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Abstract

We introduce a simple extension of a shifted geometric Brownian motion for modelling forward LIBOR
rates under their canonical measures. The extension is based on a parameter uncertainty modelled
through a random variable whose value is drawn at an infinitesimal time after zero. The shift in the
proposed model captures the skew commonly seen in the cap market, whereas the uncertain volatility
component allows us to obtain more symmetric implied volatility structures.

We show how this model can be calibrated to cap prices. We also propose an analytical approximated
formula to price swaptions from the cap calibrated model. Finally, we build the bridge between caps
and swaptions market by calibrating the correlation structure to swaption prices, and analysing some
implications of the calibrated model parameters.

1 Introduction

In the last decade, caps, swaptions, and other interest rate derivatives have become increasingly popular.
According to the International Swaps and Derivatives Association, the transaction outstanding in interest
rate swaps and options (and cross-currency swaps) at the half of 2004 stood at $164.49 trillion in notional
principal, up by more than 13 times from $11.303 trillion at year-end 1994.

The surge of trading volume in caps and swaptions urged the need for a theoretical justification for the related
market formulas, which were derived by using the Black (1976) model in a seemingly unsound manner. The
first major contribution toward this goal was accomplished by Heath Jarrow and Morton (HJM) (1992).
HJM were the first to take instantaneous forward rates as state variables and to specify a general continuous
time stochastic process for its evolution across time. The assumption that instantaneous rates exist is not
always convenient, since it requires a certain degree of smoothness with respect to the maturity of bond
prices and their volatilities. An alternative construction of an arbitrage-free family of bond prices, making
no reference to the instantaneous, continuously compounded rates, is in some circumstances more suitable.
This was achieved by Brace, Gatarek and Musiela (1997), Miltersen, Sandmann and Sondermann (1997) and
Jamshidian (1997) who independently introduced what is known as Libor Market Model (LMM)1.

The LMM, which could be interpreted as a subset of the HJM class of models, was the first model to
introduce a consistent theoretical framework for the market caps and swaptions formulas. In the LMM, one
directly models market rates, namely the forward LIBOR rates, as driftless geometric Brownian motions
under the associated forward measures. A major advantage of the LMM is the possibility of calibrating
(at-the-money) caps volatilities automatically and (at-the-money) swaptions volatilities through efficient

∗We are extremely grateful to Gianvittorio Mauri from Banca IMI for his helpful assistance in running the numerical tests.
We are also grateful to John Weyant from Stanford University for his helpful comments. Useful discussions with Dariusz
Gatarek from Numerix and helpful assistance from Andrea Pallavicini from Banca IMI are gratefully acknowledged.

1A different approach, but similar in spirit, was introduced by Santa-Clara and Sornette (2001) and Goldstein (2000) who
proposed ”String-Shocks” type of models to describe the evolution of forward rates.



analytical approximations. These are the main reasons of the success of the LMM and explain why this
model was quickly adopted by the industry.2

However, the LMM presents the major drawback of having deterministic volatility coefficients, which are
not consistent with the skew or smile effects commonly seen both in the caps and the swaptions markets. To
overcome this drawback, a natural extension of the Black-Scholes (1973) setting led to the introduction of
Local Volatility Models (LVM), where volatility is a function of the underlying asset price (forward rate) and
time. These models were pioneered by Dupire (1993, 1994) and Derman and Kani (1994) who introduced
this extension for equity and foreign-exchange options. Andersen and Andreasen (2000) introduced a special
case of LVM, the Constant Elasticity of Variance (CEV), to develop an extension of the LMM for capturing
the skew.3

In other lines of research, Jamshidian (1999) and Glasserman and Kou (2003) introduced an alternative
extension of the LMM by adding jumps in the forward rate dynamics. Besides presenting some technical
complications, these models are unsuited to generate asymmetric smiles and skews since the jump component
of the forward rate dynamics typically needs to be of substantial magnitude.

More recently, Andersen and Brotherton-Ratcliffe (2001), Andersen and Andreasen (2002), Joshi and Rebon-
ato (2003) and Piterbarg (2003) introduced different families of Stochastic Volatility Models (SVM). In these
models, each forward LIBOR rate follows a process with a time-dependent local volatility function, with a
stochastic volatility perturbation uniformly applied to all LIBOR rates. A vast empirical study dedicated to
stochastic volatility and jump LMM is given in Jarrow et al. (2004).

The models LVMs, LMMs with jumps or SVMs, however, are not the only extensions of the lognormal LMM
allowing for smile- or skew-shaped implied volatilities. In fact it turns out that it is possible to introduce
stochasticity in the volatility in a very simple and intuitive manner, so as to accommodate the market implied
volatility surfaces while preserving a great deal of analytical tractability. This extension of the LMM was
independently proposed by Gatarek (2003) and Brigo, Mercurio and Rapisarda (2004). In their approach, the
forward rate dynamics are given by displaced geometric Brownian motions where the model parameters are
not known at the initial time, but are discrete random variables whose values are drawn at an infinitesimal
time. We refer to this model as to a Simple Extended Libor Model (SELM).

The shifts in the SELM are used to capture the skew effect commonly seen in the caps market, whereas the
uncertain volatility component allows us to obtain more symmetric implied volatility structures. Accommo-
dating the market smiles and skews is essential for complex-derivatives traders, who use plain-vanilla options
to build their set of hedging instruments.

In this paper, we extend Gatarek’s one-factor SELM to the multi-factor case and analyze its analytical
tractability by deriving caps and swaptions prices in closed form. We then illustrate how the model can
accommodate market caps data and how the instantaneous correlation parameters can be used for a cali-
bration to swaptions prices. In fact, incorporating as much information as possible coming from swaptions
quotes can be extremely important in the pricing of a number of exotic interest rate derivatives. To this
end, we introduce a general and tractable correlation structure for forward rates to build the bridge between
caps and swaptions and complete the “circle” of the joint calibration.

We finally analyze some important model’s implications: i) we infer the swaptions smile implied by our joint
calibration, and ii) we plot the evolution of some forward volatilities implied by the model.

The remainder of this paper is organized as follows. Section 2 sets up the characteristics of the SELM. Section
3 describes in detail how to perform the calibration to the caps market. Section 4 addresses the swaption
valuation issue. Section 5 explains how to build the bridge between the caps and swaptions markets. Section
6 discusses some numerical results.

2In fact, many financial institution already used a discretized version of the Heath Jarrow and Morton (1992) model.
3As explained in Delbaen and Shirakawa (2002), the standard CEV model presents the drawback that its real world dynamics

hit zero with positive probability.
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2 The Model

Let T = {T0, . . . , TM} be a set of times and {τ0, . . . , τM} the corresponding year fractions, meaning that τk

is the year fraction for the interval (Tk−1, Tk). We set T−1 := 0.

We consider a family of spanning forward rates Fk with expiry Tk−1 and maturity Tk, k = 1, . . . ,M :

Fk(t) := F (t; Tk−1, Tk) =
P (t, Tk−1)− P (t, Tk)

τkP (t, Tk)

with P (t, T ) denoting the time-t price of the zero-coupon bond with maturity T .

We denote by Qk the Tk-forward measure, i.e. the probability measure associated with the numeraire
P (·, Tk), and by Ek the related expectation. We then denote by Qd the spot LIBOR measure, namely the
probability measure associated with the discretely rebalanced bank-account numeraire Bd:

Bd(t) =
P (t, Tm−1)∏m−1

j=0 P (Tj−1, Tj)
, Tm−2 < t ≤ Tm−1

and by Ed the related expectation. The measure Qd is the natural generalization of the classical risk-neutral
measure to the LMM case, where the rates one models are simply compounded over finite time intervals.

By definition, the forward rate Fk is a martingale under Qk. To model the forward rates dynamics, therefore,
is enough to model their diffusion coefficients. For instance, in a shifted lognormal LMM, one assumes the
following diffusion coefficient for Fk:

σk(t) [Fk(t) + αk] ,

where αk is a constant and σk is a deterministic function of time.

Once the volatility of forward rates has been defined, one then selects a particular measure under which
considering the joint evolution of all rates. A quite common and convenient choice is the spot LIBOR
measure, which is independent of the payoff to price. Since the drift of each forward rate under a given
numeraire is readily obtained through the usual change of numeraire technique, one can directly postulate
the joint evolution of all Fk, k = 1, . . . , M , under Qd.

Let us now assume that the forward rates Fk, k = 1, . . . , M , evolve under Qd as in the SELM. The SELM
was first introduced by Gatarek (2003) under a one-factor formulation.4 In this paper, we straightforwardly
extend Gatarek’s approach to the multi-factor case. Precisely, we assume that:

dFk(t) = σI
k(t)(Fk(t) + αI

k)
k∑

j=β(t)

τjρj,kσI
j (t)(Fj(t) + αI

j )
1 + τjFj(t)

dt + σI
k(t)(Fk(t) + αI

k) dZd
k(t) (1)

where

• β(t) = min{i : t < Ti−1}, namely β(t) = m if Tm−2 ≤ t < Tm−1;

• Zd is an M -dimensional Brownian motion with dZd
i (t) dZd

j (t) = ρi,j dt;

• I is a random variable that is independent of Zd and takes values in the set {1, 2, . . . , N} with Qd(I =
i) = λi, λi > 0 and

∑N
i=1 λi = 1. The value of the random index I is drawn at time t = 0+, namely at

an infinitesimal time after time zero;

• σi
k are (given) deterministic functions;

• αi
k are (given) real constants.

4Brigo, Mercurio and Rapisarda (2004) proposed a similar approach in a more general setting.
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The intuition behind this model is as follows. The SELM is a LIBOR model where the forward rates
(instantaneous) volatilities and displacements parameters are unknown (at time 0) and one assumes different
scenarios for them. The volatilities and the displacements will be known immediately after time 0.

The initial lack of knowledge on the true parameters values, which are “magically” revealed an instant later we
apply our pricing model, can be a rather disturbing feature, especially for somebody pretending meaningful
dynamics also from an historical point of view. Our support to the SELM lies on two grounds. First, the
SELM can be viewed as a simplified version of a more general (and realistic) regime-switching model, where
the model parameters, following Markov chains, can switch continually from one state to another. For many
practical applications, however, the general model is too cumbersome and assuming a unique instantaneous
change is already enough for capturing lots of desirable market features. Second, we believe that a model
should be judged also in terms of its implications and not only in terms of its assumptions. For instance,
though the SELM implied volatilities flatten out immediately in the future, the forward volatilities retain
a realistic shape and hedging with the model is not necessarily a gamble. In the following sections, we will
provide some empirical evidence supporting our claims.

Besides its intuitive meaning, the SELM has several advantages. It enjoys a great deal of analytical tractabil-
ity, is relatively easy to implement and is flexible enough to accommodate general implied volatility surfaces
in the caps market. This will be explained in the following, where practical examples with market data will
be also considered, along with the analysis of some possible implications of the model.

3 Calibration to Caplets

In this section we show how to calculate analytically prices of caplets in the SELM, and explain how to
perform, accordingly, the calibration to market volatilities.

A Tk−1-caplet is an option on a future LIBOR rate, set at time Tk−1 and paid at time Tk. Its payoff at time
Tk can be written as

τk[Fk(Tk−1)−K]+,

so that the caplet can also be viewed as an option on the related forward rate.

Proposition 1 Under the SELM framework, the price of a caplet as described above is given by

CplSELM (Tk−1, Tk, τk,K) = τkP (0, Tk)
N∑

i=1

λiBlcall
(
K + αi

k, Fk (0) + αi
k, V i

k (Tk−1)
)

where V i
k (Tk−1) =

√∫ Tk−1

0
σi

k (s)2 ds and Blcall (K, F, V ) is the Black price of a call with a strike K, forward
price F , volatility V , maturity 1 and risk free rate 0:

Blcall(K, F, V ) = FΦ
(

ln(F/K) + V 2/2
V

)
−KΦ

(
ln(F/K)− V 2/2

V

)
, (2)

where Φ denotes the standard normal distribution function. An analogous definition holds for Blput.

Proof. From (1), we immediately get that the dynamics of Fk under Qk are

dFk (t) = σI
k (t)

(
Fk (t) + αI

k

)
dZk (t) , (3)

where Zk is a Brownian motion under Qk, and I has under Qk the same distribution as under Qd.5

Standard no-arbitrage pricing implies that the caplet price at time t = 0 is:

CplSELM (Tk−1, Tk, τk,K) = τkP (0, Tk)Ek
[
(Fk (Tk−1)−K)+

]
,

5This is due to the independence between Zd and I.
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which, by applying an iterated conditioning, reads as

CplSELM (Tk−1, Tk, τk,K) = τkP (0, Tk)Ek
[
Ek

[
(Fk (Tk−1)−K)+ |I

]]

= τkP (0, Tk)Ek
[
Ek

[(
Fk (Tk−1) + αI

k −
(
K + αI

k

))+ |I
]]

= τkP (0, Tk)
N∑

i=1

λiE
k
[(

Fk (Tk−1) + αI
k −

(
K + αI

k

))+ |I = i
]

Since Fk evolves according to (3), conditional on I, Fk (Tk−1)+αI
k is a lognormal random variable. The last

expectation, therefore, is nothing but the adjusted Black’s caplet price that comes from a shifted geometric
Brownian motion (GBM).

To describe the calibration problem one has to deal with, we remember that, in the market, caplets are
priced through Black’s formula:

CplMkt (Tk−1, Tk, τk,K) = τkP (0, Tk) Blcall
(
K,Fk (0) , V impl (Tk−1,K)

√
Tk−1

)

where V impl (Tk−1,K) is the market implied volatility of a caplet maturing at Tk−1 with strike K.

Setting Φk :=
(
V 1

k (Tk−1) , . . . , V N
k (Tk−1) , α1

k, . . . , αN
k

)
, the calibration to market caplets data is achieved

by determining Φk as follows:

Φk = arg min


∑

j

g
(
CplMkt (Tk−1, Tk, τ, Kj) , CplSELM (Tk−1, Tk, τ,Kj)

)

 ,

where the sum is taken over the set of strikes available for the maturity Tk (Tk−1-caplets), and g is some
“distance” function. In our practical examples, we will set g(x, y) = (x/y − 1)2. The parameters Φk are
found iteratively starting from k = 1 up to k = M , for some a priori given values of the probabilities λi.

This optimization produces as output the integral of instantaneous volatilities and not their point value.
Hence, we have to introduce some assumptions on the volatility functions and infer their value from the
calibrated integrals V i

k . For instance, if we assume the σi
k’s to be constant, we come up with the following

formula:

σi
k =

V i
k (Tk−1)√

Tk−1

Another possibility is to assume a functional form like σi
k (t)2 := [a (Tk−1 − t) + d] exp (−b (Tk−1 − t)) + c.

In this case, to find the parameters a, b, c and d, we need to solve

V i
k (Tk−1) =

∫ Tk−1

0

([a (Tk−1 − t) + d] exp (−b (Tk−1 − t)) + c) dt

For simplicity, in this paper we adopted the first (non parametric) assumption. An example of calibration
to real market data will be considered in Section 6.1.1.

4 Pricing Swaptions

The swaptions market is the second main interest rate market. Swaptions are options on interest rate swaps
and are priced in the market by means of a Black-like formula, see for instance Brigo and Mercurio (2001).

Many interest rate derivatives depend explicitly on swap rates or implicitly on the correlation between
different LIBOR rates. To consistently price them, it is advisable to incorporate, in the valuation process,
as much information as possible coming from the quoted swaption prices.

Obtaining accurate and fast approximations to the prices of European swaptions is crucial for an efficient
calibration. While swaption prices in a LIBOR model should be calculated through a Monte Carlo simulation,
it is however possible to derive efficient analytical approximations for them. The same applies to the SELM,
as we show in the following.
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4.1 An Approximated Analytical Formula

In this section, we propose an approximation of swaption prices based on the classical “freezing” technique,
which was first employed in the plain LMM case: When expressing a forward swap rate as a weighted average
of spanning forward rates, one “freezes” the weights at their time-0 value, so as to obtain a linear combination
with constant parameters. This approximation is similar in spirit to the one proposed by Gatarek (2003) in
the one-factor case.

Proposition 2 The price of a payer swaption with option and swap maturities being respectively Tα and Tβ

is given by :

PSwptn (α, β, K)SELM =
β∑

h=α+1

τhP (0, Th)
N∑

i=1

λiBlcall
[
K + ηi

α,β , Sα,β (t) + ηi
α,β , Γi

α,β

]
(4)

where Γi
α,β =

√∑β
k,h=α+1 ρk,h

∫ Tα

0
γi

k (s) γi
h (s) ds, γI

k (t) =
τkP (0,Tk)σI

k(t)(Fk(0)+αI
k)∑β

h=α+1 τhP (0,Th)(Fh(0)+αI
h) , ηI

α,β =
∑β

h=α+1 τhP (0,Th)αI
h∑β

h=α+1 τhP (0,Th)
,

λi is the probability of the scenario i and Blcall is defined by formula (2).

Analogously, the price of a receiver swaption is given by

RSwptn (α, β, K)SELM =
β∑

h=α+1

τhP (0, Th)
N∑

i=1

λiBlput
[
K + ηi

α,β , Sα,β (t) + ηi
α,β , Γi

α,β

]
(5)

Proof. The forward swap rate Sα,β (t) at time t for the set of times Tα, ..., Tβ is defined by

Sα,β (t) =
P (t, Tα)− P (t, Tβ)∑β

k=α+1 τkP (t, Tk)

which can be written as a linear combination of consecutive forward rates as:

Sα,β (t) =
∑β

k=α+1 τkP (t, Tk) Fk (t)
∑β

k=α+1 τkP (t, Tk)
=

β∑

k=α+1

ωk (t)Fk (t)

where

ωk (t) =
τkP (t, Tk)∑β

h=α+1 τhP (t, Th)
.

The forward swap rate Sα,β(t) is a martingale under the forward swap measure Qα,β , which is the measure
associated with the numeraire

∑β
k=α+1 τkP (t, Tk). Applying Ito’s lemma, and noting that Sα,β(t) is a

smooth function of the forward rates Fα+1, . . . , Fβ , we obtain the following dynamics for Sα,β under the
measureQα,β :

dSα,β (t) =
β∑

k=α+1

∂Sα,β (t)
∂Fk (t)

σI
k (t)

(
Fk (t) + αI

k

)
dZα,β

k (t) =:
β∑

k=α+1

γk (t) dZα,β
k (t) (6)

The terms γk can be approximated by neglecting the dependence of ωk (t) on Fk (t). We thus obtain:

γk (t) ≈ τkP (t, Tk)σI
k (t)

(
Fk (t) + αI

k

)
∑β

h=α+1 τhP (t, Th)

=
τkP (t, Tk) σI

k (t)
(
Fk (t) + αI

k

)
∑β

h=α+1 τhP (t, Th)
(
Fh (t) + αI

h

)
∑β

h=α+1 τhP (t, Th)
(
Fh (t) + αI

h

)
∑β

h=α+1 τhP (t, Th)

=
τkP (t, Tk) σI

k (t)
(
Fk (t) + αI

k

)
∑β

h=α+1 τhP (t, Th)
(
Fh (t) + αI

h

)
[
Sα,β (t) +

∑β
h=α+1 τhP (t, Th)αI

h∑β
h=α+1 τhP (t, Th)

]
.
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This last expression can be further approximated by freezing the forward rates and the discount factors at
their time 0 values:

γk (t) ≈ τkP (0, Tk) σI
k (t)

(
Fk (0) + αI

k

)
∑β

h=α+1 τhP (0, Th)
(
Fh (0) + αI

h

)
[
Sα,β (t) +

∑β
h=α+1 τhP (0, Th)αI

h∑β
h=α+1 τhP (0, Th)

]

= : γI
k (t)

[
Sα,β (t) + ηI

α,β

]

Therefore, the dynamics of Sα,β (t) under Qα,β approximately reads as :

dSα,β (t) =
β∑

k=α+1

γI
k (t)

[
Sα,β (t) + ηI

α,β

]
dZα,β

k (t)

=
[
Sα,β (t) + ηI

α,β

] β∑

k=α+1

γI
k (t) dZα,β

k (t)

= γI
α,β (t)

[
Sα,β (t) + ηI

α,β

]
dWα,β

I (t)

where γI
α,β (t) =

√∑β
k,h=α+1 γI

k (t) γI
h (t) ρk,h and dWα,β

I (t) =
∑β

k=α+1 γI
k(t)dZα,β

k (t)

γI
α,β(t)

.

It can be verified easily that, conditional on I, Wα,β
I is a Brownian motion, so that if we define XI (t) by:

XI
α,β (t) := Sα,β (t) + ηI

α,β

we see that, conditional on I, XI
α,β is a GBM whose dynamics is given by

dXI
α,β (t) = γI

α,β (t)XI
α,β (t) dWα,β

I (t)

Having identified a GBM, we can easily price swaptions at time t = 0, as we did for the previous caplet case.

A payer (resp. receiver) swaption with maturity Tα, payment times Tα, ..., Tβ and strike K is the option to
enter at time Tα an interest rate swap where, on each payment time Tk, we pay (resp. receive) the fixed rate
K and receive (resp. pay) the LIBOR rate Fk(Tk−1). The payer swaption price can be calculated by taking
expectation under the swap measure Qα,β :

PSwptn (α, β,K)SELM =
β∑

h=α+1

τhP (0, Th)Eα,β
[
(Sα,β (Tα)−K)+

]

=
β∑

h=α+1

τhP (0, Th)Eα,β
[(

XI
α,β (Tα)− (

K + ηI
α,β

))+
]

=
β∑

h=α+1

τhP (0, Th)
N∑

i=1

λiE
α,β

[(
XI

α,β (Tα)− (
K + ηI

α,β

))+ | I = i
]
,

where Eα,β denotes expectation under Qα,β . We obtain:

PSwptn (α, β,K)SELM =
β∑

h=α+1

τhP (0, Th)
N∑

i=1

λiBlcall
[
K + ηi

α,β , Sα,β (t) + ηi
α,β , Γi

α,β

]
(7)

where Γi
α,β =

√∫ Tα

0

[
γi

α,β (s)
]2

ds =
√∑β

k,h=α+1 ρk,h

∫ Tα

0
γi

k (s) γi
h (s) ds.

Analogously, the price of a receiver swaption is given by

RSwptn (α, β, K)SELM =
β∑

h=α+1

τhP (0, Th)
N∑

i=1

λiBlput
[
K + ηi

α,β , Sα,β (t) + ηi
α,β , Γi

α,β

]
(8)

Similarly to what we have in the caplet case, therefore, the SELM swaption price is nothing but a mixture
of adjusted Black’s swaption prices.
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4.2 Monte Carlo Swaption Price

To verify the accuracy of our swaption price approximation, we compare the analytical formula (4) with the
price obtained by Monte Carlo simulation. We now illustrate how this simulation is performed.

We use as reference measure the spot LIBOR measure Qd. The swaption price, at time zero, under such a
measure is given by:

PSwptn (α, β,K)MC = Ed

[
(Sα,β (Tα)−K)+

∑β
h=α+1 τhP (Tα, Th)

Bd(Tα)

]
.

This expectation can be calculated numerically by simulating the values, at time Tα, of the forward rates
spanning the swap rate interval:

Fα+1 (Tα) , Fα+2 (Tα) , . . . , Fβ (Tα) .

These forward rates Fk evolve under Qd according to (??), namely

dFk(t) = σI
k(t)(Fk(t) + αI

k)
k∑

j=β(t)

τjρj,kσI
j (t)(Fj(t) + αI

j )
1 + τjFj(t)

dt + σI
k(t)(Fk(t) + αI

k) dZd
k(t)

where Zd is a (β − α)-dimensional Brownian motion with dZd
i (t) dZd

j (t) = ρi,j dt. We can thus generate
Fα+1 (Tα) , Fα+2 (Tα) , ..., Fβ (Tα) by means of consecutive Euler approximations as follows:

Fk (t + ∆t)− Fk (t) = σI
k (t)

(
Fk (t) + αI

k

) k∑

j=β(t)

τjρj,kσI
j (t)

(
Fj (t) + αI

j

)

1 + τjFj (t)
∆t

+σI
k (t)

(
Fk (t) + αI

k

)
(Zα

k (t + ∆t)− Zα
k (t)) .

However, there exists a more efficient way to generate our forward rates. Set F̄α,I
k (t) := Fk (t) + αI

k. By
Ito’s lemma, we have:

d ln F̄α,I
k (t) = σI

k (t)
k∑

j=β(t)

τjρj,kσI
j (t) F̄α,I

j (t)

1 + τj

(
F̄α,I

j (t)− αI
j

)dt− σI
k (t)2

2
dt + σI

k (t) dZα
k (t) .

This process has the advantage of having a deterministic diffusion coefficient, so that the Euler scheme for
it coincides with the more sophisticated Milstein scheme. The interested reader is referred to Klöden and
Platen (1995) for further developments on this subject.

Our simulation is performed by first randomly drawing a value i of I and then generating paths of the
processes F̄α,i

k as follows:

ln F̄α,i
k (t + ∆t)− ln F̄α,i

k (t) = σi
k (t)

k∑

j=β(t)

τjρj,kσi
j (t) F̄α,i

k (t)

1 + τj

(
F̄α,i

j (t)− αi
j

)∆t

−σi
k (t)2

2
∆t + σi

k (t) (Zα
k (t + ∆t)− Zα

k (t)) .

Once the forward rates are simulated for the value i of the random index, we can evaluate the normalized
swaption payoff

(Sα,β (Tα; i)−K)+
∑β

h=α+1 τhP (Tα, Th; i)
Bd(Tα; i)

along each trajectory and finally average the resulting values over all simulated paths. This leads to the
Monte Carlo price of the swaption:

PSwptn (α, β,K)MC =
1
n

n∑

j=1

(Sα,β (Tα; i, wj)−K)+
∑β

h=α+1 τhP (Tα, Th; i, wj)
Bd(Tα; i, wj)
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where wj denotes the j-th path and n is the total number of simulations.

To test the accuracy of our approximation, we will compare the analytical price (4) with the 99% Monte
Carlo confidence interval:

PSwptn (α, β, K)SELM ∈
[
PSwptn (α, β,K)MC − 2.576

σPSwptnMC√
n

, PSwptn (α, β,K)MC + 2.576
σPSwptnMC√

n

]
,

where σPSwptnMC is the standard deviation of the Monte Carlo price.

The accuracy test can also be performed on implied volatilities rather than on prices. To this end, we recall
that the swaption’s market price, at time 0, is given by Black’s formula :

PSwptn (α, β, K)Mkt = Blcall
(
K, Sα,β (0) , σα,β

√
Tα

) β∑

h=α+1

τhP (0, Th) .

The SELM implied volatility is defined as the parameter σα,β to plug into this market formula to match the
corresponding SELM swaption price. The SELM implied volatility σSELM

α,β is thus implicitly defined by

Blcall
(
K, Sα,β (0) , σSELM

α,β

√
Tα

)
=

N∑

i=1

λiBlcall
[
K + ηi

α,β , Sα,β (0) + ηi
α,β ,Γi

α,β

]

A similar definition applies to the Monte Carlo implied volatility σMC
α,β , which is implicitly defined by:

Blcall
(
K, Sα,β (0) , σMC

α,β

√
Tα

) β∑

h=α+1

τhP (0, Th) = PSwptn (α, β, K)MC

Numerical results and illustrations of these tests are presented in Section 6.2.

5 Building the Bridge: Calibration to Swaptions

As stated above, the first goal of the SELM is to capture the skew that is commonly seen in caps markets.
After reaching this objective, we can move further and try to calibrate the model to at-the-money (ATM)
swaption prices using the extra degrees of freedom left, namely the instantaneous correlations between the
forward rates in our family. More precisely, after finding σI

k’s and αI
k’s through a calibration to caplet

prices, as explained in Section 3, we propose a methodology to find the correlation matrix best fitting the
selected swaptions prices. Clearly, a joint calibration to both interest rate markets would require an overall
optimization procedure, where the parameters σI

k’s and αI
k’s contribute to accommodate the swaptions

implied volatilities. Here, instead, we resort to this two-stage procedure for simplicity, also because some
model advantages are already evident in our simplified approach.

When calibrating correlations, our goal is not just to reproduce swaptions prices, but we would also like to
provide a meaningful correlation structure that corresponds to market information. In fact, what matters in
swaption pricing is the so-called terminal correlation and not the instantaneous one. Terminal correlation is
a quantity summarizing the degree of “dependence” between forward rates at a future time, by contrast with
instantaneous correlation which captures the “dependence” between (instantaneous) changes of different
forward rates. The terminal correlation depends on the instantaneous correlations but also on the particular
functions of time σI

k (t)’s and αI
k’s as well. We refer the reader to Rebonato (2004) for further developments

on the subject.

A typical problem faced when we perform a joint calibration to caps and swaptions is the difference between
fixed payment leg tenors. Indeed, our cap forward rates are semi-annual, whereas forward swap rates are
annual. Therefore, we need to find a correspondence between 6 month σI

k,.5 cap parameters and their one year
swaptions counterpart σI

k,1. To this end, consider three caplets maturities S, T and N , where 0 < S < T < N

9



and all 6 month spaced. Recall that the 6 month forward rates from S to T and from T to N , and the
annual forward rate from S to N can be computed respectively as follows:6

FS,T (t) =
1
.5

[
P (t, S)
P (t, T )

− 1
]

, FT,N (t) =
1
.5

[
P (t, T )
P (t, N)

− 1
]

and FS,N (t) =
[

P (t, S)
P (t,N)

− 1
]

Therefore we have the following relation, see also Brigo and Mercurio (2001),

FS,N (t) =
FS,T (t) + FT,N (t)

2
+

FS,T (t)FT,N (t)
4

Applying Ito’s lemma to both sides

dFS,N (t) = (...) dt + σI
S,.5 (t)

(
FS,T (t)

2
+

FS,T (t) FT,N (t)
4

)
dZT (t)

+σI
T,.5 (t)

(
FT,N (t)

2
+

FS,T (t)FT,N (t)
4

)
dZN (t) ,

where ZT and ZN are two standard Brownian motions with instantaneous correlation ρT,N .

We assume, for the moment, that the shift parameters α are all zero. Equating the (instantaneous) quadratic
variation of both sides in the last equation, and dividing F 2

S,N (t), we obtain:

σI
S,1 (t)2 = u1 (t)2 σI

S,.5 (t)2 + u2 (t)2 σI
T,.5 (t)2 + 2ρT,Nu1 (t) u2 (t) σI

S,.5 (t)σI
T,.5 (t)

where u1 (t) = 1
FS,N (t)

[
FS,T (t)

2 + FS,T (t)FT,N (t)
4

]
and u2 (t) = 1

FS,N (t)

[
FT,N (t)

2 + FS,T (t)FT,N (t)
4

]
.

If we “freeze” all F ’s and hence all u’s at their initial time zero value, we come up with the following
approximation for the σ parameters of the one-year long forward rate:

σI
S,1 (t)2 ≈ u1 (0)2 σI

S,.5 (t)2 + u2 (0)2 σI
T,.5 (t)2 + 2ρT,Nu1 (0) u2 (0)σI

S,.5 (t)σI
T,.5 (t)

To determine the α parameters of the annual forward rate FS,N , we simply set αI
S,1 = αI

S,.5 where αI
S,.5 is the

α parameter for the semi-annual forward rate FS,T . This is also motivated by a preliminary work showing
that, on each scenario, the values of αI

k are not too different (same order of magnitude).

After providing a rule for converting semi-annual parameters into annual ones, we now need to parameterize
our instantaneous correlation matrix to proceed to the calibration to swaptions prices. Modelling the instan-
taneous correlation should be tackled with caution. First of all, obviously, one must maintain the properties
of a correlation matrix ρ = (ρi,j)i,j , namely :

1. Symmetry: ρi,j = ρj,i, for all i and j.

2. Positive semi-definiteness: x′ρx ≥ 0, for any x ∈ RM , where x′ denotes the transpose of x.

3. Unitary diagonal elements: ρi,i = 1 for every i.

Moreover, when it comes to forward rates, there are additional characteristics, based on empirical observation,
we would like their correlations to possess. Among these properties, the correlation matrix should display
some time decay, i.e. the correlation between forward rates should decrease as the time between maturities
increases. Inspired by these features we propose the two-parameter correlation structure.

Proposition 3 For a approaching 0 or a approaching ∞, ρi,j for any i and j ≥ 0 represents a correlation
structure

ρi,j = ρ̄ + (1− ρ̄) sin
(

π

2
exp

(
−a

|Tj − Ti|
T̄

))
(9)

where ρ̄ is the long term correlation coefficient, a is the (positive) “speed” of decorrelation, and T̄ is the
maximum distance between any two maturities. The functional form (9) is decreasing in the difference
|Tj − Ti| and can lead to sigmoid shapes in the correlations.

6We assume, for simplicity, that the year fractions for semi-annual and annual rates are 0.5 and 1, respectively.
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Proof. Properties 1. and 3. are trivially verified. Property 2. needs to be treated more carefully. Indeed,
we need to impose some conditions to preserve the positive semi-definiteness of the correlation matrix. For
ρ̄ > 0 and a approaching zero, we can consider the following first order Taylor expansion:

ρi,j ' ρ̄ + (1− ρ̄) sin
(

π

2

(
1− a

|Tj − Ti|
T̄

))

' ρ̄ + (1− ρ̄) cos
(

π

2
a
|Tj − Ti|

T̄

)
,

so that we approximately have
ρi,j ' ρ̄ + (1− ρ̄) cos (θj − θi)

where θl = π
2 aTl

T̄
, for l ∈ {i, j}.

Since cos (θj − θi) defines the structure of a two-rank correlation matrix, see Rebonato (2004), then (ρi,j) is
a positive semi-definite matrix as well.

For ρ̄ > 0 and a approaching ∞, we instead obtain:

ρi,j ' ρ̄ + (1− ρ̄)

(
π

2
exp

(
−a

|Tj − Ti|
T̄

)
− 1

6

(
π

2
exp

(
−a

|Tj − Ti|
T̄

))3
)
' ρ̄

and hence (ρi,j) is again positive semi-definite.

In our calibration to swaptions prices, we will also test the performance of Rebonato’s parametrization of
correlations:

ρi,j = ρ̄ + (1− ρ̄) exp (−a |Tj − Ti|) . (10)

Notice that, for a large enough, the above Taylor expansion approximation shows that our correlation
structure is similar to Rebonato’s. However, the two formulations can be rather different for small a. This
will result in a different fitting quality to the same set of swaptions prices, as we will se in the numerical
examples provided at the end of the paper.7

The calibration to swaptions prices is finally performed as follows. We recall, from the previous section,
the SELM and market formulas for a payer swaption price, and we define Ψ to be the set of optimization
parameters, i.e. we set Ψ := (ρ̄, a). The calibration aims at finding Ψ such that

Ψ = arg min


∑

α,β

g
(
PSwptn (t, α, β, K)Mkt

,PSwptn (t, α, β,K)SELM
)

 ,

where α and β range over our selected ATM swaption maturities and tenors.

Some numerical results are presented in Section (6.1.2).

6 Numerical Results

In this section, we illustrate some examples of calibration of the SELM to caps and swaptions market data,
along the lines we previously mentioned. We also show the results of our tests on the good performance of
the approximating SELM formula for swaptions. We conclude by plotting a few swaptions volatility skews
implied by the previous model calibration, and by showing the evolution of some forward caplet volatilities
in the future.

7A more accurate calibration to swaptions prices would require a less parsimonious correlation parametrization. As already
pointed out, this is however beyond the scope of this paper.
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6.1 Calibration to Market Data

We start by testing the SELM on the caps market by considering different numbers of scenarios. Our
numerical experiments, based on market data, show that three scenarios are usually enough for a satisfactory
calibration, even though the fitting quality worsen for high strikes and low maturities.

We then move to consider swaption volatilities. As previously mentioned, our purpose is not to perform
a true joint calibration, but rather to infer reasonable forward rates correlations to test the SELM also in
terms of the swaptions volatility skews it implies.

6.1.1 Calibration to caplet quotes

We calibrated our model to the caps volatility data quoted on 08/11/2004 in the Euro market, using caplets
with a six-month tenor. The caplets strikes range from 2.5% to 7%, and are 25 basis points spaced. The
caplets maturities spectrum ranges from 1.5 to 14.5 years. The volatility data used is plotted in Figure 1,
while a sample of the same data is displayed in Table 1.

We used two, three and finally four different scenarios of SELM parameters (N = 2, 3, 4), and came to the
conclusion that three scenarios are usually the best choice. In fact, a two-scenarios model does not seem
to accommodate the caplets skew accurately. Moreover, the marginal improvement in the fitting quality
implied by a four-scenario model tends to be negligible.8 Therefore, in the remainder of our numerical tests,
we decided to stick to a three-scenario model with a-priori given probabilities λ. Preliminary work showed,
in fact, that substantially equivalent results, in terms of fitting, can be achieved through different choices for
the scenarios probabilities. In our experiments, we took λ1 = .6, λ2 = .3 and λ3 = .1, thus assuming a high
probability scenario, an average one, and a low probability scenario.

The calibrated values of σI
k and αI

k in the three different scenarios, and for maturities up to 14.5 years, are
displayed in Tables 2 and 3. The resulting SELM caplet volatilities are plotted in Figure ??. Figures 3 to
7, instead, show a graphical comparison between the market and SELM implied caplet volatilities for a few
selected maturities, namely 2,3,5,10 and 12 years.

Table 1: Sample of market caplet volatilities (in %) by strike and maturity
Strike(%)—Maturity 2 2,5 3 3,5 4 4,5 5

2,5 26,32 25,68 24,77 23,99 23,53 23,18 23,04
2,75 25,04 24,43 23,6 22,85 22,44 22,13 22,03
3 23,97 23,33 22,55 21,82 21,46 21,17 21,11

3,25 23,12 22,4 21,65 20,9 20,59 20,3 20,28
3,5 22,62 21,64 20,89 20,11 19,82 19,52 19,53
3,75 22,66 21,09 20,31 19,43 19,16 18,84 18,86
4 22,81 21,04 20,04 18,91 18,62 18,26 18,28

4,25 23,075 21,17 20,11 18,795 18,42 17,87 17,86
4,5 23,34 21,3 20,18 18,68 18,22 17,48 17,44
4,75 23,7 21,54 20,36 18,795 18,3 17,5 17,4
5 24,06 21,78 20,54 18,91 18,38 17,52 17,36

5,25 24,49 22,07 20,78 19,09 18,52 17,61 17,42
5,5 24,94 22,4 21,04 19,3 18,68 17,74 17,51
5,75 25,43 22,76 21,34 19,54 18,88 17,89 17,63
6 25,94 23,14 21,65 19,8 19,1 18,06 17,77

6,25 26,48 23,55 21,99 20,08 19,33 18,26 17,93
6,5 27,04 23,97 22,35 20,38 19,59 18,47 18,11
6,75 27,62 24,42 22,73 20,7 19,86 18,7 18,3
7 28,23 24,89 23,13 21,03 20,15 18,95 18,51

8This result was also shown in Brigo, Mercurio and Rapisarda (2000) who calibrated a lognormal mixture density to market
foreign-exchange data.

12



Table 2: The calibrated values of σI
k for different maturities and scenarios

Caplets maturities Scenario 1 Scenario 2 Scenario 3
1.5 0.16304434 0.06422773 0.06332962
2 0.18921474 0.05634155 0.05316215

2.5 0.16791712 0.05989887 0.05520289
3 0.17362959 0.06458859 0.06557753

3.5 0.15172758 0.03617556 0.03240995
4 0.15829939 0.04999707 0.03960524

4.5 0.14123047 0.04344321 0.03870800
5 0.14422573 0.05366341 0.04914180

5.5 0.12441415 0.05057469 0.04322650
6 0.12480429 0.05173816 0.04849220

6.5 0.10744960 0.03105830 0.02892788
7 0.12148858 0.05141806 0.04410974

7.5 0.10697440 0.04382249 0.04019843
8 0.11604050 0.04996482 0.03892146

8.5 0.10106829 0.04246569 0.04085141
9 0.10789990 0.04728225 0.04185310

9.5 0.09942587 0.04068057 0.03929327
10 0.10961703 0.04656102 0.04349751

10.5 0.09826417 0.04100323 0.04260043
11 0.10773474 0.04301775 0.04531406

11.5 0.09486490 0.03734212 0.04308718
12 0.09552005 0.03850786 0.04121609

12.5 0.09505042 0.03621755 0.03896017
13 0.09450712 0.03610641 0.04549258

13.5 0.08950882 0.03703596 0.03723106
14 0.09231341 0.03448961 0.03534253

14.5 0.08597086 0.03469210 0.03425724
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Figure 1: Market caplet volatilities as of 11 August 2004 by strike and maturity
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Table 3: The calibrated values of αI
k for different maturities and scenarios

Caplets maturities Scenario 1 Scenario 2 Scenario3
1.5 0.02801044 0.03841978 0.03326450
2 0.02091647 0.03346086 0.03674928

2.5 0.02596937 0.02426207 0.03236464
3 0.02202359 0.01782716 0.02032976

3.5 0.02776751 0.05817754 0.06401326
4 0.02418964 0.02997589 0.04818130

4.5 0.03074806 0.03732896 0.04390922
5 0.02946808 0.02161852 0.02895950

5.5 0.03719965 0.01976091 0.03170472
6 0.03330999 0.01331947 0.01965747

6.5 0.04104563 0.04570878 0.04912145
7 0.03306023 0.01305767 0.01541584

7.5 0.04193459 0.01881899 0.02348780
8 0.03346430 0.01242679 0.01402056

8.5 0.04336819 0.01611235 0.02000735
9 0.03598035 0.00976178 0.01192281

9.5 0.04088379 0.01448904 0.01933940
10 0.03408434 0.00878642 0.01169428

10.5 0.04182204 0.01214344 0.01838369
11 0.03248840 0.00903381 0.01301825

11.5 0.04134638 0.01417237 0.02011819
12 0.03909778 0.01134578 0.01687170

12.5 0.03775666 0.01239276 0.01803944
13 0.03635414 0.00716251 0.01400981

13.5 0.03920179 0.00779229 0.01037969
14 0.03476033 0.00719563 0.02012456

14.5 0.03879874 0.00730602 0.01047056
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Figure 2: Calibration of the SELM model with three scenarios to the caplet skew for different maturities
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Figure 3: Calibration of the SELM to the two-year maturity caplet skew
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Figure 4: Calibration of the SELM to the three-year maturity caplet skew
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Figure 5: Calibration of the SELM to the five-year maturity caplet skew
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Figure 6: Calibration of the SELM to the ten-year maturity caplet skew
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Figure 7: Calibration of the SELM to the twelve-year maturity caplet skew
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6.1.2 Calibration to swaptions quotes

We consider the ATM swaption volatilities quoted on 08/11/2004 in the Euro market. In the SELM swaption
formula (4), the λ parameters have been assigned a priori, whereas the α and σ parameters for annual rates
are obtained, as explained in Section 5, from the semi-annual ones coming from the previous calibration to
caplets. The only free parameters are the correlations ρ, which are parameterized first through Rebonato’s
function (10), and then according to our form (9).

Table 4 displays the data used for the calibration.9 Tables 5 and 6 present the calibration results with
Rebonato’s formula, whereas Tables 7 and 8 present the results obtained with our correlation function.

Table 4: Market ATM swaption volatilities as of 11 August 2004
Tenor—Swaption Maturity 2y 3y 4y 5y

2Y 0.201 0.179 0.163 0.15
3Y 0.187 0.168 0.153 0.142
4Y 0.174 0.157 0.144 0.134
5Y 0.163 0.147 0.135 0.127

Table 5: SELM swaption volatility with Rebonato’s correlation function
Tenor—Swaption Maturity 2y 3y 4y 5y

2Y 0.20268 0.18589 0.16783 0.15550
3Y 0.18438 0.17016 0.15458 0.14416
4Y 0.17016 0.15697 0.14401 0.13497
5Y 0.15774 0.14632 0.13519 0.12671

Table 6: Correlations under Rebonato’s parametrization
|Tj − Ti||Tj − Ti||Tj − Ti| ρi,jρi,jρi,j

0 1.00000
1 0.78098
2 0.61347
3 0.48535
4 0.38737
5 0.31244
6 0.25512
7 0.21129
8 0.17777
9 0.15213
10 0.13252
11 0.11752
12 0.10605

Table 7: SELM swaption volatility with our correlation function
Tenor—Swaption Maturity 2y 3y 4y 5y

2Y 0.20040 0.18379 0.16591 0.15373
3Y 0.18204 0.16799 0.15251 0.14224
4Y 0.16895 0.15596 0.14298 0.13411
5Y 0.15836 0.14699 0.13583 0.12726

9The used data is just a small subsect of the matrix that is typically available in the market.
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Table 8: Correlations under our formulation
|Tj − Ti||Tj − Ti||Tj − Ti| ρi,jρi,jρi,j

0 1.00000
1 0.74093
2 0.59764
3 0.55401
4 0.54125
5 0.53754
6 0.53646
7 0.53614
8 0.53605
9 0.53602
10 0.53601
11 0.53601
12 0.53601
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6.2 Testing the Approximation for Swaptions Prices

In this section we test the quality of the approximation (4) and the related implied volatility, by comparing
their values with those coming from a Monte Carlo simulation.

In our test, we considered (payer) swaptions with a 5 year tenor. The SELM parameters used in the test
are those coming from the previous calibrations to caps and swaptions, with instantaneous correlations
parameterized by Rebonato’s function.

Tables 9, 10, 11 and 12 present the results of our analysis. In each table, we report the approximation
price, the 99% confidence interval of the Monte Carlo price,10 and the implied volatilities associated to the
approximation and the Monte Carlo prices. These tables show that our approximation is quite accurate for
every considered strike, both in terms of prices and implied volatilities.

Table 9: Approximation price, MC price-window and related volatilities for a 2x5 swaption
Strikes Approx Confidence Interval ImpVol Approx ImpVol MC

1 13.82129 13.81992 13.82305 29.69013 30.93328
1.5 11.7133 11.71163 11.7148 26.16912 26.09091
2 9.616925 9.614254 9.617442 23.74041 23.53314

2.5 7.558583 7.553763 7.556938 21.73473 21.53948
3 5.585923 5.578241 5.581351 19.80649 19.64416

3.5 3.76625 3.75582 3.758774 17.80746 17.6729
4 2.237119 2.224806 2.227436 16.19233 16.07505

4.5 1.205713 1.194609 1.196827 15.71271 15.61379
5 0.652548 0.645185 0.647076 16.18942 16.11517

5.5 0.361724 0.35747 0.359052 16.8489 16.79595
6 0.19664 0.19451 0.195787 17.29857 17.26596

6.5 0.103012 0.102198 0.103189 17.54427 17.53361
7 0.052057 0.05184 0.052581 17.6619 17.67022

Table 10: Approximation price, MC price-window and related volatilities for a 3x5 swaption
Strikes Approx Confidence Interval ImpVol Approx ImpVol MC

1 14.41191 14.40977 14.41306 28.06964 26.61654
1.5 12.39908 12.39643 12.39975 24.68383 24.24306
2 10.402 10.39805 10.40138 22.36748 22.09171

2.5 8.444132 8.438116 8.44144 20.50211 20.30066
3 6.560787 6.552229 6.555507 18.79316 18.63539

3.5 4.796158 4.785429 4.788599 17.09941 16.97469
4 3.22747 3.215358 3.218309 15.58011 15.47835

4.5 1.998144 1.986538 1.989155 14.68867 14.60644
5 1.196614 1.187471 1.189798 14.59899 14.53471

5.5 0.731471 0.725521 0.727613 14.9988 14.95317
6 0.455184 0.451807 0.453648 15.46998 15.44153

6.5 0.280946 0.279435 0.281013 15.81599 15.80503
7 0.1699 0.169553 0.170871 16.02736 16.03384

10We simulated ten million paths with a three-month time step. We used a predictor-corrector method for the drift of the
forward rates and also applied major variance-reduction techniques.

20



Table 11: Approximation price, MC price-window and related volatilities for a 4x5 swaption
Strikes Approx Confidence Interval ImpVol Approx ImpVol MC

1 14.63908 14.63835 14.64162 26.82 27.69253
1.5 12.72157 12.72022 12.72351 23.53826 23.61617
2 10.82197 10.81942 10.82273 21.30599 21.22553

2.5 8.960791 8.956455 8.959773 19.53616 19.43209
3 7.16581 7.15942 7.162715 17.95743 17.85965

3.5 5.468099 5.459839 5.463064 16.41676 16.33159
4 3.913081 3.903392 3.906463 14.93485 14.86101

4.5 2.603121 2.592899 2.595692 13.8419 13.77778
5 1.658358 1.649555 1.652049 13.4545 13.40327

5.5 1.067966 1.061611 1.063902 13.6628 13.62509
6 0.707301 0.703289 0.705397 14.0972 14.07241

6.5 0.471931 0.469642 0.471546 14.48584 14.47222
7 0.311619 0.310611 0.312297 14.75378 14.75166

Table 12: Approximation price, MC price-window and related volatilities for a 5x5 swaption
Strikes Approx Confidence Interval ImpVol Approx ImpVol MC

1 14.59393 14.5914 14.59454 25.50006 24.68521
1.5 12.76953 12.7665 12.76966 22.35811 22.04726
2 10.96356 10.95958 10.96276 20.22934 20.04543

2.5 9.193978 9.188817 9.192016 18.55779 18.43177
3 7.483998 7.477476 7.480671 17.09149 16.99571

3.5 5.85859 5.850897 5.854049 15.68794 15.61252
4 4.350503 4.341947 4.344986 14.32488 14.26323

4.5 3.03345 3.024703 3.027518 13.2165 13.16572
5 2.017548 2.009981 2.012516 12.65815 12.61917

5.5 1.337118 1.331628 1.333973 12.66687 12.63976
6 0.908976 0.905317 0.907527 12.98943 12.97167

6.5 0.628781 0.626678 0.628735 13.35872 13.35002
7 0.434486 0.433625 0.435504 13.64837 13.64914
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6.3 Further Model Implications

Besides the possibility of accommodating caps and swaptions quotes, the SELM has two further appealing
features. First, the SELM allows for a definition of a possible swaption market smile or skew. In practice,
swaptions are quoted ATM and quotes for away from the money swaptions are rather rare. However,
practitioners who trade out of the money (OTM) and in the money (ITM) swaptions agree on pricing them
with a higher volatility than the ATM one. Therefore, in the absence of OTM and ITM quotes, our model
can provide a guide for practitioners to produce their quotes.

Figure 8 shows the implied volatilities curves induced by our model for they the 2x5, 3x5, 4x5, 5x5 swaptions,
with the same model parameters used in the previous section to test the SELM price formula. These plots
should only be regarded as examples of possible implications of our model. In fact, more “realistic” curves
could be obtained through a more accurate calibration to ATM swaptions prices.

Another important implication of our model is that it produces self-similar forward caplets volatilities. In
fact, the requirement of a model implying forward volatility skews that are similar to the current ones is
often neglected when modelling the evolution of forward rates, since fitting caplets and swaptions market
data is a more obvious and compelling goal. Having realistic forward volatility skews is important as far as
pricing exotic options is concerned since it allows traders to implement a better hedging strategy for their
derivatives books.

A forward implied volatility is defined as the volatility parameter to plug into the Black-Scholes formula for
forward starting option (FSO) to match the model price.11 A forward start caplet (FSC) with forward start
date Tj and maturity Tk is an option on the LIBOR rate Fk(Tk−1), with Tk−1 > Tj , where the strike price
is set as a proportion δ of the spot LIBOR rate at time Tj . In case of a call, the payoff at time Tk is (we
assume a unit nominal amount):

τk [Fk (Tk−1)− δFj+1 (Tj)]
+

. (11)

This payoff, however, involves two different forward rates, and as such can not lead to a consistent definition
of forward implied volatility. To this end, we replace (11) with the following:

τk [Fk (Tk−1)− δFk (Tj)]
+

. (12)

The difference between the two formulations is that in the former the strike is defined by the spot LIBOR rate
at time Tj for maturity Tj+1, whereas in the latter formulation, it is defined by the time Tj forward LIBOR
rate between Tk−1 and Tk. Even though the payoff (12) is somehow more intuitive, it is not exchanged in
the market essentially because forward rates are not directly quoted by the market but only stripped from
zero-coupon bonds. The second payoff is also more convenient mathematically, since it is the difference
between two values of the same “asset” computed at different times (in the former payoff we have to cope
with two different LIBOR rates with two different dynamics). Having to define a forward volatility, and not
to price a true market derivative, we thus stick to the payoff (12).

Following Rubinstein (1991), under a lognormal LMM, the price of a FSC at time 0 is given by

FSCpl (Tj , Tk−1, Tk, τk, δ) = τkP (0, Tk) Blcall
(
δFk (0) , Fk (0) , V impl (Tj , Tk−1)

√
Tk−1 − Tj

)

where V impl (Tj , Tk−1) is the time Tj-forward implied volatility for the expiry Tk−1.

11While in equity and foreign exchange markets FSOs are commonly traded, these derivatives are less present in the fixed
income market.
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Similarly, the price of a FSC with the SELM is given by

FSCplSELM (Tj , Tk−1, Tk, τk, δ) = τkP (0, Tk)
N∑

i=1

λiE
k
[((

Fk (Tk−1) + αi
k

)− (
δFk (Tj) + αi

k

))+ |I = i
]

= τkP (0, Tk)
N∑

i=1

λiE
k
[
Ek

[((
Fk (Tk−1) + αi

k

)− (
δFk (Tj) + αi

k

)+
)
|{Fk(Tj), I = i}

]
|I = i

]

= τkP (0, Tk)
N∑

i=1

λiE
k
[
Blcall

(
δFk (Tj) + αi

k, Fk (Tj) + αi
k, V i

Tj
(Tk−1)

)]

= τkP (0, Tk)
N∑

i=1

λi

∫ +∞

−∞

[
Blcall

(
δFk (Tj) + αi

k, Fk (Tj) + αi
k, V i

Tj
(Tk−1)

)]
dΦ(Fk (Tj))

where we set V i
Tj

(Tk−1) =
√∫ Tk−1

Tj
σi

k (s)2 ds and Φ (Fk (Tj)) is the (lognormal) cumulative distribution

function of Fk (Tj) under Qk.

The time Tj-forward implied volatility for the expiry Tk−1 is, by definition, the parameter V impl (Tj , Tk−1)
that satisfies:

FSCpl (Tj , Tk−1, Tk, τk, δ) = FSCplSELM (Tj , Tk−1, Tk, τk, δ) .

To test the forward implied volatility generated by our model in a quick and simpler way, we assume the
αI

k’s to be equal to zero in each scenario. In this case the SELM formula simplifies to

FSCplSELM (Tj , Tk−1, Tk, τ, δ) = τkP (0, Tk)
N∑

i=1

λiBlcall
(
δFk (0) , Fk (0) , V i

Tj
(Tk−1)

)

We priced FSCs starting in one year and having maturities 2, 3, 5 and 10 years. Figure 9 shows the results
of our test.

From our analysis, the SELM seems to imply forward volatilities that are very similar to the current ones.
Note also that a slight difference is due to the fact that we priced the FSCs by neglecting the αI

k’s (the
forward volatility graphs do not display a clear skew).
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Figure 8: The implied smile for the 2 x 5, 3 x 5, 4 x 5 and 5 x 5 swaptions
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Figure 9: One year forward volatility smiles of two, three, five and ten year maturity caplets.
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7 Conclusions

Gatarek (2003) proposed a simple one-factor stochastic volatility LMM based on parameters uncertainty. In
this paper, we have generalized Gatarek’s approach to the multi factor case.

Besides being quite intuitive, the model is extremely easy to implement because of its tractability. In fact,
caplets prices are simply equal to the weighted average of adjusted Black’s caplet prices, and swaptions can
be priced, in a similar fashion, through a closed-form approximation.

The model can accommodate a large variety of caplet volatility surfaces and can be simultaneously calibrated
to ATM swaptions prices. This has been tested on real market data.

A seeming drawback of the model is that future implied volatilities flatten almost immediately, i.e. as soon as
the random value of the model parameters is drawn a little after time zero. However, our empirical analysis
shows that the forward implied volatilities induced by the model do not differ much from the current ones,
providing a further support for its use in the pricing and hedging of interest rate derivatives.

Further empirical work can be carried out by trying different parametrizations for the time-dependent func-
tions σI

k. These parametrizations can be different for different scenarios. Another interesting study concerns
a true joint calibration to the caps and swaptions markets, with the analysis of related implications, especially
in terms of the swaptions implied volatility smile or skew.
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