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Abstract 
 
In this paper, we investigate return predictability and the implied intertemporal hedging demands for 
stocks and bonds in the U.S., Australia, Canada, France, Germany, Italy, and U.K. We first estimate 
predictive regression models for domestic bill, stock, and bond returns in each country, where returns 
depend on the nominal bill yield, dividend yield, term spread, and lagged returns. Employing the recently 
developed methodology of Campbell, Chan, and Viceira (2003), we calculate the implied optimal asset 
demands, including their myopic and intertemporal hedging components, for domestic bills, stocks, and 
bonds for an investor with an infinite horizon, Epstein-Zin-Weil utility, and a coefficient of relative risk 
aversion equal to 4, 7, or 10 in each country. We find that return predictability generates sizable positive 
intertemporal hedging demands for domestic stocks in the U.S. and U.K., while the intertemporal hedging 
demands for domestic stocks are decidedly smaller in Australia, Canada, and Germany and essentially 
zero in France and Italy. The intertemporal hedging demands for domestic bonds are negative and 
reasonably large in magnitude in the U.S., France, Germany, and Italy, while they are considerably 
smaller in magnitude in Australia, Canada, and the U.K. We also use the Campbell, Chan, and Viceira 
(2003) approach to calculate optimal asset demands for an investor in the U.S. who, in addition to 
domestic bills, stocks, and bonds, has access to foreign stocks and bonds. We continue to find a sizable 
positive intertemporal hedging demand for U.S. stocks, and an important positive intertemporal hedging 
demand for U.K. stocks emerges. In another exercise, we find that investors in Australia, Canada, France, 
Germany, Italy, and the U.K. who have access to U.S. stocks and bonds all display sizable positive 
intertemporal hedging demands for U.S. stocks. Overall, we discover interesting similarities and 
differences in the implied intertemporal hedging demands for stocks and bonds across countries, and our 
results indicate that return predictability implies especially strong intertemporal hedging demands for U.S. 
and U.K. stocks. 
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1. Introduction 

There has been a recent resurgence of interest in portfolio choice problems. In particular, interest 

in multi-period portfolio choice (dynamic asset allocation) problems has been reinvigorated by the body 

of empirical evidence accumulated over the last two decades indicating that stock and bond returns have 

important predictable components. As initially recognized by Samuelson (1969) and Merton (1969, 

1971), return predictability has potentially important implications for multi-period portfolio choice 

problems.1 More specifically, return predictability can give rise to intertemporal hedging demands for 

assets, so that—in contrast to the canonical static portfolio choice problem due to Markowitz (1952)—

investors look beyond one-period-ahead when optimally allocating across assets. Intuitively, investors 

may want to hedge against adverse future return shocks, and return predictability provides a temporal 

mechanism to accomplish this. 

While return predictability can have important implications for multi-period portfolio choice 

problems, a difficulty in studying these problems is that exact analytical solutions are generally not 

available.2 This has led researchers to use different approaches in order to solve multi-period portfolio 

choice problems in empirical applications. A number of researchers take advantage of gains in computing 

power and employ computationally intensive numerical procedures to approximate the solutions to multi-

period portfolio choice problems in the presence of return predictability. For example, Brennan, 

Schwartz, and Lagnado (1997), Barberis (2000), and Lynch (2001) use discrete-state approximations to 

numerically solve portfolio choice problems for investors with long horizons when returns are 

predictable. Balduzzi and Lynch (1999), Lynch and Balduzzi (2000), and Lynch and Tan (2003) also 

employ discrete-state approximations to numerically solve similar types of problems when transaction 

costs are nonzero. Another approach in the empirical literature uses approximate analytical methods to 

                                                 
1 Note that for our purposes, it is the existence of return predictability itself—and not the reason for its existence—
that has potentially important implications for multi-period portfolio choice problems, so we can sidestep the thorny 
issue of whether return predictability is due to time-varying equilibrium returns or market inefficiencies (Fama, 
1991). Campbell (2000) provides a survey of the predictability literature. 
2 Kim and Omberg (1996), Lui (1998, 2001), and Wachter (2002) obtain exact analytical solutions in certain special 
classes of multi-period portfolio choice problems. 
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solve portfolio choice problems for investors with infinite horizons when returns are predictable in 

neighborhoods of known exact solutions (Campbell and Viceira, 1999, 2001, 2002).3

In a recent extension of Campbell and Viceira (1999), Campbell, Chan, and Viceira (2003; 

henceforth, CCV) develop an approach that combines an approximate analytical method with a relatively 

simple numerical procedure. This approach has the advantage of being able to accommodate dynamic 

asset allocation problems with a relatively large number of assets and potential return predictors, whereas 

such problems can quickly become intractable using approaches based on more computationally intensive 

numerical procedures. CCV use their approach to analyze optimal dynamic asset allocation across U.S. 

bills, stocks, and bonds when return predictability is described by a first-order vector autoregressive 

[VAR(1)] process fit to real bill returns, excess stock returns, excess bond returns, the nominal bill yield, 

dividend yield, and term spread using quarterly U.S. data for 1952:2-1999:4. They consider an investor 

who maximizes the expected utility of lifetime consumption over an infinite horizon, where the utility 

function is of the Epstein-Zin-Weil (Epstein and Zin, 1989; Weil, 1989) form. Interestingly, CCV find 

that return predictability should lead an investor in the U.S. to have a sizable positive mean intertemporal 

hedging demand for domestic stocks for a range of values of the coefficient of relative risk aversion 

(CRRA). They also find that return predictability implies a sizable negative intertemporal hedging 

demand for domestic bonds for an investor in the U.S. Overall, the empirical results in CCV, as well as 

the other studies cited above, indicate that return predictability can generate significant intertemporal 

hedging demands for U.S. assets, especially U.S. stocks. 

While the existing empirical literature on multi-period choice problems contains important 

findings relating to the implications of return predictability, the literature focuses almost exclusively on 

domestic investments in U.S. assets. In the present paper, we extend the extant empirical literature and 

use the CCV approach to analyze return predictability and its dynamic asset allocation implications for 

                                                 
3 Using another computationally intensive approach, Brandt (1999) and Aït-Sahalia and Brandt (2001) use non- and 
semiparametric procedures to analyze Euler equations and approximate the solutions to portfolio choice problems 
for investors with long horizons in the presence of return predictability. See Brandt (2004) for an extensive survey of 
the literature on both static and multi-period portfolio choice problems. 
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investors with Epstein-Zin-Weil utility and infinite horizons in the U.S., Australia, Canada, France, 

Germany, Italy, and U.K. More specifically, we examine the nature of bill, stock, and bond return 

predictability in each of these countries and the implied intertemporal hedging demands for domestic 

bills, stocks, and bonds for investors in each country. Following CCV, we assume that the return 

dynamics in each country are well-characterized by a VAR(1) process that includes three instruments: the 

nominal bill yield, dividend yield, and term spread. A number of studies find that these variables have 

predictive ability with respect to stock and bond returns.4 Using monthly data for 1952:04-2004:05,5 we 

estimate VAR processes for each country and analyze domestic bill, stock, and bond return predictability 

in each country. Armed with estimates of the dynamic processes governing returns in each country and 

plausible assumed values for the parameters relating to intertemporal preferences—including CRRA 

values of 4, 7, and 10—we use the approximate analytical method and numerical procedure developed by 

CCV to solve the investor’s multi-period portfolio choice problem and estimate the implied mean total, 

myopic, and intertemporal hedging demands for domestic bills, stocks, and bonds in each country. In 

order to account for sampling uncertainty, we augment the CCV approach with a parametric bootstrap 

procedure that enables us to compute confidence intervals for the mean total, myopic, and intertemporal 

hedging demands in each country. We also present estimates of the intertemporal hedging demands for 

domestic stocks and bonds for each month over the sample in each country. 

 In addition to examining the implied intertemporal hedging demands for domestic stocks and 

bonds for investors in a number of different countries, we also consider a multi-period portfolio choice 

problem for an investor in the U.S. who can invest in stocks and bonds from a foreign country. It is quite 

feasible to use the CCV approach to solve multi-period portfolio choice problems with five risky assets 

and six instruments. This allows us to extend the empirical application in CCV and analyze a multi-period 

portfolio choice problem for an investor in the U.S. who, in addition to domestic bills, stocks, and bonds, 

has access to stocks and bonds from a foreign country (Australia, Canada, France, Germany, Italy, or the 

                                                 
4 See, for example, Rozeff (1984), Campbell (1987), Campbell and Shiller (1988), Fama and French (1988, 1989), 
Hodrick (1992), Solnick (1993), and Lewellen (2004). 
5 Based on data availability, the sample begins in 1961:01 (1967:02) for France (Germany). 
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U.K.), and where the investor considers six instruments (the domestic and foreign nominal bill yields, 

dividend yields, and term spreads) that potentially contribute to return predictability.6 We use the CCV 

approach to estimate the total, myopic, and intertemporal hedging demands for domestic bills, stocks, and 

bonds and foreign stocks and bonds for an investor in the U.S. when the return dynamics are 

characterized by a VAR(1) process that includes the five returns and six instruments.7 In another 

extension, we use the CCV approach to analyze a multi-period portfolio choice problem for an investor in 

Australia, Canada, France, Germany, Italy, or the U.K. who, in addition to domestic bills, stocks, and 

bonds, can invest in U.S. stocks and bonds.  

 Previewing our empirical results, we find that return predictability generates sizable positive 

intertemporal hedging demands for domestic stocks for investors in the U.S. and U.K., while the 

intertemporal hedging demands for domestic stocks are decidedly smaller for investors in Australia, 

Canada, and Germany and essentially zero for investors in France and Italy. The intertemporal hedging 

demands for domestic bonds are negative and reasonably large in magnitude for investors in the U.S., 

France, Germany, and Italy, while they are considerably smaller in magnitude for investors in Australia, 

Canada, and the U.K. We relate similarities and differences in return predictability across countries to 

similarities and differences in the intertemporal hedging demands for stocks and bonds across countries, 

and the predictive relationships between dividend yields and excess stock returns in the U.S. and U.K. 

help to account for the sizable intertemporal hedging demands for domestic stocks for investors in these 

countries. When an investor in the U.S. has access to foreign stocks and bonds, in addition to domestic 

                                                 
6 Ang and Bekaert (2002) consider a multi-period portfolio choice problem where an investor in the U.S. can invest 
in domestic stocks and stocks from one or two foreign countries. Unlike most of the literature, Ang and Bekaert 
(2002) do not characterize return predictability using a VAR process that includes instruments such as the dividend 
yield, but instead use a Markov-switching process for the moments of the returns. Also see Cambpell, Viceira, and 
White (2003), who use the CCV approach to study a multi-period portfolio choice problem where an investor in the 
U.S. has access to domestic bills and bills from a foreign country (the U.K., Germany, or Japan). The present paper 
extends these studies by considering a broader range of domestic and foreign assets and a larger number of 
countries. 
7 The size of the parameter space for the VAR(1) model becomes an issue as additional assets and instruments are 
included in the multi-period portfolio choice problem. Given our relatively long span of data, it is feasible to reliably 
estimate a VAR(1) model composed of five asset returns and six instruments. However, it may become necessary to 
impose restrictions on the VAR(1) model to limit the parameter space if additional returns or instruments are 
included in the problem. 

 



5 

bills, stocks, and bonds, the positive intertemporal hedging demand for domestic stocks remains sizable, 

and an important positive intertemporal hedging demand for U.K. stocks emerges. The intertemporal 

hedging demands for stocks from foreign countries beside the U.K. are typically small, as are the 

intertemporal hedging demands for foreign bonds from all countries. When investors in Australia, 

Canada, France, Germany, Italy, and the U.K. have access to U.S. stocks and bonds, we find substantial 

positive (negative) intertemporal hedging demands for U.S. stocks (bonds). Overall, we discover 

important similarities and differences in the optimal intertemporal hedging demands for stocks and bonds 

across countries, and our results indicate that return predictability implies especially strong intertemporal 

hedging demands for U.S. and U.K. stocks. 

 It is important to emphasize that the asset demands derived from multi-period portfolio choice 

problems in the recent empirical literature (including the present paper) are partial equilibrium in nature, 

as the return processes are treated as exogenous. That is, given an exogenous return process (usually 

calibrated to U.S. data), researchers calculate the implied optimal asset demands for an individual investor 

with a long horizon and an assumed set of preferences; no attempt is made to use the implied model of 

investor behavior to explain observed asset returns.8 Two ways of interpreting the estimated asset 

demands in the extant empirical literature have been offered. First, Campbell and Viceira (2002) suggest 

viewing the estimated asset demands as normative descriptions of investor behavior, so that the estimated 

asset demands are those that an investor with an assumed set of preferences should have for a given return 

process. In line with this, CCV (p. 42) motivate the development of their approach by observing that 

while “[a]cademic research in finance has had a remarkable impact on many aspects of the financial 

services industry…academic financial economists have thus far provided surprisingly little guidance to 

financial planners who offer portfolio advice to long-term investors.” Alternatively, we can follow the 

suggestion of Lynch (2001) and view the estimated asset demands as a positive description of the 

                                                 
8 Explaining observed asset returns requires embedding a representative investor of this type in a general 
equilibrium framework where all markets clear. Lynch (2003) makes important progress in this area by embedding a 
representative investor with a long horizon and access to three stock portfolios sorted on book-to-market ratios in a 
general equilibrium model and comparing the quantitative properties of asset returns implied by the model to actual 
U.S. asset returns.  
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behavior of a unique individual or small group (rather than a representative agent) in the economy who 

exploits the return predictability created by a large number of other investors with different preferences. 

These different preferences may be created by habit persistence, as in Campbell and Cochrane (1999), or 

they may be of the type assumed in models of behavioral finance, such as Barberis, Huang, and Santos 

(2000). 

 The rest of the paper is organized as follows: Section 2 describes our empirical approach, 

including the CCV framework and our parametric bootstrap procedure; Section 3 presents our empirical 

results; Section 4 concludes with suggestions for future research. 

 

2. Empirical Approach 

2.1. The Multi-Period Portfolio Choice Problem 

Consider an investor who has access to  risky assets.n 9 Let  be the real return on a 

benchmark asset (usually a Treasury bill) from time  to time 

1,1 +tR

t 1+t , and let , , be the real 

returns on the  additional assets.

1, +tiR ni ,,2 …=

1−n 10 The real return on the investor’s portfolio ( ) can be 

expressed as 

1, +tpR

 , (1) 1,1
2

1,11,,1, )( +
=

+++ +−=∑ t

n

i
ttititp RRRR α

where ti,α  is the portfolio weight on asset i  at time .t 11 Letting )log( 1,1, ++ = titi Rr , define the vector of 

log excess returns as ]',,[ 1,11,1,11,21 +++++ −−= ttnttt rrrrx

                                                

… . In addition to the n returns, a vector of 

instruments  helps to determine the dynamics of the complete system of state variables. Gathering the 

returns and instruments into an m-vector, the state vector is given by 

1+ts

 
9 We adopt the notation of CCV throughout this section. 
10 While we follow CCV and use a 3-month Treasury bill as the benchmark asset, the designation of the benchmark 
asset is arbitrary. 
11 The portfolio weight on the benchmark asset at time t  is Note that the CCV framework does not 
impose borrowing or short-sales constraints. The use of equation (8) below to approximate the log real return on the 
portfolio has the effect of ruling out the possibility of bankruptcy; see Campbell and Viceira (2002, pp. 28-29). 

∑ =− n
i ti2 ,1 α . 
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 ]',,[ 111,11 ++++ = tttt sxrz . (2) 

As in a number of other studies,12 CCV assume that the dynamics of the system of state variables are 

well-characterized by a VAR(1) process, so that the data-generating process for the state vector  is 

given by 

1+tz

 1101 ++ +Φ+Φ= ttt vzz , (3) 

where  is an m-vector of VAR intercepts; 0Φ 1Φ  is an mm×  matrix of VAR slope coefficients;  is 

an m-vector of VAR innovations that are independently and identically distributed as 

1+tv

1(0 , )m vN × Σ . For 

some of the expressions used below, it is useful to partition vΣ  such that 

 , (4) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ΣΣ
ΣΣ=Σ

ssxss

xsxxx

sx

v

1

'
1

'
1

'
1

2
1

σ
σ

σσσ

where  is the variance of the innovation to the benchmark asset return; 2
1σ x1σ  is an -vector of 

covariances between innovations to the benchmark asset return and innovations to the excess returns on 

the remaining assets; 

)1( −n

s1σ  is an -vector of covariances between innovations to the benchmark 

asset return and innovations to the instruments; 

)( nm −

xxΣ  is the )1()1( −×− nn  variance-covariance matrix for 

the innovations to the excess returns; xsΣ  is the )1()( −×− nnm  matrix of covariances between 

innovations to the excess returns and innovations to the instruments; ssΣ  is the )()( nmnm −×−  

variance-covariance matrix for the innovations to the instruments. Note that the vector of VAR 

innovations is assumed to be homoskedastic. CCV argue that this is a reasonable assumption, as studies 

such as Campbell (1987), Harvey (1989, 1991), and Glosten, Jagannathan, and Runkle (1993) find that 

relative to their effects on expected returns, state variables have only a limited ability to predict risk.13

                                                 
12 See, for example, Campbell (1991), Balduzzi and Lynch (1999), Kandel and Stambaugh (1996), Campbell and 
Viceira (1999), Lynch and Balduzzi (2000), Barberis (2000), and Lynch (2001). 
13 Assuming that the vector of VAR innovations is homoskedastic is standard in much of the literature, such as the 
studies cited in footnote 12 above. Chacko and Viceira (2003) solve a multi-period portfolio choice problem with 
stochastic volatility. 
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 The investor is assumed to have Epstein-Zin-Weil utility, which she maximizes over an infinite 

horizon. The recursive preferences that characterize Epsten-Zin-Weil utility are given by 

 (1 ) / 1 1/ /(1 )
1[ , ( )] {(1 ) [ ( )] }t t t t t tU C E U C E U 1

γ θ γ θδ δ θ γ− −
+ = − + −

+ , (5) 

where  is consumption at time tC t ; )(⋅tE  is the expectation operator conditional on information 

available at time t ; 0>γ  is the CRRA; 0>ψ  is the elasticity of intertemporal substitution (EIS); 

10 << δ  is the time discount factor; . As emphasized by CCV, Epstein-Zin-Weil 

utility severs the tight link between the CRRA and EIS that characterizes the popular time-separable 

power utility function.

)1/()1( 1−−−= ψγθ

14 This is a nice feature of equation (5), as the CRRA and EIS are conceptually 

distinct notions relating to intertemporal preferences. At each time t , the investor selects  and tC

tnt ,,2 ,, αα …  in order to maximize equation (5), using all available information at time t , subject to the 

intertemporal budget constraint, 

 1,1 )( ++ −= tpttt RCWW , (6) 

where  is wealth at time tW t . The Euler equation for consumption for this problem is given by (Epstein 

and Zin, 1989, 1991) 

 , (7) 1}])/({[ 1,
)1(

1,
/1

1 =+
−−
+

−
+ titpttt RRCCE θθψδ

for any asset i . With time-varying investment opportunities, exact analytical solutions for this problem 

are generally not available. CCV combine an extension of the Campbell and Viceira (1999) approximate 

analytical solution with a relatively simple numerical procedure to compute the investor’s optimal asset 

allocation and consumption policies. 

 A key approximation used by CCV involves the equation for the log real return on the investor’s 

portfolio. We approximate the log real return on the portfolio using 

 , (8) )

                                                

(5.0 2'
1

'
1,11, txxxtttttp xrr ασαα Σ−++= +++

 
14 When , equation (5) reduces to the familiar case of time-separable power utility; when 
equation (5) reduces to log utility. 

 1−=ψγ 11 == −ψγ , 
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where ]',,[ ,,2 tntt ααα …= , and  is the vector of diagonal elements in 2
xσ xxΣ . This approximation is exact 

in continuous time, and CCV observe that it is highly accurate for short time intervals.15 CCV also 

employ first- and second-order log-linear approximations of the budget constraint and Euler equation, 

respectively, yielding 

 kwcrw tttpt +−−+=∆ ++ ))](/1(1[1,1 ρ , (9) 

 , (10) 
)](var),([cov)],(cov),([cov
),(cov)/()(var5.0)(

1,11,11,1,1,11,1,

111,1,11,1,11,

+++++++

+++++++

−−−

+−=−+−

ttttittptttptit

tttitttitttit

rrrrrrr
wcrrrrrE

γ

ψθ

where  and  are the log-levels of  and , respectively; tc tw tC tW )](exp[1 tt wcE −−=ρ ; 

ρρρρ /)1log()1()log( −−+=k . The approximations to the budget constraint and Euler equation are 

exact when 1ψ = , so that the solution to the approximate model is appropriate when ψ  is near unity. The 

policy functions for tα  and , which constitute the solution to the approximate model, are linear 

and quadratic, respectively, in : 

tt wc −

tz

 tt zAA 10 +=α , (11) 

 , (12) ttttt zBzzBBwc 2
''

10 ++=−

where  [ ],  [ ,  (10A 1)1( ×−n 1A 1mn ×− )1( ] 0B × ),  ( 11B ×m ), and  (2B mm× ) are coefficient matrices 

that are constant through time and functions of γ , ψ , δ , ρ , 0Φ , 1Φ , and .vΣ
16 We are primarily 

interested in the parameters in equation (11), which govern the investor’s optimal asset allocations. 

 

2.2. Numerical Solution Procedure 

In order to compute estimates of , , , , and , CCV use a numerical procedure. First, they 

set , , and , where , , and  are estimates of the VAR parameters in 

0A 1A 0B 1B 2B

00 Φ̂=Φ 11 Φ̂=Φ vv Σ=Σ ˆ
0Φ̂ 1Φ̂ vΣ̂

                                                 
15 Our use of monthly data in Section 3 below should help to ensure the accuracy of the approximation in our 
empirical applications. 
16 The coefficient matrices are constant through time due to the infinite-horizon assumption. This assumption means 
that we do not have to solve the problem backward recursively starting from the terminal date. 
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equation (3). They also set 92.0=δ  on an annual basis (so that the discount factor equals  on a 

monthly basis) and consider different values for 

12/192.0

γ  and ψ . The following result is useful in implementing 

the numerical procedure: 

 , (13) )]1/([)]/1(1[])1(5.0[)/1( 0
1

1
2

0
1

0 ψγσγσγ −Λ−Σ−+−++ΦΣ= −−
xxxxxxx HA

 , (14) )]1/([)]/1(1[)/1( 1
1

1
1

1 ψγγ −Λ−Σ−+ΦΣ= −−
xxxxx HA

where  is a matrix that selects  from the state vector ;  and ]0,,0[ )()1(11)1( nmnnnx IH −×−−×−= tx tz 0Λ 1Λ  are 

matrices that depend on the parameters of equation (12) ( 0B , , and ), as well as 1B 2B γ , ψ , δ , ρ , 0Φ , 

, and . Note that 1Φ vΣ )1/(0 ψ−Λ−  and )1/(1 ψ−Λ−  are independent of ψ  for a given ρ  and that we 

can define a nonlinear system, , , and 0 0B = Ξ '
11 Ξ=B 22 )( Ξ=Bvec , where , , and 0Ξ 1Ξ 2Ξ  are 

functions of γ , ψ , δ , ρ , , , , , , 0Φ 1Φ vΣ 0A 1A 0B , , and .1B 2B 17

 As described in Campbell, Chan, and Viceira (2002), we implement the iterative process of the 

numerical procedure as follows. For a given value of γ , we set δρ =  and select an arbitrary value for 

ψ , as well as initial values for , , and . We plug the initial values for , , and  into 

equations (13) and (14) to obtain an initial set of estimates for  and . Using the initial , , and 

 values and the initial  and  estimates, we then obtain a new set of estimates for , , and  

through the set of equations, , , and 

0B 1B 2B 0B 1B 2B

0A 1A 0B 1B

2B 0A 1A 0B 1B 2B

0 0B = Ξ '
11 Ξ=B 22 )( Ξ=Bvec . We begin the process again by 

plugging the new , , and  estimates into equations (13) and (14) to obtain a new set of  and 

 estimates. We iterate in the manner until the , , and  estimates (and thus the  and  

estimates) converge. Following CCV, we assume 

0B 1B 2B 0A

1A 0B 1B 2B 0A 1A

1=ψ . In this case, the optimal consumption-wealth 

                                                 
17 The complete expressions for 0Λ , 1Λ , 0Ξ , 1Ξ , and 2Ξ  are given in Campbell, Chan, and Viceira (2002). 
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ratio is constant and equal to 1 δ−  (Giovannini and Weil, 1989), so that δρ = , and the numerical 

procedure can stop.18

 We can also use equations (13) and (14) to identify the myopic and intertemporal hedging 

components of asset demand, following Merton (1969, 1971). The first term on the right-hand-side (RHS) 

of equations (13) and (14) represents the myopic part of asset demand. The myopic component focuses 

solely on a single-period-ahead and essentially corresponds to the asset demand generated under the static 

Markowitz problem. The second term on the RHS of equations (13) and (14) represents the intertemporal 

hedging part of asset demand. In contrast to the static Markowitz problem, an intertemporal hedging 

demand can arise in a multi-period portfolio choice problem, as a risk-averse investor in a multi-period 

setting may look beyond a single-period-ahead and be interested in hedging her exposure to adverse 

future return shocks. Note that a multi-period choice problem is a necessary, but not sufficient, condition 

for the existence of an intertemporal hedging demand. For example, when 1=γ , the second term on the 

RHS of equations (13) and (14) vanishes, so that there is no intertemporal hedging demand. In this case, 

the investor is not sufficiently risk-averse to generate an intertemporal hedging demand. If the matrix of 

VAR slope coefficients ( ) is a zero matrix—so that there is no return predictability—the second term 

on the RHS of each equation will also vanish.

1Φ

19 Thus, in order for an intertemporal hedging demand to 

exist in a multi-period portfolio choice problem, the investor must be sufficiently risk-averse and returns 

must be predictable.20

 In our applications in Section 3 below, we use the CCV procedure to estimate equations (11) and 

(12) for a infinitely lived investor in the U.S., Australia, Canada, France, Germany, Italy, and U.K. (in 

turn) who can invest in domestic 3-month Treasury bills, a broad domestic stock market index, and 

                                                 
18 If 1≠ψ , an additional iterative loop is necessary to find the optimal value of ρ . In their empirical applications, 
CCV note that the solutions to problems with 5.0=ψ  are similar to the solutions to problems with 1=ψ . 
19 CCV observe that  and  are zero matrices when  0Λ 1Λ 1Φ  is a zero matrix, so that the second term on the RHS of 
equations (13) and (14) vanishes. 
20 Actually, an additional condition needs to be satisfied: the variance-covariance matrix for the VAR innovations, 

, cannot be diagonal; see, for example, Brandt (2004, Section 2.3). The importance of this condition will become 
evident in the discussion of the empirical results in Section 3 below. 

vΣ
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domestic 10-year government bonds. We follow CCV in the basic set-up of the model. Namely, we treat 

the log real return on a 3-month Treasury bill ( ) as the return on the benchmark asset, so that the two 

log excess real returns are those on the stock market index and a 10-year government bond (  and 

, respectively). In addition to lagged returns, three domestic instruments serve as potential return 

predictors: the nominal yield on a 3-month Treasury bill ( ), the log of the dividend yield on the stock 

market index ( ), and the term spread ( ). Given these returns and instruments, the state vector 

is . We assume 

trtbr

txsr

txbr

tbill

tdiv tspread

]',,,,,[ 1111111 +++++++ = tttrttt spreaddivbillxbrxsrrtbrz 1=ψ  (so that δρ = ) and 92.0=δ  

on an annual basis, and we estimate the VAR parameters in equation (3) using maximum likelihood, 

yielding , , and .0Φ̂ 1Φ̂ vΣ̂
21 We consider three values for γ : 4, 7, and 10. These γ values are similar to 

those considered in other studies,22 and they represent plausible values for the CRRA. We report estimates 

of the mean asset demands for domestic 3-month Treasury bills, stocks, and 10-year government bonds 

over the sample for each γ  value using zAA 10
ˆˆ +=α , where  and  are the estimates of  and , 

respectively, in equation (11) obtained using the numerical procedure described above and 

0Â 1Â 0A 1A

∑ =
=

T

t tzz
1

, 

where T  is the number of available sample observations for the state vector. In addition to the total mean 

asset demands, we use equations (13) and (14) to estimate the mean myopic and hedging demands for 

each asset and each value of γ . Given our interest in intertemporal hedging demands in the present paper, 

we also present figures showing the hedging demands for domestic stocks and bonds for each month over 

the sample when 7=γ  in each country. 

 To get a sense of the sampling uncertainty associated with our point estimates of the mean total, 

myopic, and hedging demands for each asset in each country, we construct 68% confidence intervals for 

                                                 
21 OLS estimation of  and  in equation (3) is equivalent to maximum likelihood estimation. 
22 For example, CCV include tabulated results for 

 0Φ̂ 1Φ̂
5=γ ; Balduzzi and Lynch (1999) consider 6=γ ; Barberis 

(2000) considers 10,5=γ ; Lynch (2001) considers 4=γ . 
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the mean demands using the following parametric bootstrap procedure.23 We assume that observations for 

the state vector  are generated by equation (3) with the parameters of the VAR set to their maximum-

likelihood estimates. In order to generate a series of innovations to use in constructing a pseudo-sample, 

we make  independent draws from a 

1+tz

100+T 1
ˆ(0 , )m vN × Σ  distribution. Using the randomly drawn 

innovations, equation (3) with  and , and setting the initial  observations to zero, we 

can build up a pseudo-sample of  observations for . We drop the first 100 transient start-up 

observations in order to randomize the initial  observations, leaving us with a pseudo-sample of T 

observations for , matching the original sample. For the pseudo-sample, we use the numerical 

procedure described above to estimate equations (11) and (12) and the mean total, myopic, and hedging 

demands for each asset. We repeat this process 1,000 times, giving us an empirical distribution for each of 

the mean asset demands. We construct 68% confidence intervals for each mean asset demand from the 

empirical distributions using the percentile method described in Davidson and MacKinnon (1993, p. 766).  

00 Φ̂=Φ 11 Φ̂=Φ tz

100+T tz

tz

tz

 

2.3. Predictive Regression Model Estimation 

 Before presenting estimates of the total, myopic, and intertemporal hedging demands for each 

asset in each country in Section 3.3 below, we report OLS estimation results for the VAR(1) model, 

equation (3), for each country in Section 3.2 below. The VAR model captures the extent of return 

predictability in each country that provides the basis for the intertemporal hedging demands. Letting 

 and , equation (3) can be expressed in more detail as }{ 0
0 iφ=Φ }{ 1

,1 jiφ=Φ

 , (15) 1,1
1

6,1
1

5,1
1

4,1
1

3,1
1

2,1
1
1,1

0
11 ++ +++++++= tttttttt vspreaddivbillxbrxsrrbtrrtbr φφφφφφφ

 , (16) 1,2
1

6,2
1

5,2
1

4,2
1

3,2
1

2,2
1

1,2
0
21 ++ +++++++= tttttttt vspreaddivbillxbrxsrrbtrxsr φφφφφφφ

 , (17) 1,3
1

6,3
1

5,3
1

4,3
1

3,3
1

2,3
1

1,3
0
31 ++ +++++++= tttttttt vspreaddivbillxbrxsrrbtrxbr φφφφφφφ

                                                 
23 Primarily due to computational costs, most extant studies (including CCV) report only point estimates of asset 
demands. 
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 , (18) 1,4
1

6,4
1

5,4
1

4,4
1

3,4
1

2,4
1

1,4
0
41 ++ +++++++= tttttttt vspreaddivbillxbrxsrrbtrbill φφφφφφφ

 , (19) 1,5
1

6,5
1

5,5
1

4,5
1

3,5
1

2,5
1

1,5
0
51 ++ +++++++= tttttttt vspreaddivbillxbrxsrrbtrdiv φφφφφφφ

 , (20) 1,6
1

6,6
1

5,6
1

4,6
1

3,6
1

2,6
1

1,6
0
61 ++ +++++++= tttttttt vspreaddivbillxbrxsrrbtrspread φφφφφφφ

for . The first three equations of the VAR, equations (15)-(17), can be viewed as predictive 

regression models for real bill, excess stock, and excess bond returns, respectively. It is well-known that 

there are a number of econometric difficulties associated with estimating predictive regressions for stock 

and bond returns (Mankiw and Shapiro, 1986; Stambaugh, 1986, 1999; Nelson and Kim, 1993; Kirby, 

1997; Bekaert, Hodrick, and Marshall, 1997). Essentially, these difficulties lead to size distortions in tests 

of the significance of the slope coefficients in predictive regressions.

1,,1 −= Tt …

24 In order to help correct for possible 

size distortions when assessing the predictive power of the lagged returns and instruments with respect to 

bill, stock, and bond returns in each country, we report p-values corresponding to the t-statistics for the 

slope coefficients in equations (15)-(17) using a parametric bootstrap procedure similar to the one 

described in Section 2.2 above, with the exception that we assume real bill, excess stock, and excess bond 

returns are generated by 

 , (15’) 1,1
0

11
~~

++ += tt vrtbr φ

 , (16’) 1,2
0

21
~~

++ += tt vxsr φ

 , (17’) 1,3
0

31
~~

++ += tt vxbr φ

respectively, under the null hypothesis of no return predictability. Using this restricted VAR(1) model as 

the data-generating process, we can simulate a pseudo-sample of T observations for  and calculate the 

t-statistic for each of the slope coefficients in equations (15)-(17) for the pseudo-sample.

tz

25 We repeat this 

process 1,000 times, giving us empirical distributions for the t-statistics for each of the slope coefficients 

                                                 
24 Relatedly, OLS estimates can be subject to small-sample biases (Stambaugh, 1986, 1999). Given that small-
sample bias corrections can be very complicated in the system defined by equations (15)-(20), we follow CCV and 
assume that investors treat the OLS estimates of the VAR coefficients as given and known. 
25 Like the bootstrap procedure described in Section 2.2 above, we randomize the initial  values by including 100 
transient start-up observations in each pseudo-sample that we subsequently discard. 

 tz
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in equations (15)-(17) under the null hypothesis of no return predictability. In order to generate p-values 

corresponding to one-sided significance tests, if the t-statistic for a given slope coefficient for the original 

sample is positive, then the p-value is the proportion of the bootstrapped t-statistics that are greater than 

the t-statistic for the original sample; if the t-statistic for the original sample is negative, then the p-value 

is the proportion of the bootstrapped t-statistics that are less than the t-statistic for the original sample. 

Inoue and Kilian (2003) argue that more powerful one-sided tests should be preferred in predictive 

regressions, as theory frequently suggests the sign of a coefficient.26 For each return equation, we also 

report a bootstrapped p-value corresponding to a Wald test of the null hypothesis that the slope 

coefficients are jointly zero. 

 

3. Empirical Results 

3.1. Data 

The data for the U.S., Australia, Canada, France, Germany, Italy, and U.K. are from Global 

Financial Data. Following CCV, our sample begins in 1952:04 for each country, with the exceptions of 

France and Germany, where, due to data availability, the sample begins in 1961:01 and 1967:02, 

respectively.27 The sample ends in 2004:05 for each country. We measure the log real return on a 3-month 

Treasury bill for a given month as the difference in the logs of the total return index for bills for the given 

and previous months minus the difference in the logs of the consumer price index for the given and 

previous months.28 The log excess stock (bond) return for a given month is the difference in the logs of 

the total return index for stocks (10-year government bonds) for the given and previous months minus the 

difference in the logs of the total return index for bills for the given and previous months. The nominal 

                                                 
26 While we report p-values for one-sided tests, we can simply double the p-values to convert them to p-values for 
two-sided tests under the assumptions that the distributions are approximately symmetric. 
27 We had originally planned to include Japan in order to include all of the G-7 countries, but data for all of the 
necessary series for Japan are not available for a sufficiently long period from Global Financial Data. 
28 Due to data availability, we use the wholesale price index for Australia. 
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bill yield is the yield on a 3-month Treasury bill,29 and the term spread is the difference between the 

yields on a 10-year government bond and 3-month Treasury bill. Names and descriptions of the Global 

Financial Data files used to construct all of the variables are provided in the Data Appendix. 

Table 1 reports summary statistics (mean, standard deviation, and first-order autocorrelation 

coefficient) for the three risky asset returns and three instruments for each of the seven countries we 

consider. The mean and standard deviation for the returns are expressed in annualized percentage units, 

and we include the Sharpe ratio (the ratio of the annualized mean to the annualized standard deviation) for 

the excess stock and bond returns. The mean excess stock returns for the U.S., Australia, and U.K. are 

between 5% and 6%. Canada, Germany, and France exhibit lower mean excess returns, while Italy has the 

lowest mean excess return of 1.89%. Mean excess stock returns for the U.S., Australia, and U.K. are 

approximately 3 to 4 percentage points higher than mean excess bond returns for these countries. Mean 

excess stock returns are just over 2 percentage points higher than mean excess bond returns for Canada, 

and mean excess stock returns are actually less than 1 percentage point higher than mean excess bond 

returns for France, Germany, and Italy. For all of the countries, the standard deviation of excess stock 

returns is approximately 2 to 4 times larger than the standard deviation of excess bond returns, and the 

standard deviation of the real bill return is always considerably below that of excess bond returns for each 

country. 

The Sharpe ratios for excess stock returns are the highest for the U.S., Australia, and U.K. (0.39, 

0.32, and 0.29, respectively), while Italy has the smallest ratio (0.09). The Sharpe ratios for excess bond 

returns are very similar across all of the countries (with the exception of Germany), ranging from 0.15 to 

0.19. For Germany, the Sharpe ratio for excess bond returns is considerably higher at 0.44. Observe that 

the Sharpe ratio for excess stock returns is approximately 1.5 to 2.5 times larger than the Sharpe ratio for 

excess bond returns for the U.S., Australia, Canada, and U.K., while for France, Germany, and Italy, the 

Sharpe ratio for excess stock returns is actually less than the Sharpe ratio for excess bond returns. All else 

                                                 
29 Following a number of other studies, we use deviations in the nominal 3-month Treasury bill yield from a 1-year 
backward-looking moving average. 
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equal, the Sharpe ratios lead us to expect a higher myopic demand on average for stocks in the U.S., 

Australia, Canada, and U.K. This is borne out in the empirical results reported in Section 3.3 below. 

Excess stock returns exhibit fairly limited persistence in all countries (first-order autocorrelation 

coefficients between 0.03 and 0.12). Excess bond returns typically appear somewhat more persistent than 

excess stock returns, with Italy and the U.K. displaying the most persistent excess bond returns. Real bill 

returns are moderately persistent for all countries, ranging from 0.21 to 0.51. In contrast to the returns, the 

instruments appear very persistent for all countries, with the first-order correlation coefficients ranging 

from 0.88 to 0.93 for the nominal bill yield, 0.98 to 0.99 for the dividend yield, and 0.94 to 0.97 for the 

term spread. 

 

3.2. VAR Estimation Results 

Tables 2 through 8 report estimation results for the VAR(1) model for each country. The top part 

of each table reports estimates of the slope coefficients and their corresponding t-statistics, as well as the 

2R  goodness-of-fit measure, for each equation of the VAR. Bootstrapped p-values are also reported for 

the coefficients in the return equations, where the p-values are computed using the bootstrap procedure 

described in Section 2.3 above. In addition, bootstrapped p-values for Wald tests of the null hypothesis 

that the explanatory variables are jointly zero in each of the return equations (that is, no return 

predictability) are also reported below the 2R  measures. The bottom part of each table reports the cross-

correlations of the VAR residuals. We briefly discuss the VAR estimation results. 

The 2R  measures for the estimated real bill return equations in Tables 2 through 8 range from 

0.093 (Canada) to 0.311 (France), and we are easily able to reject the null hypothesis of no real bill return 

predictability for each country at conventional significance levels according to the bootstrapped p-values. 

The coefficients on the lagged bill return are positive and significant at conventional levels for all 

countries. For Australia, Canada, Italy, and the U.K., the three lagged instruments all have negative 
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coefficients that are significant (or nearly significant) at conventional levels. Two (one) of the lagged 

instruments are significant at conventional levels for France (Germany). 

With respect to the estimated excess stock return equations, we see that the 2R  measures are 

between 0.016 (Italy) and 0.044 (U.K.). These measures are in line with the extant empirical literature, 

which finds that the degree of predictability in excess stock returns is limited. Nevertheless, the Wald test 

easily rejects the null hypothesis of no predictability for the U.S., Australia, Canada, France, and U.K. 

according to the bootstrapped p-values, and as indicated in the extant empirical literature—and as we will 

see below—even a limited degree of predictability can have quantitatively important asset allocation 

implications. We cannot reject the null hypothesis of no predictability using the Wald test for Germany 

and Italy at conventional significance levels. Looking at the individual coefficients, at least one of the 

lagged return coefficients is significant at conventional levels for each country. The lagged nominal bill 

yield is significant at conventional levels for the U.S. and Germany, where it enters with a negative 

coefficient. For the U.S., Australia, and U.K., the lagged dividend yield has a positive and significant 

coefficient in the excess stock return equation, while the lagged term spread is only significant for 

Canada.  

The 2R  measures are somewhat higher for the fitted excess bond return equations than the excess 

stock return equations for each country, with the excess bond return equation measures ranging from 

0.027 (Australia) to 0.155 (Italy). According to the bootstrapped p-values, we can reject the null 

hypothesis of no predictability for the excess bond return equation for each country at conventional 

significance levels. Either two or three of the lagged returns are significant at conventional levels for the 

U.S., Canada, France, Germany, Italy, and U.K. The lagged nominal bill yield has a negative and 

significant coefficient for Australia, France, Germany, and Italy, while the term spread has a positive and 

significant (or nearly significant) coefficient for the U.S., Canada, France, Germany, Italy, and U.K. 
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The autoregressive coefficients tend to dominate the estimated equations for each of the 

instruments for each country. This is in line with the large autocorrelation coefficients reported for the 

instruments in Table 1. The 2R  measures are quite high for these equations, ranging from 0.791 to 0.988. 

With respect to the cross-correlations of the VAR innovations for each country, one notable 

feature is the strong negative correlation between innovations to excess stock returns and the dividend 

yield for each country. The strongest correlation is –0.964 (U.S.), while the weakest is still –0.599 (Italy). 

There are also sizable negative correlations between innovations to the nominal bill yield and term spread 

for each country (–0.854 to –0.748), as well as a fairly large negative correlation between innovations to 

excess bond returns and nominal bill yields for each country, ranging from –0.656 (U.S.) to –0.204 

(Germany). Innovations to excess stock and bond returns are positively correlated, and while typically 

smaller than the other correlations we have mentioned in absolute value, they still appear reasonably large 

(0.132 to 0.291). 

 Summarizing the VAR estimation results reported in Tables 2 through 8, real bill returns and 

excess bond returns appear significantly predictable at conventional levels for each of the countries. 

Excess stock returns appear significantly predictable at conventional levels for the U.S., Australia, 

Canada, France, and U.K., but not for Germany and Italy. In addition, there are consistent patterns in the 

correlations of the VAR innovations, with the strong negative correlation between innovations to excess 

stock returns and the dividend yield a notable feature for each country. 

 

3.3. Domestic Asset Demands for Investors in Different Countries 

Table 9 reports the mean total, myopic, and intertemporal hedging demands (in percentages) for 

domestic bills, stocks, and bonds and γ  values of 4, 7, and 10 in each country. To get a sense of sampling 

uncertainty, the table also reports 68% confidence intervals for the mean asset demands generated using 

the parametric bootstrap procedure described in Section 2.2 above. Of course, the total mean demands 
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across the three assets sum to 100; the mean myopic demands across assets also sum to 100, while the 

mean hedging demands sum to 0.   

 For the U.S., there are large positive mean total and intertemporal hedging demands for stocks for 

each reported γ  value. As we would expect, the mean total demand for stocks—the most risky asset—

decreases as γ  increases. While the mean hedging demand for stocks also decreases as γ  increases, the 

mean hedging demand for stocks as a share of the total demand actually increases as γ  increases. The 

mean total demands for bonds are noticeably smaller than the mean total demands for stocks. The mean 

hedging demands for bonds are negative and fairly large in magnitude, contributing to the smaller total 

demands for bonds vis-à-vis stocks. The mean total demand for bills is negative for each reported γ  

value, so that the investor typically shorts bills. There is also a fairly sizable negative mean hedging 

demand for bills for each reported γ  value. The results in Table 9 for the mean hedging demands for 

stock in the U.S. are similar to the mean hedging demand for stocks (100.84) reported in CCV for the 

U.S. using quarterly data for 1952:2-1999:4 and 5=γ ; the mean hedging demands for bonds in the U.S. 

in Table 9 are smaller in magnitude than the mean hedging demand for bonds (–122.57) reported in CCV. 

The most striking result for the U.S. in Table 9 (and in CCV) is the substantial positive total and 

intertemporal hedging demands for domestic stocks for an investor in the U.S. 

What explains the sizable intertemporal hedging demand for domestic stocks in the U.S.? While a 

number of factors are at work in this multivariate analysis, as emphasized by CCV and others,30 two 

factors appear to play especially important roles: (i) the positive coefficient on the lagged dividend yield 

in the excess stock return equation of the VAR; (ii) the strong negative correlation between innovations to 

excess stock returns and the dividend yield. To see how these factors generate a strong intertemporal 

hedging demand for stocks, consider a negative innovation to excess stock returns next period. Due to the 

large Sharpe ratio for stocks in the U.S., investors are usually long in stocks, so that the negative 

innovation to excess stock returns represents a worsening of the investor’s investment opportunities next 

                                                 
30 See, for example, the discussion in Brandt (2004, Section 2.2.1). 
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period. However, a negative innovation to excess stock returns next period tends to be accompanied by a 

positive innovation to the dividend yield next period, and according to the positive coefficient on the 

lagged dividend yield in the excess stock return equation of the VAR, the higher dividend yield next 

period leads to higher expected stock returns two periods from now.31 Thus, by looking beyond one-

period-ahead—as an investor with 1>γ  will do—and taking into account return predictability, as well as 

the negative correlation between innovations to stock returns and the dividend yield, stocks become a 

good hedge against themselves, in that they hedge exposure to future adverse return shocks. 

 As a cautionary note, observe that the 68% confidence intervals for the mean asset demands tend 

to be quite wide for the U.S. in Table 9, especially with regard to the mean total demands for each asset 

and the mean myopic demands for bonds and bills. This suggests that the reporting of point estimates 

alone can mask considerable sampling uncertainty in empirical multi-period portfolio choice problems.32 

Nevertheless, it is important to observe that while many of the confidence intervals for the U.S. are quite 

wide in Table 9, the confidence intervals for the mean hedging demands for stocks appear tight enough to 

conclude that the mean hedging demands for stocks are positive and sizable in the U.S. for the reported γ  

values. The confidence intervals for the mean hedging demands for bonds in the U.S. also appear tight 

enough to conclude that the mean hedging demands for bonds are close to zero or negative in the U.S. for 

the reported γ  values. While there is often substantial sampling uncertainty regarding mean asset 

demands, it is reasonable to view the empirical evidence as supportive of a sizable positive implied 

intertemporal hedging demand for domestic stocks and a small or negative implied intertermporal 

hedging demand for domestic bonds in the U.S. 

 In order to glean additional insight into the intertemporal hedging demands for domestic stocks 

and bonds in the U.S., Panel A of Figure 1 portrays the estimated hedging demands for stocks and bonds 

for each month over the sample in the U.S. when 7=γ . Overall, the hedging demand for stocks appears 

                                                 
31 Furthermore, the large autoregressive coefficient in the  equation in Table 2 means that there will be a 
persistent increase in the expected dividend yield, leading to a persistent increase in expected excess stock returns. 
32 Substantial sampling uncertainty can be a problem in general with regard to asset allocation problems; see Brandt 
(2004, Section 3.1.2). 
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considerably less volatile than the hedging demand for bonds. The hedging demand for stocks is typically 

well above the hedging demand for bonds over the sample, with the exception that the hedging demand 

for bonds does move above the hedging demand for stocks during the late 1990s and 2000. 

Turning to the results for Australia in Table 9, while the mean total demands for domestic stocks 

are moderately large, they are considerably smaller than the mean total demands for domestic stocks in 

the U.S. The mean hedging demands for stocks in Australia are much smaller than the corresponding 

demands in the U.S., and the 68% confidence intervals for the mean hedging demands for stocks in 

Australia do not lead to rejection of the null hypothesis of a zero mean hedging demand. The mean total 

demands for bonds in Australia are very similar to those in the U.S., while the mean hedging demands for 

bonds in Australia are much closer to zero than in the U.S. Again, the 68% confidence intervals for the 

mean hedging demands for bonds in Australia do not indicate rejection of the null hypothesis of zero 

mean hedging demand for bonds. From Panel B of Figure 1, we see that the hedging demand for stocks is 

always above the hedging demand for bonds when 7=γ , although a drop in the average hedging 

demands for both stocks and bonds in Australia is evident in the early 1980s. 

 The results for Canada in Table 9 are similar to those for Australia, in that the mean total and 

hedging demands for stocks are positive but considerably smaller than the corresponding demands for the 

U.S., while the mean total demands for bonds are similar to, and the mean hedging demands for bonds are 

considerably smaller in magnitude than, those for the U.S. We cannot reject the null hypothesis of zero 

mean hedging demands for bonds in Canada according to the 68% confidence intervals. The hedging 

demand for bonds is much more volatile than the hedging demand for stocks in Canada when 7=γ (see 

Panel C of Figure 1). Turning to the results for Germany in Table 9, the mean total and hedging demands 

for stocks are similar to the corresponding demands in Australia and Canada, while the mean hedging 

demands for bonds in Germany are similar to those in the U.S. From Panel E of Figure 1, we also see that 

the hedging demand for bonds is more volatile than the hedging demand for stocks in Germany when 

7=γ . 
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With respect to the results for France in Table 9, the mean total and hedging demands for stocks 

are much smaller than those for the U.S., Australia, Canada, and Germany, and we cannot reject the null 

hypothesis that the mean total and hedging demands for stocks are zero in France according to the 68% 

confidence intervals. The mean hedging demands for bonds in France are similar to, but somewhat 

smaller in magnitude than, those in the U.S. and Germany. Panel D of Figure 1 shows that the hedging 

demand for stocks is always very close to zero in France when 7=γ , and that the hedging demand for 

bonds is much more volatile than the hedging demand for stocks. The mean total demands for stocks in 

Italy in Table 9 are even lower than the mean total demands in France, and the mean hedging demands for 

stocks are also very small in magnitude in Italy. Matching the results for France, we cannot reject the null 

hypothesis that the mean total and hedging demands for stocks are zero in Italy according to the 68% 

confidence intervals. The mean hedging demands for bonds in Italy are similar to, although slightly 

smaller in magnitude than, those in the U.S. We see from Panel F of Figure 1 that the hedging demand for 

stocks in Italy is always very near zero over the sample period when 7=γ , while the hedging demand for 

bonds is quite volatile. 

 The final country for which we report results in Table 9 is the U.K. With respect to the mean total 

and hedging demands for stocks, the results for the U.K. are very similar to those for the U.S., in that the 

mean total and hedging demands for stocks are positive and large. According to the 68% confidence 

intervals, it appears reasonable to conclude, as in the U.S., that the mean hedging demands for stocks in 

the U.K. are positive and sizable. The mean hedging demands for bonds are very small in magnitude in 

the U.K., and we cannot reject the null hypothesis that they are zero at reasonable significance levels 

according to the 68% confidence intervals. Similar to the case for the U.S., we see from Panel G of Figure 

1 that the hedging demand for stocks is typically above the hedging demand for bonds over the sample 

period in the U.K. when 7=γ . Again similar to the U.S., there is a period in the late 1990s and 2000 

where the hedging demand for bonds moves above the hedging demand for stocks for a more extended 

period. 
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We next discuss some of the factors contributing to the smaller (similar) intertemporal hedging 

demands for domestic stocks in Australia, Canada, France, Germany, and Italy (the U.K.) vis-à-vis the 

U.S. As we discussed above, a large Sharpe ratio for stocks is likely to lead to a long position in stocks, 

while a positive coefficient on the lagged dividend yield in the excess stock return equation of the VAR, 

combined with a negative correlation between innovations to excess stocks returns and the dividend yield, 

help to make stocks a good hedge against future adverse return shocks for an investor long in stocks. With 

respect to Canada, France, Germany, and Italy, recall from Table 1 that these countries have Sharpe ratios 

for domestic stocks that are considerably smaller than the Sharpe ratio for stocks in the U.S., so that 

investors in these countries are likely to hold fewer stocks than an investor in the U.S. This will make 

investors in these countries less concerned with hedging against adverse future stock return shocks using 

the dividend yield-excess stock return relationship, thereby contributing to a lower hedging demand for 

stocks in these countries.  This is especially likely to be the case for France and Italy, where the Sharpe 

ratios for stocks are the lowest. In addition, we see from Tables 5 and 7 that the coefficients on the lagged 

dividend yield in the excess stock return equations are the smallest for France and Italy. This limits the 

hedging ability of the dividend yield in France and Italy, contributing further to the very weak hedging 

demands for stocks in these two countries relative to the U.S. The Sharpe ratios for stocks are reasonably 

similar for Australia and the U.S. The smaller hedging demand for stocks in Australia vis-à-vis the U.S. 

could be attributed to the weaker negative correlation between innovations to excess stock returns and the 

dividend yield in Australia versus the U.S. (–0.737 vs. –0.964). The weaker correlation helps to make 

domestic stocks a better hedge against future adverse returns shocks in the U.S. than in Australia. 

Recalling the results for the excess stock return equation for the U.K. in Table 8, we can partly understand 

why, like the U.S., there are sizable hedging demands for domestic stocks in the U.K.: the coefficient on 

the lagged dividend yield in the excess stock return equation is very large (relative to the other countries) 

and highly significant, helping to make stocks a good intertemporal hedge for investors in the U.K., who 

usually hold long positions in stocks due to the relatively large Sharpe ratio for stocks in the U.K.33

                                                 
33 While similarities and differences in the relationships between excess stock returns and the dividend yield across 
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 Overall, the results in Table 9 point to interesting similarities and differences across countries 

with respect to the optimal intertemporal hedging demands for domestic stocks and bonds. There are 

substantial positive hedging demands for domestic stocks in the U.S. and U.K., considerably smaller (but 

still positive) hedging demands for stocks in Australia, Canada, and Germany, and essentially zero 

hedging demand for stocks in France and Italy. We see negative and fairly large hedging demands for 

domestic bonds in the U.S., France, Germany, and Italy and essentially zero hedging demand for bonds in 

Australia, Canada, and the U.K. Taking the results in Tables 2-9 together, we see that differences in return 

predictability across countries can have important implications for the intertemporal hedging demands for 

domestic stocks and bonds across countries. 

 

3.4. Asset Demands for an Investor in the U.S. Who Can Also Invest in Foreign Stocks and Bonds 

We next use the CCV approach to analyze a multi-period portfolio choice problem for an investor 

in the U.S. who, in addition to domestic bills, stocks, and bonds, has access to stocks and bonds from a 

foreign country. We take, in turn, Australia, Canada, France, Germany, Italy, and the U.K. to be the 

foreign country. We take the countries in turn in an attempt to keep the VAR parameter space to a 

reasonable size. The log real return on a 3-month U.S. Treasury bill again serves as the return on the 

benchmark asset, and the log excess returns on U.S. stocks and bonds and foreign stocks and bonds 

constitute the excess returns on the other four assets.34 The instrument set includes the U.S. nominal bill 

yield, dividend yield, and term spread, as well as their foreign counterparts. The state vector for the multi-

period portfolio choice problem is now given by 

 , (21) ]',,,,,,,,,,[ *
1

*
1

*
1111

*
1

*
11111 ++++++++++++ = tttttttttttt spreaddivbillspreaddivbillxbrxsrxbrxsrrtbrz

                                                                                                                                                             
countries can help to explain similarities and differences in the intertemporal hedging demands for domestic stocks 
across countries, it is important to keep in mind that numerous factors are at work in this multivariate framework. 
34 As in, for example, Harvey (1991), we measure the log excess return on foreign stocks or bonds by first 
converting the foreign stock or bond return to U.S. dollars using exchange rates and then computing the U.S. dollar 
return in excess of the U.S. dollar return on a U.S. 3-month Treasury bill.  
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where  ( ) is the log excess return in U.S. dollars on foreign stocks (bonds) relative to the U.S. 

3-month Treasury bill return, and , , and  are the instruments in the foreign country. 

We again assume that the state vector is generated by a VAR(1) process, 

*
1+txsr *

1+txbr

*
1+tbill *

1+tdiv *
1+tspread

0.92δ =  on an annual basis, 

1=ψ , and we again consider γ  values of 4, 7, and 10. We use the same numerical solution procedure 

described in Section 2.2 above, with the exception that the state vector is now given by equation (21). The 

mean asset demands, along with 68% confidence intervals (generated using a suitably modified version of 

the parametric bootstrap procedure described in Section 2.2 above), are reported in Table 10.35

 A number of results stand out in Table 10. First, an investor in the U.S. continues to have very 

strong mean total and hedging demands for domestic stocks, regardless of the foreign country. That is, it 

is still optimal for an investor in the U.S. with access to foreign stocks and bonds from Australia, Canada, 

France, Germany, Italy, or the U.K. to have positive and sizable mean total and hedging demands for 

domestic stocks. While the confidence intervals are again generally quite wide in Table 10, it remains 

reasonable to conclude that the mean hedging demands for domestic stocks are positive and sizable for an 

investor in the U.S. who also considers stocks and bonds from a number of different foreign countries. 

We also continue to see fairly large negative intertemporal hedging demands for domestic bonds when 

France, Germany, or Italy is the foreign country. 

 It is also evident from Table 10 that the mean hedging demands for foreign stocks are typically 

quite small in magnitude when Australia, Canada, France, Germany, or Italy serves as the foreign 

country. We cannot reject the null hypothesis of zero mean hedging demands for foreign stocks in these 

countries according to the 68% confidence intervals, so that foreign stocks in these countries do not 

present a useful hedging opportunity for an investor in the U.S. In contrast, when the U.K. serves as the 

foreign country, an investor in the U.S. does have fairly sizable mean hedging demands for foreign stocks, 

so foreign stocks from the U.K. do appear to present a positive hedging opportunity for an investor in the 

                                                 
35 In order to conserve space, we do not report summary statistics or the complete VAR estimation results. They are 
available at http://pages.slu.edu/faculty/rapachde/Research.htm. 
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U.S. With the possible exception of the U.K., the intertemporal hedging demands for foreign bonds are 

typically small in magnitude for the different foreign countries. 

 Figure 2 presents the intertemporal hedging demands for domestic and foreign stocks and bonds 

for each month over the sample when 7=γ . The profiles of the hedging demands for domestic stocks 

and bonds in each panel of Figure 2 are similar to the profiles for the U.S. in Panel A of Figure 1. We see 

that the hedging demands for foreign stocks and foreign bonds are typically small in magnitude 

throughout the sample for all foreign countries with the exception of the U.K. 

 

3.5. Asset Demands for Investors in Australia, Canada, France, Germany, Italy, and the U.K. Who Can 

Also Invest in U.S. Stocks and Bonds 

Our final empirical exercise is another extension that analyzes asset demands for an investor in 

Australia, Canada, France, Germany Italy, or the U.K. who has access to domestic bills, stocks, and 

bonds, as well as stocks and bonds from the U.S. The log real return on a domestic 3-month Treasury bill 

acts as the return on the benchmark asset, and the log excess returns on domestic stocks and bonds and 

U.S. stocks and bonds comprise the excess returns on the other four assets.36 The investor considers six 

instruments: the domestic and U.S. nominal bill yields, dividend yields, and term spreads. We continue to 

assume a VAR(1) structure for the state vector, 1ψ = , and 0.92δ =  on an annual basis. Table 11 reports 

the mean asset demands and corresponding 68% confidence intervals (again generated using a suitably 

modified parametric bootstrap procedure) for γ  values of 4, 7, and 10.37  

Observe that with the exception of the U.K., the intertemporal hedging demands for domestic 

stocks and bonds are typically fairly small in magnitude in all of the countries. According to the 68% 

confidence intervals, we cannot reject the null hypothesis that the intertemporal hedging demands for 

                                                 
36 We measure the log excess return on U.S. stocks or bonds by first converting the U.S. dollar stock or bond return 
to local currency using exchange rates and then computing the local currency return in excess of the local currency 
return on a domestic 3-month Treasury bill.  
37 Again in order to conserve space, we do not report summary statistics or the complete VAR estimation results. 
They are available at http://pages.slu.edu/faculty/rapachde/Research.htm. 

 



28 

domestic stocks and bonds are zero in Australia, Canada, France, Germany, and Italy. We do see sizable 

positive intertemporal hedging demands for domestic stocks in the U.K., so that the strong hedging 

demands for stocks in the U.K. in the last panel of Table 9 remain in the last panel of Table 11. 

 We see substantial positive (negative) estimates of the intertemporal hedging demands for U.S. 

stocks (bonds) in the different countries in Table 11. According to the confidence intervals, it is 

reasonable to conclude that the intertemporal hedging demands for U.S. stocks are positive and sizable in 

Australia, Canada, Italy, and the U.K. and that the intertemporal hedging demands for U.S. bonds are 

negative and sizable in all of the countries. Overall, the results in Table 11 indicate that access to U.S. 

stocks and bonds for investors in Australia, Canada, France, Germany, Italy, and the U.K. generates 

sizable intertemporal hedging demands for U.S. assets. Figure 3 presents the intertemporal hedging 

demands for domestic and foreign stocks and bonds for each month over the sample in each country when 

7=γ , and the figure reinforces the conclusions from Table 11. The largest intertemporal hedging 

demand among domestic and U.S. stocks and bonds over most of the sample for each country is that for 

U.S. stocks. 

 

4. Conclusion 

 In this paper, we investigate return predictability and its implications for the intertemporal 

hedging demands for stocks and bonds for investors with Epstein-Zin-Weil preferences and infinite 

horizons in the U.S., Australia, Canada, France, Germany, Italy, and U.K. Our results show that 

differences in return predictability across countries can lead to important differences in the implied 

intertemporal hedging demands for domestic stocks and bonds across countries. When we analyze 

allocations across domestic bills, stocks, and bonds in each country, the sizable positive intertemporal 

hedging demands for domestic stocks in the U.S. and U.K. stand out. When an investor in the U.S. also 

has access to stocks and bonds from Australia, Canada, France, Germany, Italy, or the U.K., the only 

foreign asset for which she exhibits significant positive intertemporal hedging demands is U.K. stocks. 

When investors in Australia, Canada, France, Germany, Italy, and the U.K. have access to U.S. stocks and 
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bonds, investors in all of these countries display sizable positive intertemporal hedging demands for U.S. 

stocks and sizable negative intertemporal hedging demands for U.S. bonds. Overall, our results indicate 

that U.S. and U.K. stocks provide especially attractive intertemporal hedging instruments for international 

investors with Epstein-Zin-Weil preferences and infinite horizons. 

 Finally, we suggest two avenues for future research. First, it would be interesting to examine the 

implications of structural change for the multi-period portfolio choice problems we consider in the present 

paper, as the predictive relationships between lagged instruments and expected returns may be subject to 

periodic structural breaks.38 A second avenue for future research involves the incorporation of investor 

uncertainty and learning into the multi-period choice problems we consider. In the present paper, we 

assume that the investor has complete knowledge of the data-generating process governing returns as she 

takes her allocation decisions. Of course, in practice, there is considerable uncertainty surrounding the 

parameters of the data-generating process, and the investor may update her views concerning these 

parameters as she learns about the data-generating process through time.39 Both structural change and 

learning add considerable complexity to multi-period portfolio choice problems, especially the types of 

problems considered in the present paper involving a large number of state variables. At the present time, 

it appears we need further analytical and computational advances in order to make the analysis of multi-

period portfolio choice problems with a large number of state variables, return predictability, structural 

change, and learning tractable. While the present paper shows that return predictability has important 

asset allocation implications for international investors with long horizons, structural change and learning 

have potentially important implications of their own, so that further advances in solving complex 

portfolio choice problems could provide added insights to international investors with long horizons. 

                                                 
38 For progress in this area, see Guidolin and Timmermann (2004), who analyze optimal asset allocation across 
domestic stocks and bonds for an investor in the U.S. with a long horizon and power utility defined over 
consumption, and where the VAR(1) process characterizing the return dynamics is subject to regime shifts governed 
by a Markov-switching process. 
39 Brennan (1998) and Barberis (2000) investigate the role of learning in multi-period portfolio choice problems 
without return predictability. For progress on the role of learning in multi-period portfolio choice problems with 
return predictability, see Xia (2001) and Brandt et al. (2003). 
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Data Appendix 

All of the data are from Global Financial Data, Inc. (www.globalfindata.com). A list of the names 

of all of the Global Financial Data files used to construct the state variables for each country are listed 

below. A description of each file (provided by Global Financial Data) is given in parentheses. 

United States 
 
TRUSABIM  (USA Total Return Commercial/T-Bill Index) 
_SPXTRM  (S&P 500® Total Return Index) 
TRUSAGVM (USA 10-year Government Bond Total Return Index) 
CPUSAM (USA BLS Consumer Price Index) 
ITUSA3SM (USA Government 90-day T-Bills Secondary Market [Yield]) 
IGUSA10M (USA 10-year Bond Constant Maturity Yield) 
SYUSAYM (S&P 500 Monthly Dividend Yield) 
 
Australia 
 
TRAUSBIM (Australia Total Return Bills Index) 
_AORDAM (Australia ASX Accumulation Index-All Ordinaries) 
TRAUSGVM (Australia 10-year Government Bond Return Index) 
WPAUSM (AUS Manufacturing Output Prices) 
ITAUS3M (Australia 3-month Treasury Bills [Yield]) 
IGAUS10M (Australia Commonwealth 10-year Bonds [Yield]) 
SYAUSYM (Australia ASX Dividend yield) 
__AUD_M (Australia Dollar (USD per AUD)) 
 
Canada 
 
TRCANBIM (Canada Total Return Bills Index) 
_TRGSPTM (Toronto SE-300 Total Return Index) 
TRCANGVM (Canada 10-year Total Return Government Bond Index) 
CPCANM (Canada Consumer Price Index) 
ITCAN3M (Canada 3-month Treasury Bill Yield) 
IGCAN10M (Canada 10-year Government Bond Yield) 
SYCANYTM (Toronto SE Dividend Yield) 
__CAD_M (Canada Dollar) 
 
France 
 
TRFRABIM (France Total Return Bills Index) 
TRSBF25M (France SBF-250 Total Return Index) 
TRFRAGVM (France 10-year Total Return Government Bond Index) 
CPFRAM (France Consumer Price Index) 
ITFRA3M (France 3-month Treasury Bill Yield) 
IGFRA10M (France 10-year Government Bond Yield) 
SYFRAYM (France Dividend Yield) 
__FRF_M (France Franc) 
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Germany 
 
TRDEUBIM (Germany Total Return Bills Index) 
_CDAXM (Germany CDAX Total Return Index) 
TRDEUGVM (Germany 10-year Government Bond Return Index) 
CPDEUM (Germany Consumer Price Index) 
ITDEUM (Germany 3-month Treasury Bill Yield) 
IGDEU10M (Germany 10-year Benchmark Bond) 
SYDEUYM (Germany Dividend Yield) 
__DEM_M (Germany Deutschemark) 
 
Italy 
 
TRITABIM (Italy Total Return Bills Index) 
_BCIPRM (Italy BCI Global Return Index) 
TRITAGVM (Italy 10-year Total Return Government Bond Index) 
CPITAM (Italy Consumer Price Index) 
ITITA3M (Italy 3-month Treasury Bill Yield) 
IGITA10M (Italy 10-year Government Bond Yield) 
SYITAYM (Italy Dividend Yield) 
__ITL_M (Italy Lira) 
 
United Kingdom 
 
TRGBRBIM (United Kingdom Total Return Bills Index) 
_TFTASM (UK FTA All-Share Return Index) 
TRGBRGVM (United Kingdom 10-year Government Bond Total Return Index) 
CPGBRM (UK Retail Price Index) 
ITGBR3M (UK 3-month Treasury Bill Yield) 
IGGBR10M (UK 10-year Government Bonds [Yield]) 
_DFTASM (UK FT-Actuaries Dividend Yield) 
__GBP_M (UK British Pound Daily (USD per GBP)) 
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Table 1: Summary statistics, 1952:04-2004:05 
 
(1) (2) (3) (4) (5)  (6) (7) (8) (9) (10) 
           
 
Variable 

 
Mean 

Standard 
deviation 

Sharpe 
ratio 

 
1ρ  

  
Variable 

 
Mean 

Standard 
deviation 

Sharpe 
ratio 

 
1ρ  

           
United States, 1952:04-2004:05  Germany, 1967:02-2004:05 
           

trtbr  1.34 0.99  0.37  trtbr  2.09 1.15  0.29 

txsr  5.69 14.62 0.39 0.03  txsr  2.98 18.28 0.16 0.08 

txbr  1.01 5.65 0.18 0.14  txbr  2.63 5.97 0.44 0.21 

tbill  -0.01 1.03  0.88  tbill  -0.04 1.02  0.93 

tdiv  1.16 0.39  0.99  tdiv  1.19 0.30  0.98 

tspread  1.39 1.16  0.94  tspread  1.98 1.27  0.95 
           
Australia, 1952:04-2004:05  Italy, 1952:04-2004:05 
           

trtbr  2.30 2.86  0.37  trtbr  1.91 1.62  0.49 

txsr  5.54 17.43 0.32 0.07  txsr  1.89 21.90 0.09 0.09 

txbr  1.14 7.15 0.16 0.05  txbr  1.18 7.08 0.17 0.31 

tbill  0.05 1.26  0.89  tbill  -0.01 1.42  0.90 

tdiv  1.66 0.29  0.99  tdiv  1.14 0.40  0.98 

tspread  1.35 1.67  0.95  tspread  1.22 1.71  0.94 
           
Canada, 1952:04-2004:05  United Kingdom, 1952:04-2004:05 
           

trtbr  2.36 1.41  0.21  trtbr  1.59 2.07  0.28 

txsr  3.17 15.60 0.20 0.09  txsr  5.30 18.53 0.29 0.11 

txbr  1.10 7.38 0.15 0.10  txbr  0.92 4.83 0.19 0.32 

tbill  0.01 1.33  0.92  tbill  0.03 1.36  0.90 

tdiv  1.15 0.36  0.99  tdiv  1.51 0.28  0.98 

tspread  1.30 1.48  0.95  tspread  0.84 2.07  0.97 
           
France, 1961:01-2004:05       
           

trtbr  2.23 1.15  0.51       

txsr  2.12 19.44 0.11 0.12       

txbr  1.21 6.36 0.19 0.17       

tbill  -0.02 1.33  0.93       

tdiv  1.28 0.47  0.99       

tspread  0.94 1.45  0.95       
           
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. Sharpe ratio is the mean 
[column (2)] divided by the standard deviation [column (3)]. 

trtbr txsr txbr

tbill tdiv

tspread

1ρ  is the first-order autocorrelation coefficient. 
 

 



 

 

Table 2: VAR estimation results, United States, 1952:04-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
variable 

 
trtbr  

 
txsr  

 
txbr  

 
tbill  

 
tdiv  

 
tspread  

 
2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

1+trtbr  0.360 
(9.610) 
[0.000] 

0.003 
(1.169) 
[0.139] 

0.009 
(1.287) 
[0.110] 

-0.000 
(-0.681) 
[0.229] 

0.000 
(0.251) 
[0.472] 

0.000 
(0.608) 
[0.294] 

0.146 
[0.000] 

        
1+txsr  0.813 

(1.381) 
[0.080] 

-0.004 
(-0.094) 
[0.476] 

0.253 
(2.294) 
[0.013] 

-0.004 
(-1.874) 
[0.037] 

0.009 
(2.156) 
[0.072] 

0.001 
(0.760) 
[0.269] 

0.042 
[0.000] 

        
1+txbr  0.651 

(2.901) 
[0.002] 

-0.065 
(-4.264) 
[0.000] 

0.165 
(3.913) 
[0.000] 

0.001 
(1.072) 
[0.208] 

0.001 
(0.317) 
[0.566] 

0.002 
(2.834) 
[0.001] 

0.070 
[0.000] 

        
1+tbill  -10.793 

(-1.603) 
1.635 
(3.551) 

-6.778 
(-5.372) 

0.881 
(36.718) 

-0.022 
(-0.448) 

0.048 
(2.383) 

0.791 

        
1+tdiv  -0.862 

(-1.401) 
0.030 
(0.706) 

-0.276 
(-2.396) 

0.005 
(2.285) 

0.992 
(223.159) 

-0.001 
(-0.328) 

0.988 

        
1+tspread  -0.626 

(-0.111) 
-0.353 
(-0.916) 

3.125 
(2.960) 

-0.011 
(-0.548) 

0.000 
(0.012) 

0.932 
(55.789) 

0.885 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  0.052 1.00      
        
xbr  -0.010 0.132 1.00     
        
bill  0.063 -0.046 -0.656 1.00    
        
div  -0.081 -0.964 -0.126 0.034 1.00   
        
spread  -0.100 -0.076 0.050 -0.748 0.087 1.00  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 
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Table 3: VAR estimation results, Australia, 1952:04-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
variable 

 
trtbr  

 
txsr  

 
txbr  

 
tbill  

 
tdiv  

 
tspread  

 
2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

1+trtbr  0.323 
(8.475) 
[0.000] 

-0.005 
(-0.720) 
[0.230] 

0.007 
(0.431) 
[0.325] 

-0.000 
(-1.345) 
[0.077] 

-0.002 
(-2.132) 
[0.007] 

-0.001 
(-3.219) 
[0.000] 

0.164 
[0.000] 

        
1+txsr  -0.095 

(-0.377) 
[0.381] 

0.091 
(2.173) 
[0.015] 

-0.213 
(-2.035) 
[0.029] 

-0.002 
(-0.836) 
[0.213] 

0.015 
(2.035) 
[0.073] 

0.000 
(0.212) 
[0.461] 

0.020 
[0.075] 

        
1+txbr  0.111 

(1.081) 
[0.123] 

0.017 
(0.982) 
[0.151] 

0.005 
(0.123) 
[0.423] 

-0.002 
(-2.488) 
[0.005] 

0.001 
(0.270) 
[0.503] 

0.001 
(1.440) 
[0.112] 

0.027 
[0.008] 

        
1+tbill  -4.051 

(-1.430) 
-0.035 
(-0.075) 

-1.386 
(-1.176) 

0.924 
(44.702) 

-0.192 
(-2.313) 

0.068 
(4.389) 

0.802 

        
1+tdiv  -0.220 

(-0.946) 
-0.111 
(-2.873) 

0.208 
(2.152) 

0.005 
(2.748) 

0.981 
(144.256) 

0.002 
(1.372) 

0.974 

        
1+tspread  2.087 

(0.774) 
0.144 
(0.324) 

0.792 
(0.706) 

-0.012 
(-0.632) 

0.123 
(1.554) 

0.940 
(63.766) 

0.897 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  0.033 1.000      
        
xbr  0.063 0.291 1.000     
        
bill  0.017 -0.212 -0.298 1.000    
        
div  -0.059 -0.737 -0.250 0.276 1.000   
        
spread  -0.051 0.068 -0.172 -0.849 -0.119 1.000  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 
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Table 4: VAR estimation results, Canada, 1952:04-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
Variable 

 
trtbr  

 
txsr  

 
txbr  

 
tbill  

 
tdiv  

 
tspread  

 
2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

1+trtbr  0.152 
(3.814) 
[0.000] 

-0.002 
(-0.683) 
[0.235] 

0.006 
(0.802) 
[0.209] 

-0.000 
(-1.450) 
[0.070] 

-0.001 
(-2.102) 
[0.017] 

-0.001 
(-5.276) 
[0.000] 

0.093 
[0.000] 

        
1+txsr  -0.109 

(-0.239) 
[0.413] 

0.064 
(1.553) 
[0.073] 

0.168 
(1.876) 
[0.039] 

-0.001 
(-0.616) 
[0.265] 

0.008 
(1.576) 
[0.154] 

0.002 
(1.442) 
[0.091] 

0.027 
[0.013] 

        
1+txbr  0.766 

(3.639) 
[0.000] 

-0.098 
(-5.173) 
[0.000] 

0.134 
(3.262) 
[0.000] 

-0.000 
(-0.300) 
[0.282] 

0.003 
(1.132) 
[0.269] 

0.003 
(3.576) 
[0.000] 

0.085 
[0.000] 

        
1+tbill  -12.132 

(-2.383) 
1.213 
(2.635) 

-6.149 
(-6.171) 

0.944 
(50.568) 

-0.024 
(-0.408) 

0.069 
(3.974) 

0.863 

        
1+tdiv  -0.194 

(-0.413) 
-0.038 
(-0.898) 

-0.198 
(-2.150) 

0.003 
(1.813) 

0.990 
(183.840) 

-0.001 
(-0.628) 

0.984 

        
1+tspread  1.903 

(0.427) 
0.289 
(0.716) 

4.193 
(4.801) 

-0.050 
(-3.050) 

-0.030 
(-0.594) 

0.922 
(60.929) 

0.914 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  0.018 1.000      
        
xbr  0.021 0.269 1.000     
        
bill  0.042 -0.200 -0.449 1.000    
        
div  -0.068 -0.900 -0.308 0.216 1.000   
        
spread  -0.051 0.050 -0.167 -0.777 -0.049 1.000  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 
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Table 5: VAR estimation results, France, 1961:01-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
Variable 

 
trtbr  

 
txsr  

 
txbr  

 
tbill  

 
tdiv  

 
tspread  

 
2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

1+trtbr  0.410 
(10.111) 
[0.000] 

-0.002 
(-0.975) 
[0.170] 

0.009 
(1.277) 
[0.106] 

-0.000 
(-2.374) 
[0.009] 

-0.000 
(-1.103) 
[0.123] 

-0.001 
(-5.666) 
[0.000] 

0.311 
[0.000] 

        
1+txsr  0.014 

(0.017) 
[0.489] 

0.098 
(2.148) 
[0.014] 

0.198 
(1.371) 
[0.085] 

-0.002 
(-1.116) 
[0.159] 

0.005 
(0.942) 
[0.386] 

0.001 
(0.258) 
[0.422] 

0.026 
[0.045] 

        
1+txbr  1.394 

(5.454) 
[0.000] 

-0.004 
(-0.271) 
[0.381] 

0.129 
(2.839) 
[0.001] 

-0.001 
(-1.791) 
[0.019] 

0.001 
(0.670) 
[0.380] 

0.002 
(2.583) 
[0.008] 

0.103 
[0.000] 

        
1+tbill  -3.832 

(-0.583) 
-0.469 
(-1.279) 

-5.695 
(-4.873) 

0.947 
(53.047) 

-0.040 
(-0.928) 

0.083 
(4.928) 

0.887 

        
1+tdiv  -0.875 

(-0.968) 
-0.157 
(-3.110) 

-0.257 
(-1.601) 

0.003 
(1.176) 

0.986 
(168.410) 

0.000 
(0.001) 

0.983 

        
1+tspread  -14.085 

(-2.200) 
0.480 
(1.344) 

4.088 
(3.592) 

-0.048 
(-2.737) 

0.005 
(0.130) 

0.918 
(56.105) 

0.910 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  0.008 1.000      
        
xbr  -0.031 0.255 1.000     
        
bill  0.128 -0.151 -0.350 1.000    
        
div  0.028 -0.778 -0.258 0.068 1.000   
        
spread  -0.110 0.022 -0.208 -0.798 0.065 1.000  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 

trtbr txsr txbr

tbill tdiv

tspread

2R
≤



 

 

Table 6: VAR estimation results, Germany, 1967:02-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
Variable 

 
 

 
 

 
 

 
 

 
 

 
 

 
trtbr txsr txbr tbill tdiv tspread 2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

 0.224 
(4.768) 
[0.000] 

-0.002 1+trtbr
(-0.664) 
[0.240] 

-0.011 
(-1.178) 
[0.137] 

0.000 
(0.111) 
[0.483] 

-0.000 
(-0.101) 
[0.434] 

-0.001 
(-4.777) 
[0.000] 

0.139 
[0.000] 

        
 0.343 

(0.433) 
[0.331] 

0.064 
(1.320) 
[0.094] 

0.082 
(0.540) 

1+txsr

[0.288] 

-0.005 
(-1.965) 
[0.035] 

0.010 
(1.144) 
[0.303] 

0.002 
(0.849) 
[0.262] 

0.023 
[0.138] 

        
0.745 
(2.972) 
[0.003] 

-0.044 
(-2.877) 
[0.001] 

0.200 
(4.200) 
[0.000] 

-0.001 
(-1.735) 
[0.026] 

0.002 
(0.654) 
[0.371] 

0.001 
(1.496) 
[0.105] 

0.088 
[0.000] 

1+txbr  

        
1+tbill  1.260 

(0.248) 
0.377 
(1.218) 

-7.687 
(-7.942) 

0.929 
(55.388) 

-0.064 
(-1.175) 

0.068 
(4.925) 

0.892 

        
 -0.044 

(-0.050) 
-0.062 1+tdiv
(-1.167) 

-0.156 
(-0.934) 

0.008 
(2.609) 

0.980 
(103.836) 

-0.001 
(-0.345) 

0.962 

        
1+tspread  -11.420 

(-2.039) 
0.347 
(1.018) 

4.664 
(4.374) 

-0.035 
(-1.874) 

0.014 
(0.237) 

0.940 
(61.636) 

0.915 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  -0.014 1.000      
        
xbr  0.113 0.152 1.000     
        
bill  0.017 -0.015 -0.204 1.000    
        
div  0.018 -0.804 -0.132 0.027 1.000   
        
spread  -0.082 -0.070 -0.435 -0.774 0.044 1.000  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 
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Table 7: VAR estimation results, Italy, 1952:04-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
variable 

 
trtbr  

 
txsr  

 
txbr  

 
tbill  

 
tdiv  

 
tspread  

 
2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

1+trtbr  0.458 
(12.771) 
[0.000] 

0.000 
(0.083) 
[0.430] 

0.006 
(0.685) 
[0.270] 

-0.000 
(-1.522) 
[0.060] 

-0.001 
(-1.494) 
[0.064] 

-0.000 
(-2.544) 
[0.003] 

0.262 
[0.000] 

        
1+txsr  0.740 

(1.319) 
[0.092] 

0.094 
(2.298) 
[0.006] 

-0.025 
(-0.187) 
[0.422] 

-0.001 
(-0.566) 
[0.283] 

0.006 
(0.824) 
[0.359] 

0.002 
(0.853) 
[0.218] 

0.016 
[0.132] 

        
1+txbr  0.719 

(4.273) 
[0.000] 

0.017 
(1.367) 
[0.109] 

0.238 
(5.919) 
[0.000] 

-0.002 
(-2.857) 
[0.000] 

0.000 
(0.124) 
[0.448] 

0.001 
(1.699) 
[0.065] 

0.155 
[0.000] 

        
1+tbill  -28.046 

(-5.376) 
-0.562 
(-1.484) 

-2.016 
(-1.616) 

0.908 
(45.865) 

-0.162 
(-2.520) 

0.062 
(3.787) 

0.830 

        
1+tdiv  -0.874 

(-1.405) 
-0.400 
(-8.858) 

0.280 
(1.884) 

0.000 
(0.069) 

0.971 
(126.418) 

0.001 
(0.751) 

0.969 

        
1+tspread  16.983 

(3.368) 
0.701 
(1.914) 

-0.953 
(-0.791) 

0.002 
(0.128) 

0.141 
(2.255) 

0.938 
(59.015) 

0.891 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  -0.017 1.000      
        
xbr  0.009 0.157 1.000     
        
bill  0.010 -0.089 -0.244 1.000    
        
div  0.028 -0.599 -0.118 0.001 1.000   
        
spread  -0.011 -0.019 -0.179 -0.854 0.084 1.000  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 
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Table 8: VAR estimation results, United Kingdom, 1952:04-2004:05 
 
(1) (2) (3) (4) (5) (6) (7) (8) 
        
Dependent 
Variable 

 
trtbr  

 
txsr  

 
txbr  

 
tbill  

 
tdiv  

 
tspread  

 
2R  

        
VAR slope coefficient estimates and goodness-of-fit measures 
        

1+trtbr  0.183 
(4.624) 
[0.000] 

0.001 
(0.324) 
[0.377] 

-0.003 
(-0.181) 
[0.436] 

-0.001 
(-3.598) 
[0.000] 

-0.001 
(-1.468) 
[0.083] 

-0.001 
(-6.154) 
[0.000] 

0.146 
[0.000] 

        
1+txsr  0.845 

(2.240) 
[0.015] 

0.093 
(2.224) 
[0.009] 

0.210 
(1.269) 
[0.109] 

-0.001 
(-0.478) 
[0.299] 

0.028 
(3.555) 
[0.003] 

0.001 
(0.731) 
[0.269] 

0.044 
[0.000] 

        
1+txbr  0.255 

(2.732) 
[0.002] 

0.042 
(4.018) 
[0.000] 

0.269 
(6.572) 
[0.000] 

0.000 
(0.284) 
[0.446] 

0.004 
(1.918) 
[0.042] 

0.000 
(1.553) 
[0.065] 

0.140 
[0.000] 

        
1+tbill  2.671 

(0.661) 
-0.106 
(-0.236) 

-7.124 
(-4.022) 

0.913 
(47.958) 

-0.251 
(-3.021) 

0.054 
(4.275) 

0.830 

        
1+tdiv  -0.363 

(-1.213) 
-0.442 
(-13.340) 

-0.111 
(-0.847) 

0.002 
(1.515) 

0.984 
(160.090) 

0.000 
(0.507) 

0.979 

        
1+tspread  -7.353 

(-1.961) 
-0.998 
(-2.404) 

1.851 
(1.126) 

-0.031 
(-1.761) 

0.149 
(1.936) 

0.950 
(80.995) 

0.937 

        
Cross-correlations of VAR residuals 
        
 rtbr  xsr  xbr  bill  div  spread   
        
rtbr  1.000       
        
xsr  -0.111 1.000      
        
xbr  -0.043 0.279 1.000     
        
bill  0.097 -0.263 -0.466 1.000    
        
div  0.082 -0.789 -0.291 0.222 1.000   
        
spread  -0.098 0.129 0.036 -0.840 -0.083 1.000  
        
 
Notes: = log real 3-month Treasury bill return;  = log excess stock return;  = log excess bond return; 

 = 3-month Treasury bill yield (deviations from 1-year backward-looking moving average);  = log 
dividend yield;  = 10-year government bond yield – 3-month Treasury bill yield. t-statistics are given in 
parentheses. Bootstrapped p-values corresponding to the reported t-statistics under the null hypothesis of no 
predictability are given in brackets; if the t-statistic < 0, the reported p-value is the proportion of bootstrapped draws 
that yield a t-statistic less than the original statistic; if the t-statistic > 0, the reported p-value is the proportion of 
bootstrapped draws that yield a t-statistic greater than the original t-statistic. The bootstrapped p-values appearing 
below the reported  measure correspond to a Wald test of the null hypothesis that the explanatory variables are 
jointly zero. 0.000 indicates  0.0005. 
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Table 9: Mean demands for domestic assets for investors in different countries 
 

(1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10) 
            
 Stocks  Bonds  Bills 
            
 
CRRA 

Total 
demand 

Myopic 
Demand 

Hedging 
demand 

 Total 
demand 

Myopic 
demand 

Hedging 
demand 

 Total 
demand 

Myopic 
demand 

Hedging 
demand 

            
United States, 1952:04-2004:04 
            

4=γ  173.79 
[102,197] 

78.28 
[43,76] 

95.51 
[50,122] 

 35.59 
[-65,124] 

70.15 
[-55,143] 

-34.56 
[-46,-6] 

 -109.37 
[-254,-40] 

-48.42 
[-159,28] 

-60.95 
[-140,-41] 

            
7=γ  124.65 

[71,149] 
44.58 
[24,43] 

80.07 
[43,109] 

 15.49 
[-41,68] 

40.21 
[-32,82] 

-24.72 
[-32,-4] 

 -40.14 
[-136,2] 

15.21 
[-48,58] 

-55.35 
[-124,-36] 

            
10=γ  98.08 

[55,122] 
31.10 
[17,30] 

66.97 
[34,92] 

 8.81 
[-29,47] 

28.23 
[-20,59] 

-19.42 
[-26,-4] 

 -6.89 
[-84,25] 

40.66 
[-4,71] 

-47.55 
[-109,-30] 

            
Australia, 1954:02-2004:04 
            

4=γ  73.60 
[30,95] 

55.35 
[25,67] 

18.25 
[0,31] 

 36.73 
[-45,78] 

28.88 
[-62,73] 

7.86 
[-14,24] 

 -10.33 
[-83,41] 

15.78 
[-47,69] 

-26.11 
[-71,-5] 

            
7=γ  40.34 

[14,56] 
31.52 
[14,39] 

8.81 
[-5,20] 

 13.63 
[-32,39] 

15.57 
[-36,41] 

-1.93 
[-16,11] 

 46.03 
[-4,75] 

52.91 
[17,83] 

-6.88 
[-44,7] 

            
10=γ  25.64 

[6,39] 
22.00 
[10,27] 

3.64 
[-7,15] 

 3.06 
[-29,22] 

10.24 
[-26,29] 

-7.18 
[-18,5] 

 71.30 
[31,91] 

67.76 
[42,89] 

3.54 
[-29,13] 

            
Canada, 1954:02-2004:04 
            

4=γ  59.46 
[21,83] 

40.46 
[11,48] 

19.00 
[5,40] 

 29.99 
[-44,92] 

43.52 
[-51,103] 

-13.53 
[-24,5] 

 10.55 
[-94,53] 

16.02 
[-69,70] 

-5.47 
[-55,-1] 

            
7=γ  34.96 

[12,53] 
23.07 
[6,27] 

11.89 
[2,30] 

 16.22 
[-26,52] 

24.73 
[-30,59] 

-8.51 
[-15,4] 

 45.82 
[-19,71] 

52.21 
[4,84] 

-3.38 
[-44,-1] 

            
10=γ  24.16 

[8,39] 
16.11 
[4,19] 

8.05 
[-1,22] 

 11.11 
[-17,37] 

17.21 
[-21,41] 

-6.10 
[-11,4] 

 64.73 
[14,79] 

66.68 
[33,88] 

-1.95 
[-35,0] 

            
France, 1961:01-2004:04 
            

4=γ  23.78 
[-3,43] 

20.48 
[-5,32] 

3.30 
[-4,16] 

 56.38 
[-51,128] 

80.05 
[-60,159] 

-23.67 
[-47,-4] 

 19.84 
[-104,74] 

-0.53 
[-130,77] 

20.37 
[-17,26] 

            
7=γ  13.11 

[-3,27] 
11.67 
[-3,18] 

1.44 
[-4,10] 

 30.82 
[-29,71] 

45.98 
[-37,88] 

-15.16 
[-30,-3] 

 56.07 
[-14,86] 

42.35 
[-31,86] 

13.72 
[-12,17] 

            
10=γ  8.70 

[-3,19] 
8.14 
[-2,13] 

0.56 
[-4,8] 

 21.11 
[-21,49] 

32.36 
[-25,62] 

-11.24 
[-23,-2] 

 70.19 
[21,91] 

59.50 
[8,90] 

10.68 
[-9,14] 

            
Germany, 1967:02-2004:04 
            

4=γ  49.85 
[17,76] 

25.77 
[1,38] 

24.08 
[8,44] 

 151.76 
[41,229] 

201.22 
[68,284] 

-49.46 
[-76,-18] 

 -101.61 
[-262,-49] 

-126.98 
[-270,-56] 

25.38 
[-33,35] 

            
7=γ  29.86 

[10,48] 
14.80 
[1,22] 

15.06 
[3,28] 

 83.52 
[26,132] 

114.03 
[38,162] 

-30.52 
[-47,-10] 

 -13.38 
[-109,14] 

-28.84 
[-111,12] 

15.46 
[-25,21] 

            
10=γ  20.92 

[7,35] 
10.42 
[0,15] 

10.50 
[2,21] 

 57.66 
[20,93] 

79.16 
[26,112] 

-21.50 
[-34,-6] 

 21.41 
[-48,39] 

10.42 
[-47,39] 

10.99 
[-21,15] 

            
 
Notes: The table reports mean monthly total asset demands in percentages for stocks, 10-year government bonds, 
and 3-month Treasury bills for an investor with a unitary elasticity of intertemporal substitution, a discount factor 
equal to 0.921/12, and coefficients of relative risk aversion (γ ) equal to 4, 7, and 10. The table also reports the mean 
myopic and hedging demands for each asset class. Bootstrapped 68% confidence intervals for the mean asset 
demands are given in brackets. 

 



 
Table 9 (continued) 
 

(1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10) 
            
 Stocks  Bonds  Bills 
            
 
CRRA 

Total 
demand 

Myopic 
Demand 

Hedging 
demand 

 Total 
demand 

Myopic 
demand 

Hedging 
demand 

 Total 
demand 

Myopic 
demand 

Hedging 
demand 

            
Italy, 1952:04-2004:04 
            

4=γ  15.68 
[-5,32] 

19.21 
[1,30] 

-3.53 
[-9,4] 

 46.89 
[-56,111] 

72.15 
[-69,154] 

-25.27 
[-65,-1] 

 37.43 
[-74,95] 

8.63 
[-139,92] 

28.80 
[-15,47] 

            
7=γ  6.48 

[-5,17] 
11.03 
[0,17] 

-4.55 
[-9,1] 

 23.47 
[-35,60] 

41.12 
[-40,88] 

-17.64 
[-41,-2] 

 70.04 
[8,101] 

47.85 
[-36,95] 

22.19 
[-6,33] 

            
10=γ  2.75 

[-5,11] 
7.76 
[0,12] 

-5.01 
[-9,0] 

 14.44 
[-27,40] 

28.70 
[-28,61] 

-14.26 
[-32,-3] 

 82.81 
[39,104] 

63.54 
[5,97] 

19.27 
[-2,27] 

            
United Kingdom, 1952:04-2004:04 
            

4=γ  125.59 
[74,147] 

48.63 
[30,57] 

76.97 
[41,94] 

 75.50 
[-57,154] 

73.72 
[-80,159] 

1.78 
[-27,22] 

 -101.09 
[-250,-9] 

-22.34 
[-165,70] 

-78.75 
[-125,-48] 

            
7=γ  88.00 

[50,106] 
28.27 
[18,33] 

59.73 
[30,75] 

 44.30 
[-33,89] 

42.36 
[-46,91] 

1.94 
[-20,15] 

 -32.30 
[-123,25] 

29.37 
[-52,83] 

-61.67 
[-100,-36] 

            
10=γ  66.61 

[36,82] 
20.13 
[13,23] 

46.48 
[21,60] 

 30.79 
[-24,61] 

29.82 
[-33,64] 

0.97 
[-16,11] 

 2.60 
[-65,45] 

50.05 
[-7,87] 

-47.45 
[-80,-26] 

            
 

 



 

 

                

Table 10: Mean asset demands for an investor in the United States who can also invest in foreign stocks and bonds 
 

(1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10)  (11) (12) (13)  (14) (15) (16)
                

               

    
 Domestic stocks 

 
 Domestic bonds 

 
 Foreign stocks 

 
 Foreign bonds 

 
 Domestic bills 

 
 
CRRA 
 

Total 
demand 
 

Myopic 
demand 
 

Hedging 
demand 
 

        Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Foreign country: Australia, 1952:04-2004:04 
                    

4=γ  148.94 
[68,172] 
 

59.39 
[19,59] 
 

89.55 
[41,116] 
 

        

 

75.97
[-21,167] 

  

92.51 
[-35,173] 
 

-16.54 
[-37,20] 
 

50.36
[8,70] 

  

37.52 
[3,52] 
 

12.85 
[-1,21] 
 

-36.54
[-96,9] 

  

-33.26 
[-90,10] 
 

-3.28 
[-17,3] 
 

-138.73
[-298,-56] 

  

-56.15 
[-197,40] 
 

-82.58 
[-170,-55] 
 

7=γ  110.73 
[51,132] 
 

33.68 
[11,33] 
 

77.05 
[38,105] 
 

        

 

40.56
[-13,96] 

  

53.14 
[-19,99] 
 

-12.58 
[-26,14] 
 

30.18
[5,42] 

  

21.61 
[2,30] 
 

8.57 
[-1,16] 
 

-21.51
[-56,5] 

  

-19.21 
[-52,5] 
 

-2.30 
[-12,2] 
 

-59.95
[-169,-12] 

  

10.78 
[-70,65] 
 

-70.74 
[-145,-48] 
 

10=γ  89.40 
[42,110] 
 

23.39 
[7,23] 
 

66.01 
[32,88] 
 

        

 

                 

26.76
[-11,67] 

  

37.39 
[-13,70] 
 

-10.64 
[-20,10] 
 

21.14
[4,31] 

  

15.24 
[2,21] 
 

5.89 
[-1,12] 
 

-15.15
[-39,3] 

  

-13.59 
[-37,3] 
 

-1.56 
[-10,1] 
 

-22.15
[-105,11] 

  

37.56 
[-19,76] 
 

-59.70 
[-124,-41] 
 

Foreign country: Canada, 1952:04-2004:04 
   

4=γ  172.01 
[54,200] 
 

95.82 
[29,101] 
 

76.19 
[12,104] 
 

        

 

46.28
[-91,149] 

  

56.64 
[-42,120] 
 

-10.36 
[-60,36] 
 

5.50
[-40,55] 

  

-22.32 
[-58,14] 
 

27.81 13.11
[-2,55] 
 

[-69,75] 
  

17.27 
[-60,72] 
 

-4.16 -136.90
[-27,13] 
 

[-310,-65] 
  

-47.42 
[-157,22] 
 

-89.48 
[-185,-66] 
 

7=γ  119.81 
[42,145] 
 

54.25 
[14,56] 
 

65.57 
[16,92] 
 

        

 

29.22
[-57,94] 

  

32.97 
[-24,69] 
 

-3.75 
[-42,31] 
 

9.53
[-18,42] 

  

-12.31 
[-33,8] 
 

21.84 
[0,43] 
 

6.24
[-43,45] 

  

9.50 
[-35,41] 
 

-3.26 
[-21,10] 
 

-64.80
[-183,-19] 

  

15.59 
[-47,55] 
 

-80.40 
[-162,-60] 
 

10=γ  92.87 
[34,116] 
 

37.62 
[11,40] 
 

55.25 
[16,80] 
 

        

 

                 

24.18
[-41,71] 

  

23.50 
[-16,49] 
 

0.67 
[-32,27] 
 

9.65
[-11,34] 

  

-8.31 
[-23,6] 
 

17.95 
[2,35] 
 

2.81
[-33,31] 

  

6.39 
[-24,29] 
 

-3.58 
[-17,8] 
 

-29.50
[-121,4] 

  

40.79 
[-3,68] 
 

-70.30 
[-141,-53] 
 

Foreign country: France, 1961:01-2004:04 
   

4=γ  145.76 
[39,173] 
 

62.97 
[11,62] 
 

82.78 
[20,109] 
 

        

 

-8.42
[-93,115] 

  

45.14 
[-52,139] 
 

-53.56 
[-83,-4] 
 

-15.99
[-50,18] 

  

-3.33 
[-32,17] 
 

-12.66 
[-25,6] 
 

63.53
[-19,128] 

  

57.29 
[-13,123] 
 

6.24 
[-11,13] 
 

-84.87
[-305,-30] 

  

-62.07 
[-239,8] 
 

-22.79 
[-120,-5] 
 

7=γ  105.92 
[30,129] 
 

35.89 
[6,36] 
 

70.03 
[20,95] 
 

        

 

-13.45
[-62,63] 

  

25.93 
[-29,80] 
 

-39.37 
[-58,-5] 
 

-13.08
[-34,8] 

  

-2.06 
[-18,9] 
 

-11.02 
[-19,3] 
 

38.06
[-11,75] 

  

32.86 
[-7,70] 
 

5.20 
[-8,9] 
 

-17.45
[-152,15] 

  

7.38 
[-94,47] 
 

-24.84 
[-104,-10] 
 

10=γ  84.68 
[25,106] 
 

25.06 
[4,25] 
 

59.62 
[18,83] 
 

        

 

                

-13.39
[-47,42] 

  

18.24 
[-20,56] 
 

-31.64 
[-46,-6] 
 

-11.29
[-26,5] 

  

-1.56 
[-13,6] 
 

-9.74 
[-16,2] 
 

27.66
[-7,53] 

  

23.09 
[-5,49] 
 

4.57 
[-6,7] 
 

12.34
[-92,34] 

  

35.16 
[-35,63] 
 

-22.82 
[-89,-9] 
 

Foreign country: Germany, 1967:02-2004:04 
    

4=γ  122.46 
[25,143] 
 

50.90 
[3,52] 
 

71.56 
[10,99] 
 

        

 

-18.10
[-103,122] 

  

41.65 
[-49,140] 
 

-59.75 
[-77,-1] 
 

-5.62
[-66,15] 

  

4.64 
[-54,18] 
 

-10.26 
[-23,2] 
 

66.91
[-6,111] 

  

62.96 
[-1,104] 
 

3.95 
[-14,12] 
 

-65.66
[-254,-1] 

  

-60.16 
[-189,11] 
 

-5.50 
[-109,6] 
 

7=γ  85.28 
[17,107] 
 

28.86 
[1,30] 
 

56.41 
[10,83] 
 

        

 

-16.92
[-68,67] 

  

24.28 
[-28,80] 
 

-41.20 
[-52,-2] 
 

-5.13
[-39,7] 

  

2.62 
[-31,10] 
 

-7.75 
[-16,1] 
 

38.58
[-4,64] 

  

35.80 
[-1,59] 
 

2.78 
[-9,8] 
 

-1.80
[-126,34] 

  

8.44 
[-65,49] 
 

-10.24 
[-91,0] 
 

10=γ  66.21 
[13,88] 
 

20.05 
[1,20] 
 

46.16 
[9,71] 
 

        

 

-14.16
[-49,47] 

  

17.33 
[-19,56] 
 

-31.49 
[-40,-2] 
 

-4.61
[-28,5] 

  

1.82 
[-22,7] 
 

-6.43 
[-13,1] 
 

27.27
[-3,45] 

  

24.93 
[-1,41] 
 

2.34 
[-7,6] 
 

25.29
[-69,52] 

  

35.87 
[-16,64] 
 

-10.58 
[-78,-1] 
 

 
Notes: The table reports mean monthly total asset demands in percentages for domestic stocks, domestic 10-year government bonds, foreign stocks, foreign 10-year government bonds, and domestic 3-
month Treasury bills for an investor with a unitary elasticity of intertemporal substitution, a discount factor equal to 0.921/12, and coefficients of relative risk aversion (γ ) equal to 4, 7, and 10. The table 
also reports the mean myopic and hedging demands for each asset class. Bootstrapped 68% confidence intervals for the mean asset demands are given in brackets. 



 

 

                

Table 10 (continued) 
 

(1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10)  (11) (12) (13)  (14) (15) (16)
                

               

    
 Domestic stocks 

 
 Domestic bonds 

 
 Foreign stocks 

 
 Foreign bonds 

 
 Domestic bills 

 
 
CRRA 
 

Total 
demand 
 

Myopic 
demand 
 

Hedging 
demand 
 

        Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Foreign country: Italy, 1952:04-2004:04 
                    

4=γ  169.43 
[106,202] 
 

77.64 
[44,79] 
 

91.79 
[59,128] 
 

        

 

-6.46
[-99,83] 

  

45.59 
[-59,115] 
 

-52.04 
[-77,-7] 
 

8.26
[-18,24] 

  

4.71 
[-18,18] 
 

3.55 
[-9,11] 
 

41.14
[-24,81] 

  

54.04 
[-18,95] 
 

-12.90 
[-29,-4] 
 

-112.37
[-287,-50] 

  

-81.98 
[-220,9] 
 

-30.39 
[-142,-16] 
 

7=γ  122.73 
[78,153] 
 

44.28 
[25,45] 
 

78.45 
[49,110] 
 

        

 

-8.42
[-60,46] 

  

26.07 
[-34,66] 
 

-34.49 
[-52,-4] 
 

4.01
[-12,15] 

  

2.58 
[-10,10] 
 

1.43 
[-7,7] 
 

23.05
[-16,43] 

  

30.94 
[-11,54] 
 

-7.90 
[-19,-1] 
 

-41.36
[-153,-6] 

  

-3.88 
[-83,48] 
 

-37.48 
[-126,-25] 
 

10=γ  98.25 
[64,127] 
 

30.94 
[17,32] 
 

67.31 
[40,94] 
 

        

 

                

-8.07
[-44,31] 

  

18.27 
[-24,46] 
 

-26.34 
[-39,-3] 
 

1.69
[-9,10] 

  

1.73 
[-7,7] 
 

-0.04 
[-6,5] 
 

16.55
[-10,31] 

  

21.70 
[-7,38] 
 

-5.15 
[-14,-1] 
 

-8.41
[-95,16] 

  

27.36 
[-28,64] 
 

-35.78 
[-110,-25] 
 

Foreign country: United Kingdom, 1952:04-2004:04 
    

4=γ  163.61 
[94,187] 
 

64.96 
[33,72] 
 

98.65 
[56,126] 
 

        

 

38.09
[-71,112] 

  

53.60 
[-64,119] 
 

-15.51 
[-42,11] 
 

57.63
[0,83] 

  

21.38 
[-11,34] 
 

36.25 
[5,50] 
 

17.76
[-50,74] 

  

39.82 
[-22,89] 
 

-22.06 
[-39,-7] 
 

-177.10
[-336,-87] 

  

-79.77 
[-211,8] 
 

-97.33 
[-170,-65] 
 

7=γ  125.07 
[75,150] 
 

37.13 
[19,41] 
 

87.94 
[51,113] 
 

        

 

22.13
[-41,67] 

  

30.72 
[-37,69] 
 

-8.59 
[-29,10] 
 

40.86
[2,58] 

  

11.97 
[-6,19] 
 

28.90 
[4,40] 
 

5.13
[-34,39] 

  

22.96 
[-13,51] 
 

-17.83 
[-33,-6] 
 

-93.19
[-196,-37] 

  

-2.77 
[-78,47] 
 

-90.42 
[-154,-63] 
 

10=γ  102.70 
[60,123] 
 

25.99 
[13,29] 
 

76.70 
[45,100] 
 

        

 

15.91
[-29,47] 

  

21.57 
[-26,48] 
 

-5.66 
[-22,9] 
 

31.00
[1,45] 

  

8.20 
[-5,13] 
 

22.81 
[3,33] 
 

2.02
[-27,27] 

  

16.22 
[-9,36] 
 

-14.19 
[-27,-5] 
 

-51.64
[-130,-10] 

  

28.02 
[-25,63] 
 

-79.66 
[-137,-56] 
 

 



 

 

                

Table 11: Mean asset demands for investors in Australia, Canada, France, Germany, Italy, and the United Kingdom who can also invest in United States stocks and bonds 
 

(1) (2) (3) (4)  (5) (6) (7)  (8) (9) (10)  (11) (12) (13)  (14) (15) (16)
                

               

    
 Domestic stocks 

 
 Domestic bonds 

 
 Foreign stocks 

 
 Foreign bonds 

 
 Domestic bills 

 
 
CRRA 
 

Total 
demand 
 

Myopic 
demand 
 

Hedging 
demand 
 

        Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 
 

Hedging 
demand 
 

Domestic country: Australia, 1952:04-2004:04 
                    

4=γ  75.42 
[24,100] 
 

49.22 
[17,64] 
 

26.20 
[0,40] 
 

        

 

50.28
[-46,126] 

  

31.83 
[-64,110] 
 

18.45 
[-14,39] 
 

142.81
[52,158] 

  

60.94 
[15.61] 
 

81.87 
[30,102] 
 

-9.04
[-53,45] 

  

67.51 
[34,102] 
 

-76.54 
[-109,-48] 
 

-159.48
[-280,-94] 

  

-109.50 
[-215,-47] 
 

-49.98 
[-110,-20] 
 

7=γ  44.29 
[12,61] 
 

28.16 
[9,37] 
 

16.14 
[-2,27] 
 

        

 

26.79
[-29,73] 

  

17.13 
[-38,62] 
 

9.66 
[-13,26] 
 

100.97
[39,115] 

  

34.6 
[8,35] 
 

66.36 
[25,84] 
 

-21.61
[-54,14] 

  

39.23 
[20,59] 
 

-60.85 
[-88,-38] 
 

-50.44
[-127,-12] 

  

-19.13 
[-79,16] 
 

-31.31 
[-77,-11] 
 

10=γ  29.72 
[6,43] 
 

19.73 
[6,26] 
 

9.99 
[-4,20] 
 

        

 

                

14.97
[-24,49] 

  

11.26 
[-27,43] 
 

3.71 
[-13,18] 
 

79.38
[31,92] 

  

24.07 
[6,24] 
 

55.31 
[21,70] 
 

-22.21
[-47,4] 

  

27.92 
[15,42] 
 

-50.13 
[-75,-31] 
 

-1.86
[-61,25] 

  

17.02 
[-25,42] 
 

-18.88 
[-57,-4] 
 

Domestic country: Canada, 1952:04-2004:04 
    

4=γ  -12.69 
[-73,41] 
 

-10.54 
[-53,21] 
 

-2.15 
[-32,31] 
 

        

 

168.83
[47,251] 

  

146.24 
[23,221] 
 

22.59 
[-3,46] 
 

161.16
[43,183] 

  

74.58 
[12,80] 
 

86.58 
[22,106] 
 

-270.70
[-379,-141] 

  

-179.30 
[-259,-78] 
 

-91.41 
[-139,-52] 
 

53.40
[-137,112] 

  

69.01 
[-78,127] 
 

-15.61 
[-83,1] 
 

7=γ  -6.72 
[-45,28] 
 

-5.79 
[-30,12] 
 

-0.93 
 26] 

 110.8 
[33,131] 

42.26 
[7,45] 

  61.73   24.43 

        
[-22,23] 
 

 102.19 
[32,154]

83.63 
[14,1

18.55 
[0,38] 

68.54 
[20,87] 
 

-164.37
[-242,-91] 

  

-102.64 
[-148,-45] 
 

-
[-105,-35] 
 

58.10
[-60,92] 

  

82.53 
[-2,115] 
 

-
[-76,-10] 
 

10=γ  -3.72 
[-31,22] 

-3.89 
[-21,9] 

       1.46 
[-27,84] 

87.94 26.49 
[-69,-14] 

    

                

0.17 
[-16,19] 

72.70
[23,112] 
 

58.59 
[9,88] 
 

14.11 
[-1,31] 
 

83.51
[25,102] 

  

29.33 
[5,32] 
 

54.18 
[15,72] 
 

-113.95
[-177,-63] 

  

-71.97 
[-104,-31] 
 

-41.97 
[-80,-23] 
 

6
[29,111] 
 

-

    
Domestic country: France, 1961:01-2004:04 
    

4=γ  -10.59 
[-42,23] 
 

-1.14 
[-31,16] 
 

-9.44 
[-19,10] 
 

  
2] 

     14.78 
[-162,77] 

3.16 
[-176,74] 

17.94 
[-29,23] 

       

85.10
[-37,19

99.83 
[-43,206] 
 

-14.73 
[-33,5] 
 

109.18
[-2,114] 

  

50.08 
[-4,49] 
 

59.10 
[1,67] 
 

-98.47
[-153,-14] 

  

-45.60 
[-92,8] 
 

-52.87 
[-76,-17] 
 

-

7=γ  -8.32 
[-27,14] 

0.71 
[-18,9]  

 48.51 
[-20,109] 

57.40 
[-24,118] 

8.89 
[-21,5] 

  
14] 

26.20 
[-53,5] 

40.53 
[-60,-14] 

 50.92 

          

- -7.61 
[-14,7]

-  75.63 
[2,82] 

28.64 
[-2,28] 
 

46.99 
[2,54] 
 

-66.74
[-103,-

- -
[-51,84] 

  

40.88 
[-58,85] 
 

10.04 
[-24,13] 
     

10=γ  -6.77 
[-20,10] 

0.54 
[-12,7] 

6.23 
[-11,6] 

   50.85  5.12 
[-8,88] 

       
Domestic country: Germany, 1967:02-2004:04 
                    

- -  34.11 
[-14,77] 
 

40.43 
[-17,82] 

-6.32 
[-16,4] 

58.38
[2,65] 

  

20.06 
[-2,20] 
 

38.32 
[2,45] 
 

-
[-78,-12] 

  

-18.44 
[-37,3] 
 

-32.41 
[-49,-11] 
 

6 58.49 
[-10,90] 
 

6.63 
[-20,10] 
   

4=γ  14.65     42.63 
[-6,42] 

68.15 
[-5,74] 

 -104.53 
[-155,8] 

37.28 
[-81,27] 

-67.26   

      
[-49,27] 

6.86 
[-52,16] 

7.79 
[-9,20] 

    

201.53
[47,279] 
 

223.50 
[41,290] 
 

-21.97 
[-50,13] 
 

110.78
[-1,110] 

  

-
[-91,-16] 
 

-122.43
[-268,-23] 

  

-135.71 
[-265,-18] 
 

13.28 
[-54,26] 
 

7=γ  7.99 
[-30,16] 

3.99 
[-29,9] 

4.00 
[-7,13] 

       -30.58 
[-115,30] 

33.81 
[-108,33] 

3.22 
[-45,16] 

     

116.64
[27,160] 
 

126.80 
[25,167] 
 

-10.16 
[-30,12] 
 

78.31
[1,81] 

  

24.33 
[-3,25] 
 

53.99 
[-3,59] 
 

-72.36
[-107,-1] 

  

-21.31 
[-46,16] 
 

-51.05 
[-71,-12] 
 

-

    
10=γ  5.03 

[-21,12] 
 

2.84 
[-20,6] 
 

2.18 
[-6,9] 

 82.67 
[17,112] 

88.11 
[16,116] 

      
 

     

-5.44 
[-21,12] 

61.17
[0,64] 

  

17.00 
[-2,17] 
 

44.17 
[-2,49] 
 

-55.76
[-82,-3] 

  

-14.92 
[-32,11] 
 

-40.84 
[-58,-10] 
 

6.89
[-55,50] 

  

6.96 
[-45,54] 
 

-0.07 
[-38,10]

  
 
Notes: The table reports mean monthly total asset demands in percentages for domestic stocks, domestic 10-year government bonds, foreign stocks, foreign 10-year government bonds, and domestic 3-
month Treasury bills for an investor with a unitary elasticity of intertemporal substitution, a discount factor equal to 0.921/12, and coefficients of relative risk aversion (γ ) equal to 4, 7, and 10. The table 
also reports the mean myopic and hedging demands for each asset class. Bootstrapped 68% confidence intervals for the mean asset demands are given in brackets. 



 

 

 (2)               

Table 11 (continued) 
 

(1) (3) (4)  (5) (6) (7)  (8) (9) (10)  (11) (12) (13)  (14) (15) (16)
           

Domestic bills 
                

         
 Domestic stocks 

 
 Domestic bonds 

 
 Foreign stocks 

 
 Foreign bonds 

 
 

 
CRRA 

Total 
demand 

Myopic        otal 
demand 

Myopic 
demand 

Hedging 
Demand 

        
demand 

Hedging 
demand 

Total
demand 
 

Myopic 
demand 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 

Hedging 
demand 
 

Total
demand 

  

Myopic 
demand 

Hedging 
demand 
 

T

    
Domestic country: Italy, 1952:04-2004:04 
                    

4=γ  3.26 
[-23,21] 
 

5.00 
[-16,19] 
 

-1.74 
[-12,5] 

  78.57   
5] 

-46.87 
[-70,-29] 

 11.27 
[-141,81] 

5.92 
[-173,95] 

5.35 
[-40,28] 

        

59.66
[-64,142] 

  
[-77,181] 
 

-18.91 
[-54,1] 
 

 126.25 
[-62,144] 

  

64.07 
[27,67] 
 

62.18 
[29,80] 
 

-100.43
[-158,-42] 

  

-53.56 
[-101,-

7=γ  0.24 
[-15,11] 

2.92 -2.68 
 4]  

 8.90   
33] 

  
 

        
[-9,11] [-10,3] 

 32.87 
[-37,80]

44.93 
[-44,10

-12.06 
[-35,1]

8
[44,103] 

  

36.35 
[15,38] 
 

52.55 
[24,66] 
 

-68.70
[-105,-

-30.28 
[-58,-3] 
 

-38.42 
[-56,-25] 
 

46.69
[-41,85]

46.08 
[-56,97] 
 

0.61 
[-31,16] 
     

10=γ  -1.17 
[-12,7] 

2.09 
[-6,8] 

3.26 
[-9,2] 

 22.50 
[-26,54] 

31.47 
[-31,73] 

      0.43 
[-25,11] 

    

                

- -8.98 
[-27,1] 
 

70.56
[35,82] 

  

25.26 
[10,27] 
 

45.30 
[21,56] 
 

-53.59
[-81,-27] 

  

-20.96 
[-40,-2] 
 

-32.63 
[-48,-21] 
 

61.71
[1,89] 

  

62.14 
[-10,98] 
 

-

    
Domestic country: United Kingdom, 1952:04-2004:04 
    

4=γ  80.43 
[0,92] 

24.44 
[-13,36] 

56.00 
[11,60] 

 31.34 
[-37,220] 

113.69 
[-65,215] 

17.65 
[-16,33] 

 134.35     

    

1
[63,146] 

  

52.63 
[16,59] 
 

81.73 
[33,90] 
 

-104.36
[-163,-62] 

  

-44.06 
[-109,-12] 
 

-60.29 
[-81,-35] 
 

-141.77
[-287,13] 

  

-46.69 
[-215,87] 
 

-95.08 
[-142,-36] 
     

7=γ  60.58 
[4,69] 

14.42 
[-7,21] 

46.17 
[8,49] 

 80.50 65.40 
[-35,125] 

15.10 
[-12,27] 

 102.43     
3] 

     
[-16,131] 
 

[48,111] 
  

30.13 
[9,33] 
 

72.30 
[31,80] 
 

-77.66
[-113,-48] 

  

-25.96 
[-64,-7] 
 

-51.71 
[-69,-30] 
 

-65.85
[-151,3

16.01 
[-79,93] 
 

-81.86 
[-122,-32] 
     

10=γ  47.84 
[4,54] 

10.41 
[-5,15] 

37.43 
[6,40] 

 57.47 
[-10,93] 

46.08 
[-24,89] 

11.39 
[-13,19] 

 83.91  -63.00 
[-89,-40] 

18.72 
[-45,-5] 

-44.28 
[-59,-25] 

 -26.22 
[-89,48] 

41.09 
[-25,95] 

-67.32 
[-100,-25] 

               
[38,91] 

  

21.13 
[7,24] 

62.78 
[26,69] 

   

-

 
 



 

 
 
Figure 1: Historical intertemporal hedging demands for domestic stocks (solid lines) and bonds 
(dashed lines) for investors in different countries when 7γ = . 

 



 

 
 
Figure 2: Historical intertemporal hedging demands for domestic stocks (solid lines), domestic 
bonds (dashed lines), foreign stocks (dotted lines), and foreign bonds (closely spaced dotted lines) 
for an investor in the United States who can also invest in foreign stocks and bonds when 7γ = . 

 



 

 
 
Figure 3: Historical intertemporal hedging demands for domestic stocks (solid lines), domestic 
bonds (dashed lines), foreign stocks (dotted lines), and foreign bonds (closely spaced dotted lines) 
for investors in Australia, Canada, France, Germany, Italy, and the United Kingdom who can also 
invest in United States stocks and bonds when 7γ = . 
 

 


