
Dynamic Limited Dependent Variable Modeling and U.S.

Monetary Policy

George Monokroussos�

Department of Economics

University of California, San Diego

November 2004

JOB MARKET PAPER

Abstract

I estimate, using real-time data, a forward-looking monetary policy reaction function that

is dynamic and that also accounts for the fact that there are substantial restrictions in the

period-to-period changes of the Fed�s policy instrument. I �nd a substantial contrast between

the periods before and after Paul Volcker�s appointment as Fed Chairman in 1979, both in terms

of the Fed�s response to expected in�ation and in terms of its response to the (perceived) output

gap: In the pre-Volcker era the Fed�s response to in�ation was substantially weaker than in the

Volcker-Greenspan era; conversely, the Fed seems to have been more responsive to real activity

in the pre-Volcker era than later.
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1 Introduction

One question that has received much attention in recent work on US monetary policy is that of the

contrast in US macroeconomic performance between the periods before and after the appointment of

Paul Volcker as chairman of the Federal Reserve in August of 1979, and of the causes of that contrast.

As Figure 1 demonstrates, the late 1960s and the 1970s were a period of relative macroeconomic

instability, as they were characterized by high and volatile rates of in�ation. This era of the Great

In�ation contrasts starkly however with what followed after Paul Volcker�s appointment, namely a

period of low in�ation and stable output growth.

Understanding the causes of this dramatic change is essential both for a fair historical assessment

of past policies and for the design of a better monetary policy for the future. This issue has thus

justi�ably been scrutinized in numerous studies, and various explanations have been proposed.

One in�uential line of research focuses mainly on intertemporal di¤erences in monetary policy and

emphasizes the role that improved policies in the Volcker-Greenspan eras played in achieving better

macroeconomic outcomes during the 1980s and the 1990s.

This literature that focuses mostly on the role of monetary policy makes extensive use of single

equation reaction functions for the Federal Reserve, also known as Taylor rules, that link the Fed�s

policy instrument (typically taken to be monthly or quarterly averages of the federal funds rate -

the interest rate that banks charge each other for overnight loans of Federal Reserve deposits) to

measures of the in�ation gap and of the real output gap1 (or of the unemployment gap). Such

reaction functions are compatible with broadly held views about what the central goals of US

monetary policy are, and appropriately chosen rules from that family of reaction functions can have

both a normative and a positive justi�cation (see, inter alia, Taylor (1993), Judd and Rudebusch

(1998), and Clarida Galí and Gertler (1999) ).

One of the better known papers from that literature that uses reaction functions is Clarida,

Galí, and Gertler (2000) (henceforth CGG). CGG take a standard Taylor rule and augment it

by introducing dynamics, in the form of lags of the dependent variable as additional explanatory

1The in�ation and output gaps are gaps of these variables from their desired target levels.
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variables, and they also employ a forward-looking framework. Both of these arguably capture salient

features of the Federal Reserve�s behavior:

The lags of the policy instruments allow for a certain degree of inertia and for possible partial

adjustment, which is compatible with the widely held view that the Fed tends to smooth changes

in interest rates - something also evident in the data. In particular, the Fed tends to adjust its

target for the federal funds rate in a cautious manner, and only gradually, with slow, stodgy steps,

at discrete points in time. Reasons for this inertia in monetary policy include data uncertainty, and

more generally uncertainty about the structure of the economy. Indeed, Fed actions, taken on the

basis of possibly inaccurate real-time information, that prove ex-post to have been too aggressive

and to have been taken too hastily would compromise the monetary authority�s credibility.

The forward looking framework is one where forecasts of in�ation and the output gap for one or

more periods ahead are employed in the reaction function, rather than contemporaneous or lagged

values for these variables (of a backward looking speci�cation). Thus, the forward looking speci�ca-

tion essentially implies that the Fed considers a broader information set in determining the target

level for its policy instrument, rather than being restricted to considering only contemporaneous

or past values of the output and in�ation gaps, and it also gives a more realistic description of

how sophisticated monetary policy ought to look like in the face of likely lags in the monetary

transmission mechanism.

CGG estimate such a dynamic and forward-looking reaction function for the postwar U.S. econ-

omy. Their central �nding is that monetary policy prior to Volcker�s appointment accommodated

in�ation - the Fed typically raised the nominal interest rates by less than the increase in expected

in�ation, which would thus result in a lower real interest rate2, while in the Volcker-Greenspan era

the Fed drastically changed its approach and adopted a much more anti-in�ationary stance, raising

not only nominal, but also real interest rates in response to increases in expected in�ation; it thus

contributed, at a very minimum, to the transition from the volatile 1970s to the rosy 1980s and

1990s - a period of stability and low in�ation.

2Thus, the Pre-Volcker Fed did not satisfy Taylor�s principle.
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This is perhaps not a surprising �nding to many - indeed the notion that Paul Volcker and Alan

Greenspan did a superior job in conducting monetary policy than their predecessors may sound by

now more like conventional wisdom than like a controversial proposition. Nevertheless this central

empirical �nding of CGG of a stark, dramatic contrast between the pre- and post- Volcker conduct

of monetary policy has been at the center of much recent attention (probably justi�ably given the

importance of the question) and has been complemented, re�ned, or even challenged on several

grounds in subsequent research.

Related Past Literature

First, there is another in�uential subset of the recent literature on U.S. monetary policy that focuses

more on shocks and on changes in their volatilities, rather than on changes in monetary policy. This

literature (see, inter alia, Kim and Nelson (1999b), Sims (1999), Blanchard and Simon (2001), Stock

and Watson (2003), and Sims and Zha (2004) ) emphasizes the role of non-policy shocks, whose

volatility was higher in the pre-Volcker era than in the Volcker-Greenspan era, and it argues that it

was this, rather than any policy changes, that was the central factor behind the observed dramatic

change in macroeconomic outcomes of the two periods.

Yet another interesting line of recent work argues that changes in U.S. monetary policy were

more gradual than suggested by CGG or that there were richer dynamics than suggested by the

simple split-sample approach and concentrates on estimating reaction functions using Time Varying

Parameter approaches. Papers along these lines include Cogley and Sargent (2001, 2002), Boivin

(2004), and Jalil (2004).

Furthermore, and as Orphanides demonstrates in his in�uential 2001 paper, it is essential, when

trying to reach policy conclusions on the basis of estimated reaction functions, to use real-time

data, that is data that were actually available to the Federal Open Markets Committee at the time

their decisions were made, rather than revised data series (typically used in applied work prior to

Orphanides�contribution) that became available only ex post.

Orphanides extends this approach further in subsequent papers (such as Orphanides (2002,

4



2004)), and �nds, using such real-time data and forward-looking reaction functions that, in contrast

to the CGG conclusions, monetary policy in the pre-Volcker era, far from being accommodative

to in�ation, was in a similar manner to the Volcker-Greenspan era, activist, forward-looking, and

strong and decisive in its reaction to in�ationary surges. While this contradicts the CGG conclusion

that the instability of the 1970s was at least in part due to weak monetary policy, Orphanides also

�nds that monetary policy prior to Volcker�s appointment was "too activist in reacting to perceived

output gaps that retrospectively proved overambitious"3. That is, the Fed�s real-time estimates

of potential output were upwardly biased, and this resulted in the Fed responding to these biased

estimates by following policies that in retrospect, and using the knowledge of the revised and

corrected estimates of the output gap, would be judged to have been too expansionary, which thus

probably contributed to the instability and in�ationary pressures of that period.

All the contributions outlined above are not mutually exclusive and should be taken into account

in careful attempts to assess the historical evolution of U.S. monetary policy and of its impact on

the economy. However, one issue which, while equally important, has not been given nearly as much

attention in the literature is that of characterizing the Fed�s policy instrument, and speci�cally, of

determining what exactly the nature of the policy instrument is, and of taking into account the

speci�cs of its time series behavior in estimation exercises of reaction functions.

Characterizing the Fed�s Policy Instrument

As suggested above, the obvious candidate for the Fed�s policy instrument is the federal funds rate

- indeed that has been the presumed policy instrument in most of the studies that investigate U.S.

monetary policy with Taylor rules, including the ones outlined above. While there is no explicit

institutional directive that de�nes the federal funds rate (or any other variable) to be the Fed�s

policy instrument, related empirical work, including Bernanke and Blinder (1992) and Bernanke

and Mihov (1998) establishes that, with a possible exception of non-borrowed reserve targeting for

a brief period during the �rst three years of Paul Volcker�s tenure, the Fed has indeed treated the

3Orphanides (2004).
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fed funds rate as its policy instrument4.

Further evidence to this is provided by the fact that the Fed has been explicitly announcing a

target for the fed funds rate (henceforth the target) since 1994, usually during Federal Open Market

Committee meetings, but sometimes in between such meetings too. Even before 1994 changes in the

target were quite accurately inferred by the market. Indeed, as Hamilton and Jordà (2002) note,

the Wall Street Journal would report any movements of the target on a daily basis, and related

academic literature has compiled time series of target changes for periods prior to 1994 (such as

Cook and Hahn (1989) for the mid- and late 1970�s and Rudebusch (1995) for the mid-1980�s and

later)5. Announcements of changes or no changes to the target, and in general news related to the

target and its movements has always been the subject of intense interest by the markets, precisely

because the fed funds rate and its target are understood to be the policy instrument of the Federal

Reserve.

However, there are quite severe restrictions in the way the target changes from period to period:

At any given period the target either will not change at all or it will change, by multiples of 25

basis points since November of 1989 and by multiples of 6.25 basis points earlier. Thus, the changes

in the target fall into a small number of discrete categories. This discreteness is preserved when

monthly averages of the target6 are considered too: For example, for the Greenspan period7, the

changes in monthly averages of the target are equal to 0 for 42.4% of the time.

Essentially the same holds true for periodic averages of the federal funds rate: Once the target

has been determined, it is then the task of the Federal Reserve Bank of New York, and of its trading

desk in particular, to conduct open market operations (purchases or sales of Treasury securities),

based on careful monitoring of commercial banks�reserve requirements and available Fed deposits,

4Even for these three years at the start of Volcker�s term, it is being argued (see, for example, Goodfriend (1991))
that the Fed had an implicit target for the federal funds rate.

5For further details on the mechanics, history, and stylized facts of setting the target one can read, inter alia,
Meulendyke (1998), Hamilton and Jordà (2002), Piazzesi (2001), and Dueker (1999).

6The monthly averages of the target are taken at the "FOMC frequency", that is, over months during which there
was an Federal Open Markets Committee meeting. The reason is that it is only during those months that Greenbook
forecasts (that are used to construct the explanatory variables of the reaction functions estimated in this paper) were
available. Further details on the data used are provided in Section 3.

7The sample used in this study ends in June of 1998.
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so as to implement the set target. In other words, the New York Fed essentially acts as the Fed�s

broker, and ensures that the fed funds rate never �uctuates too far away from the set target. This

fact is further illustrated in Figure 2, which plots the time series of monthly averages of the e¤ective

fed funds rate, of monthly averages of the target, and of end-of-month values of the target and

shows how these three series are almost indistinguishable from each other.

Contributions of this Paper

It is thus evident that there are severe restrictions in the way the Fed�s policy instrument changes

from period to period, and so these restrictions ought to be taken into account in modeling and

estimation exercises of Fed reaction functions. Estimating linear reaction functions with Gaussian

error terms ignores these restrictions to the support space of the dependent variable and may thus

lead to serious biases. However, little work has been done in that direction. All of the literature

outlined above, and nearly all of the rest of the literature in the area employs linear speci�cations

with Gaussian error terms. One exception to this paradigm is Hamilton and Jordà (2002), who

propose the Autoregressive Conditional Hazard (ACH) approach which allows them to model the

target as a discrete time series variable. However, this approach is more geared towards forecasting

and falls outside the Taylor rule framework of all the studies that have been outlined above. Also,

Dueker (1999a) takes these restrictions into account as he models the reaction function using a

multinomial ordered probit for the changes of the target, (which is the approach adopted here too).

However he does not account for possible serial correlation in the residuals, which is likely to be

present.

In general, most existing applied macroeconomic work, including the work on monetary policy

reaction functions, either ignores the restrictions to the support space of the dependent variable

under consideration and focuses on the needed time series modeling requirements, or, conversely,

employs Limited Dependent Variable estimation techniques at the expense of time series modeling.

The main reason for that is that incorporating both of these at the same time results in an estimation

task that presents the researcher with formidable computational challenges because of the need for

7



integration of multiple integrals with no closed form solution whose dimensionality can be the same

as the time series dimension of the data, and/or because of the need for numerical optimization of

di¢ cult objective functions.

The econometric contribution of this paper is that I propose a �exible and practical algorith-

mic framework that overcomes the multiple integral problem by using Markov Chain Monte Carlo

(henceforth MCMC) simulation techniques with data augmentation, whereby simulated samples of

the latent variables typically used to model probits are generated from their model-implied con-

ditional distributions. I propose a new and computationally attractive way of implementing the

required smoothing algorithm for the generation of the latent variables that relies on the joint

distributions of the latent residuals.

An added advantage of the MCMC approach and of the Gibbs sampler that is employed in

this paper in particular is that additional time series features, such as Regime Switching, or Time

Varying Parameters, that would substantially complicate the needed computational tasks in an

extremum framework, can be easily introduced in the MCMC context as additional blocks in the

Gibbs sampler, and this paper illustrates how this is done.

Finally, I overcome the additional computational challenges associated with di¢ cult numerical

optimizations by proposing a Bayes estimator that is a statistic of the simulated posterior distrib-

ution of interest, and which thus falls outside the extremum framework.

The macroeconomic contribution of the paper is that, in contrast to past literature, I model the

Fed�s reaction function in a way that does not ignore the discrete nature of the changes in the Fed�s

policy instrument, while also taking into account contributions of past literature, such as the ones

outlined earlier. Speci�cally, I estimate, using real-time data compiled from Greenbook forecasts

of the Federal Reserve, a forward-looking, dynamic ordered probit reaction function, and I also

consider a series of extensions and robustness checks.

My central �nding is that, while there is some evidence that the Fed was more activist in

its response to real-time estimates of the output gap in the pre-Volcker era than later, there

is also strong evidence that it was much less aggressive in its response to in�ation in the pre-
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Volcker era than later. Thus, while the Fed�s possibly excessive responsiveness to inaccurate

real-time estimates of the output gap probably contributed to the instability of the 1970s, it

is apparent that, as CGG claim, the Pre-Volcker Fed�s less than aggressive stance in �ghting

in�ation, which changed dramatically with Volcker�s appointment, was a central factor behind

the observed contrast in macroeconomic performance between the 1970s and the 1980s-1990s.

The plan for the rest of the paper is as follows: Section 2 develops the benchmark model and

describes the associated estimation challenges, as well as the proposed estimation strategy that

overcomes these challenges. Section 3 describes the data used, Section 4 provides a discussion of the

estimation results of the benchmark model, while Section 5 considers a series of robustness checks

and extensions, and Section 6 provides concluding remarks. The details of the algorithms employed

in this paper are included in the Appendix.

2 A Forward Looking, Dynamic Ordered Probit Reaction Func-

tion for the Federal Reserve

A useful starting point is Taylor�s original speci�cation for the reaction function of the Fed. Taylor

(1993) suggested a very speci�c and simple linear rule:

fft = �t + ff
N + 0:5(�t � ��) + 0:5ygapt , (1)

where fft is the Fed�s policy instrument, the federal funds rate, �t is the rate of in�ation, ffN

is a natural real fed funds rate (that is, an equilibrium real fed funds rate that is consistent with

full employment), (�t � ��) is the in�ation gap (that is, actual in�ation minus a target in�ation

rate), and ygapt is the output gap (the di¤erence between real output and potential output). As we

can see from equation (1), Taylor did not estimate his reaction function. Rather, he suggested this

linear rule, with the assumed coe¢ cients of 0.5, and assumed rates of target in�ation and natural

real fed funds rate that are both 2%, as a useful and simple way to capture salient aspects of the
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way the Fed decides what the appropriate level for its policy instrument is at each period. Indeed,

rules such as this one can have a normative motivation, and are justi�ed both in terms of what

the legislated goals of US monetary policy are, and have also been performing relatively well when

compared to other alternatives that the literature has proposed. For instance, and as Judd and

Rudebusch (1998) calculate for the rule of equation (1), the R2 for the Greenspan period is 87% for

quarterly levels of the nominal funds rate, and 52% for quarterly changes8. Taylor rules have been

used with similar success for other countries as well (such as, for example, Clarida, Galí and Gertler

(1998) who demonstrate the empirical relevance of Taylor rules for a set of European countries).

The literature on reaction functions that followed Taylor�s 1993 paper expanded the set of

speci�cations considered and also generally took up the task of estimating such reaction functions.

As discussed earlier, two useful features that much recent work has incorporated into reaction

function speci�cations are a forward looking framework and dynamics.

A forward-looking speci�cation means that the Fed sets its policy instrument in response to its

expectations about future9 values of the in�ation and output gap variables. This is arguably a more

realistic depiction of the monetary authority�s behavior in the face of lags in the monetary transmis-

sion mechanism that are generally present, and also it encompasses backward looking speci�cations,

in the sense that a forward-looking Fed considers a broad information set in determining its forecasts

for the in�ation and output gaps, which includes past and present values of these variables.

In contrast to the speci�cation of equation (1), which makes the restrictive assumption of an

immediate adjustment of the fed funds rate to the level dictated by the in�ation and output gap

variables, a dynamic speci�cation is again a more realistic depiction of observed Fed behavior as it

captures the Fed�s well documented tendency to smooth interest rates10, which can also be easily

seen, for instance, in the actual time series for the fed funds rate, and can be obtained simply by

introducing lags of the policy instrument as additional explanatory variables11.

8However, this simple speci�cation isn�t as successful in describing the Burns and the Volcker periods.
9Usually for a short forecast horizon.
10See, inter alia, Clarida, Galí and Gertler (1999), Taylor (1999), Sack and Wieland (2000), and Piazzesi (2001).
11Rotemberg and Woodford ( (1997), and (1999) - available in Taylor (1999) ) o¤er an interesting motivation for the

lagged dependence aspect of interest rate smoothing practiced by the Fed, arguing that a dynamic reaction function
gives the Fed increased leverage over the long term interest rates , since the Fed can manipulate such long term rates
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Such a dynamic, forward looking reaction function for the Fed�s desired level for the federal

funds rate at time t, namely ff�t is given by (2):

ff�t = �+ �(L)ff
�
t�1 + ��t;h + 
y

gap
t;h + "

�
t , (2)

where �(L) = �1 + �2L + ::: + �nL
n�1, and where all of the roots of the associated polynomial

1 � �1L � �2L2 � ::: � �nLn lie outside the unit circle12. "�t � N(0; �2), �t;h is the h-period ahead

forecast of in�ation that the Fed made at time t, and ygapt;h is the h-period ahead forecast of the

output gap that the Fed made at time t. Thus, both of these are real-time forecasts, the de�nitions

and details of which are provided in the data section that follows. Finally, and considering (2) in

the context of Taylor rules, the intercept term � is modeled to capture both the natural real fed

funds rate, and the target in�ation rate, which are therefore not separately identi�able.

However, and as argued in the introduction, a drawback of the linear speci�cation of equation

(2) is that it neglects the discrete nature of the period-to-period movements of the Fed�s policy

instrument and thus that it may be confounding important aspects of the monetary policy making

process: The target does not change at all for about half the time, and when it does change, it does

so by multiples of 25 basis points (since November of 1989 and by multiples of 6.25 basis points

earlier). Thus, the period-to-period changes of the target for the fed funds rate have historically

fallen into a small number of categories13, and thus there is a clear distinction between this variable

and the dependent variable modeled by equation (2): Equation (2) is a linear speci�cation with

a Gaussian error term, and it thus implies that there are no restrictions in the period-to-period

movements of its dependent variable.

In view of this, and in a spirit similar to that of, inter alia, Eichengreen et al. (1985), and Dueker

(and thus aggregate demand, thereby implementing desired stabilization policies) with smaller movements in the fed
funds rate and other short term rates than would be required in a static framework (to induce a movement in the
long term rates that is of the same magnitude).
12 I make what is a standard assumption in the reaction function literature, namely that the policy instrument,

in�ation, and output gap variables are all stationary.
13The same is essentially the case for the averages of the e¤ective fed funds rate, as Figure 2 demonstrates, and as

is implied by the fact that the Fed�s trading desk ensures that the actual fed funds rate never deviates too much from
the set target.
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(1999a,b), I propose a qualitative response approach that directly accounts for the discrete nature

of the changes in the policy instrument of the Fed, and that explicitly distinguishes this variable,

which is the one actually observed, from the Fed�s desired level for the federal funds rate, ff�t , that

is modeled as a latent variable, given by equation (2). While this latent variable is continuous,

the observed policy instrument is discrete, and in particular it changes only when enough pressure

for a change accumulates, that is, only when the di¤erence between the actual value of the policy

instrument and the level at which the Fed would like it to be is of a certain size. The size of that

di¤erence determines which, out of a small possible number of changes will take place.14

More speci�cally, the model I propose is a probit of a particular kind; namely it is multinomial

and ordered because there are several possible outcomes (a modest number of possible amounts by

which the Fed can decide to change its target for the fed funds rate), and these outcomes are ranked

(as, for instance, it is recognized that an increase of 50 basis points is comparable to and ranks

higher than an increase of 25 basis points).

In particular, we have that:

�fft 2 category j if ff�t � fft�1 2 (cj�1; cj); j = 1; :::; J; (3)

where ff�t is the continuous latent variable of equation (2), and fft is the observed policy instrument

that changes only by one of J possible amounts at discrete points in time, and where c0; c1; :::; cJ

are the threshold coe¢ cients15 for movement between the J possible categories of change for the

policy instrument. So, the di¤erence ff�t � fft�1 represents the distance between the desired level

of the fed funds rate this period (based on the reaction function of the Fed) and the actual level

for the fed funds rate last period; thus, and as mentioned above, it can be seen as a measure of the

"pressure" to change the fed funds rate in period t. The "intensity" of that pressure (that is, which

of the (cj�1; cj) intervals (for j = 1; :::; J) ff�t � fft�1 falls into) determines which of the J possible
14Accounting for this distinction, that is explaining why the Fed chooses to move its policy instrument rather

infrequently, and only by one out of a small set of possible amounts when it does, rather than continuously, is beyond
the scope of this paper. Possible models that could result in such Fed behavior include menu-cost type of models or
models with the Fed as a strategic player using the target changes as signals of its policy stance.
15With c0 = �1; and, cJ =1
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changes will actually take place.

2.1 The Multiple Integral Problem

The obvious way to estimate the model of equations (2) and (3) is, as with all limited dependent vari-

able models, maximum likelihood estimation. The likelihood (conditional on eXT , the explanatory
variables for periods 1; :::; T ) is the probability of the joint T -period event that has been observed,

given eXT :
Pr[�ff1 2 category j1;�ff2 2 category j2; :::;�ffT 2 category jT j eXT ]:16

Thus, this likelihood is a T -dimensional multiple integral with a T -variate Gaussian density as its

integrand. The multiple integral problem arises in this context because, in contrast to standard

linear autoregressive models, the Markov property does not hold here: The essential feature of

linear time series that makes conditional maximum likelihood estimation (whereby the likelihood of

the complete sample can be usefully expressed as a product of conditional likelihoods and of the

density of the �rst observation17) easy is its Markov structure; that is, say for an AR(1), the period-t

distribution conditional on period t� 1, does not depend on any other periods before period t� 1.

This unfortunately is no longer true in our nonlinear context.

For example, let 
t denote the period t information set (that is de�ned to include the explanatory

variables up to period t,18 and the observed dependent variable up to period t� 1).

Then, the conditional event probability for period t (given 
t) is:

Pr[�fft 2 category j j
t] = Pr[ff�t � fft�1 2 (cj�1; cj) j
t] (4)

= Pr[cj�1 + fft�1 < ff
�
t < cj + fft�1 j
t] ; j = 1; :::; J ; t = 1; :::; T:

16 j1; :::; jT denote the categories in which �ff1; :::;�ffT actually fell in periods 1; :::; T:
17See Hamilton (1994, Chapter 5) for a de�nition and discussion of conditional maximum likelihood of linear time

series models.
18Or, alternatively, it can be de�ned to include the explanatory variables for all periods up to T:
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Solving equation (2)19 by backward substitution20, we have that:

ff�t = �t + �t + �tff
�
0 + �t; (5)

where �t is a sum of constants, �t is also a sum containing lags of the explanatory variables, �t is

a function of the coe¢ cients of �(L), ff�0 is the dependent variable for the initial period, and �t

is a sum containing the error terms multiplied by the coe¢ cients of �(L). Now we can rewrite the

period-t conditional event probabilities for j = 1; :::; J , by plugging (5) into (4):

Pr[�fft 2 category j j
t] (6)

= Pr[cj�1 + fft�1 < �t + �t + �tff
�
0 + �t < cj + fft�1 j
t]

= Pr[cj�1 + fft�1 � �t � �t � �tff�0 < �t < cj + fft�1 � �t � �t � �tff�0 j
t]:

Inspecting equation (6), we can gain some more intuition on the multiple integral problem, that

arises in this context and that greatly complicates the estimation task.

While �t does satisfy the Markov property, �fft does not. As we can see from equation (6) the

conditional period-t event probability that�fft 2 category j explicitly depends not only on�fft�1,

but on information from all previous periods as well. Indeed, and while we need only the conditional

distribution of �t given 
t for the probability of equation (6), the Markov structure of �t does not

help much with this problem. The information set 
t includes values of the observed dependent

variable up to period t � 1. However, �fft�1 places bounds only on �t�1 (because of equation

(3)), but does not pin it down completely, and thus all the past history of the dependent variable

contains additional useful information regarding �t�1. That is, the t-period event probability is still

a t-dimensional multiple integral even when this probability is conditioned on 
t. And, as the error

terms are Gaussian, these multiple integrals have multinomial Gaussian pdf�s as their integrands,

19For expositional simplicity I consider the case of Equation (2) with one lag only.
20Writing the latent equation in levels is a useful expositional device that Eichengreen et al (1985) adopt to illustrate

the multiple integral problem. Here I adapt their approach to the context of this study.
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and thus there is no closed-form solution for such multiple integrals.

To further see the intuition behind this, let us consider an example: Let�s say the Fed raised the

policy instrument in period t-1. While ff�t�1 is not explicitly revealed by this action, it is likely to

be at the lower end of its possible values implied by the new category in which it now falls (equation

(3)). This, of course, reduces the probability of a further increase of the policy instrument in period

t, and must thus be taken into account when assessing the probability of a further increase in period

t. Thus, it is essentially the entire history (all the periods) that must be taken into account when

assessing these probabilities, precisely because the lagged latent variable is not observable.

Thus, the question that arises is how to proceed with estimation when faced with a likelihood

that contains multiple integrals of such high-dimensionalities.

Standard numerical integration techniques, such as Gaussian quadrature, can e¤ectively handle

only up to four or �ve multiple integrals, and thus are essentially not feasible for multiple integral

dimensionalities such as the ones of the present context. An early notable attempt to tackle the mul-

tiple integral problem is Eichengreen et al. (1985) who however introduce discrete approximations

of the multiple integrals and face a rather steep trade-o¤ in terms of accuracy versus computational

cost.

Classical and Bayesian simulation techniques that have been developed recently greatly dominate

such numerical approaches (in terms of their computational costs, accuracy, and in terms of their

potential to handle modeling of complicated dynamics) and have thus become by far the dominant

approach in recent literature.

One in�uential approach is that of the simulation-assisted extremum estimation techniques such

as the Methods of Simulated Likelihood, Moments, or Scores that have been developed in the mi-

croeconometrics literature (see, inter alia, Lerman and Manski (1981), McFadden (1989), Pakes and

Pollard (1989), Hajivassiliou and McFadden (1998) ). Simulators, such as the frequency simulator

of Lerman and Manski (1981), or the GHK simulator developed by Geweke (1991), Hajivassiliou

(1990) and Keane (1994) are used to estimate the multiple integrals, and thus to obtain simu-
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lated objective functions21, which, in conjunction with numerical optimization techniques, provide

a framework that can deliver estimates of the parameters of interest. However, these methods have

been employed so far mostly in micro contexts22, where the dimensionality of the multiple integrals

is typically smaller than in time series contexts. Indeed, the computational costs associated with the

required simulations, combined with similar costs of the needed numerical optimization techniques

can render them impractical, or even infeasible in time series contexts such as the one of this paper.

Thus, the approach that this paper proposes is an MCMC approach that overcomes the mul-

tiple integral problem through a Gibbs sampling algorithm with data augmentation, whereby sim-

ulated samples of the latent variables ff�t ; t = 1; :::; T , are generated through their model-implied

conditional distributions. This approach also avoids the additional complications associated with

numerical optimization, as it falls outside the extremum framework. Finally, an important addi-

tional advantage of the MCMC approach is its �exibility: The block structure of MCMC implies

that additional time series features such as Time Varying Parameters, or Regime Switching can

be readily incorporated into the benchmark model, whereas attempting something similar in an

extremum framework is likely to be substantially more cumbersome. The speci�cs of the MCMC

approach used in this paper are described next.

2.2 The MCMC Estimation Strategy

Let � denote the parameter vector, that in the context of the benchmark speci�cation is taken to

include the coe¢ cients of the explanatory variables, the variance, and the latent variables. Let

21The frequency simulator exploits the fact that the event probabilities can be viewed as expectations of indicator
functions, and thus employs accept-reject types of algorithms to construct estimates of such expectations. Speci�cally,
and in the present context, we have that the likelihood can be written as follows:
Pr[�fft 2 cat .jt; t = 1; :::; T j eXT ] =

R UT
LT

R UT�1
LT�1

:::
R U1
L1
fT (�1; :::; �T )d�1:::d�T = E(I(�)), where I(�) is an indicator

function that is 1 if T -dimensional � falls within the T -period limits of integration, and 0 otherwise. So, E(I(�)) can be

estimated by the frequency simulator : #accepts
#draws

= 1
R

RP
r=1

I(�r): However, and as is evident from the above expression,

the frequency simulator is computationally ine¢ cient, especially for low event probabilities, and it is a jump-function
of the parameters. It is dominated by other simulators that have been developed recently, and in particular by the
GHK simulator, which provides a feasible framework for simulating multiple integrals by transforming the task of
sampling from multivariate truncated distributions (that is required to simulate the multiple integrals) to one of
sequentially sampling from conditional univariate truncated distributions (that can be easily performed through the
inversion of the cdf�s of these truncated univariate distributions).
22One of the very few exceptions is Lee (1999).
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pT (�) denote the posterior distribution of the parameter vector. MCMC techniques are in general

designed to generate simulated samples that are approximately distributed from pT (�), without

directly drawing these samples from pT (�) per se. The speci�c MCMC technique used in this paper

is the Gibbs sampler : It is particularly suitable in contexts such as the present one, where evaluating

the entire joint posterior distribution of the parameters at any given point of the support space may

be very hard (in the present context, that posterior distribution is proportional to the likelihood,

which, as analyzed above, contains high-dimensional multiple integrals), but where it is easy to

sample from marginal and joint conditional posterior distributions of subsets (or blocks) of the

parameter vector, because of simpli�cations that occur in these conditional posteriors.

The simulated sample that is produced by the Gibbs sampler constitutes an ergodic Markov

Chain, whose stationary distribution is pT (�). In other words, it is a Markov Chain that converges

to an invariant distribution (pT (�)) independently of the initial conditions used to initiate the

chain. Thus, and after a "large enough" number of simulations, that is, after a certain number of

pre-convergence "burn-in" draws have been discarded, a sample of simulated values can be created,

and the joint and marginal posterior distributions of the parameters can be approximated by the

respective joint and marginal empirical distributions of these simulated values.

The ergodicity property is central as it ensures that the initial conditions which are typically ar-

bitrary have no e¤ect on the results, and it also serves as a useful tool to assess whether convergence

has been achieved or not: If the results change when the Gibbs sampler is initiated from di¤erent

starting points, then this typically implies that convergence has not been achieved. MCMC conver-

gence diagnostics is in general an active research area, and various approaches have been proposed

in the literature23. The approach adopted here is similar to that of McCulloch and Rossi (1994),

whereby the empirical distributions of the simulated values are compared when the Gibbs sampler

is initiated from di¤erent starting points, and as the number of simulations increases, looking for

evidence of non-trivial changes in these distributions.

Once convergence has been established according to the criteria just outlined, statistics based

23Robert and Casella (1999), Chib (2001), and Geweke and Keane (2001) are some of the excellent sources for more
information on MCMC convergence diagnostics, as well as on MCMC theory.
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on the simulated sample can be constructed and can serve as estimators of the parameters of inter-

est. An important additional computational advantage of this approach is that it falls outside the

extremum context, and thus no costly numerical optimizations are required to obtain the estimates.

In the following sections, the estimates of the parameters of interest are the means of their simu-

lated marginal posterior distributions, and con�dence intervals are constructed using the quantiles

of these posterior distributions24.

Note that, while MCMC techniques in general, and the Gibbs sampler in particular are encoun-

tered almost always in Bayesian contexts in the literature, this paper adopts a classical perspective.

The estimator just described is a Bayes estimator. Under suitable regularity conditions and as the

sample size increases, the likelihood overwhelms the priors, whose e¤ect thus fades away, and thus

the Bayes estimator, viewed from a sampling perspective, is asymptotically e¢ cient. The intuition

for this is very much in the tradition of Laplace, who observed that posterior distributions start to

look increasingly like Gaussian distributions as the sample size grows. Bernstein (1917) and von

Mises (1931) are early contributions that formalized Laplace�s intuition. More recent contributions,

such as Lehmann and Casella (1998), derive the asymptotic e¢ ciency of Bayes estimators under an

appropriate set of conditions. Chernozhukov and Hong (2003) generalize past results of the litera-

ture as they propose a class of estimators (which they call Laplace type estimators) which use general

statistical criterion functions that include parametric likelihood functions (that past literature has

mostly focused on) as special cases. Monokroussos (2004) specializes the theory to the particular

class of Limited Dependent Variable models of Time Series (that inlcudes the ordered probit of this

study as a special case), and also examines the small sample biases associated with such estimators.

Stated succintly, and for the present context, the proposed estimator provides a feasible way to

estimate probits of time series, and is also asymptotically equivalent to the maximum likelihood

estimator.

Previous work that employs Gibbs sampling techniques for Limited Dependent Variable and

Time Series models includes Albert and Chib (1993a,b) and Dueker (1999b). The speci�cs of the

24As Chernozhukov and Hong (2003) and Monokroussos (2004) discuss, the asymptotic validity of such con�dence
intervals for the present context is based on the fact that the Information Equality holds in this context.
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Gibbs sampling algorithm that is used here for the benchmark model are as follows.

Divide the set of parameters into a multi-block setup of one block per latent variable, �1t =

fff�t g; t = 1; :::; T , one block for the variance, �2 = f�2g, and one block for the coe¢ cients of the

explanatory variables, �3 = f�; �; 
; �1; :::�ng. Then:

Step 1 : Specify arbitrary initial values �(0)1 ; �
(0)
2 ; �

(0)
3 , and set i = 0:

Step 2 : Cycle through the following conditional distributions, drawing:

�
(i+1)
11

from pff�1 (�11 j�
(i)
12
; :::; �

(i)
1T
; �
(i)
2 ; �

(i)
3 ; YT ) (7)

�
(i+1)
12

from pff�2 (�12 j�
(i)
11
; �
(i)
13
; :::; �

(i)
1T
; �
(i)
2 ; �

(i)
3 ; YT )

...

�
(i+1)
1T

from pff�T (�1T j�
(i)
11
; �
(i)
12
; :::; �

(i)
1T�1

; �
(i)
2 ; �

(i)
3 ; YT )

�
(i+1)
2 from p2(�2j�(i+1)1;:::;T ; �

(i)
3 ; YT )

�
(i+1)
3 from p3(�3j�(i+1)1;:::;T ; �

(i+1)
2 ; YT );

where YT denotes the entire history of the data for periods 1; :::; T , and superscript i indicates the

iteration of the Gibbs sampler. This choice of blocks is dictated by the fact that the resulting con-

ditional posteriors are easy to sample from, and the Appendix provides the distributional details of

these posteriors, and also other details of the Gibbs sampler, including robustness checks performed

using di¤erent priors.

The multi-block setup of one block per latent variable is employed to implement the technique

of data augmentation, introduced by Tanner and Wong (1987), whereby the latent variables are

generated from their model implied conditional distributions pff�1 ; :::; pff�T . Note that these distri-

butions are conditioned on the entire history of the data and thus that a smoothing algorithm is

required. The standard way to approach a problem of this sort is with a state-space framework and

using the Kalman �lter; however, it is unclear how to usefully cast the system in a state-space form
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so as to employ the Kalman �lter in this context25. I thus implement the smoothing algorithm for

the latent variables by exploiting simpli�cations that occur in the conditional distributions of these

latent variables, and then observing that functional forms for these simpli�ed conditional distribu-

tions can be obtained from the joint distribution of all the error terms where each latent variable

appears. This smoothing algorithm for the latent variables is derived in the Appendix.

3 Data

The dependent variable is the Fed�s policy instrument and the explanatory variables are, in addition

to lags of the Fed�s policy instrument, real-time forecasts of in�ation and of the output gap. The

data series used span the period from January of 1969 to June of 199826. The rest of this section

provides details on these time series:

The Fed�s Policy Instrument

The Fed�s policy instrument is typically assumed to be the federal funds rate. This is the working

assumption of most of the applied work on reaction functions and is in line with the prescriptions

of past literature (such as Goodfriend (1991), Bernanke and Blinder (1992), Bernanke and Mihov

(1998) ). However, and while the literature has mostly focused on choosing a variable that is a

su¢ cient indicator of monetary policy and has largely settled on the federal funds rate as being the

best choice, it has generally neglected27 the issue of characterizing the speci�cs of its time series

behavior:

The Fed announces periodically (usually during FOMC meetings, but occasionally in between

FOMC meetings too) a target for the federal funds rate. These announcements are eagerly antici-

pated and closely scrutinized by the �nancial markets internationally, precisely because it is these

announcements and the associated movements in the target that are understood to be the best,

25Note that the obvious choice, namely, for the transition equation to be the latent equation (2) and for the
measurement equation to be equation (3) is not feasible because equation (3) is not linear.
26Greenbook forecasts (which are used for the construction of the explanatory variables) are made available to the

public with a 5 year lag.
27With only a few exceptions, such as Hamilton and Jordà (2002), and Dueker (1999a).
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most direct indicators of the U.S. monetary authority�s policy stance. As argued earlier, however,

the target moves at discrete points in time only, and its movements fall into one out of a small pos-

sible number of speci�c categories of change. This pattern is largely preserved even when periodic

averages of the fed funds rate are considered, as it is the task of the trading desk of the New York

Fed to ensure that the fed funds rate never deviates much from the target at any point in time.

Thus, an ordered probit reaction function such as the one given by equations (2) and (3),

estimated using the time series of the changes of the policy instrument as the dependent variable,

is better suited to capture the discreteness of the policy instrument.

However, the time series on the target and on its changes are not available for the entire period

considered in this study, and not for the early part of the sample in particular. The Fed began to

announce the target explicitly only in 1994, although, even before 1994 changes in the target were

quite accurately inferred by the market and indeed news on such changes would even be published

in the �nancial press. Researchers have used such historical information to compile time series of

target changes for periods prior to 1994 (such as Cook and Hahn (1989) for the mid and late1970�s

and Rudebusch (1995) for the mid-1980�s and later), but there is no complete such series for the

entire period considered in this study.

Thus, the dependent variable that I use is the (annualized) averages of the fed funds rate at the

"FOMC frequency", that is, monthly averages for the months during which there was an FOMC

meeting28. These averages, for which there is a complete series for the period of interest, can thus

be viewed as proxying for averages of the target. One would expect, given that the Fed ensures

that the fed funds rate never deviates too much from the set target at any given period, that the

loss from such a strategy is only minimal. Indeed, and as Figure 2 (which maps monthly averages

of the fed funds rate against monthly averages of the target for the Greenspan period) illustrates,

the fed funds rate tracks the target quite closely29. Additional evidence to this is provided in Table

28The choice of frequency is dictated by the explanatory variables: In particular the Greenbook forecasts (from
which the explanatory variables are constructed) are available only for the months during which there was an FOMC
meeting.
29This can essentially be considered to be a case of measurement error in the dependent variable. Such error in

the dependent variable in the ordered probit context may not be as innocuous as it would be in a linear context
though because of the possibility that the measurement error "pushes" the discrete dependent variable into a di¤erent
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1, which contains estimates of the benchmark reaction function for the Greenspan period using

the monthly averages for the fed funds rate; these estimates are quite similar to their respective

estimates obtained when using the target as the dependent variable, either as averages at the FOMC

frequency, or as end-of-month values for months during which there was an FOMC meeting.

Real-time data on Fed forecasts of in�ation and of the output gap

The data used are real-time Greenbook forecasts of the Federal Reserve for the GDP de�ator and

for unemployment. The Greenbooks and the forecasts contained therein are prepared by sta¤

of the Federal Reserve before each Federal Open Markets Committee meeting, and thus contain

estimates based on real-time information. The forecasts are for varying forecast horizons, but only

short horizons are consistently available - in this study I use three-quarter-ahead forecasts for the

benchmark speci�cation, but I also conduct robustness checks using data for zero, one and two

quarters ahead.

The in�ation variable used is based on the GDP de�ator (up to October of 1991) and the GNP

de�ator after that date30. Also, and following past literature, such as Boivin (2004), and Orphanides

(2002), I construct a proxy for the output gap variable using forecasts for unemployment, and

speci�cally, I take the output gap at time t to be proxied by the di¤erence between the natural

unemployment rate (the time t natural rate of unemployment is taken to be the historical average

of the unemployment series up to that point) and the forecast for the unemployment rate31 at time

t.32

category than the one it would otherwise fall into. However, and conversely, if this change of categories never happens,
or happens only rarely, as is the case with the Greenspan sample I considered, then there will be little cost associated
with such measurement error.
30This is dictated by the availability of these variables, as GNP de�ator data replace GDP de�ator data in the

Greenbooks starting October, 1991, and it is likely to have only a neglligible e¤ect on the results.
31This is standard practice in the literature and indeed Okun�s Law guarantees that there is a close relationship

between this "unemployment gap" proxy and the output gap.
32 I also conducted robustness checks using the alternative measure of real output gap of Orphanides (2004): There

are two problems with using the Orphanides data set in the present context, however: First, the quarterly frequency of
that data set, as opposed to the "FOMC frequency" of the data set used in this study, is likely to confound variations
in the changes of the policy instrument by bundling together successive and distinct such changes. Second, a complete
series is available only starting with the 3rd quarter of 1973. This is likely to further compromise the validity of the
results in the pre-Volcker period (which ends in 1979) as the 1973-1979 sample, (with a quarterly frequency), may
be too short to identify the slope coe¢ cients of the reaction function. The results using the Orphanides data set are
quite similar to the results of the rest of this study for the Volcker-Greenspan period. For the pre-Volcker period, the
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The real-time nature of these forecasts is in line with prescriptions of recent literature (see, inter

alia, Orphanides (2001, 2002, 2004) ) according to which reaction functions ought to be estimated

using data that were available to Fed policy makers at the time their decisions were made, if a

meaningful historical analysis of policy is to be made. Estimating these functions with revised data,

which were only available typically much later than in real time, can seriously confound important

aspects of the policy making process, especially when, as is often the case, the revised series di¤er

substantially from their real-time counterparts.

The use of forecasts results in a forward-looking reaction function, which is arguably a more

realistic speci�cation in the face of lags that are generally thought to be present in the monetary

transmission mechanism, and it also encompasses backward looking speci�cations, in the sense that

it is likely that the Fed, when constructing its forecasts, has a broad information set that includes

the variables used in a backward looking speci�cation.

However, this approach is not free of pitfalls. In particular, there isn�t much detailed information

in the public domain regarding how these Greenbook forecasts are constructed, and it is likely that

quantitative methods are employed, and that there is also a strong judgmental component. Also,

and as Boivin (2004) argues, it is likely that most of these are conditional forecasts, with one of the

conditioning assumptions being that the federal funds rate will remain unchanged over the horizon

that the forecast spans. This is of course a restrictive assumption as it is unlikely that the FOMC

considers forecasts based only on this particular scenario (that the fed funds rate will not change in

the near future), and thus it may compromise the validity of estimates of forward-looking reaction

functions that use such Greenbook forecasts.

Thus, and while this may be an imperfect approach, it is not clear that a popular alternative

that has been proposed in the literature (and which is the approach that CGG adopt) is preferable:

That alternative approach treats the expectations of a standard forward looking reaction function,

such as equation (20) below:

results obtained using the Orphanides quarterly data for the 1973-1979 period di¤er from the results of this study for
the 1969-1979 period (at the FOMC frequency).
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ff�t = �+ �(L)ff
�
t�1 + �E[�t;hj
t] + 
E[y

gap
t;h j
t], (20)

as unobservable, and thus replaces them with the realizations of the in�ation and output gap vari-

ables, and it relies on a rational expectations assumption to derive a set of orthogonality conditions

between the resulting error term and 
t; the information set of the Fed at time t. These orthog-

onality conditions can then be exploited for estimation using a Generalized Method of Moments

approach, with instruments drawn from the Fed�s information set. However, recent work (such as

Mavroeidis (2002, 2004) ) has shown that this strategy is plagued by weak identi�cation problems,

associated with the unrealistic assumption of lack of feedback (which of course is a problem with

the Greenbook forecast approach too), and also with the instruments actually used for the GMM

estimation being weak.

4 Estimation Results and Discussion

The benchmark model is equations (2) and (3). It is assumed that there are 5 categories of change for

the observed variable, namely a no change category, a small change (positive or negative) category,

and a bigger change (positive or negative) category. While it might be possible to create an algorithm

that endogenizes the number of categories, there seems to be little loss from this assumption of 5

categories of change in the present context: One realizes, simply by observing the actual time series

of target changes that there have been no changes in the target33 for roughly half of the time, and

for the other half of the time there have been either small changes in the target, or bigger changes,

that is, changes whose magnitude has been greater than one times 25 basis points after 1989, and

greater than three times 6.25 basis points before 1989.

Thus the benchmark speci�cation is one with these 5 categories of change, and with the threshold

coe¢ cients being �18;�5; 5; and 18 basis points. Thus, and for example, the "no-change" category

is the one where the change in the observed variable is between �5 and 5 basis points. While
33Or almost no changes when FOMC-monthly averages of the fed funds rate are used.
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there might be little loss associated with exogenously imposing a number of categories of change

in the present context, the same is not necessarily true with exogenously imposing the threshold

values that de�ne these categories. Thus, the following section reports results from performing

robustness checks on the threshold values and also on attempts to estimate such threshold values

(by augmenting the Gibbs sampler for the benchmark model with additional blocks from which the

threshold coe¢ cients are generated).

The forecast horizon that the benchmark speci�cation assumes is h = 3 quarters ahead. This

is consistent with current practices in the forward-looking reaction function literature34, but I also

consider alternative speci�cations with di¤erent forecast horizons in the following section.

The results for the benchmark model are reported in Tables 2 and 3. These tables contain panels

with quantiles and statistics of the posterior distributions of the parameters of interest corresponding

to di¤erent numbers of iterations of the Gibbs sampler35. Several panels such as those of Table 2,

together with their respective histograms of the posterior distributions, such as those Figures 3A

and 3B36, are produced for di¤erent starting values that initiate the Gibbs sampler and for di¤erent

numbers of iterations of the sampler, and they are compared and evidence of any substantial changes

in the results is sought for. For all the results reported in this study, the results change very little as

di¤erent starting values and di¤erent numbers of iterations are considered. This serves as evidence

of convergence, at least according to the criteria outlined in the previous section.

Table 2 provides the results for the benchmark model and for one lag of the latent dependent

variable, and Table 3 provides the results for the benchmark model with 2 lags (with the second

lag being insigni�cant37). The results from both of these tables are similar and they point towards

34See Boivin (2004) and Orphanides (2004).
35The results reported here are based on 1300 iterations, with 300 "burn-in" states, as all the available evidence

in various experiments I conducted showed that this was a su¢ cient number of iterations (based on the criteria that
are used in this study to established convergence (that were outlined earlier), and also based on experiments and
comparisons with higher numbers of iterations).
36The �gures are based on all the iterations and provide a more complete picture of the marginal distributions.

These �gures are plain histograms; no nonparametric techniques for selecting the bandwidth have been employed.
Our main focus when examining these �gures is to look for evidence of more than one modes; thus our goal is to
preserve the rough shape of the density, minimizing biases; the side e¤ect of that is that our graphs are too wiggly;
thus, these wiggles and spikes are just a result of the way the histograms are generated.
37The two-lag speci�cation is the one used by Clarida, Galí and Gertler (2000)
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substantial di¤erences in monetary policy between the two periods before and after Paul Volcker�s

appointment as chairman of the Fed in August of 1979:

Speci�cally, the pre-Volcker period (which, for the sample considered in this study covers the

last two years of Martin�s tenure, Burns�s tenure in the 1970�s, and Miller�s tenure as Chairman

of the Fed from March of 1978 to August of 1979) is characterized by a weak overall response to

in�ation: For instance, for the speci�cation with one lag, the in�ation coe¢ cient is not signi�cantly

di¤erent from 0, and the implied long-run in�ation coe¢ cient is �
1��1

= 0:0682
1�0:8664 = 0:510 48. This

is well below 1 and thus does not satisfy the Taylor property; it suggests that the pre-Volcker Fed

"accommodated" in�ation, as it would raise the nominal interest rate by less than increases in

expected in�ation, thus e¤ectively allowing the real short-term interest rate to decline.

These results contrast starkly, however, with the estimated response of the Fed towards in�ation

during the Volcker-Greenspan era. For the 1 lag speci�cation again, the in�ation coe¢ cient is

substantially higher than before and is now signi�cant, and the implied long-run in�ation coe¢ cient

is now 0:4518
1�0:7679 = 1:9466, which suggests that the Volcker-Greenspan Fed adopted a very strong

anti-in�ationary stance, as it would substantially raise both the nominal and the real interest rate

in response to increases in anticipated in�ation.

Quite clearly, these �ndings con�rm the central message of CGG that there were substantial

di¤erences in the Fed�s response towards expected in�ation between the two periods. These results

are thus compatible with CGG�s theory that the pre-Volcker�s Fed accommodative policy stance

was destabilizing, as it allowed for the possibility of expectations-based in�ationary spirals, and

also as it was less e¤ective in countering negative shocks to the economy, and that the dramatic

shift towards a much stronger anti-in�ationary stance of the Fed that took place when Paul Volcker

became chairman of the Fed was a central factor behind the improved macroeconomic outcomes

and the greater stability of the 1980�s and 1990�s.

Conversely, and as can be seen in Tables 2 and 3, the coe¢ cient of the output gap was low

(0:1144 in the 1-lag speci�cation of Table 2) and insigni�cant during the Volcker-Greenspan period,

and substantially higher (0:3006 in the 1-lag speci�cation) and signi�cant during the pre-Volcker
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period. Thus, and on the basis of these results, it can be argued that the Fed e¤ectively pursued

a pure in�ation targeting policy during the 1980�s and 1990�s, while it was much more responsive

towards the output gap during the pre-Volcker period.

Given that the data used for the construction of the output gap variable are real-time Greenbook

forecasts on unemployment, and since, as demonstrated by Orphanides (2002), estimates of the

output gap based on Greenbook data on unemployment are upwardly biased, the results of Tables

2 and 3 on the coe¢ cient of the output gap are consistent with the explanation put forth by

Orphanides in his recent papers (Orphanides (2002, 2004) ). Orphanides argues that the main

di¤erence between the two periods before and after Volcker�s appointment is that the pre-Volcker Fed

was essentially too activist in its response to real-time output gap estimates that ex-post proved to be

overambitious, and thus that this excessive activism of the pre-Volcker Fed contributed to the poor

macroeconomic outcomes and the Great In�ation of the 1970�s. Following Volcker�s appointment

the Fed adopted a more cautious approach towards possibly inaccurate real-time estimates of the

output gap and in general a more realistic stance in the sense that it better recognized the limitations

of monetary policy in attempting to achieve output stabilization. However, and in contrast to CGG,

Orphanides �nds that the Fed had a strong anti-in�ationary stance both in the 1960�s and 1970�s

and later.

Both CGG and Orphanides essentially adopt a "policy mistakes"38 view to explain the Great

In�ation and the contrast in macroeconomic performance between the 1970�s and the 1980�s-1990�s

in that they argue that the pre-Volcker Fed made mistakes in its conduct of monetary policy, and

that starting with Volcker�s appointment the Fed to a large extent avoided mistaken practices of

the past. CGG and Orphanides di¤er, however, in terms of their assessments on what these policy

mistakes were.

The results presented here provide further evidence for such a policy mistakes view in terms

of both the in�ation and the output gap variables. They are thus compatible with more tightly

parameterized approaches, such as learning models in which the monetary authority initially has

38The terms "policy mistakes view" and "bad luck view" that follows are taken from Primiceri (2004).
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wrong perceptions in real time about both the output gap and the output-in�ation trade-o¤ and

eventually corrects such misperceptions.

The results of the benchmark model are not necessarily inconsistent however with alternative

explanations such as the "bad luck" view that focuses on the role of unfavorable non-policy shocks

in the 1970�s, or a more gradualist approach that would argue that any policy changes were more

gradual than the stark contrast described by CGG. Thus the section that follows takes up the task

of investigating to what extent the main results of the benchmark model stand when extensions of

this sort and other robustness checks are considered.

5 Extensions and Robustness Checks

Various robustness checks and extensions are considered in this section, and the main results and

conclusions obtained from the estimation of the benchmark model of the previous section are mostly

preserved in all of these exercises. The results that follow are obtained from estimates of the bench-

mark model using di¤erent forecast horizons, di¤erent threshold values that de�ne the categories

of change of the observed dependent variable, and also, from an extension of the benchmark model

that allows for modeling of possible heteroskedasticity, and an additional extension that allows for

time-varying parameters. The rest of this section considers each of these robustness checks and

extensions in turn:

5.1 Di¤erent forecast horizons

The forward-looking speci�cation for the latent equation of the benchmark model (equation (2) ) is

too restrictive in that it assumes that the Fed�s responses to forecasts of in�ation and of the output

gap are independent of the forecast horizon. This is clearly an unrealistic assumption as the Fed

realizes that a change in its policy instrument at any given point in time will have di¤erent e¤ects

on the macroeconomy at di¤erent points in the future. Indeed, a more realistic depiction of the

Fed�s forward-looking behavior results if we replace equation (2) by the following:
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ff�t = �+ �(L)ff
�
t�1 + �h�t;h + 
hy

gap
t;h + "

�
t , (200)

with �h and 
h varying with the forecast horizon h.

Similarly, and given that actual Greenbook forecasts are used in the estimation, and since,

as discussed earlier, Greenbook forecasts are often conditioned on particular paths of the policy

instrument (such as a path of no change for the policy instrument), and that the monetary policy

makers are unlikely to consider single-scenario conditional forecasts when reaching their policy

decisions, it is likely that this is a misspeci�ed framework, with the e¤ects of such misspeci�cations

varying with the forecast horizon.

Thus, and as the choice of the forecast horizon for the benchmark model was arbitrary, it is

essential to consider how the results obtained using the benchmark speci�cation (that assumes a

forecast horizon of h = 3 quarters ahead) compare to those of alternative speci�cations with di¤erent

forecast horizons. I conducted experiments using Greenbook forecasts on h = 0; 1; 2 quarters ahead39

and I report the results in Table 4. The results are similar to those obtained with the 3-quarter

ahead forecast horizon (although the in�ation coe¢ cient tends to be somewhat more signi�cant

with these alternative speci�cations than with the benchmark speci�cation during the pre-Volcker

era) and all the conclusions from above remain unchanged.

5.2 Threshold coe¢ cients and identi�cation

The estimation of the benchmark model is done with the threshold coe¢ cients being set to arbitrary

values, rather than being estimated, and the obvious concern here is that the results may be a¤ected

by the choice of values for the threshold coe¢ cients. It is in principle possible to estimate the

threshold coe¢ cients of equation (3) by augmenting the Gibbs sampler for the benchmark model

with appropriate additional blocks, and the Appendix illustrates how this is done. However, such

estimation attempts are plagued by identi�cation problems.

39The Greenbooks occasionally provide forecasts for longer forecast horizons too. However, and starting with 4
quarters ahead, there are too many gaps in these time series.
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First of all, a setup where all the threshold coe¢ cients, together with all the other parameters,

are all being freely estimated, is not identi�ed, as we have an intercept in our model: Adding a

constant to all three sides of the double inequality giving the conditional event probability (equation

(4)) will not change that event probability, and thus the likelihood will not change either. Indeed,

a simple inspection of the histograms of the posterior distributions associated with such estimation

attempts strongly suggest lack of identi�cation as there is clear evidence of lack of convergence of

the Gibbs sampler and of multimodality in the conditional posterior distributions for the threshold

coe¢ cients.

Fixing one of the threshold coe¢ cients addresses the identi�cation issue in a strict sense, but

the evidence I get from performing the usual convergence diagnostics checks and from examining

the histograms of the posterior distributions is that nevertheless there isn�t improvement from the

previous case. This suggests that weak identi�cation of the threshold coe¢ cients is an important

factor in our context. This sounds quite intuitive too: For instance, altering the threshold coe¢ cients

mildly is unlikely to change the event probabilities, and thus the likelihood, substantially.

Thus there seems to be little loss associated with �xing the threshold coe¢ cients at some reason-

able values. As mentioned earlier, the values used in the benchmark speci�cation are: �18;�5; 5;

and 18 basis points. There is clearly very little loss associated with �5; 5: These numbers are wide

enough so as to capture the no-change category when the series used is the monthly averages of the

e¤ective fed funds rate and they are also too small for the small-change categories (any changes in

the target have historically come in multiples of 6.25 or 25 basis points). However, the same may

not be true for the numbers chosen to divide the small change and bigger change categories in the

benchmark speci�cation, namely �18; 18; for instance, there have been several target changes that

took place before 1989 and that were equal to �18:75 basis points. Thus I examine the robustness

of the results when these numbers are altered by re-estimating the benchmark speci�cation using

�25 instead of �18 basis points to divide the categories of small change and of bigger change. The

results from this experiment are reported in Table 5 and are very similar to those of the benchmark

speci�cation.

30



5.3 Modeling heteroskedasticity

An in�uential alternative, and to some extent, competing view that has been developed recently in

the literature40 argues that it was exogenous, non-policy shocks, whose volatility was higher in the

1970�s than in the 1980�s and 1990�s, that were the main cause of the Great In�ation and of the con-

trast in macroeconomic performance between the pre-Volcker and the Volcker-Greenspan periods.

In view of this, it is important to test the robustness of the results obtained with the benchmark

model when this is embedded in a richer framework, that allows for possible heteroskedasticity.

I allow for such potential heteroskedasticity by using a two state regime switching framework

for the variances41. Speci�cally, the model that I estimate is the same as the benchmark model

with the latent equation now being as follows:

ff�t = �+ �(L)ff
�
t�1 + ��t;h + 
y

gap
t;h + "

�
t , (2)

where

"�t � N(0; �2St);

and where

�2St = �
2
0(1� St) + �21St = �20(1 + h1St) , with �21 = �

2
0(1 + h1);

where St is a hidden Bernoulli random variable with the following transition probabilities:

Pr[St = 0jSt�1 = 0] = q ; Pr[St = 1jSt�1 = 1] = p:

I also assume that p; q 2 (0; 1), which ensures that neither state is transient42. Furthermore

I assume that h1 > 0. This is a convenient normalization condition that deals with the "label
40See, inter alia, Kim and Nelson (1999b), Sims (1999), Blanchard and Simon (2001), Stock and Watson (2003),

and Sims and Zha (2004).
41See Hamilton (1989, 1994).
42This assumption is required for identi�cation, since if St = 0, for all t, or if St = 1 for all t, then the two separate

variances are not identi�ed.
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switching" issue that is present in mixture models43.

The Gibbs sampler that is used for this model is that of the benchmark model that is augmented

to include the following blocks44:

�20 ; �200 = f�20; �21g

�41;:::;T = fStg; t = 1; :::; T

�50 ; �500 = fp; qg

The smoothing algorithm that is used for the generation of the state variables is based on a

combination of a multi-move Gibbs sampling step and Hamilton�s (Hamilton (1989) ) �lter. The

speci�cs of this algorithm and of the rest of the Gibbs sampler for the regime switching model are

provided in the Appendix.

The results are provided in Table 6, and they are quite similar to those of the benchmark model.

The main �nding of a stark, dramatic contrast in US monetary policy between the pre-Volcker and

the Volcker-Greenspan periods receives at least as much support as with the benchmark model.

Interestingly, and as the two �gures associated with Table 6 illustrate, we are in the low-volatility

state for the majority of the time in the pre-Volcker period, and we are in the low-volatility state

almost all the time in the Volcker-Greenspan period.

While it would be useful to consider speci�cations that allow for richer dynamics too, such as,

for instance, a regime framework for the second moments with a higher number of states, the results

obtained with this model serve at least as an indication that heteroskedasticity is not a major factor

in this context.
43See Hamilton et al. (2003) for further details.
44The �20 ; �200 blocks replace �2.
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5.4 Time Varying Parameters

An interesting extension to the standard reaction function literature has been proposed by, inter

alia, Cogley and Sargent (2001, 2002), Boivin (2004), and Jalil (2004). According to this approach,

there may have been richer dynamics in US monetary policy than what can be captured by a simple

split-sample strategy such as that of CGG, and also, policy changes may have been slower and

more gradual than the split-sample approach can uncover. Thus, these authors, motivated by such

considerations, estimate reaction functions with Time Varying Parameters.

As the benchmark model of this study is estimated within a split sample framework, it would

be interesting to see if the results and conclusions from the estimation of the benchmark model are

preserved when Time Varying Parameters are considered. Thus, the TVP version of the benchmark

model is equation (3) and a TVP version of equation (2):

ff�t = �t + �t(L)ff
�
t�1 + �t�t;h + 
ty

gap
t;h + "

�
t . (2000)

Following the authors mentioned above, I model the Time Varying Parameters as driftless ran-

dom walks.

So, let �t be a (n+ 3)� 1 vector: �t = [�t �1t :::�nt �t 
t]0. Then:

�t = �t�1 + !t; (8)

with

!t~N(0;H
�1);

where E("�t!is) = 0; for all t; s = 1; :::; T , and i = 1; :::; n+ 3. Furthermore the driftless random

walks for the coe¢ cients of the lags of the dependent variable are subject to re�ecting barriers that

ensure that the roots of the polynomial 1� �1tL� �2tL2 � :::� �ntLn lie outside the unit circle45.

The estimation of this model is achieved by augmenting the Gibbs sampling algorithm for the

45The re�ecting barriers are implemented in the MCMC algorithm with rejection sampling. The details are provided
in the Appendix.
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benchmark model with additional blocks for the Time-Varying Parameters and for the variance-

covariance matrix of !t. Speci�cally, the additional blocks are:

�6 = fHg

�71;:::;T = f�tg; t = 1; :::; T

Note that, in contrast to the smoothing algorithm needed for the generation of the latent vari-

ables, the smoothing algorithm needed for generating the �t�s is standard, as the model for the Time

Varying Parameters can be cast into a state-space form with the Measurement Equation being the

latent equation (equation (2000)), and with the Transition Equation being the driftless random walk

equation for �t (equation (8)), and then the Kalman �lter can be used to obtain the conditional

posteriors for �t; t = 1; :::; T: The Appendix provides the details of how this smoothing algorithm

and the rest of the Gibbs sampler for the TVP are implemented.

Four TVP models are estimated: One for the pre-Volcker period, one for the Volcker-Greenspan

period, one for the whole sample, and an additional one for the whole sample that allows for

the possibility of a jump46 in the Time Varying Parameters in August of 1979 (Paul Volcker�s

appointment): The motivation for the last model is that if there is a discrete jump at that date,

then a TVP model that does not allow for such a jump will be misspeci�ed, and will thus potentially

confound important aspects of the dynamics.

The results from the estimation of these 4 models are presented in Figures 4A-D47. There is clear

evidence from all these models of a sharp contrast in the in�ation coe¢ cient between the 1970�s

and the 1980�s: The in�ation coe¢ cient is substantially lower (and insigni�cant too) in the pre-

Volcker period than during the 1980�s, and the full-sample results provide evidence of a relatively

rapid increase in the in�ation coe¢ cient that begins in the late 1970�s and culminates in the 1980�s.

46The jump is implemented by drawing the Time Varying Parameters of that date from a conditional posterior
with a higher variance. That higher variance is exogenously speci�ed, and I tried di¤erent values, with the results
remaining quite similar in all these checks.
47These �gures also contain 90% bands around the estimated parameters. These bands are based on the quantiles

of the conditional posterior distributions of the Time Varying Parameters.
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These results are of course consistent with the policy mistakes hypothesis of CGG and provide

further support to the results obtained with the benchmark model in split sample. There is also

some evidence of an output gap coe¢ cient that is higher and more signi�cant more often during

the 1970�s than during the 1980�s.

An interesting aspect of these results that is concealed by the split sample approach is the drop

in the in�ation coe¢ cient that occurs during the Greenspan period: The 1990�s were a rosy era of

low in�ation and low in�ationary expectations, overall stability and high growth and these results

may be revealing aspects of a monetary policy that re�ected these realities of the 1990�s.

6 Concluding remarks

This paper provides evidence that support the "policy mistakes" hypothesis as an explanation of the

Great In�ation and of the stark contrast in US macroeconomic performance between the 1970�s and

the 1980�s-1990�s: There is strong evidence that prior to Paul Volcker�s appointment as Chairman

of the Federal Reserve in August of 1979, the Fed was too weak in its response to anticipated

in�ation and that under Volcker the Fed adopted a much stronger anti-in�ationary stance. The

results also suggest that the pre-Volcker Fed was too activist in its response to real-time estimates

of the output gap that were upwardly biased, while starting with Volcker the Fed adopted a more

cautious approach towards such real-time estimates.

While the Fed�s excessive responsiveness to inaccurate real-time estimates of the output gap

during the 1970�s probably contributed to the instability of that period, it is clear that, as Clarida,

Galí, and Gertler (2000) claim, the Fed�s stance towards in�ation, which was accommodative prior

to Volcker�s appointment, and which shifted dramatically towards strong anti-in�ationary policies

under Volcker, was a central factor behind the Great In�ation episode of the 1970�s and the period

of low in�ation and macroeconomic stability that followed.

These results are not necessarily incompatible with alternative theories, such as ones that em-

phasize the role of non-policy shocks, or Time Varying Parameter approaches that suggest that

there were richer dynamics or that changes in policy were more gradual than suggested by CGG.
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Indeed, the central results and conclusions of this paper are preserved when a series of robustness

checks and extensions that incorporate features of these alternative theories are considered.

Thus, these results provide a motivation and empirical support for learning models where the

monetary policy-making authority initially has incorrect perceptions in real time about the structure

of the economy and eventually corrects such misperceptions through accumulated knowledge coming

from past policy mistakes and from the experience of the impact of these mistakes on the economy.
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Appendix: MCMC Algorithms for the Benchmark Model and for

its Extensions

A few words on notation and terminology for what follows �rst: � will be taken to mean in what

follows all the variables other than the ones being generated in the particular block under consid-

eration. Furthermore, ff; ff�; X will denote the entire vector for the dependent variable, the

latent dependent variable, and the entire matrix of explanatory variables, respectively, (periods

1; :::; T ), and fft; ff�t ; Xt will denote the dependent variable, the latent dependent variable, and

the explanatory variables for period t, respectively. The word "conditional" will be taken to mean

conditional on everything, except of course for the variable(s) being generated in the particular block

under consideration.

Algorithm for the Benchmark Model:

Generating the Variance: Inverted gamma distributions are convenient priors for the variance,

since when multiplied by the conditional likelihood, they result in conditional posteriors which are

also inverted gammas48, that we know how to sample from:

So, if the prior for �2 is IG(�02 ;
�0
2 ), where IG stands for inverted gamma, then the conditional

posterior is also IG(�12 ;
�1
2 ), where �1 = �0 + T , and �1 = �0 + "

�0"�, where "� is the T � 1 vector of

latent error terms of equation (2).

I conducted experiments using both �at priors49 and various forms of inverted gamma priors (I

let each of the two parameters of the Gamma pdf vary from 0.1 to 10 and I tried various combinations

of the two parameters within that range). The results were quite similar in all these experiments.

Generating the coe¢ cients of the explanatory variables: A �at prior for this block results

in a Gaussian conditional posterior from which I can sample easily: In particular, this conditional

48See, for instance, Kim & Nelson (1999) for the derivation of this.
49An appropriate �at prior for the variance is the positive half of the real line and it results in a posterior for

the variance which is proportional to the conditional likelihood for the variance (thus it�s proportional to (�2)�
T
2 �

e
� 1
2�2

"�0"�) and whose support is the positive real line. This is also of the Gamma form.
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posterior is, in a standard way, N((X 0X)�1X 0ff�; �2(X 0X)�1). For a derivation of this, see, for

instance, Albert and Chib (1993b). I also conducted robustness checks using proper conjugate

Gaussian priors, and the results did not change signi�cantly.

The required stationarity constraints on the coe¢ cients of the lags of the latent dependent vari-

able are implemented with rejection sampling, whereby draws from the posterior for the coe¢ cients

are taken until the constraints are satis�ed, (and the draws are discarded when they do not satisfy

the constraints).

Generating the latent dependent variables: I use a single-move smoothing algorithm here,

which entails simulating each ff�t , t = 1; :::; T , one by one in separate blocks, while also conditioning

on all the data, and all the other parameters, including all the other latent variables, for each block.

The algorithm is derived as follows:

Let g(ff�t j�; ff;X) denote the conditional distribution of ff�t , and let fff�t denote all the latent
variables for periods 1; :::; t, and let fff�6=t denote all the latent variables for all periods except for t,
and similarly let fff t denote all the dependent variables for periods 1; :::; t. The dependence on the
parameters other than the latent variables and on the explanatory variables is suppressed in what

follows for convenience. Furthermore, for expositional purposes, I present the case of one lag for

the latent variable. The proof for more than one lags is the same. So, we have that:
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g(ff�t jfff�6=t;fff�T ) = g(ff�t jfff�6=t;fff t; fft+1; :::; ffT )
=

g(ff�t ; fft+1; :::; ffT jfff�6=t;fff t)
g(fft+1; :::; ffT jfff�6=t;fff t)

=
g(ff�t jfff�6=t;fff t)g(fft+1; :::; ffT jfff�6=t;fff t; ff�t )

g(fft+1; :::; ffT jfff�6=t;fff t)
= g(ff�t jfff�6=t;fff t)
= g(ff�t jfff�t�1; ff�t+1; :::; ff�T ;fff t�1; fft)
=

g(ff�t ; ff
�
t+2; :::; ff

�
T jfff�t�1; ff�t+1;fff t�1; fft)

g(ff�t+2; :::; ff
�
T jfff�t�1; ff�t+1;fff t�1; fft)

/ g(ff�t ; ff
�
t+2; :::; ff

�
T jfff�t�1; ff�t+1;fff t�1; fft)

= g(ff�t jfff�t�1; ff�t+1;fff t�1; fft)g(ff�t+2; :::; ff�T jfff�t�1; ff�t ; ff�t+1;fff t�1; fft)
/ g(ff�t jfff�t�1; ff�t+1;fff t�1; fft)
= g(ff�t jff�t�1; ff�t+1;fff t):

Note that the transition from the 3rd line to the 4th line is valid as fft+1; :::; ffT do not depend

on ff�t , given fff�6=t. Note also that the transition from the 5th line to the 6th line is valid (for the

case of models with one lag for the latent variable) because the denominator of the fraction of the

5th line does not depend on ff�t .

The pdf of the resulting distribution, namely g(ff�t jff�t�1; ff�t+1;fff t) can be obtained from the

joint distribution of all the error terms where ff�t appears. For the case with one latent lag, ff
�
t

appears in the equations giving "�t , and "
�
t+1. The joint pdf of the error terms is Gaussian, and

ignoring for a moment the e¤ect of conditioning on fff t, it is easy to show50 that ff�t is distributed
(given ff�t�1; ff

�
t+1) as N(

�0Xt+�1ff
�
t�1+�1(ff

�
t+1��0Xt+1)

1+�21
; �2), where �;Xt; Xt+1 are de�ned here to

exclude the latent lag and its coe¢ cient, and �1 is the coe¢ cient of the latent lag.

The e¤ect of conditioning on fff t is a truncation, and the form of the truncation is determined
50Just rewrite, in that joint pdf, each of the error terms as an expression of the latent variables that appear in the

latent equation that corresponds to that error term.
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by equation (3):

If �fft 2 category j, then ff�t 2 (fft�1 + cj�1; fft�1 + cj);8j;8t:

Thus, the required sampling task is that of sampling from a (univariate) truncated normal. The

best way of doing that is a combination of sampling from a uniform and inverting the truncated

normal cdf. Speci�cally, I wish to simulate the latent dependent variable, which has a Normal cdf F

with mean � and variance �2, but that is truncated between a and b. Let Z � uniform(0; 1): Then

F�1(Z) � F . Therefore, and since F (ff�t ) =
�(

ff�t ��
�

)��(a��
�
)

�( b��
�
)��(a��

�
)
, where � is the standard normal cdf,

I simulate the latent dependent variable by sampling from: ���1fZ[�( b��� )��(
a��
� )]+�(a��� )g+�.

Additional blocks needed for the threshold coe¢ cients:

Here I can adopt a di¤use prior for the threshold coe¢ cients as then the conditional posterior

becomes a uniform distribution (that we know how to sample from). In particular, it can be

shown (see Albert and Chib (1993b) ) that the conditional posterior for cj ; j = 1; :::; J , (where the

conditioning is on the other threshold coe¢ cients too, in addition to everything else) is:

uniform[maxfmax
t
fff�t : �fft = jg; cj�1g;minfmin

t
fff�t : �fft = j + 1g; cj+1g].

Additional blocks needed to implement the regime-switching extension:

Generating the State Variables: The states, S1; :::; ST are Bernoulli random variables. LetfST = [S1:::ST ]: Let Y1; :::; YT denote the data for periods 1; :::; T , respectively, and let eYt denote
all the data up to period t; t = 1; :::; T . Let g(fST j�;fYT ) denote the conditional distribution of fST .
Following Kim and Nelson (1999), I adopt the Multi-Move Gibbs sampling approach; that is, I draw

all of the states together in a single block, that is, from g(fST j�;fYT ), which, as Kim and Nelson

(1999) demonstrate can be simpli�ed as follows:

g(fST j�;fYT ) = g(S1; :::; ST j�;fYT )
= g(ST j�;fYT )g(ST�1; :::; S1jST ; �;fYT )
= g(ST j�;fYT )g(ST�1jST ; �;fYT )g(ST�2; :::; S1jST ; ST�1; �;fYT )
= g(ST j�;fYT )g(ST�1jST ; �;fYT )g(ST�2jST ; ST�1; �;fYT ):::g(S1jST�1; :::; S2; �;fYT )
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= g(ST j�;fYT )g(ST�1jST ; �;]YT�1)g(ST�2jST�1; �;]YT�2):::g(S1jS2; Y1)
= g(ST j�;fYT )YT�1

t=1
g(StjSt+1; �; eYt):

The simpli�cations above occur because of the Markov property of the states. So, and as

suggested by the last expression, we can generate �rst ST conditional on �;fYT , and then for t =
T �1; :::; 1, we generate St conditional on eYt and St+1. So, I run Hamilton�s �lter (Hamilton (1989))
to obtain, for all t; g(Stj�; eYt), and g(ST j�;fYT ) in particular, from which I generate ST . Then I

generate the states of the previous periods using the following:

g(Stj�; eYt; St+1) = g(St;St+1j�; eYt)
g(St+1j�; eYt) = g(St+1jSt;�; eYt)g(Stj�; eYt)

g(St+1j�; eYt) :51

Then, using this expression, I calculate Pr[St = 1j�; St+1; eYt] as follows:
Pr[St = 1j�; St+1; eYt] = g(St+1jSt=1;�)g(St=1j�; eYt)P1

j=0 g(St+1jSt=j;�)g(St=jj�; eYt) .
To determine whether St is then 0 or 1, I take a draw from the uniform distribution between 0

and 1, and if the generated number is less than or equal to this probability I set St = 1. Otherwise

I set St = 0:

Generating the Transition Probabilities: The beta distribution (used here) is a convenient

conjugate prior for the transition probabilities, as it is easy to sample from a beta distribution. The

priors for q and p are: q~beta(u00; u01); p~beta(u11; u10),

where I set the hyperparameters of the priors equal to di¤erent values and I observe that the

results are quite similar across these experiments.

The conditional likelihood is: L(q; p) = qn00(1� q)n01pn11(1� p)n10 ;

where nij is equal to the number of transitions from state i to state j, i; j = 0; 1:

The resulting posteriors are also beta distributions52:

q~beta(u00 + n00; u01 + n01); p~beta(u11 + n11; u10 + n10).

Generating the Variances: As with the benchmark model, the priors used here are inverted

gammas:

51g(St+1jSt) is the transition probability (generated in separate blocks), and g(Stj�; eYt); g(St+1j�; eYt) have been
obtained from Hamilton�s �lter.
52See Kim and Nelson (1999) for a derivation of this result.
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To generate �20 conditional on h1, I divide both sides of the latent equation by
p
1 + h1St, and

it can be shown that if the conditional prior for �20 is IG(
�0
2 ;

�0
2 ), then the conditional posterior is

also IG(�12 ;
�1
2 ), where �1 = �0 + T , and �1 = �0 +

PT
t=1(residuals

�)2, where residuals� are equal

to the normalized LHS of the latent equation minus the normalized RHS of the latent equation.

To generate h1 (and thus �21) conditional on �
2
0, I divide both sides of the latent equation by �0,

and, as before, it can be shown that if the conditional prior for h1 is IG(�32 ;
�3
2 ), then the conditional

posterior is also IG(�42 ;
�4
2 ), where �4 = �3+T

�, and �4 = �3+
PT �

t=1(residuals
�)2, where residuals�

are as before (where now the division is done by �0), and where T � is equal to the number of periods

during which we are at the high volatility state.

As with the single variance case, I conducted experiments using both �at priors and various

forms of inverted gamma priors (I let each of the two parameters of the Gamma pdf vary from 0.1

to 10 and I tried various combinations of the two parameters within that range). The results were

quite similar in all these experiments.

The normalization constraint that h1 > 0, which means that �21 is constrained to be the high

state variance and thus that it must be higher than �20 (that is constrained to be the low state

variance), is implemented with rejection sampling.

Additional blocks needed for the Time Varying Parameters:

Generating the Time Varying Parameters: In contrast to the case of the latent variables,

obtaining the smoothing algorithm for the Time Varying Parameters is standard because here we

can usefully employ a state-space representation, with the Measurement Equation being the latent

equation (equation (2000)), and with the Transition Equation being the driftless random walk for the

TVP�s (equation (8)), together with the Kalman �lter.

Speci�cally, let e�T = [�1:::�T ]0. Let Y1; :::; YT denote the data for periods 1; :::; T , respectively,
and let eYt denote all the data up to period t; t = 1; :::; T . Let g(e�T j�;fYT ) denote the conditional
distribution of e�T . Then, following Kim and Nelson (1999) I employ a multimove Gibbs-sampling

approach, thus generating the entire e�T as a block from its conditional distribution, g(e�T j�;fYT ).
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The Markov property of the �t�s ensure that convenient simpli�cations occur in g(e�T j�;fYT ), and
in particular:

g(e�T j�;fYT ) = g(�T j�;fYT )g(e�T�1j�;�T ;fYT )
= g(�T j�;fYT )g(�T�1j�;�T ;fYT )g(e�T�2j�;�T�1;�T ;fYT )
= :::

= g(�T j�;fYT )g(�T�1j�;�T ;fYT )g(�T�2j�;�T�1;fYT ):::g(�1j�;�2;fYT )
= g(�T j�;fYT )g(�T�1j�;�T ;]YT�1)g(e�T�2j�;�T�1;]YT�2):::g(�1j�;�2;fY1)
= g(�T j�;fYT ) T�1Y

t=1

g(�tj�;�t+1; eYt)
As suggested by this last expression, I �rst need to generate �T from g(�T j�;fYT ), and then,

given �t+1, generate �t from g(�tj�;�t+1; eYt); t =; :::; T � 1. Thus, I �rst generate �T from

g(�T j�;fYT )~N(�T jT ; PT jT ), and then �t; for t = T�1; ::; 1 from g(�tj�;�t+1; eYt)~N(�tjt;�t+1 ; Ptjt;�t+1),
where �T jT = E(�T j�;fYT ); PT jT = Cov(�T j�;fYT ); �tjt;�t+1 = E(�tj�; eYt;�t+1) = E(�tj�;�tjt;�t+1);
Ptjt;�t+1 = Cov(�T j�;fYT ;�t+1) = Cov(�T j�;�tjt;�t+1). The updating terms �T jT ; PT jT ; (and also
all �tjt; Ptjt; t = 1; :::; T ) can be derived in a standard way using the Kalman �lter53. The same

holds true for the terms �tjt;�t+1 , and Ptjt;�t+1 since they can also be viewed as updating terms in

which the updating is done not with Yt, but with �t+1, which has been generated, and thus can be

considered as observed data.

The initial values, �0j0 are arbitrary, with P0j0 having large diagonal elements (so that large

uncertainty is attached to �0j0).

The re�ecting barriers imposing the stability condition on the coe¢ cients of the lags of the

dependent variable are implemented with rejection sampling, done separately for each time period

t = 1; :::; T:

Generating the precision matrix H: The prior for H is Wishart, W (�0;H0), where I set

�0 = 0;H�1
0 = 0, and then the conditional posterior for H is also Wishart, W (�1;H1), where

�1 = T + �0; H1 = [H
�1
0 +

TX
t=1

(�t � �t�1)(�t � �t�1)
0
]�1.

53See Hamilton (1994), and Kim and Nelson (1999).
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A note on the computer code: All of the computer code for this paper was written in Gauss,

Version 3.2.34. The seed was always �xed at 180303.
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Note: Vertical line represents Paul Volcker's appointment as Chairman of the Federal Reserve in August
of 1979.

Figure 1
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variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept 0.0108 0.1555 0.0069 -0.2637 -0.2252 -0.1819 0.2037 0.2783 0.3406
variance 0.1593 0.0598 0.1466 0.0777 0.0836 0.0961 0.2408 0.2708 0.3061
1st lag 0.7544 0.0685 0.7627 0.5782 0.6292 0.6653 0.83 0.8475 0.8635
inflation 0.4808 0.1363 0.4648 0.2567 0.2838 0.3174 0.6544 0.7229 0.7952

output gap 0.4035 0.1006 0.3908 0.2401 0.2605 0.2879 0.5332 0.5947 0.647

intercept 0.0256 0.159 0.0207 -0.2641 -0.2129 -0.172 0.2224 0.312 0.3579
variance 0.1659 0.0638 0.1526 0.0777 0.0863 0.0974 0.2512 0.2837 0.3098
1st lag 0.7542 0.0668 0.7657 0.5903 0.6228 0.6686 0.8287 0.844 0.8648
inflation 0.4754 0.1325 0.4617 0.2532 0.283 0.3204 0.6433 0.7049 0.78

output gap 0.4042 0.1003 0.3892 0.2422 0.2601 0.2907 0.5363 0.5938 0.6421

intercept 0.0182 0.1538 0.0124 -0.2609 -0.2161 -0.17 0.2112 0.271 0.3358
variance 0.1588 0.057 0.1471 0.0798 0.0885 0.0986 0.2356 0.2694 0.3039
1st lag 0.7658 0.0663 0.7733 0.6099 0.6465 0.676 0.842 0.8593 0.8732
inflation 0.4502 0.1335 0.4392 0.2253 0.2531 0.2931 0.6268 0.6737 0.7421

output gap 0.3983 0.1001 0.3879 0.2354 0.2567 0.2817 0.5221 0.5858 0.6358

Note: The last 7 columns are quantiles of the posterior distibution.

Value of target at end of FOMC months

Table 1
Greenspan Period

FOMC monthly averages of fed funds rate

FOMC monthly averages of target

Figure 2
Fed Funds Rate and its Target, FOMC Months
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variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept 0.9548 0.4496 0.9676 0.0755 0.2338 0.3988 1.5274 1.6921 1.8477
variance 1.1297 0.2374 1.0935 0.7517 0.7925 0.8518 1.4398 1.5615 1.6794
1st lag 0.8664 0.0489 0.8672 0.7623 0.7819 0.8027 0.9267 0.94 0.9641
inflation 0.0682 0.0808 0.0676 -0.0809 -0.0596 -0.033 0.1769 0.2038 0.2326

output gap 0.3006 0.1 0.3004 0.1111 0.1376 0.1729 0.4251 0.4666 0.4941

intercept 0.9451 0.4472 0.956 0.0531 0.2338 0.3838 1.4903 1.6664 1.8351
variance 1.1216 0.2364 1.0856 0.7403 0.7806 0.8314 1.4465 1.5747 1.6534
1st lag 0.8661 0.0474 0.8687 0.7623 0.7817 0.802 0.9261 0.9368 0.9526
inflation 0.0704 0.08 0.0691 -0.0716 -0.0484 -0.0272 0.1817 0.2045 0.2254

output gap 0.3014 0.0996 0.3009 0.1081 0.1394 0.1715 0.4317 0.4671 0.4906

intercept 0.9645 0.4522 0.973 0.082 0.2288 0.4021 1.5374 1.7037 1.9593
variance 1.1378 0.2383 1.1039 0.7705 0.814 0.8656 1.437 1.5324 1.7086
1st lag 0.8668 0.0505 0.8666 0.7656 0.7838 0.8027 0.9282 0.9466 0.971
inflation 0.066 0.0815 0.0636 -0.0837 -0.0658 -0.0344 0.165 0.1936 0.2362

output gap 0.2997 0.1004 0.2999 0.1127 0.1337 0.1742 0.4242 0.4647 0.4951

variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept -0.0439 0.279 -0.0281 -0.5669 -0.5025 -0.4088 0.3199 0.401 0.4955
variance 1.2317 0.196 1.2084 0.902 0.943 0.9919 1.4954 1.5877 1.6677
1st lag 0.7679 0.0435 0.7668 0.6826 0.6958 0.7117 0.823 0.8396 0.8535

inflation 0.4518 0.0865 0.4555 0.2683 0.3054 0.343 0.5552 0.5882 0.6256
output gap 0.1144 0.0874 0.1133 -0.0532 -0.0301 -0.0007 0.23 0.265 0.2875

intercept -0.0378 0.2695 -0.0231 -0.5487 -0.4879 -0.3941 0.3163 0.4054 0.5055
variance 1.2171 0.1839 1.2005 0.8945 0.9412 0.9929 1.4652 1.5274 1.645
1st lag 0.7688 0.0424 0.7668 0.6882 0.6963 0.7165 0.8238 0.8408 0.8524
inflation 0.4487 0.0843 0.4532 0.27 0.3021 0.3393 0.5507 0.5825 0.6108

output gap 0.1115 0.0836 0.1119 -0.0532 -0.0353 0.0049 0.2224 0.2564 0.2908

intercept -0.05 0.2882 -0.0338 -0.5914 -0.5273 -0.4269 0.336 0.3983 0.4955
variance 1.2464 0.2066 1.225 0.9098 0.9516 0.9907 1.534 1.6198 1.6802
1st lag 0.767 0.0446 0.767 0.6745 0.6939 0.7103 0.8214 0.8369 0.8556
inflation 0.455 0.0886 0.4565 0.2683 0.3054 0.3482 0.561 0.5967 0.6458

output gap 0.1173 0.091 0.1138 -0.0523 -0.0296 -0.0034 0.2366 0.2695 0.2842
Note: Benchmark specification with 1 lag of the dependent variable.
The last 7 columns are quantiles of the posterior distibution.

1:500 iterations

Table 2

Volcker-Greenspan Period

1:1000 iterations

501:1000 iterations

1:1000 iterations

501:1000 iterations

1:500 iterations

Pre-Volcker Period
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Figure 3A
Histograms of Posterior Distributions, Benchmark Model, Pre-Volcker Period
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Figure 3B
Histograms of Posterior Distributions, Benchmark Model, Volcker-Greenspan Period
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variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept 0.9356 0.4392 0.9186 0.0721 0.2163 0.3811 1.4958 1.648 1.8073
variance 0.9956 0.2023 0.9776 0.6604 0.7078 0.7527 1.2621 1.3614 1.4329
1st lag 0.7471 0.1324 0.7437 0.5002 0.5298 0.5759 0.9192 0.9637 1.0185
2nd lag 0.1446 0.1315 0.1465 -0.1242 -0.0692 -0.0224 0.3136 0.3567 0.3852
inflation 0.0426 0.076 0.0407 -0.0988 -0.0825 -0.055 0.1366 0.1771 0.1975

output gap 0.3246 0.1004 0.3236 0.1236 0.1555 0.1917 0.4485 0.4899 0.5273

intercept 0.9581 0.4305 0.9564 0.1795 0.2535 0.4299 1.5292 1.6498 1.8073
variance 0.9812 0.1959 0.9586 0.6543 0.7013 0.7527 1.2472 1.3257 1.4036
1st lag 0.7505 0.1275 0.7524 0.498 0.5424 0.5749 0.9109 0.9594 1.0025
2nd lag 0.1428 0.1292 0.1446 -0.1025 -0.0692 -0.0203 0.3151 0.3574 0.3803
inflation 0.0368 0.0753 0.0358 -0.1053 -0.0866 -0.0623 0.1335 0.1755 0.1894

output gap 0.3283 0.0998 0.3295 0.1211 0.1555 0.1994 0.448 0.4899 0.5178

intercept 0.9131 0.447 0.9114 0.0261 0.1619 0.348 1.4582 1.6307 1.8641
variance 1.0101 0.2078 1.0045 0.6685 0.7117 0.7527 1.2729 1.3871 1.4782
1st lag 0.7436 0.1372 0.7376 0.5015 0.5244 0.5759 0.9251 0.969 1.0376
2nd lag 0.1465 0.1338 0.1473 -0.1264 -0.0701 -0.0259 0.3131 0.3563 0.3979
inflation 0.0485 0.0764 0.0483 -0.0922 -0.0752 -0.0501 0.1414 0.1794 0.2163

output gap 0.3209 0.1011 0.3174 0.1316 0.1521 0.1857 0.452 0.4899 0.5291

variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept -0.0455 0.2833 -0.0488 -0.5756 -0.4926 -0.41 0.3324 0.447 0.5006
variance 1.2293 0.2007 1.2099 0.8723 0.922 0.9869 1.4853 1.5926 1.6777
1st lag 0.7359 0.1059 0.7381 0.5237 0.5634 0.6067 0.8689 0.9145 0.9506
2nd lag 0.0299 0.0975 0.0318 -0.1635 -0.1332 -0.0927 0.1509 0.1866 0.2211

inflation 0.4595 0.0888 0.4606 0.276 0.3121 0.3479 0.5729 0.611 0.6369
output gap 0.1131 0.0872 0.1112 -0.0712 -0.037 -0.0022 0.2261 0.2586 0.2867

intercept -0.0499 0.2899 -0.0472 -0.6045 -0.5237 -0.4235 0.3301 0.4455 0.4845
variance 1.2242 0.2008 1.2044 0.8587 0.9074 0.9731 1.4687 1.5845 1.6803
1st lag 0.731 0.1102 0.73 0.5068 0.5578 0.6003 0.8696 0.9218 0.9608
2nd lag 0.0359 0.1034 0.0453 -0.1707 -0.1484 -0.1101 0.1613 0.1958 0.2358
inflation 0.4596 0.0883 0.4623 0.2659 0.3075 0.3479 0.568 0.6061 0.6236

output gap 0.1157 0.0893 0.1137 -0.0722 -0.0343 0.0026 0.2343 0.2632 0.2878

intercept -0.0412 0.2767 -0.057 -0.5244 -0.4727 -0.398 0.3324 0.447 0.5662
variance 1.2344 0.2007 1.2181 0.8935 0.9291 1.0002 1.4963 1.5955 1.6705
1st lag 0.7409 0.1012 0.7468 0.5495 0.5791 0.6097 0.8688 0.9091 0.9421
2nd lag 0.0238 0.0909 0.023 -0.1462 -0.1221 -0.0856 0.1384 0.1713 0.2024
inflation 0.4595 0.0894 0.4559 0.2963 0.3183 0.347 0.5765 0.6129 0.6407

output gap 0.1105 0.085 0.11 -0.0706 -0.0387 -0.0067 0.2195 0.2484 0.276
Note: Benchmark specification with 2 lags of the dependent variable.
The last 7 columns are quantiles of the posterior distibution.

Table 3

1:1000 iterations

Pre-Volcker Period

501:1000 iterations

1:500 iterations

1:500 iterations

Volcker-Greenspan Period

1:1000 iterations

501:1000 iterations
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variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept 0.9719 0.4289 0.9627 0.1484 0.2933 0.4368 1.5111 1.6939 1.7968
variance 1.0825 0.211 1.0622 0.724 0.7798 0.83 1.3447 1.4446 1.5276
1st lag 0.806 0.0536 0.809 0.6962 0.71 0.7332 0.8717 0.89 0.9039

inflation 0.1586 0.0745 0.1581 0.0105 0.0332 0.0628 0.2531 0.2817 0.3002
output gap 0.3716 0.1047 0.3671 0.1773 0.2038 0.2365 0.5084 0.538 0.5776

intercept 1.1139 0.4062 1.1045 0.3724 0.4543 0.5789 1.6488 1.8077 1.9074
variance 0.9969 0.1949 0.9781 0.6548 0.7047 0.7624 1.2473 1.3441 1.408
1st lag 0.7766 0.0585 0.7791 0.6607 0.6763 0.6998 0.8505 0.8732 0.8905

inflation 0.168 0.0761 0.1683 0.0196 0.0435 0.0731 0.2649 0.2914 0.3118
output gap 0.4182 0.1086 0.418 0.2109 0.242 0.2792 0.5578 0.5896 0.6281

intercept 1.5299 0.4589 1.5261 0.654 0.8093 0.9675 2.1268 2.3443 2.4859
variance 1.0032 0.2014 0.9876 0.6515 0.7065 0.7603 1.2656 1.3821 1.4436
1st lag 0.7423 0.0683 0.7433 0.6062 0.6241 0.6511 0.8274 0.8538 0.8688

inflation 0.1288 0.0661 0.1284 0.0039 0.0228 0.045 0.2129 0.242 0.2676
output gap 0.4764 0.1264 0.4736 0.2427 0.2738 0.3137 0.639 0.6919 0.7486

variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept -0.0201 0.2829 -0.0067 -0.556 -0.4786 -0.3931 0.3465 0.4354 0.5371
variance 1.338 0.2114 1.3161 0.9824 1.0276 1.0798 1.6191 1.7157 1.8195
1st lag 0.803 0.0435 0.8021 0.7179 0.7305 0.7481 0.858 0.8748 0.8883

inflation 0.3649 0.085 0.3698 0.1767 0.221 0.2602 0.4681 0.4991 0.5335
output gap 0.1422 0.0914 0.1419 -0.0361 -0.0094 0.0208 0.264 0.297 0.3291

intercept 0.0486 0.271 0.063 -0.4593 -0.4037 -0.3106 0.3954 0.4901 0.5768
variance 1.3476 0.2123 1.3252 0.9863 1.0262 1.0867 1.6331 1.7336 1.8252
1st lag 0.809 0.0435 0.8093 0.7211 0.7343 0.7528 0.8624 0.8786 0.8908

inflation 0.3245 0.0777 0.3271 0.1593 0.1922 0.2266 0.4205 0.4517 0.4785
output gap 0.1714 0.0918 0.1721 -0.0088 0.0184 0.051 0.2898 0.3261 0.3604

intercept 0.1416 0.2544 0.1548 -0.3444 -0.2749 -0.1907 0.4715 0.5412 0.6403
variance 1.2766 0.2026 1.2505 0.9322 0.9828 1.0283 1.5496 1.6379 1.7368
1st lag 0.7931 0.0419 0.793 0.7085 0.7238 0.7406 0.8458 0.8598 0.8717

inflation 0.3322 0.0683 0.3354 0.1857 0.2174 0.2442 0.4167 0.4418 0.4621
output gap 0.1727 0.089 0.1698 0.0009 0.0236 0.0569 0.2868 0.3209 0.3485

Note: Alternative Forecast Horizons - Benchmark specification with 1 lag of the dependent variable.
The last 7 columns are quantiles of the posterior distibution.

0-steps ahead

Table 4

Volcker-Greenspan Period

2-steps ahead

1-step ahead

2-steps ahead

1-step ahead

0-steps ahead

Pre-Volcker Period
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variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept 0.9182 0.4186 0.9183 0.0999 0.2518 0.3976 1.4528 1.6212 1.8183
variance 0.9214 0.1931 0.8997 0.6108 0.6529 0.6972 1.1702 1.2692 1.3756
1st lag 0.8894 0.0453 0.8904 0.7933 0.8118 0.8284 0.9462 0.96 0.9798
inflation 0.0373 0.0714 0.0355 -0.097 -0.0724 -0.0489 0.1285 0.1556 0.1818

output gap 0.2826 0.0891 0.2831 0.1132 0.1365 0.1696 0.3957 0.4266 0.4562

intercept 0.9251 0.4275 0.9143 0.0822 0.2461 0.3976 1.4669 1.6311 1.8212
variance 0.9234 0.1928 0.8963 0.6113 0.65 0.6997 1.1844 1.2682 1.3756
1st lag 0.8892 0.0451 0.8899 0.7914 0.8118 0.8268 0.9463 0.9603 0.9792
inflation 0.0361 0.0698 0.0345 -0.0947 -0.0695 -0.0451 0.1279 0.1556 0.1894

output gap 0.2827 0.0882 0.2811 0.1134 0.1404 0.1686 0.3974 0.4259 0.4575

intercept 0.9114 0.4097 0.9225 0.1075 0.2518 0.392 1.4289 1.5814 1.7918
variance 0.9193 0.1936 0.9026 0.6108 0.6529 0.6933 1.1533 1.2692 1.3774
1st lag 0.8895 0.0455 0.8906 0.7983 0.8107 0.8294 0.9459 0.9571 0.9805
inflation 0.0385 0.0731 0.0375 -0.097 -0.0748 -0.0534 0.1285 0.1556 0.1818

output gap 0.2825 0.0901 0.2837 0.1132 0.1342 0.17 0.3939 0.4283 0.4562

variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept -0.0541 0.2651 -0.0426 -0.5502 -0.4878 -0.3975 0.2937 0.3796 0.4612
variance 1.1051 0.179 1.0882 0.7965 0.8413 0.8926 1.3393 1.425 1.5113
1st lag 0.7823 0.0407 0.7814 0.6999 0.7167 0.7292 0.8331 0.8482 0.8575

inflation 0.428 0.0806 0.4296 0.2529 0.2861 0.3301 0.5257 0.5528 0.5884
output gap 0.1112 0.0825 0.11 -0.0495 -0.0267 0.0044 0.2184 0.2524 0.2785

intercept -0.0495 0.2557 -0.0418 -0.5278 -0.4698 -0.3801 0.2871 0.3599 0.4514
variance 1.0899 0.1677 1.0708 0.7927 0.8348 0.897 1.3152 1.3709 1.4946
1st lag 0.7834 0.0394 0.7818 0.7069 0.7181 0.7314 0.8337 0.8507 0.8573
inflation 0.4248 0.0783 0.4275 0.2527 0.2893 0.3225 0.5221 0.5447 0.5715

output gap 0.1086 0.079 0.1101 -0.0494 -0.0274 0.0057 0.2094 0.2498 0.2824

intercept -0.0587 0.2743 -0.0447 -0.5719 -0.5089 -0.4294 0.3076 0.3849 0.4683
variance 1.1204 0.1885 1.1096 0.8113 0.8432 0.8896 1.3646 1.4557 1.5208
1st lag 0.7812 0.042 0.7801 0.6946 0.7105 0.7254 0.8326 0.8469 0.8628
inflation 0.4312 0.0828 0.4319 0.2571 0.2858 0.3318 0.5274 0.564 0.6088

output gap 0.1137 0.0859 0.1094 -0.0495 -0.0241 0.0022 0.2264 0.2541 0.2763
Note: Specification with alternative threshold values.
The last 7 columns are quantiles of the posterior distibution.

1:500 iterations

Table 5

Volcker-Greenspan Period

1:1000 iterations

501:1000 iterations

1:1000 iterations

501:1000 iterations

1:500 iterations

Pre-Volcker Period
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variable mean std. dev. median 2.5% qntl 5% qntl 10% qntl 90% qntl 95% qntl 97.5% qntl

intercept 0.99 0.5052 0.9887 0.0204 0.1702 0.3685 1.6201 1.8504 1.9956

low variance 1.0908 0.2325 1.0653 0.7027 0.7563 0.8163 1.3997 1.5395 1.6322

high variance 1.5684 1.0332 1.3651 0.8326 0.8968 0.9733 2.1263 2.7755 3.4461

1st lag 0.709 0.1266 0.713 0.464 0.4993 0.5416 0.8618 0.916 0.9547

2nd lag 0.1737 0.1226 0.1777 -0.0712 -0.021 0.0194 0.3296 0.3742 0.4084

inflation 0.0448 0.0826 0.0437 -0.1146 -0.091 -0.0614 0.148 0.1816 0.2078

output gap 0.3325 0.1107 0.3321 0.1091 0.1441 0.193 0.4743 0.5104 0.5524

intercept -0.1824 0.3458 -0.1776 -0.8788 -0.7454 -0.6027 0.2291 0.3685 0.5451

low variance 1.4258 0.239 1.4132 0.9996 1.0579 1.1272 1.7444 1.8517 1.9457

high variance 11.0306 14.942 6.8423 1.3883 1.6035 2.7019 22.4079 33.1521 42.0234

1st lag 0.6465 0.1217 0.6513 0.4169 0.4351 0.479 0.7984 0.8337 0.8796

2nd lag 0.1116 0.112 0.1083 -0.1085 -0.0786 -0.0262 0.2675 0.2992 0.327

inflation 0.5182 0.1139 0.5209 0.2981 0.3237 0.3698 0.6639 0.6951 0.7363

output gap 0.0998 0.1016 0.0988 -0.109 -0.0657 -0.0226 0.23 0.2688 0.3052

Volcker-Greenspan Period

Table 6
2-state Markov Switching specification for variance

Pre-Volcker Period

 Volcker-Greenspan low state probabilities
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Figure 4A: Time Varying Parameters (and 90% bands), Pre-Volcker Period
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Figure 4B: Time Varying Parameters (and 90% bands), Volcker-Greenspan Period
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Figure 4C: Time Varying Parameters (and 90% bands), 1969-1998
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Figure 4D: Time Varying Parameters (and 90% bands), 1969-1998
(allowing for the possibility of a jump in August of 1979)
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