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Abstract 
 

          The development and use of dynamic optimization model is extremely important in 
financial markets. The classical mean-variance portfolio model assumes the expected returns are 
known with perfect precision. In practice, however, it is extremely difficult to estimate precisely. 
While portfolios that ignore estimation error have very poor properties: the portfolio weights have 
extreme values and fluctuate dramatically over time. The Bayesian approach that is traditionally 
used to deal with estimation error assumes investors have only a single prior or is neutral to the 
risk. Further, the Bayesian approach has computational difficulty to incorporate future uncertainty 
into the model.  
          In this paper, I introduce Genetic algorithms technique in solving a dynamic portfolio 
optimization system, which incorporate economic uncertainties into a state dependent stochastic 
portfolio choice model. The advantage of GA is that it solves the model by forward-looking and 
backward-induction, which incorporates both historical information and future uncertainty when 
estimating the asset returns. It significantly improves the accuracy of mean return estimation and 
thus yields a superior model performance compared to the traditional methodologies. The 
empirical results showed that the portfolio weights using the GA model are less unbalanced and 
vary much less over time compared to the mean-variance portfolio weights. GA achieves a much 
higher Sharpe ratio and the out of sample returns generated by the GA portfolio model have a 
substantially higher mean and lower volatility compared to the classical mean-variance portfolio 
strategy and Bayesian approach.  
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1. Introduction 

          The development and use of dynamic optimization model is extremely 

important in financial markets. A dynamic portfolio optimization method is used 

to determine the percentage of the overall portfolio value allocated to each 

portfolio component by periodically rebalancing the portfolio in a constantly 

changing financial market, to achieve return maximization or risk minimization.  

          The classical mean-variance (MV) analysis assumes that the investor knows 

the true expected returns. However, in practice, the investor has to estimate 

expected returns from unknown probability distributions. Even if expected 

returns, variances, and covariances were known with certainty, MV optimized 

portfolios would not beat all other portfolios in every future investment periods, 

because return realizations will differ from their expected values. This is called 

the intrinsic risk. Further, estimating the unknown parameters involves an 

additional source of risk, estimation risk.  

          Estimation risk and the intrinsic risk are known to have a huge impact on 

Markowitz (1987, 1991) mean-variance optimized portfolios. It leads to unstable 

and extreme portfolio weights along portfolios on the MV efficient frontier. Only 

few assets are included in the optimal portfolio. They show sudden shifts in 

allocations along the efficient frontier and are also very unstable across time.  MV 

optimized portfolios lack of diversification and show poor out-of-sample 

performance. These unintuitive and extreme solutions are a consequence of 

optimizers being “estimation error maximizers” (Michaud, 1989). MV optimizers 

overweight those assets that have large estimated expected returns, low estimated 

variances and low estimated correlations to other assets. These assets are the ones 

most likely to have large estimation errors. Due to estimation risk, portfolios on 

the efficient frontier are not unique as the MV optimization procedure suggests. 

Hence, estimation risk is one of the primary reasons to make standard MV 
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optimization unfeasible in practice. Michaud (1998) summarizes “I believe that 

estimation risk is one of the great neglected areas of modern finance.” 

          The significance impact of estimation risk on optimal portfolios was 

explored by Chopra and ziemba (1993). They found that errors in means are about 

ten times as important as errors in variances, and errors in variances are about 

twice as important as errors in covariances. Best and Grauer (1991) showed that 

optimal portfolios are very sensitive to the level of expected returns. They note 

that “a surprisingly small increase in the mean of just one asset drives half the 

securities from the portfolio. Yet the portfolio expected return and standard 

deviation are virtually unchanged.” Therefore, how to improve the technique of 

mean return estimation becomes a key issue of the portfolio choice problem.  

          Several approaches to incorporate estimation risk into portfolio selection 

are suggested in the literature. These papers regularly discuss heuristic approaches 

(e.g., placing restrictions on portfolio weights or using an equally-weighted 

portfolio) and Bayesian estimators. The most popular one is the Bayesian 

estimators, developed by Jorion (1985, 1986). The idea of Bayesian inference is 

to combine extra-sample, or prior, information with sample returns. Returns are 

shrunk towards the prior, depending on the degree of noise in the sample. It 

shrinks the optimal portfolio towards the minimum-variance portfolio (MVP). 

The MVP is less vulnerable to estimation risk as it does not make use of any 

information about expected returns.  

          However, the Bayesian approach is a very problem-dependent approach and 

therefore lack of generality. Moreover, Bayesian approach assumes that the 

decision-maker has only a single prior or is neutral to the risk in the sense of 

Knight (1921). Further, Bayesian approach has difficulty to incorporate 

uncertainties into the model due to computational burden (Chopra, 1993). In this 

paper I will introduce Genetic algorithms (GA) technique in solving the dynamic 

version of portfolio optimization problem with variety of economic uncertainties.   
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          A GA is an evolutionary optimization approach, which mimics operation in 

natural genetics to search for the optimal solution. Genetic algorithms are 

probabilistic search approaches, which are founded as an ideal optimization 

solver. Particularly in the last ten years, substantial research effort has been 

applied to the investigation and development of genetic algorithms. However, 

previous works on portfolio optimization model with Genetic Algorithms has 

been confined to the static-single-state of the world models. In other words, they 

ignore a fundamental type of future uncertainty when they apply GA methods in 

portfolio optimization problem. This will not only violate the realistic assumption 

of a dynamic asset pricing model, but will also affect the performance of the GA 

methodology. This paper develops a dynamic stochastic portfolio optimization 

model by incorporating future uncertainties. The advantage of GA is that it solves 

the model by forward- looking and backward-induction, which incorporates both 

historical information and future uncertainty when estimate the asset returns. It 

significantly improves the accuracy of mean return estimation and thus the model 

performance. In addition, GA could handle a large variety of future uncertainties, 

which overcome the computational difficulties in traditional Bayesian approach.  

          In order to compare the performance of different methodology, I apply the 

GA model to portfolio selection problem using MSCI data set. I consider the 

problem of a fund manager allocating wealth across eight international equity 

indices, who is uncertain about the expected returns on these equity indices. I 

characterize the properties of the portfolio weights under the GA approach and 

compare them to the standard mean-variance portfolio that ignores estimation 

error and the Bayesian portfolio that allows for estimation error but has a single 

prior or is uncertainty neutral. The empirical results showed that the performance 

of Genetic algorithm is more superior to the traditional methods such as mean-

variance ana lysis and Bayesian approach. In particular the portfolio weights using 

the GA model are less unbalanced and vary much less over time compared to the 
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mean-variance portfolio weights. The out of sample returns generated by the GA 

portfolio model have a substantially higher mean and lower volatility compared to 

the standard mean variance portfolio strategy and Bayesian approach. Further, GA 

achieves a much higher Sharpe ratio compared to the traditional methods.  

          The paper is organized as the following. In next section, I will describe the 

traditionally used methods, mean-variance analysis and Bayesian approach. 

Section 3 I will introduce the framework of Genetic algorithms in solving optimal 

portfolio selection problem. The empirical study is illustrated in section 4, and the 

paper is concluded in section 5.   

2. The Traditional Methodologies 

2.1 The Standard Mean-Variance Analysis Model 

          Markowitz (1987, 1991) mean-variance efficiency is the classic paradigm 

of modern finance for allocating capital among risky assets. The optimal portfolio 

of N risky assets,ω , is given by the solution of the following optimization 

problem,  

(1) ωω
δ

µω
ω

∑′





−′

2
max  

 

where µ  is the N-vector of the true expected excess returns, ∑ is the NN ×  

covariance matrix, and the scalarδ  is the risk aversion parameter. The solution to 

this problem is  

(2) µ
δ

ω 11 −∑=  

          A fundamental assumption of the standard mean-variance portfolio 

selection model in (1) is that the investor knows the true expected returns. In 

practice, however, the investor has to estimated expected returns. Denoting the 

estimate of expected return by µ̂ , the actual problem that the investor solves is  
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(3) ωω
δ

µω
ω

∑′





−′

2
ˆmax  
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i

iω .  

          The problem in (3) coincides with (1) only if expected returns are estimated 

with infinite precision, that is, µµ =ˆ . In reality, however, expected returns are 

notoriously difficult to estimate. As a result, portfolio weights obtained from 

solving (3) tend to consist of extreme positions that swing dramatically over time. 

Moreover, these optimal portfolios often perform poorly out of sample even 

compared to portfolios selected according to some simple ad hoc rules, such as 

holding the value-weighted or equally-weighted market portfolio.  

2.2 The Bayesian Approach  

          The foundation for the Bayesian approach was provided by Savage (1954). 

Early applications of this approach can be found in Klein and Bawa (1976), Jorion 

(1985, 1986). More recent applications include Pastor (2000) and Pastor and 

Stambaugh (2000).  

          Let U(R) be the utility function, where R is the return from the investment, 

and ( )θ|Rg  the conditional density (likelihood) of asset returns given 

parameterθ . In the setting of this paper, θ  is the vector of the expected returns of 

the risky assets. More generally, it can include the covariances of the asset 

returns. If the parameter θ  is known, then the conditional expected utility of the 

investor is  

(4) ( )[ ] ( ) ( )dRRgRURUE θθ ∫=  

          In practice, however, the parameterθ  is often unknown and needs to be 

estimated from data, i.e., there is parameter uncertainty. In the presence of such 

parameter uncertainty, Savage’s expected utility approach is to introduce a 
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conditional prior (posterior) ( )Xp θ , where ( )TrrX ,,1 K=  is the vector of past 

return, such that the expected utility is given by 

(5) ( )[ ] ( )[ ][ ] ( ) ( ) ( )∫∫== θθθθ dRdXpRgRUXRUEEXRUE  

          Let ( )θπ  is the unconditional prior about the unknown parameter. Then the 

posterior density given X is 

(6) ( ) ( ) ( )
( ) ( )∫∏

∏
=

== T

t t

T

t t

drg

rg
Xp

1

1

θθπθ

θπθ
θ  

and the predictive density, given X, is  

(7) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

θ
θθπθ

θπθ
θθθθ d

drg

rg
RgdXpRgXRg T

t t

T

t t

∫∏
∏

∫∫
=

===
1

1  

Using the predictive density, the expected utility of the investor is given by  

(8) ( )[ ] ( ) ( ) ( )( ) ( ) ( )dRXRgRUdRdXpXRgRUXRUE ∫∫∫ == θθθ ,  

          Thus the key to the Bayesian approach is the incorporation of prior 

information and the information from data in the calculation of the posterior and 

predictive distributions. The effect of information on the investor’s decision 

comes through its effect on the predictive distribution.  

          However, in the Bayesian approach the investor is implicitly assumed to be 

neutral to parameter and/or model uncertainty. That is, in the Bayesian approach 

the investor is uncertainty neutral is best seen through equation (8). The middle 

expression in the equation suggests that parameter and/or model uncertainty 

enters the investor’s utility through the posterior ( )Xp θ , which can affect the 

investor’s utility only through its effect on the predictive density ( )XRg . In other 

words, as far as the investor’s utility maximization decision is concerned, it does 

not matter whether the overall uncertainty comes from the conditional distribution 
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( )θRg  of the asset return or from the uncertainty about the parameter ( )Xp θ , as 

long as the predictive distribution ( )XRg  is the same. In other words, if the 

investor were in a situation where there is no parameter/model uncertainty, say, 

because the past data X could be used to identify the true parameter perfectly, and 

the distribution of asset returns is characterized by ( )XRg , then the investor 

would feel no different. In particular, there is no meaningful separation of risk 

aversion and uncertainty aversion. In this sense, the investor is uncertainty 

neutral.  

          The problem facing a Bayesian investor is to estimate the N-dimensional 

vector of means µ from the i.i.d. population ( ) TtNy t ,,1,,~ K=∑µ . The key 

result in Jorion (1986) can be summarized as follows. Assume the following two 

conditions: (i) Investors have an informative prior onµ  of the form 

(9) ( ) ( ) ( )( )



 −∑′−−∝ − µµνµµνµµ µµ

1

2
1

exp,p  

with µ being the grand mean and µν  giving an indication of prior precision (or 

tightness of the prior); (ii) the density ( )∑,,µµν µp  is a Gamma function. Then, 

the predictive density for the returns ( )µν,, ∑yrp , conditional on∑ and the 

precision µν  is a multivariate normal with predictive mean, µ , equal to  

(10) ( ) NMIN 1ˆ1 λµµλµ +−=  

where µ̂ is the sample mean, MINµ is the minimum-variance portfolio, 

(11) 
( ) ( )NMINNMINTN

N
T 1ˆ1ˆ)2(

2
1 µµµµν

ν
λ

µ

µ

−∑′−++

+
=











+
=

−
 

and covariance matrix 
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(12) [ ] ( ) NN
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note that for ∞→µν , the predictive mean is the common mean represented by the 

mean of the minimum variance portfolio.  

          We now ready to determine the optimal portfolio weights using the 

Bayesian estimators. Let us assume that we know the variance covariance matrix 

and that only the expected returns are unknown. In the case where a risk free asset 

is not available, we know that the classical mean-variance portfolio is given by 

(2). Substituting the empirical Bayesian estimator of mean in (2), one can show 

that the optimal weights can be written as follows: 

(13) ( ) MVMINBS ωλλωω −+= 1  

where the minimum-variance portfolio weights, which ignore expected returns 

altogether is 

(14) NMIN A
1

1 1−∑=ω  

and the mean-variance portfolio weights formed using the maximum-likelihood 

estimates of the expected return are  

(15) ( )µµ
δ

ω −∑= − ˆ1 1
MV  

3. The Genetic Algorithms Technique  

          The conception of GA in its current form is generally attributed to Holland 

(1975). GA starts with a population of randomly generated solutions called 

candidates to explore the solution space of a problem. An initial population is 

created containing a predefined number of individuals or solutions, each 

represented by a genetic string incorporating the variable information. Then GA 

searches for better solutions through a number of iterations called generations. 

Each individual has an associated fitness measure. The performance of each 
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solution is evaluated by a fitness criterion, typically representing an objective 

value. The concept that fittest individuals in a population will produce fitter 

offspring is then implemented in order to reproduce the next population. In each 

generation, relatively good solutions have a higher chance to be selected for 

reproduction of offspring by genetic operators—crossover and mutation. 

Therefore, selected individuals are chosen for reproduction (or crossover) at each 

generation, with an appropriate mutation factor to randomly modify the genes of 

an individual, in order to develop the new population. The result is another set of 

individuals based on the original subjects leading to subsequent populations with 

better individual fitness. Therefore, the algorithm identifies the individuals with 

the optimal fitness values, and those with lower fitness will naturally get 

discarded from the population. 

          As indicated above, GA consists of four main stages: evaluation, selection, 

crossover and mutation. The evaluation procedure measures the fitness of each 

individual solution in the population and assigns it a relative value based on the 

defining optimization criteria. The selection procedure randomly selects 

individuals of the current population for development of the next generation. 

Various alternative methods have been proposed but all follow the idea that the 

fittest have a greater chance of survival. The crossover procedure takes two 

selected individuals and combines them about a crossover point thereby creating 

two new individuals. The mutation procedure randomly modifies the genes of an 

individual subject to a small mutation factor, introducing further randomness into 

the population. This iterative process continues until the termination criteria is 

met. For instance, a number of generations without fitness improvement occur, 

which applies that convergence slows to the optimal solution.  

3.1 The Dynamic Genetic Algorithm Process  

          I will use a static-single-state model as a starting point. The optimization 

procedure for a single-state model will be illustrated by the following. For 
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example, there are five assets in the portfolio and 10 candidates in each period. 

The candidates differ in terms of percentages of the five assets held. The 

candidate with the best performance in the first time period (the one with the 

highest return) “survives” as the parent to create a new group of populations in the 

second time period. This new set of candidates hold percentages which are related 

to the percentages held by the survivor. In the second time period, the new parent 

will be selected again according to the fitness criterion. The new survivor holds 

the best portfolio after the random return is generated. This procedure continues 

until the maximum iteration numbers is reached. For each period, the asset returns 

are randomly generated.  

          Single-state portfolio optimization model possesses several drawbacks. For 

examples, the risk is inconsistent over time. In reality, there could be tens or a 

hundred possibilities what tomorrow could turn out to be. In each possibility, 

asset returns could be different. For example, agents know there are ten 

possibilities that economy could become in the next period, and they know what 

the asset returns are in each possibility, but, they do not know which state will 

happen, rather they know only the probability of each state occurring. This 

illustrates a more realistic situation agents will face before they make their 

investment decision. Thus, it is vital to incorporate this kind of uncertainty into 

the model and develop a stochastic process for portfolio optimization problem.           

The multi-stage stochastic model (Mulvey (1997)) captures dynamic aspects of 

asset allocation problem. It is a quantitative model that integrates asset allocation 

strategies in a comprehensive fashion. 

           The stochastic nature incorporates scenario analysis into the model. For 

example, a model with only two states (or scenarios) in each time period (except 

the initial time period), each scenario depicts a single path over a multi-stage 

planning period, sharing the same history. In this system, scenarios are defined by 

the changes of market index. For example, we can simply set two scenarios as: (1) 
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the market index has dropped and (2) the market index has risen. Suppose we 

have to optimize a portfolio, with 1 denoting cash and the others may representing 

any investment instruments such as bonds, funds, futures and stocks. Let the 

entire planning horizon T be divided into a number of periods as t={1, 2, 3, …, 

T}. Investment decisions are made at each period. Each period may have different 

scenarios. A graphical scenario tree can be constructed to visualize the optimal 

dynamic balanced investment strategy for asset allocation. Figure 1 depicts a 

scenario tree with two scenarios and three time periods.  

 

Figure 1: A Scenario Tree  

          In this paper, I incorporate GA methodology into a multiple-state of the 

world model. The solution procedure is the following: first, I will discrete the 

choice space into multiple subspaces. Each subspace represents one possibility 

that the world could occur. Again, I will use a random generating process to 

generate multiple possibilities in each time period, while guaranteeing that the 

sum of the possibilities in each period is equal to 1. Therefore, in each time period 
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before an agent makes his decision, except for the initial time period, there are 

multi-states in front of them. They do not know which state will come to be true, 

they only know the probabilities that each state occurs. Notice that asset returns 

are different in different states.  

3.2 The Robustness of the GA  

          A GA is a search technique, inspired by evolutionary mechanisms and 

theories, natural selection and genetics and presenting characteristics which, for 

specific problems, make this technique superior to the traditional heuristic 

methods based on calculus or random or enumerative procedures. (Grefenstette 

(1991)). A Genetic Algorithm is driven by the control parameters: number of 

generations, and size of population. Those parameters will directly affect the 

performance of GA. Therefore, how one is to decide the parameter values is an 

important issue in the use of GA method. In the previous work on GA, the 

parameter values are randomly assigned. However whether the results generated 

by the application of GA to a specific problem are conditioned by the value 

assigned to these parameters, becomes a main issue for research. Davis (1991) 

presents an excellent review of the mathematical foundations that support GA 

functioning. Other references to mathematical foundations of GA are: Whitley 

(1992); Stephens et al (1999); Grefenstette and Baker (1989). Their works showed 

that when GA is properly designed, they are better suited than other traditional 

techniques.  

          First, I shall test the speed of convergence to find a sufficient number of 

generations. Figure 2 shows the statistic for the generation size from zero to fifty. 

The horizontal is the number of generations and the vertical line is the value of 

the fitness (the measure of fitness are portfolio return at end of each period and  

standard deviation over all generations)  
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Figure 2:  Effect of Generations  

          From the top one of Figure 2, we can see that the total value of the fitness 

converge after 18 generations. The bottom one shows that the standard deviation 

approaches to zero after 30 generations. Therefore, with 30 generations is more 

than enough in terms both measures of fitness. Next, I will test the effect of the 

population. I am going to try with 3 population size, 30, 40 and 50. 

            Figure 3 gives the statistic result for population size. In the figure, the 

horizontal line is the number of generations as in Figures 2, and the vertical is the 

fitness value. The dashed dotted line represents the population size with 30, which 

begin to converge after 8 generations. The solid line represents the population size 

with 40, which begins to converge after 18 generations. And the dashed line 

represents the population size with 50, which begins to converge after 10 

generations. The GA seems quite robust to va lues assigned to the parameters 
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“number of populations” and “number of generations” considered in the 

execution. The combination of 30 generations and 40 populations seems the most 

suitable combination for obtaining robust results. Therefore, for the empirical 

study in the next section, I will set the generation size at 30 and population size at 

40 when applying GA approach.  

 
Figure 3: Effect of Populations  

 
4. The Data and Empirical Results  

          The empirical study is based on the data set from MSCI (Morgan Stanley 

Capital International). It includes the total return equity indices of Canada, 

France, Germany, Japan, UK, and the USA. Equity returns are based on the 

month-end US-dollar value of the equity index for the period January 1970 to 

December 2004. Monthly excess returns are calculated using the 3 month T-Bill 

rate as the risk-free rate of return. To assess the performance of the different 

portfolio models, we determine the weights from each model based on a window 

of 603 months and then calculate the return from holding this portfolio in the 61st 

month. In each case, the out of sample period is from 1/1975 to 12/2004. A rolling 

                                                 
3 I set T=60 because the estimation is done using a rolling-window of 60 months. 
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window of length T is used to estimate the optimization input parameters. E.g., 

for T=60, portfolio weights are first based on the estimation period from 1/70 to 

12/74. Using the returns of 1/75, the first out of sample portfolio return can be 

calculated. Then the estimation period is rolled on month forward, and the next 

portfolio composition is based on 2/70 to 1/75. This procedure results in a total of 

348 out of sample returns. Summary statistics for the indexes of the data are 

provided in Table 1.  

                                Table 1: Summary Statistics of the Data 

  
Panel A: 

Summary Statistics 
  Mean Std. Dev. 

Canada 0.41 4.8 
France 0.92 6.98 
Germany 0.51 6.32 
Japan 0.86 7.11 
UK 0.78 6.28 
USA 0.75 3.9 
US Bonds 0.22 1.86 
Euro Bonds 0.25 1.42 

 

  Panel B: Unconditional Correlations of Excess Returns 

  Canada France Germ. Japan UK USA 
US 
Bs. 

Euro 
Bs. 

Canada 1 0.44 0.28 0.21 0.53 0.68 0.26 0.31 
France  1 0.57 0.39 0.46 0.27 0.19 0.22 
Germany   1 0.33 0.41 0.42 0.24 0.26 
Japan    1 0.39 0.21 0.18 0.15 
UK     1 0.55 0.22 0.23 
USA      1 0.39 0.45 
US Bs.       1 0.88 
Euro Bs.               1 

 



 17 

This table gives the summary statistics for the monthly returns on the eight 

indices and the unconditional correlations of excess returns. 

          To assess the performance of the different portfolio models, I compute the 

average out of sample means, volatilities and Sharpe ratios of each strategy—

mean-variance analysis, Bayesian approach and Genetic algorithms. For the 

Genetic algorithms method, I consider both single-state GA and multi-states GA 

(I use 5 states represent the multi-states case).   

          The results are reported in Table 2. Compared to the mean-variance strategy 

in which historical mean returns µ̂  are taken to be the estimator of expected 

returns µ , the portfolios constructed using the model that allows for parameter 

uncertainty exhibit uniformly higher means and lower volatility. Especially, the 

Genetic algorithms have higher returns and lower variance relative to both Mean-

variance method and Bayesian approach. Genetic algorithms with multi-states 

dominate the single-state GA in terms of mean and variance. The Sharp ratio is 

0.1816 for the multi-states GA, which is the highest value among the four. The 

Sharp ratios are very close for mean-variance and Bayesian approach, which is 

0.1435 and 0.1428 respectively. The Sharp ratio for single-state GA is 0.1632 

although lower than the multi-states GA, still outperform the traditional methods.  

 
             Table 2: Empirical Results 

  Out of Sample Performances 

  Mean Std.Dev. Sharp Ratio 

Mean-Variance 0.5238 4.3561 0.1435 
Bayesian Approach 0.5122 4.3359 0.1428 
GA-Single state 0.5847 3.9836 0.1632 
GA-Multi-state 0.5936 3.6589 0.1816 

 
          To analyze the effect of uncertainty on the individual weights in the risky 

portfolio, I report in Figure 4 the percentage weight allocated to the US index 
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from January 1975 to July2001. The dashed line refers to the percentage of wealth 

allocated to the US index implied by the mean-variance portfolio implemented 

using historical estimates. The other two lines refer to portfolios obtained by GA 

methods. The dashed dotted line represent the portfolio weights from the Genetic 

algorithms of the single-state of the world model, and the solid line represent the 

GA of the multi-states of the world model incorporating uncertainties. I find that 

the portfolio weights from the optimization incorporating future uncertainty has 

less extreme positions and the portfolio weights vary much less over time 

compared to the  weights for the classical mean-variance portfolio. As a 

consequence, the more uncertainty, the less extreme are the portfolio weights. 

There exhibit a precaution effect when investors facing uncertainty. 

 
Figure 4: Portfolio Weights of the US over Time 
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5. Conclusions  

          In this paper, I presented a decision-making process that incorporates 

Genetic algorithms into a state dependent stochastic asset pricing model—a 

stochastic multi-sates of the world optimization system..  

          Traditional mean variance portfolio optimization assumes that the 

parameters that the expected returns used as inputs to the model and obtained 

using maximum likelihood estimation are known with perfect precision. In 

practice, however, it is extremely difficult to estimate expected returns precisely. 

And, portfolios that ignore estimation error have very poor properties: the 

portfolio weights have extreme values and fluctuate dramatically over time the 

Bayesian approach that is traditionally used to deal with estimation error assumes 

that investors have only a single prior and has computational difficulty to 

incorporate future uncertainty into the model.  

          In this paper, I have shown how one can extend the classical mean-variance 

portfolio optimization model and traditional Bayesian approach to allow for future 

uncertainties and reduce the estimation risk by Genetic algorithms method. The 

advantage of GA is that it solves the model by forward- looking and backward-

induction, which incorporates both historical information and future uncertainty 

when estimate the asset returns. It significantly improves the accuracy of mean 

return estimation and thus the model performance. In addition, GA could handle a 

large variety of future uncertainties, which overcome the computational 

difficulties in traditional Bayesian approach.  

          Using the MSCI data set, I find that the portfolio weights using the GA 

model are less unbalanced and fluctuate much less over time compared to the 

standard mean-variance portfolio weights and also the portfolios from the 

Bayesian approach. Further, allowing for uncertainty about asst returns in the GA 

model leads to a higher out of sample Sharpe Ratio than otherwise. Empirical 

results showed that the stochastic multi-states Genetic Algorithm significantly 
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improve the model performance over the static-single-state model. For the multi-

state of the world model, an interesting feature is that risk tolerance decreases 

with uncertainties. In overall, the standard deviation of the portfolio weights gets 

smaller in the stochastic version of the model.  There exists a precautionary effect 

when future uncertainty is introduced. 
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