂g(θ̂) given by

Σ̂g(θ̂) =
∂g
³
θ̂
´

∂θ0
Σ̂θ̂

∂g0
³
θ̂
´

∂θ
. (2.3)

As a special case, any linear combination L0θ̂ of the elements of θ̂, where L is a known p × 1
vector, is asymptotically normal with estimated variance

Σ̂L0θ̂ = L0Σ̂θ̂L. (2.4)

We consider Fieller-type confidence sets for ratio functions in econometric models under (2.1)-
(2.2), with a focus on discret choice models. We first examine, through illustrative empirical
models and Monte Carlo simulation studies, the poor performance of the delta method-based
confidence set for one parameter ratio. The latter confidence set is a Wald-type method based
on (2.3). Then, we consider the problem of simultaneous confidence sets for multiple ratios, in
which case we propose to use a theory of quadric confidence sets in order to derive the explicit
form of the simultaneous confidence limits for any scalar linear combination of these ratios.

So, our purpose is to build simultaneous confidence sets for scalar linear transformations of
the components of vector-valued ratio functions h : Θ −→ Rq, h (θ) = (h1 (θ) , h2 (θ) , ..., hq (θ))

0 .
Individual confidence sets for several parameters are said to be simultaneous if they are con-
structed ensuring an overall confidence level control; see Miller (1981), Dufour (1989), Ab-
delkhalek and Dufour (1998).

Definition 1 In the framework of model 2.1-2.2, let {gi (θ) : i ∈ I} be a set of parameters defined
as functions of θ, where the index set I may be finite or infinite and gi (θ) ∈ R,∀ i ∈ I and let
CSi ⊂ R be a confidence set for gi (θ) ,∀ i ∈ I. The sets CSi, i ∈ I, constitute simultaneous
confidence sets with level 1− α for gi (θ) , i ∈ I if and only if

Pr (gi (θ) ∈ CSi, i ∈ I) ≥ 1− α. (2.5)

A key feature of a ratio function, e.g. hi (θ) , i = 1, ..., q, is that it may display discontinuities
in its domain Θ, so a reliable confidence set should be immune to such possible discontinuity
problems. Specifically, the coverage probability should be close to the nominal confidence level,
even when the true value of the parameter vector is in a discontinuity boundary.

We consider the case where hi (θ) = L0iθ/K0θ, where Li and K are known p × 1 vectors,
i = 1, ..., q. Ratios with the same denominator are encountered in many fields in economics;
these include long run elasticities in dynamic demand models, and the economic value of time
for several use-specific portions of travel time in transportation research. In this context, the
discontinuity set for any hi, i = 1, ..., q, is the set of all θ ∈ Θ such that K 0θ = 0. Our setup
covers simultaneous confidence sets for the individual ratios hi (θ) or for linear combinations of
hi (θ) , i = 1, ..., q. For these cases, we apply projection techniques to a joint confidence region
constructed for the vector h (θ) = (h1 (θ) , ..., hq (θ))

0 .
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3 Confidence Set for One Ratio of Parameters

In this section, we illustrate statistical problems associated with a confidence set constructed
for one parameter ratio using the delta method. For convenience, we first give a brief discussion
of two confidence set procedures, one based on the delta method and the other based on the
Fieller’s theorem, as they apply to the ratio δ (θ) = θ1/θ2 defined from model (2.1). Let

Σ̂12 =

·
v̂1 v̂12
v̂12 v̂2

¸
denote the submatrix of Σ̂θ̂ that corresponds to

³
θ̂1, θ̂2

´
.

3.1 The delta method and the Fieller-type confidence sets

The well-known delta-method relies on a first order Taylor series approximation for the ra-
tio function δ (θ) = θ1/θ2 to obtain an estimate for the asymptotic variance of its maximum
likelihood estimator δ̂ = θ̂1/θ̂2. This estimated asymptotic variance is

Σ̂δ(β̂) = Ĝ0Σ̂12Ĝ,

where

Ĝ =

"
1

θ̂2
, − θ̂1

θ̂
2

2

#0
.

To get a (1− α) level confidence set, the delta method yields the following Wald-type confidence
set, using the asymptotic normal distribution critical point zα/2 :

DCS (δ; 1− α) =

"
θ̂1

θ̂2
− zα/2Σ̂

1/2

δ(θ̂)
,

θ̂1

θ̂2
+ zα/2Σ̂

1/2

δ(θ̂)

#
. (3.6)

This confidence set is bounded and may therefore have zero coverage probability. In other words,
the probability that this confidence set misses the true ratio may be practically one (Dufour
(1997)).

On the other hand, Fieller’ theorem, introduced in the context of the ratio of two means of
normal variates where it leads to exact confidence sets, inverts a t-test of a linear restriction
associated to the ratio. Inverting a test with respect to a parameter actually means that we
collect all the values of this parameter for which the test is not significant. For the ratio
δ (θ) = θ1/θ2 in the context of model (2.1)-2.2, it applies as follows. For each possible value δ0
of the ratio, define the auxiliary hypothesis Hδ0 :

Hδ0 : θ1 − δ0θ2 = 0. (3.7)

Then, a (1− α) level confidence set corresponds to the set of δ0 for which an t-test of Hδ0 is not
significant at level α. The test statistic in question is defined by:

t (δ0) =

³
θ̂1 − δ0θ̂2

´
σ(θ̂1−δ0θ̂2)

, (3.8)
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where
σ(θ̂1−δ0θ̂2) =

¡
δ20v̂2 − 2δ0v̂12 + v̂1

¢1/2
is an estimate of the variance of

³
θ̂1 − δ0θ̂2

´
. Under Hδ0 ,

t (δ0)
asy∼ N(0, 1) .

So, Fieller’ theorem gives a (1− α) level confidence set as the set of δ0 such that

|t (δ0)| ≤ zα/2,

which leads to the following confidence set

FCS (δ; 1− α) =

½
δ0 :

³
θ̂1 − δ0θ̂2

´2 ≤ z2α/2
¡
v̂1 + δ20v̂2 − 2δ0v̂12

¢¾
. (3.9)

This requires solving the following second degree polynomial inequality for δ0:

Aδ20 + 2Bδ0 +C ≤ 0, (3.10)

where 
A = θ̂

2
2 − z2α/2v̂2

B = −θ̂1θ̂2 + z2α/2v̂12

C = θ̂
2
1 − z2α/2v̂1.

(3.11)

In appendix A, we present explicit solutions to the Fieller-type confidence set for one ratio
of parameters, as defined by 3.9—3.11. These solutions show that the Fieller-type confidence
set shares two basic properties. First, FCS (δ; 1− α) cannot be an empty set,2 which is a
useful property. Second, the Fieller-type confidence set for one ratio of parameters is either a
bounded interval, an unbounded interval, or the entire real line ]−∞,+∞[. The confidence set
FCS (δ; 1− α) is an unbounded interval or the entire real line only when

¯̄̄
θ̂2/ (v̂2)

1/2
¯̄̄
< zα/2, i.e.

when the Student’s t-test of H0 : θ2 = 0 is not significant is not significant at level α. Therefore,
when the denominator is close to zero, the Fieller-type confidence set will give unbounded
solutions, whereas the delta method still yields bounded confidence sets.

It is interesting to note that FCS (δ; 1− α) can remain informative even if it is unbounded.
In particular, if we test H0 : δ = r, where r is any known scalar, and consider a decision rule
which rejects H0 when r /∈ FCS (δ; 1− α) , H0 will be rejected at level α for all values of r not
enclosed by the unbounded FCS(δ; 1− α).

3.2 Motivating experiments

To explore the feasibility of the Fieller-type and the delta method based confidence sets in discret
choice contexts , we examine two illustrative examples. First, we present an empirical example
based on Ben-Akiva and Lerman (1985, Chapter 7), and then we run a simulation study in a
binary probit model.

2 In section 4.2, we prove in corollary 4 the non-emptyness property for the general case of simultaneous
confidence sets for scalar linear transformations of ratios of parameters.
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3.2.1 A trinomial logit model of travel demand

The first example we present is an application of both procedures to estimating the value of
time in a three-alternative logit mode choice model analyzed in Ben-Akiva and Lerman (1985,
Chapters 3, 5 and 7.).

The model is specified as follows. The universal choice set consists of three modes to work:
driving alone, sharing a ride, transit bus. Each worker n has a feasible choice set, denoted by
Cn, that has Jn ≤ 3 feasible choices.3 Let Uin = Vin + εin denote the real-valued utility index
associated with alternative i ∈ Cn for individual n, where Vin is the systematic component of
the utility and εin is the random component. Alternative i ∈ Cn is choosen by individual n if
and only if Uin ≥ Ujn for all j 6= i, j ∈ Cn. The probability that alternative i ∈ Cn is choosen
by individual n is given by

Pn (i) = Pr (Uin ≥ Ujn,∀j ∈ Cn, j 6= i)

= Pr (Vin + εin ≥ Vjn + εjn,∀j ∈ Cn, j 6= i)

= Pr (εjn − εin ≤ Vin − Vjn,∀j ∈ Cn, j 6= i) .

The multinomial logit (MNL) model is obtained as

Pn (i) =
eVinP

j∈Cn
eVjn

,∀i ∈ Cn (3.12)

and corresponds to independently and identically Gumbel-distributed εin, i ∈ Cn, with a scale
parameter equal to one. This model is estimated assuming linear-in-parameters functions for the
deterministic components Vin and a single vector of coefficients θ that applies to all the utility
functions. The utility Uin takes the following form

Uin = θ0Xin + εin, (3.13)

where Xin is a vector describing the attributes of alternative i for individual n. This leads to

Pn (i) =
eθ

0XinP
j∈Cn

eθ
0Xjn

,∀i ∈ Cn.

The variables Xin include two alternative-specific constants, three generic attributes of the travel
modes and seven alternative-specific socioeconomic and locational characteristics of worker n.
The three variables for generic attributes of the travel modes are:4 round trip travel time (the
sum of in-vehicle and out-of vehicle times), (round trip out-of vehicle time)/(one-way distance),
and (round trip travel cost)/(household income). Their coefficients in the functions Vin will be
denoted respectively by θ3, θ4, θ5. This model was estimated by maximum likelihood using data
for a sample of 1136 workers taken from a 1968 survey in the Washington, D.C., metropolitan
area.

3The rules used for determining which subset of the three potential alternatives is feasible for each worker were
entirely judgmental. See Ben-Akiva and Lerman (1985, chapter 5) for details.

4See Ben-Akiva and Lerman (1985, Table 7.1, page 158) for details on the other variables.
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In this model, the ratio of two coefficients θi and θj of the utility function (3.13) provides
information about the marginal rate of substitution between the corresponding variables. The
economic value of travel time can then be defined as the marginal rate of substitution between
the time and cost variables. In particular, since round trip travel time is the sum of in-vehicle
and out-of vehicle times, the value of total travel time is equal to that of in-vehicle time and is
given by

δtot =
θ3
θ5
× (household income) . (3.14)

Similarly, the value of out-of-vehicle time is

δout =

·
θ3
θ5
+

θ4
θ5 × (one-way distance)

¸
× (household income) . (3.15)

Ben-Akiva and Lerman (1985) computed point estimates for the two parameter functions δtot
and δout. Let h1 (θ) = θ3/θ5 and h2 (θ) = θ4/θ5. If θ5 is close to zero, then the functions δtot
and δout will be weakly identified. Here, we give 95%-level confidence sets for the ratios h1 (θ)
and h2 (θ), using the delta method and the Fieller-type procedures.

The delta method yields

DCS (θ3/θ5; .95) = [−.0002089, .0023483]

(3.16)

DCS (θ4/θ5; .95) = [−.1974734, 1.1382400],

whereas the Fieller-type method gives

FCS(θ3/θ5; .95) = [−∞, −.0151209] ∪ [.0003947, +∞]
(3.17)

FCS(θ4/θ5; .95) = [−∞, −7.2190631] ∪ [.0826500, +∞] .
This example illustrates a situation where a Fieller type confidence set is unbounded and is in

conflict with the one based on the delta-method. We emphasize that although FCS (θ3/θ5; .95)
and FCS (θ4/θ5; .95) are unbounded, they remains informative. For instance, if we test H0 :
θ3/θ5 = 0 or H0 : θ4/θ5 = 0 using the derived confidence sets as mentionned above, the
unbounded Fieller-type confidence sets (3.17) are indeed quite informative and lead to rejection
of H0 as expected for the economic value of travel time. In contrast, using the confidence set
based on the delta-method, H0 is not rejected, which is counter intuitive since this implies that
travel time may have a zero economic value. As pointed out above, the former method is more
likely to give confidence sets robust to severe size problems as documented in Dufour (1997). As
a result, an unbounded confidence set may be quite informative and reliable, whereas a bounded
confidence set may fail to cover the true parameter value.

3.2.2 Simulation study I: a binary probit model

In this example, we consider the simple binary probit model specified as follows:

7



y∗n = θ1 + θ2x2n + θ3x3n + un

yn =

½
0 if y∗n < 0
1 otherwise

(3.18)

un ∼ i.i.d. N (0, 1) ,

where for individual n, x2n and x3n are observations on explanatory variables, y∗n is the latent
(unobservable) variable that may represent utility, yn is the observed choice, un is the error
term assumed to be identically and independently distributed as a standard normal, and θ =
(θ1, θ2, θ3)

0 is the parameter vector. The model (3.18) is estimated by the method of maximum
likelihood, which gives a consistent and asymptotically normal estimator θ̂ for θ. The aim is to
run a simulation study to assess the coverage rate properties of the two confidence set procedures,
the delta method and the Fieller-type method, as they apply to the ratio δ = θ2/θ3 in model
(3.18) when the denominator approaches zero.

The design used in this simulation study is as follows. The regressors x2 and x3 and the error
term u are drawn from three independent N(0, 1) variates. The parameters are set to θ1 = 1,
θ2 = 3.3 and θ3 varies from 2 to 0.0001; the sample size T is set to T = 100, 250, 1000, 5000, and
10000. We construct 95%-level confidence sets for δ, using the delta method and the Fieller-
type method. Based on 10000 replications, we compute the empirical coverage rate for both
procedures. Simulation results are shown in Table ??.

These results show that the empirical coverage rate of the delta method based confidence
set deteriorates rapidly as the denominator becomes close to zero, no matter how large the
sample size. Especially, when the denominator value is lower than 0.1, the empirical coverage
rate deviates markedly from the nominal confidence level. In contrast, the Fieller-type method,
although it is approximate in our application, does not suffer from such problems. The poor
performance of the delta method based confidence set might be more serious in many empirical
models where specified discret choice models are more complex. As a result, confidence sets
based on the delta method should be avoided, while the Fieller-type method is more appealing.

3.2.3 Simulation study II: a multinomial probit model with logit kernel

We consider a more complex formulation of discrete choice, i.e. the multinomial probit with
logit kernel model. Since the properties of standard asymptotics in this class of models are little
documented, it is important to assess the performance of both confidence set procedures within
this framework. The model can be described as follows.

Each individual denoted by n = 1, . . . , T in a population of size T faces J discrete alternatives
(or choices) of a choice set C. The observed choice made by individual n is denoted by in ∈ C,
and Xn is the (J × K) matrix of explanatory variables associated with individual n; these
variables include socio-economic variables, alternatives characteristics as well as different types
of interactions. Xjn denotes the j-th row of Xn. The vector of unknown parameters to be

8



Table 1: Empirical coverage rates for the delta method- and the Fieller method- based confidence
sets for a parameter ratio in a simple binary probit model.

T 100 250 1000 5000 10000
θ3 DCS FCS DCS FCS DCS FCS DCS FCS DCS FCS

2 93.30 95.33 94.71 95.29 95.09 95.38 95.05 95.11 94.84 94.93
1 90.97 95.82 94.01 95.19 94.97 95.13 95.08 95.06 94.84 95.01
0.5 88.58 95.50 91.11 95.33 94.38 94.87 94.86 94.92 95.14 94.96
0.4 89.00 95.48 90.65 94.90 93.91 94.93 94.68 94.69 94.81 94.88
0.3 82.11 95.34 89.93 94.80 92.81 95.09 94.98 95.01 94.77 94.75
0.2 79.15 95.77 85.48 95.12 91.36 94.97 94.07 94.61 95.10 95.07
0.1 61.59 95.79 72.97 95.08 85.82 95.13 91.81 94.99 93.16 95.22
10−2 22.03 95.66 30.44 94.89 41.07 95.50 56.86 95.09 64.47 94.96
10−3 06.79 95.69 10.17 94.99 13.90 94.89 19.56 94.54 24.15 94.92
10−4 02.42 95.67 02.98 95.19 04.29 94.79 06.38 95.41 07.71 95.34

Note: Numbers reported are empirical coverage rates for the confidence set based on the delta
method [in the columns titled “DCS”] and for the one based on the Fieller’s method [in the
columns titled “FCS”]. θ3 is the denominator of the ratio and T is the sample size. The nominal
confidence level is 95%.

estimated is denoted by θ = (β0, β̄0)0, where the sub-vector β, of dimension (K × 1), denotes
the parameters associated with Xn and the sub-vector β̄ contains the nuisance parameters. We
write the discrete choice model for individual n as:

ς i,n =

½
1 if individual n chooses alternative i
0 otherwise.

(3.19)

Uin = Xinβ + εin, i = 1, 2, . . . ,J , (3.20)

where Uin is the indirect utility indicator associated with alternative i for individual n. For
convenience, we write this model in the following compact form:

Un = Xnβ + εn,

where Un = (U1,n, U2,n, . . . , UJ ,n)
0 and εn = (ε1,n, ε2,n, . . . , εJ ,n)

0 are J × 1 vectors. For further
reference, let X denote the matrix that concatenates vertically the individual matrices Xn for
n = 1, . . . , T. The alternative i is chosen by individual n if and only if Uin ≥ Ujn,∀j ∈ C; the
vector ςn = (ς1,n, ς2,n, . . . , ςJ ,n)

0 gives the observed choice made by individual n. Therefore, the
choice probability Pn(i) associated with the alternative i, i ∈ C chosen by individual n is defined
by:

Pn(i) = P (Uin ≥ Ujn,∀j ∈ C). (3.21)

The computation burdens of the choice probability (3.21) depend on the distribution assumed

for the error term εn. For example, assuming εn
i.i.d.∼ N(0,Σ) gives the Multinomial Probit

9



(MNP) model. In this case Pn(i) requires the evaluation of multi-dimensional integrals, which
may be analytically untractable for large choice sets; in particular, when the choice set involves

four or more alternatives, the choice probabilities are usually simulated. Assuming εn
i.i.d.∼

Gumbel leads to the Multinomial Logit (MNL) model, in which case the choice probabilities
have a simple to compute explicit form. In this simulation study, we consider the kernel logit
model formulation that results from an attractive combination of MNP and MNL (see Ben-
Akiva, Bolduc and Walker (2001)):

Un = Xnβ + εn (3.22)

εn =Wξn + νn,

W = FG, (3.23)

ξn
i.i.d∼ N(0, IJ ) and νn

i.i.d∼ Gumbel,

where G is a diagonal matrix of dimension (J ×J ) that have the standard deviation terms of the
components εn of its main diagonal, and the matrix F captures the correlation structure among
the error terms. When ξn is known, this model reduces to the usual MNL model specification;
then the probability Pn(i) that individual n chooses alternative i conditionnally to ξn can be
written as:

Pn(i|ξn) =
eXinβ+Wiξn

JP
j=1
eXjnβ+Wjξn

. (3.24)

Then, we obtain the unconditional choice probability of alternative i by integrating Pn(i|ξn)
over the domain of ξn:

Pn(i) =
R ∞
−∞ · · ·

R ∞
−∞| {z }

J

Λ(i|ξn)n(ξn; 0, IJ )dξn. (3.25)

Expression in equation (3.25) shows that Pn(i) is a J -dimensional unbounded integral. In
our experiment, we consider J = 3. So, we have been able to use numerical integration to
compute this tri-dimensional integral, athough it is very computer-time demanding. McFadden
(1989) suggested the simulated maximum likelihood approach, where the multivariate integral
is replaced by an approximation obtained by simulations. This approach requires draws from
the distribution of ξn. Using S independent draws, the empirical mean

P̂n(i) =
1

S
SX

r=1

Λ(i|ξrn), (3.26)

where ξrn denotes a given draw r from the distribution of ξn, is an unbiased and consistent
estimator for the choice probability Pn(i). Then, replacing the choice probability in the log
likelihood with the simulator P̂n(i) and maximizing the simulated likelihood function

L̂(θ) =
TX

n=1

ln P̂n(i|θ). (3.27)

10



lead to simulated maximum likelihood (SML) estimator. SML estimators are known to be
consistent and asymptotically efficient under mild regularity conditions. Efficiency requires that
the sample size and the number of replications S used to compute the probability simulator
both are large.

When estimating SML based logit kernel models, there may be two important problems
namely the non-identification of the parameter vector, and the bias associated with simulating
the log likelihood function. Walker (2001) highlights the fact that the Gumbel i.i.d. term leads
to extra identification conditions that impose restrictions on the matrices F and G. On the
other hand, using a large number of random draws S helps reducing the simulation bias; for
instance Bolduc (1999) suggests that with S = 50 draws, the estimation results are very close
to those obtained with a larger number of draws.

The model is estimated using the method of maximum likelihood. The choice probabilities
Pn(i) are computed using the simulator defined by (3.26). The design of our simulation study is
as follows. Xn is composed of K = 5 variables that are drawn as 1.5 times independent U[0 1]

where U[a b] denotes the uniform distribution [a b], and J = 3 alternatives. We consider
the ratio δ∗ = θ2/θ3. The parameters β of the utility indicator Un are set as follows: β =
(θ1, θ2, θ3, θ4, θ5)

0 and θi = 3,for i = 1, 2, 4, 5 in all the experiment, whereas θ3, the denominator
of the ratio δ∗ varies from 3 to 0.0001. The sample size T is set to T = 1000, 5000, and 10000. For
the simulated choice probability method, we use S = 50 draws to evaluate the simulator (3.26),
while we use 12 integration points for the numerical integration method. We construct 95%-
level confidence sets for δ∗, using the delta method and the Fieller-type method and compute
empirical coverage rates based on 1000 replications. Table 2 reports the empirical coverage rates
for both procedures.

4 Simultaneous Confidence Sets for Multiple Ratios of Parame-
ters

Let us consider, in the context of model (2.1-2.2), s ≤ p− 1 ratios of parameters ρi, i = 1, ..., s
with a common denominator K0θ :

ρi = hi (θ) = L0iθ/K
0θ,∀i = 1, ..., s, (4.28)

where {L1, L2, ..., Ls,K} is a linearly independent set of fixed (nonstochastic) p × 1 vectors.5
These s ratio functions have the same discontinuity set Dh defined by

Dh =
©
θ ∈ Θ : K 0θ = 0

ª
. (4.29)

Clearly, Dh 6= ∅ since θ = (0, ..., 0) ∈ Dh.

5Observe that if s ≥ p, then {L1, L2, ..., Ls, K} are linearly dependent. Indeed, if s > p, then it is always
possible to express at least s− p elements of the set {L1, L2, ..., Ls} as a linear combination of the others, and if
s = p, then K is expressible as a linear combination of L1, ..., Ls.

11



Table 2: Empirical coverage rates for the delta method- and the Fieller method- based confidence
intervals for a parameter ratio in a kernel logit multinomial probit model.

T 1000 5000 10000
θ3 DCS FCS DCS FCS DCS FCS

3 94.3 95.1 95.2 94.6
2 94.8 95.4
1 93.3 93.7 94.4 94.5
0.5 90.5 93.9 95.1 94.1
0.3 87.8 94.7
0.2 82.2 94.1 90.6 95.1
0.1 69.2 93.5
10−2 25.9 93.4 37.4 94.4
10−3 7.6 93.9 13.1 94.7
10−4 2.6 94.0

Note: Numbers reported are empirical coverage rates for the confidence set based on the delta
method [in the columns titled “DCS”] and for the one based on the Fieller’s method [in the
columns titled “FCS”]. θ3 is the denominator of the ratio and T is the sample size. The nominal
confidence level is 95%.

We aim to construct simultaneous confidence sets for the s ratios defined in (4.28) as well as
for any linear combination of these ratios,

lw (ρ1, ρ2, ...ρs) =
sX

i=1

wiρi, (4.30)

where w = (w1, w2, ..., ws)
0 is any known nonstochastic (fixed) s× 1 vector. We provide explicit

solutions for these simultaneous confidence limits.
Zerbe et al. (1982) construct simultaneous confidence limits for several ratios of linear combi-

nations of parameters in a normal linear regression model using an analysis of variance method
proposed in Scheffé (1959, 1953).6 They show that for each ratio, these confidence limits are
solutions to a quadratic equation and take the form (3.9). In addition, Zerbe et al. (1982) con-
struct a joint confidence set for a finite number of ratios of linear combinations of regression
coefficients with a common denominator and claimed that projections of this joint confidence
region on the individual ratios’ axes yield exactly the simulatneous confidence limits obtained
through the Scheffé’s method of analysis of variance.

In this section, we use results on quadric confidence sets (see Dufour and Taamouti (2003))

6 In a normal linear regression model, this method gives simultaneous Wald type confidence sets for linear
transfomations of a finite number of independent linear combinations of regression coefficients. The method
applies to a ratio using a Fieller-type transformation, as in (3.7). It applies to the more general case where the
ratios need not have the same denominator.
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and derive simultaneous confidence limits for any linear combination of the s ratios defined in
(4.28).

4.1 Joint confidence set for a finite number of parameters ratios

We define the following s linear combinations associated with the s ratios ρi, i = 1, ..., s, as in
(3.7):

L0iθ − ρiK
0θ = 0, i = 1, ..., s. (4.31)

Let

H =
£
L1 . . . Ls K

¤0
(4.32)

R =

·
Is

−ρ1 . . . −ρs

¸0
,

where Is is the s-dimensional identity matrix. The s × (s+ 1) matrix R has full row rank for
any possible values for ρi, i = 1, ..., s; and since the set of s + 1 vectors {L1, L2, ..., Ls,K} is
linearly independent, the matrix H has full row rank. Therefore, the s equations in (4.31) imply
s non-redundant restrictions that we write in the form RHθ = 0.

In order to obtain a joint confidence region for ρ = (ρ1, ..., ρs)
0 we propose, as in Zerbe et al.

(1982) and Young et al. (1997), to invert a Wald test for the restrictions

H0 : RHθ = 0. (4.33)

A (1− α) level confidence region for ρ, CS (ρ; 1− α) , is the set of all ρ such that the latter test
is not significant at level α.

Let WRH denote the Wald statistic defined to test (4.33):

WRH =
³
RHθ̂

´0 ³
RHΣ̂θ̂H

0R0
´−1 ³

RHθ̂
´
.

In our context, WRH has an asymptotic χ2 (s) null distribution; let cα be the (1− α) percentile
point of the χ2 (s) distribution. Then, we define CS (ρ; 1− α) as:

CS(ρ; 1− α) = {ρ ∈ Rs :WRH ≤ cα} . (4.34)

Zerbe et al. (1982) consider the following orthogonal decomposition that allows to characterize
the analytical form of CS (ρ; 1− α):

WRH =
³
Hθ̂
´0 ³

HΣ̂θ̂H
0
´−1 ³

Hθ̂
´
− (4.35)·¡

ρ0, 1
¢ ³

HΣ̂θ̂H
0
´−1

Hθ̂

¸0 ·¡
ρ0, 1

¢ ³
HΣ̂θ̂H

0
´−1 ¡

ρ0, 1
¢0¸−1 ·¡

ρ0, 1
¢ ³

HΣ̂θ̂H
0
´−1

Hθ̂

¸
.

Substituting (4.35) in (4.34) and rearranging terms then yields:

Pr{ρ0∗Mρ∗ ≤ 0} = 1− α, (4.36)
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where

ρ∗ =
¡
ρ0, 1

¢0 (4.37)

M = c
³
HΣ̂θ̂H

0
´−1 − ·³HΣ̂θ̂H

0
´−1

Hθ̂

¸·³
HΣ̂θ̂H

0
´−1

Hθ̂

¸0
c =

³
Hθ̂
´0 ³

HΣ̂θ̂H
0
´−1 ³

Hθ̂
´
− cα.

Therefore, (4.34) is written as:

CS (ρ; 1− α) =
n
ρ ∈ Rs : ρ0∗Mρ∗ ≤ 0, ρ∗ =

¡
ρ0, 1

¢0o
. (4.38)

The set CS(ρ; 1− α) may take different forms, which depend on whether the common de-
nominator of the ratios is statistically different from zero or not [Scheffé (1970), Zerbe et al.
(1982), Young et al. (1997)]: the interior of an s-dimensional ellipsoid, or a hyperboloid, or the
entire s-dimensional vector space Rs. We use a theory of quadric confidence sets and derive
explicit form for the projection-based simultaneous confidence sets for any scalar linear trans-
formation of the s ratios with common denominator, lw (ρ) = w0ρ, where w is a known fixed
(nonstochastic) vector.

4.2 Explicit solutions for simultaneous confidence sets for linear transforma-
tions of ratios

We characterize simultaneous confidence sets for linear transformations of a finite number of
ratios using the quadric confidence set theory, as developped in (Dufour and Taamouti (2003)).
The set of points that satisfy an equation of the form ρ0Γρ+β0ρ+γ = 0, where Γ is a symmetric
s× s matrix, β is a s× 1 vector and γ is a scalar, constitutes a quadric surface. A confidence
set for ρ of the form

Cρ =
©
ρ0 : ρ

0
0Γρ0 + β0ρ0 + γ ≤ 0ª

is a quadric confidence set (Dufour and Taamouti (2003)). Depending on the values of Γ, β, and
γ, it may take several forms, including ellipsoids, paraboloids and hyperboloids.

The confidence set CS (ρ; 1− α) defined in (4.38) can be written in the form of a quadric
conficence set. Indeed, since ρ∗ = (ρ0, 1)

0, partition the matrix M accordingly in the form:

M =

·
M11 M12

M21 M22

¸
, (4.39)

where M11 is an s × s matrix, M12 is a s × 1 vector, M21 = M 0
12, and M22 is a scalar. Let

S1 = (Is ∼ 0s×1) be an s× (s+ 1) matrix and S2 = (0, ..., 0, 1) a 1× (s+ 1) vector. Then, the
following relations hold:

ρ = S1ρ∗, M11 = S1MS01,
M22 = S2MS02.
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The quadratic form ρ0∗Mρ∗ is equivalently expressed as:

ρ0∗Mρ∗ = ρ0M11ρ+ 2M
0
12ρ+M22.

Thus, CS (ρ; 1− α) is written as the following quadric confidence set:

CS(ρ; 1− α) =
©
ρ ∈ Rs : ρ0M11ρ+ 2M

0
12ρ+M22 ≤ 0

ª
. (4.40)

The joint confidence region CS (ρ; 1− α) is multidimensional and may be hard to interpret
in practical applications. So, it is more convenient to derive confidence sets for individual
ratios or for scalar linear transformations of them. We apply the projection technique to the
quadric confidence set CS(ρ; 1− α) (see Dufour and Taamouti (2003)) and obtain simultaneous
confidence sets for scalar linear transformations of the s considered ratios.

The projection technique is based on the following elementary probability result: given a
continuous fonction g : Θ→ Rq, q ≥ 1, and any subset E ⊂ Θ, we have

∀x ∈ Θ, (x ∈ E)⇒ (g (x) ∈ g (E)) ,

where
g (E) = {y ∈ Rq : ∃ x ∈ E, g (x) = y} .

This implies:
∀x ∈ Θ, Pr [x ∈ E] ≤ Pr [g (x) ∈ g (E)] .

As a result,

(Pr [ρ ∈ CS(ρ; 1− α)] ≥ 1− α ) =⇒ (Pr [g (ρ) ∈ g (CS (ρ; 1− α))] ≥ 1− α ) .

This shows that g (CS (ρ; 1− α)) is a confidence set for g (ρ) with level at least (1− α); so, it is
a conservative confidence set for g (ρ) . More importantly, the projection-based confidence sets
obtained for any number of transformations g (ρ) of ρ are simultaneous, i.e. they satisfy the
inequality in (2.5). In particular, if we consider scalar linear transformations of ρ, lw (ρ) = w0ρ,
w ∈ Rs, then the sets

CS
¡
w0ρ; 1− α

¢
=
©
w0ρ0 : ρ

0
0M11ρ0 + 2M

0
12ρ0 +M22 ≤ 0

ª
(4.41)

are simultaneous confidence sets for w0ρ, w ∈ Rs. Special cases of linear combination include
projections on the i-th component axe ρi of ρ, i = 1, ...s and these correspond to w = wi =
(δ1i, δ2i, ..., δsi)

0 , i = 1, ...s, where the Kronecker delta δji is defined by

δji =

½
1 when j = i
0 when j 6= i

.

We can now characterize the explicit form of the projection-based confidence sets for scalar
linear transforms of ρ, as defined in (4.41). The following Lemma is needed for this result.
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Lemma 2 Let M11, M12, and M22 be defined by (4.37), (4.39). Then, M11 is nonsingular. In
addition, let d =M 0

12M
−1
11 M12 −M22. Then d > 0 if and only if M11 is a positive definite or a

negative definite matrix.

This result follows from the characterization provided by Zerbe et al. (1982, Appendix C)
for the geometric form of the multivariate confidence region (4.38). For convenience, we give in
the Appendix B the main steps of this characterization that are useful to establish Lemma 2.

Let
f = −M−1

11 M12, d =M 0
12M

−1
11 M12 −M22, (4.42)

and let
fi = −

¡
M−1
11

¢
i.
M12

be the i-th element of f , ¡
M−1
11

¢
i.

be the i-th row of M−1
11 , and ¡

M−1
11

¢
ii

be the i-th element of the main diagonal of M−1
11 . We can now state our main result in the

following theorem.

Theorem 3 Projection-based confidence sets for scalar linear transformations of ρ.
Let M11, M12, M22, f and d be defined by (4.37), (4.39) and (4.42). Let the joint (1− α)

level confidence set for ρ,CS (ρ; 1− α), be defined as in (4.38)-(4.40). Let w ∈ Rs\{0} and
W11 = w0M−1

11 w.

1. If all the eigenvalues of M11 are positive, then the projection-based confidence set for w0ρ
defined by (4.41) corresponds to the bounded set

CS
¡
w0ρ; 1− α

¢
=
h
w0f − (dW11)

1/2 , w0f + (dW11)
1/2

i
.

2. If M11 has at least two negative eigenvalues, then CS(w0ρ; 1− α) = R.

3. If M11 has exactly one negative eigenvalue, then:

(a) If w0M−1
11 w < 0, then the projection-based confidence set for w0ρ is a union of two

unbounded sets:

CS
¡
w0ρ; 1− α

¢
=
i
−∞, w0f − (dW11)

1/2
i
∪
h
w0f + (dW11)

1/2 , +∞
h
;

(b) If w0M−1
11 w > 0, then CS (w0ρ; 1− α) = R.

(c) If w0M−1
11 w = 0, then CS(w

0ρ; 1− α) = R\{w0f}.
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Proof. Since M11 is a real symmetric matrix, we have

M11 = G0D11G

where G is an orthogonal matrix andD11 is a diagonal matrix whose elements are the eigenvalues
of M11. Let λ1, λ2, ..., λs denote the s eigenvalues of M11. Using the transformation

z = G (ρ− f) ,

the inequality ρ00M11ρ0 + 2M
0
12ρ0 +M22 ≤ 0 is equivalent to

λ1z
2
1 + λ2z

2
2 + ...+ λsz

2
s ≤ d.

We may then write CS(w0ρ; 1− α) as

CS
¡
w0ρ; 1− α

¢
=
©
w0ρ0 : λ1z

2
1 + λ2z

2
2 + ...+ λsz

2
s ≤ d, z = G (ρ0 − f)

ª
.

Since G0G = Is, we have

w0ρ = w0G0Gρ

= w0G0G (ρ− f) +w0G0Gf

= w0G0 [G (ρ− f)] +w0f
= v0z +w0f

where v = Gw. Define

CS
¡
v0z; 1− α

¢
=
©
v0z0 : λ1z21 + λ2z

2
2 + ...+ λsz

2
s ≤ d

ª
. (4.43)

Then, for x ∈ R, £
x ∈ CS ¡w0ρ; 1− α

¢¤⇔ £
x−w0f ∈ CS ¡v0z; 1− α

¢¤
.

The problem is then reduced to characterize CS (v0z; 1− α) . Clearly, the explicit form of
CS(v0z; 1− α) depends on the number of negative eigenvalues of M11. Then, the characteriza-
tion results given in the Theorem obtain from Lemma 2 and Theorems 5.1-5.2 in Dufour and
Taamouti (2003).

Theorem 3 characterizes the possible explicit forms for simultaneous projection-based con-
fidence limits for scalar linear transformations of ρ from the joint confidence set defined in
(4.38)-(4.40). The explicit form depends on the number of negative eigenvalues of M11. From
the proof of Lemma 2 given in Appendix B, we see that the eigenvalues of M11 have the same
sign as c and a, where

c =
³
Hθ̂
´0 ³

HΣ̂θ̂H
0
´−1 ³

Hθ̂
´
− cα
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and

a = c−
·
P 0S1

³
HΣ̂θ̂H

0
´−1

Hθ̂

¸0 ·
P 0S1

³
HΣ̂θ̂H

0
´−1

Hθ̂

¸
where c has multiplicity s− 1 and a has multiplicity one.

Further, using Zerbe et al. (1982, Appendices C, D), it can be shown that

a =
³
K0θ̂

´0 ³
K 0Σ̂θ̂K

´−1 ³
K 0θ̂

´
− cα.

If ³
K 0θ̂

´0 ³
K 0Σ̂θ̂K

´−1 ³
K 0θ̂

´
< c1,α (4.44)

where c1,α denote the (1− α) percentile point of the χ2 (1) distribution, then the Wald test of
H0 : K0θ = 0 is not significant at level α; the common denominator of the considered ratios may
be arbitrarily close to zero. In this case, all the ratios ρi = hi (θ) = L0iθ/K 0θ,∀i = 1, ..., s are
near their discontinuity region defined in (4.29).

Further,·³
K 0θ̂

´0 ³
K0Σ̂θ̂K

´−1 ³
K 0θ̂

´
< c1,α

¸
⇒
·³

K 0θ̂
´0 ³

K 0Σ̂θ̂K
´−1 ³

K 0θ̂
´
< cα

¸
.

Therefore, if ³
K 0θ̂

´0 ³
K 0Σ̂θ̂K

´−1 ³
K0θ̂

´
< c1,α

and ³
Hθ̂
´0 ³

HΣ̂θ̂H
0
´−1 ³

Hθ̂
´
> cα

then a < 0 and c > 0, and as a consequence M11 has exactly one negative eigenvalue. The
individual ratios and any linear combination of them is almost unidentified, and this may cause
a level correct confidence set to be either unbounded or the entire real line.

On the other hand, if a > 0 and c > 0, which implies that all the eigenvalues of M11 are
positive, then ³

K 0θ̂
´0 ³

K0Σ̂θ̂K
´−1 ³

K 0θ̂
´
> c1,α.

As a result, all the ratios and any linear combination of them are well-identified; this case
corresponds to bounded projection-based confidence set in Theorem 3.

The main point in Theorem 3 is that it gives easy-to-compute expressions for the confidence
limits for any linear transformation w0ρ of the considered ratios, and not only for the individual
ratios. It can be checked that for the individual ratios ρi, i = 1, 2, ..., s, the simultaneous confi-
dence limits given in Theorem 3 are numerically identical to the ones obtained by Zerbe et al.
(1982).7 Specifically, for any individual ratio ρi, i = 1, 2, ..., s, the confidence limits are solutions
to the following quadratic inequality:

Aiδ
2
i0 + 2Biδi0 +Ci ≤ 0,

7This follows from the uniqueness of the projection on any individual ρ
i
-axe.
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where 
Ai = (K0θ)2 − cα

³
K 0Σ̂θ̂K

´
Bi = cα

³
L0iΣ̂θ̂K

´
− (L0iθ) (K 0θ)

Ci = (L0iθ)
2 − cα

³
L0iΣ̂θ̂Li

´
.

The following corollary shows that the projection-based confidence set for any linear trans-
formation w0ρ cannot be empty; as a special case, the simultaneous confidence sets for the
individual ratios are non-empty sets.

Corollary 4 The simultaneous projection-based confidence sets defined by (4.41) for any number
of scalar linear transformations of ratios with common denominator are non-empty sets. In
particular, the simultaneous projection-based confidence sets for the individual ratios ρi, i = 1, ...s
are non-empty.

Proof. From Dufour and Taamouti (2003), the only case where the projection-based con-
fidence set for w0ρ is an empty set corresponds to: (i) M11 is positive definite and (ii) d < 0.
Using Lemma 2, this is impossible, and the result follows.

5 Empirical applications

In this section we illustrate the simultaneous confidence sets procedure discussed in the previous
section through three empirical applications. The models we analyze are related to important
issues in transportation and energy economics. The first one considers the trinomial logit model
of travel demand discussed by Ben-Akiva and Lerman (1985)8 in order to construct simulta-
neous confidence sets for the values of in-vehicle and out-of vehicle travel times. The second
one concerns inference for three values of travel time in multinomial probit models that com-
bine maximum simulated likelihood (SML) estimator with Geweke-Hajivassiliou-Keane (GHK)
choice probability simulator, in which cases standard asymptotics performs poorly. The third
illustration is related to simultaneous inference for price- and income-elasticities in sector total
energy demand models for the Province of Québec.

5.1 Value of time in trinomial logit model of travel demand

Estimating value of time is one important application of travel demand models with linear
random utility. Although various theories of time allocation reveal that the value of travel time
can be perceived in different ways, most of empirical studies refer to the value of travel time as
the amont of money the traveler agrees to pay in order to save one unit of the total duration of
his travel [Ashton (1947), De Vany (1974), Truong and Hensher (1985), Bates (1987), Ben-Akiva,
Bolduc and Bradley (1993)]. In a discrete choice framework, when the traveler’s utility fonction
is specified as a linear function of travel cost, travel time and other variables, his evaluation of

8We consider this model in section (3.2.1) for an illustration of confidence set procedures for one ratio of
parameters.
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Table 3: Simultaneous confidence sets for values of total travel time and of out-of-vehicle time
from Ben-Akiva and Lerman(1985)’s trinomial logit model, 95% nominal level.

Type of travel time Delta method Fieller method
Total travel time (δtot) [-2.655, 30.253] ]−∞, −40.843] ∪ [3.918, +∞[
Out-of-vehicle time (δout) [-4.055, 46.639] ]−∞, −66.877] ∪ [6.760, +∞[

Notes: _ The delta method-based confidence intervals are not simultaneous.

the value of travel time is, up to a scalar constant, equal to the ratio of the coefficient of the
time variable over the coefficient of the cost variable [Truong and Hensher (1985), Bates (1987)].

We consider the trinomial logit model of travel demand from Ben-Akiva and Lerman (1985,
Chapters 3, 5 and 7.). We have described this model in section 3.2.1. Here, we construct
simultaneous confidence sets for the value of total travel time (δtot) and the value of out-of-
vehicle time (δout) defined in equations (3.14) and (3.15) respectively. Using the notation of
section 3.2.1, each of these values of travel time is a linear combination of the ratios functions
h1 (θ) = θ3/θ5 and h2 (θ) = θ4/θ5 defined in model (3.12)-(3.13); so we can obtain Fieller-type
projection-based simultaneous confidence sets. We have also computed the delta method based
confidence sets for (δtot) and (δout), which are not simultaneous. We use sample average values
for annual household income (equal to 12900$/year) and for one-way distance (equal to 810
centimiles). Our results are reported in Table 3.

5.2 Value of time in multinomial probit models in transportation

The second application we consider is, as the previous one, related to the economic value of time
in discrete choice models. We consider results from the multinomial probit (MNP) model with
correlated utilities estimated on a data bank on the choice of transportation modes for the morn-
ing peak journey to work in the central business district of Santiago; for details on the model
specification and the data see Bolduc (1999). Three specific uses of travel time are considered:
in vehicle time, walking time and waiting time. The utility that a worker derives from his jour-
ney to work is assumed to be a linear function of transportation modes’specific dummies and of
other variables including cost/income, walking time, in vehicle time, waiting time, a sex dummy
and a dummy for no cars/no permit holders. This leads to three specific values of time that are
expressed as ratios of parameters with common denominator which is given by the coefficient of
the variable cost/income. The estimation method combines the simulated maximum likelihood
(SML) and the Geweke-Hajivassiliou-Keane (GHK) choice probability simulator based on ana-
lytically computed scores. From the estimation results, Bolduc (1999) provided point estimates
for value of time ratios and standard delta method-based asymptotic t-statistics. Apply our
characterization results, we obtain simultaneous projection-based confidence sets for the three
value of time ratios. Tables ?? and ?? report the results along with the delta method-based
confidence intervals.
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Table 4: Simultaneous confidence sets for values of time as percentage of net personal income,
95% nominal level.

Type of Confidence set MNP i.i.d. SML MNP SML MNP
travel time R = 50 R = 50

homoscedastic unconstrained
In vehicle time delta [117.90, 285.52] [122.07, 300.46] [102.69, 265.37]

Fieller [95.77, 352.52] [101.77, 382.24] [61.88, 411.03]
Walking time delta [240.79, 450.66] [239.39, 468.58] [178.65, 397.82]

Fieller [222.08, 548.30] [223.13, 590.17] [141.48, 631.17]
Waiting time delta [453, 1093.37] [507.58, 1201.34] [286.99, 830.65]

Fieller [370.12, 1350.40] [437.36, 1533.36] [178.70, 1373.47]

Note: _ The delta method-based confidence intervals are not simultaneous.

Table 5: Simultaneous confidence sets for values of time as percentage of net personal income,
95% nominal level (continued).

Type of Confidence set SML MNP SML MNP
travel time R = 250 R = 250

unconstrained constrained
In vehicle time delta [110.32, 286.98] [121.00, 307.96]

Fieller [65.89, 457.18] [76.41, 489.12]
Walking time delta [182.09, 413.40] [192.22, 439.45]

Fieller [143.11, 678.24] [151.55, 719.44]
Waiting time delta [300.35, 879.82] [310.43, 902.24]

Fieller [189.56, 1512.05] [205.82, 1555.02]

Note: _ The delta method-based confidence intervals are not simultaneous.
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5.3 Price- and Income-Elasticities in total energy demand models

We consider a partial adjustment model of total energy demand for four sectors of energy use
(industrial, commercial, residential and manufactured) in the Province of Québec. For each
sector, total energy demand depends on sector-specific explanatory variables and the model
is estimated with annual data set from 1962 to 2002. The demand equations are specified as
follows.

• For the residential sector:
ln (HTE t) = a0 + a1 ln (HTE t−1) + a2 ln (PriceE t) + a3 ln (HINC t) + (5.45)

a4 ln (DDH t)− a1a4 ln (DDH t−1) + u1t

where for year t, HTE t is average annual total energy demand per household, HINC t is
average annual disposable income per household, PriceE t is aggregate real price of energy,
DDH t is heating degree days.

• For the commercial sector:
ln (TEC t) = b0 + b1 ln (TEC t−1) + b2 ln (PriceE t) + b3 ln (GDPC t) + (5.46)

b4 ln (DDH t)− b1b4 ln (DDH t−1) + u2t

where for year t, TEC t is total energy demand by the commercial sector, GDPC t is real
gross domestic product in the commercial sector.

• For the manufactured sector:
ln (TEM t) = c0 + c1 ln (TEM t−1) + c2 ln (PriceE t) + c3 ln (GDPM t) + u3t (5.47)

where for year t, TEM t is total energy demand by the manufactured sector, GDPM t is
real gross domestic product in the manufactured sector.

• For the industrial sector:
ln (TEI t) = d0 + d1 ln (TEI t−1) + d2 ln (PriceE t) + d3 ln (GDPI t) + u4t (5.48)

where for year t, TEI t is total energy demand by the industrial sector, GDPI t is real gross
domestic product in the industrial sector.

Convergence of the adjustment process for each sector requires 0 < a1 < 1, 0 < b1 < 1,
0 < c1 < 1, 0 < d1 < 1. The error terms u1t, u2t, u3t, u4t are assumed i.i.d. normal. The
parameters of each equation are estimated using maximum likelihood estimator. The dynamic
specification of energy demand in (5.45)-(5.48) allows one to compute the long-run price and
income elasticities of sector energy demand. As an example, in the residential sector the long-run
price elasticity Erp is given by

Erp = a2
1− a1

(5.49)
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Table 6: Simultaneous confidence sets for long run price- and income- elasticities of total energy
demand, nominal level: 95%.

Sector Elasticities Delta method Fieller method
Residential Price [-0.3682, 0.0911] ]−∞, 0.1112] ∪ [0.9542, +∞[

Income [-4.4576, 5.0129] ]−∞, 1.3333] ∪ [7.0938, +∞[
Commercial Price [-0.7034, -0.3935] [-0.7419, -0.3162]

Income [0.7857, 1.1298] [0.6950, 1.1371]
Industrial Price [-0.6531, 0.1257] [-1.6534, 0.1304]

Income [0.6445, 1.4643] [0.4449, 2.1119]
Manufacture Price [-0.2277, -0.0420] [-0.2766, -0.0230]

Income [0.6042, 0.9088] [0.6211, 0.8917]

Note: _ The delta method-based confidence intervals are not simultaneous.

and the long-run income elasticity Erinc is

Erinc = a3
1− a1

. (5.50)

So, Erp and Erinc are ratios of parameters with a common denominator and we can obtain
simultaneous confidence sets for Erp and Erinc. Table 6 reports simultaneous confidence sets for
long run price-elasticities and income-elasticities for four sectors of energy use.

6 Conclusion

To be completed.
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A Appendix: Characterization of the solutions to the Fieller-
type confidence set for one parameters ratio

In this appendix, we characterize the Fieller-type confidence set for one parameter ratio. In the
context of exact Fieller confidence sets, Scheffé (1970) gives such a characterization for the ratio
of two means of normals and Zerbe et al. (1982) provides an extension to parameter ratio in
normal linear regressions. Here, we extend these results to parameter ratio when the normal
distribution of the estimator is only asymptotically justified.

Proposition 5 Let A,B,C be defined as in (3.11) and let ∆ = B2−AC. Then, the (1− α)-level
Fieller-type confidence set FCS(δ; 1− α) for the ratio δ = θ1/θ2, defined in (3.9), is character-
ized as follows:

1. If ∆ > 0, then

(a) if A > 0, then FCS (δ; 1− α) =
h
−B−√∆

A , −B+√∆
A

i
,

(b) else, if A < 0, then FCS(δ; 1− α) =
i
−∞, −B−√∆

A

i
∪
h
−B−√∆

A , +∞
h
.

2. If ∆ < 0, then A < 0 and FCS (δ; 1− α) = R.

Proof. We solve the equation

Aδ20 + 2Bδ0 +C = 0

where 
A = θ̂

2
2 − z2α/2v̂2

B = −θ̂1θ̂2 + z2α/2v̂12

C = θ̂
2
1 − z2α/2v̂1

for real solutions δ0. Except for a set of measure zero, A 6= 0, so we have a quadratic equation.
Similarly, except for a set of measure zero, ∆ 6= 0; so we discuss the two cases where ∆ > 0 and
∆ < 0. Real solutions exist if and only if

∆ > 0.

If ∆ > 0, then we have two distinct real solutions δ01 and δ02 given by

δ01 =
−B −√∆

A

δ02 =
−B +√∆

A
.
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Therefore,

FCS (δ; 1− α) =


h
−B−√∆

A , −B+√∆
A

i
if A > 0

i
−∞, −B−√∆

A

i
∪
i
−B−√∆

A , +∞
i

if A < 0

.

To complete the proof, let us show that if ∆ < 0, then A < 0. First, let us write ∆ as

∆ =
¡
v̂212 − v̂1v̂2

¢
z4α/2 +

³
θ̂
2
1v̂2 + θ̂

2
2v̂1 − 2θ̂1θ̂2v̂12

´
z2α/2.

Since v̂212 − v̂1v̂2 < 0 (Cauchy-Schwartz inequality), ∆ is negative if and only if

z∗ =
θ̂
2
1v̂2 + θ̂

2
2v̂1 − 2θ̂1θ̂2v̂12

v̂1v̂2 − v̂212
< z2α/2. (A.51)

From

θ̂
2

2/v2 − z∗ = −
³
θ̂2v̂12 − θ̂1v̂2

´2
v̂2
¡
v̂1v̂2 − v̂212

¢ ,

we get
θ̂
2
2/v̂2 − z∗ < 0. (A.52)

Then, from (A.51) and (A.52), we have

∆ < 0 ⇒ θ̂
2
2/v̂2 < z∗ < z2α/2,

which establishes that
∆ < 0⇒ A < 0.

Clearly, this implies
∆ < 0⇒ ¡∀δ0 ∈ R, Aδ20 + 2Bδ0 +C < 0

¢
.
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B Appendix: Proof of lemma 2

To prove Lemma 2, we need the following result known as the Sylvester’s law of inertia.

Lemma 6 (Sylvester’s law of inertia) Let Π1 and Π2 be any p × p symmetric matrices of the
same rank r ≤ p. If Π1 = NΠ2N

0 for some matrix N , then Π1 and Π2 have the same number
of positive eigenvalues.

Proof. (Lemma 6) Let us recall that the eigenvalues of any symmetric matrix are real
numbers. In addition, for any symmetric matrix Π, there exists an orthogonal matrix R (i.e.
R0 = R−1) such that RΠR0 = D, where D is a diagonal matrix with the eigenvalues of Π on its
main diagonal.

Let λ
(1)
1 , λ

(1)
2 , ..., λ

(1)
p denote the p not necessarily distinct eigenvalues of Π1; similarly let

λ
(2)
1 , λ

(2)
2 , ..., λ

(2)
p denote the eigenvalues of Π2, and let

D(1) = diag
³
λ
(1)
1 , λ

(1)
2 , ..., λ(1)p

´
D(2) = diag

³
λ
(2)
1 , λ

(2)
2 , ..., λ(2)p

´
,

where diag (a1, a2, ..., ap) denote the diagonal matrix with a1, a2, ..., ap as its main diagonal ele-
ments. Then, there exist two orthogonal matrices R(1) and R(2) such that

R(1)Π1R
(1)0 = D(1) (B.53)

R(2)Π2R
(2)0 = D(2). (B.54)

Let l1 and l2 be the number of positive eigenvalues of Π1 and Π2 respectively. Order the
eigenvalues of Π1 so that the first l1 scalars on the main diagonal of D(1) are positive and the
next r − l1 are negative; and do so for Π2. This implies the following:

λ
(1)
1 > 0, λ

(1)
2 > 0, ..., λ

(1)
l1

> 0,

λ
(1)
l1+1

< 0, λ
(1)
l1+2

< 0, ..., λ(1)r < 0,

λ
(1)
r+1 = 0, λ

(1)
r+2 = 0, ..., λ

(1)
p = 0;

and

λ
(2)
1 > 0, λ

(2)
2 > 0, ..., λ

(2)
l2

> 0,

λ
(2)
l2+1

< 0, λ
(2)
l2+2

< 0, ..., λ(2)r < 0,

λ
(2)
r+1 = 0, λ

(2)
r+2 = 0, ..., λ

(2)
p = 0.

Let

D
(1)
1 = diag

µq
λ
(1)
1 ,

q
λ
(1)
2 , ...,

q
λ
(1)
l1

,−
q
−λ(1)l1+1

, ...,−
q
−λ(1)r , 0, ..., 0

¶
D
(2)
1 = diag

µq
λ
(2)
1 ,

q
λ
(2)
2 , ...,

q
λ
(2)
l2

,−
q
−λ(2)l2+1

, ...,−
q
−λ(2)r , 0, ..., 0

¶
.
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Define D(1)
0 and D

(2)
0 by:

D
(1)
0 =

 Il1 0 0
0 −Ir−l1 0
0 0 0p−r


and

D
(2)
0 =

 Il2 0 0
0 −Ir−l2 0
0 0 0p−r


Then we have:

D(1) = U (1)D
(1)
1 D

(1)
0 D

(1)
1 U (1)0 (B.55)

D(2) = U (2)D
(2)
1 D

(2)
0 D

(2)
1 U (2)0 (B.56)

where U (1) and U (2) are permutation matrices and so they are orthogonal. Hence, substituting
(B.55) and (B.56) into (B.53) and (B.54) respectively, we obtain:

Π1 = R(1)0U (1)D(1)
1 D

(1)
0 D

(1)
1 U (1)0R(1)

Π2 = R(2)0U (2)D(2)
1 D

(2)
0 D

(2)
1 U (2)0R(2).

Then, we can write D(1)
0 and D

(2)
0 in the form:

D
(1)
0 = P (1)Π1P

(1)0 (B.57)

D
(2)
0 = P (2)Π2P

(2)0 (B.58)

where P (1) =
h
R(1)0U (1)D(1)

1

i−1
and P (2) =

h
R(2)0U (2)D(2)

1

i−1
.

To prove the lemma, it suffices to show that l1 = l2. Since Π1 = NΠ2N
0, using (B.57) and

(B.58) we get

D
(1)
0 = P (1)Π1P

(1)0 = P (1)N

µ³
P (2)

´−1
D
(2)
0

³
P (2)0

´−1¶
N 0P (1)0

Let z = P (1)N
¡
P (2)

¢−1
. Then

D
(1)
0 = zD(2)

0 z
0. (B.59)

Suppose l2 < l1. Let Y =
¡
Y 01,01×(p−l1)

¢0 where Y1 = (y1, y2, ..., yl1)0 and Y1 6= 0. We have

Y 0D(1)
0 Y =

l1X
i=1

y2i > 0. (B.60)

Now, partition z0 in the form:

z0 =
·
z1 z2
z3 z4

¸
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where z1 is l2× l1. Since l2 < l1, the null space of z1 is not reduced to the null vector space and
we can choose Y1 6= 0 so that z1Y1 = 0l2×1. Define z = z3Y1, and write z = (z1, z2, ..., zp−l2)0.
Then we have z0Y = (01×l2, z

0)0. Using (B.59), we obtain

Y 0D(1)
0 Y =

¡
z0Y

¢0
D
(2)
0

¡
z0Y

¢
= −

r−l2X
j=1

z2j ≤ 0. (B.61)

Clearly, (B.60) and (B.61) are in contradiction; as a result, l2 < l1 is impossible.
Similarly, interchanging the roles of D(1)

0 and D
(2)
0 , we can see that l1 < l2 is also impossible.

Hence, l1 = l2, and Lemma 6 is proved.
Proof. (Lemma 2) Since we assume that det

³
Σ̂θ̂

´
6= 0, the covariance matrix Σ̂θ̂ is sym-

metric and positive definite. Then, since H has full row rank, it follows that
³
HΣ̂θ̂H

0
´−1

is

symmetric and positive definite. Similarly, since S1 has full row rank, Q = S1
³
HΣ̂θ̂H

0
´−1

S01
is a symmetric and positive definite matrix. Then, there exists a nonsingular matrix P such
that P 0QP = Is. Using Lemma 6, the two matrices P 0M11P and M11 have the same number of
positive eigenvalues and the same number of negative eignenvalues. In addition, we have:

P 0M11P = P 0
¡
S1MS01

¢
P

= P 0
·
S1

µ
c
³
HΣ̂θ̂H

0
´−1 − ·³HΣ̂θ̂H

0
´−1

Hθ̂

¸·³
HΣ̂θ̂H

0
´−1

Hθ̂

¸0¶
S01

¸
P

= cP 0S1
³
HΣ̂θ̂H

0
´−1

S01P − P 0S1
·³

HΣ̂θ̂H
0
´−1

Hθ̂

¸·³
HΣ̂θ̂H

0
´−1

Hθ̂

¸0
S01P

= cIs −
·
P 0S1

³
HΣ̂θ̂H

0
´−1

Hθ̂

¸·
P 0S1

³
HΣ̂θ̂H

0
´−1

Hθ̂

¸0
.

The last expression shows that P 0M11P is a patterned matrix of the type discussed in Graybill
(1983, p. 206). Thus, P 0M11P has (s− 1) eigenvalues equal to c and one eigenvalue equal to

a = c−
·
P 0S1

³
HΣ̂θ̂H

0
´−1

Hθ̂

¸0 ·
P 0S1

³
HΣ̂θ̂H

0
´−1

Hθ̂

¸
.

Except for a set of values for θ̂ of measure zero, c 6= 0 and a 6= 0; so, zero is not an eigenvalue of
M11 and M11 is nonsingular. The sign of det (M11) is the same as the sign of det (P 0M11P ) =
acs−1.

Similarly, using the same arguments as above for the matrix M , the sign of det (M) is the
same as that of −cαcs. In addition, using block matrix inversion formula, and since M22 −
M21M

−1
11 M12 is a scalar, we get:

det (M) = det (M11) det
¡
M22 −M21M

−1
11 M12

¢
= −det (M11)

¡
M21M

−1
11 M12 −M22

¢
= −det (M11)d,
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Then, d = −det (M) /det (M11), which implies that d has the same sign as cαc/a. So, we have
the following results:

• If a > 0, then c > 0 : all the eigenvalues of M11 are positive, and M11 is positive definite.
If c < 0, then a < 0 : all the eigenvalues of M11 are negative, and M11 is negative definite.
Clearly, we have d > 0 in these two cases.

• On the other hand, if (c > 0 and a < 0), we have d < 0; thenM11 has at least one positive
eigenvalue and at least one negative eigenvalue; thus, M11 is neither positive definite nor
negative definite. Lemma 2 is then proved.
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