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Abstract 

One of the challenges of using downside risk measures as an alternative constructor of portfolios 

and diagnostic devise is in their computational intensity. This paper outlines how to use 

downside risk measures to construct efficient portfolios and to evaluate portfolio performance in 

light of investor loss aversion.  Further, this paper advocates the use of distributional scaling to 

forecast price movement distributions.  This paper could be subtitled, “Strategic Asset Allocation 

is Dead,” in light of the simulation results.
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What is so efficient about the “efficient frontier?”  The standard method of constructing the set 

of efficient portfolios, from which investors are to choose from, is to use the Markowitz (1952) 

model which defines risk as the standard deviation of a portfolio.  Markowitz (1952) recognized 

that there are many different ways to define risk, but the standard deviation (or variance) of a 

portfolio is easier to calculate than alternatives. 

 

All portfolio optimization problems can be described as a sequence of mathematical 

programming problems.  First, an analyst must construct a set of efficient frontiers, which are 

portfolios that maximize the expected return for any given level of risk over different investment 

horizons.  Second, for each period, an investor’s utility is to be maximized by picking the 

portfolio that the investor most prefers (in terms of risk-return combinations).  This method 

allows for the efficient frontier to change with time, which suggests that an investor would 

modify the composition of their portfolio as time unfolds and as expectations are updated 

regarding the possible return distributions that the investor may choose from. 

 

Under assumptions that are unrealistic (i.e., investors dislike upside as well as downside risk 

equally, or that security returns are multivariate normally distributed), it is best to define risk in 

terms of standard deviation (or variance).  This method can be made more robust by defining a 

general risk function, R , for any given time horizon (the time subscripts will not be used as it 

clutters the notation without sufficient marginal value-added), as a function of the proportion of 

an investor’s wealth put into each of n securities (with representative weight iw ), and a general 

probability distribution function of returns ( )1,..., 0nf r r ≥ such that ( )1 1... ,..., ... 1n nf r r dr dr
∞ ∞

−∞ −∞

=∫ ∫ . 

 



 2

It simplifies things considerably if I assume there exists a nominally risk-free security over the 

investor’s investment horizon.  In this case, the proportion of the investor’s wealth that is 

allocated amongst the risky securities need not equal one, as the allocation to the risk-free 

security will be endogenously determined (borrowing if it is negative, lending if it is positive).  

With this simplifying assumption, the applicable returns are risk premiums (excess of expected 

return over the appropriate risk-free rate).  For purposes of presentation, for now on, it is to be 

assumed that the returns refer to risk-premiums. 

 

To further simplify the notation, I adopt the following conventions: 

1) ( )1' ,..., nw w=w represents the fractional allocations of wealth to particular risky 

securities. 

2) ( )1' ,..., nr r=r represents the risk premiums of the risky securities. 

3) 1...ndr dr=dr  represents the variables of integration for the probability analysis. 

4) The probability distribution can compactly be written as ( )
'

'

'f∫
b

a

r dr where it is understood 

that the integral is an n-integral, with limits of integration given by ( )1' ,..., na a=a and 

( )1' ,..., nb b=b for each integral. 

5) There exists a risk function, ( )( )',R fw r .  

6) I will assume that the investor is a price-taker, so their portfolio allocation decision does 

not impact the probability distribution of returns. 
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Using the preceding conventions, the expected excess return of the portfolio, with allocation 'w , 

is  

 ( ) ( )' 'pE r f
∞

−∞

= ∫ w r r dr  (1) 

The investor’s problem, for each time period, is to construct an efficient frontier from the 

mathematical programming problem as follows 

 
( )

1 ,...,
max

s/t *
n

pw w
E r

R R=
 (2) 

The investor chooses the weights of the component securities, having R* vary from some lower 

bound to an upper bound, as relevant for the risk measure.  The easiest way to formulate this 

problem is to set up the Lagrangian: 

 ( ) ( )1 *pL E r R Rλ= + −  (3) 

Maximizing the Lagrangian yields the familiar first order conditions: 

 

( )

1

p

i

i

E r
w

i
R

w

λ

 ∂
 ∂ 
  = ∀
 ∂ ∂ 

 (4) 

1λ is often interpreted as the “market price of risk” and is equal across all securities within an 

efficient portfolio. 

 

Since the expected excess-return is a convex combination of the expected excess-returns of the 

component securities, the differential of the expected excess-return of the portfolio with respect 

to any given weight is just the expected excess-return of that particular security: 
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( ) ( )p
i

i

E r
E rw

∂
=∂ .  The complicated part of this optimization problem is solving the differential 

of the risk measure with respect to the weights. 

 
 

Different Efficient Frontiers 
 

For the balance of the paper I examine the consequences on portfolio construction and evaluation 

of using three different measures of risk: variance, value-at-risk, and lower-partial-moments. 

 

The variance of the portfolio is given by: 

 ( )( ) ( )
22 ' 'p pE r fσ

∞

−∞

= −∫ w r r dr  (5) 

The value-at-risk (VaR) (Jorion, 2001)—in terms of excess-return—of a portfolio is defined as 

*V− , such that for a given level of significance (α ): 

 ( )
1 ,...,

1

' ,  such that *
nv v n

i i
i

f V w vα
=−∞

= =∑∫ r dr  (6) 

The lower partial moment (with moment a and threshold return T) (Sortino and Price, 1994) is 

given by: 

 ( ) ( ) ( )
1 ,...,

1

, ' ' , such that 
nT T n

a
i i

i

LPM a T T f T wT
=−∞

= − =∑∫ w r r dr  (7) 

In light of the maximization problem posed in (2), how do these different risk measures affect 

the efficient frontiers? 

 

The basic programming problem of the investor using each risk measure can be summarized by 

the following three Lagrangians: 
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For the mean-variance framework, where the target variance is allowed to vary from an 

appropriate lower bound to an appropriate upper bound: 

 ( ) ( ) ( )( ) ( )2

2

22
1

'

max ' ' * ' ' 'pL f E fσ
σ λ σ

∞ ∞

−∞ −∞

 
= + − − 

 
∫ ∫

w

w r r dr w r w r r dr  (8) 

For the VaR framework, where the value-at-risk is allowed to vary from some lower bound to 

some upper bound: 

 
( ) ( ) ( ) ( )

( )

1 ,...,

1 2
'

1

max ' ' ' * '

where ' ,...,

nv v
VaR VaR

VaR

n

L f f V

v v

λ α λ
∞

−∞ −∞

 
= + − + −  

 
=

∫ ∫
w

w r r dr r dr w v

v

 (9) 

Provided that the weight of a risky security is non-zero (say it is security 1—if it is not, just 

reorder the securities so that it is), the second constraint can be incorporated into the limits of 

integration (a similar method will be used for the LPM framework): 

 ( ) ( ) ( )
2 2

2
1

* ... , ...,

1
'

max ' ' '

n n
n

V w v w v v v
w

VaR
VaRL f fλ α

− − −

∞

−∞ −∞

 
 

= + − 
 
 

∫ ∫
w

w r r dr r dr  (10) 

 
For the LPM framework, where the lower partial moment is allowed to vary from some lower 

bound to some upper bound: 

 ( ) ( ) ( ) ( )
2 2

2
1

... , ,...,

1
'

max ' ' * ' '

n n
n

T w T w T T T
w

aLPM
LPML f LPM T fλ

− − −

∞

−∞ −∞

 
 

= + − − 
 
 

∫ ∫
w

w r r dr w r r dr (11) 

 
The issue at this point is to characterize the efficient portfolios in each context.  This is most 

easily done by seeing what the solutions to the preceding Lagrangians tell us: 
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For the mean-variance efficient portfolios: 

 

 ( )

( )( ) ( )( ) ( )

2

12
'

i

p i i

E r

E r r E r f

σλ∞

−∞

=
− −∫ w r r dr

 (12) 

 

For value-at-risk efficient portfolios: 

 ( )

( )
2 2

2
1

1* ... , ...,

'

n n
n

i VaR
V w v w v v v

w

i

E r
i

f

w

λ
− − −

−∞

= ∀
 
 

∂  
 
 

∂

∫ r dr

 (13) 

For LPM efficient portfolios: 

 ( )

( ) ( )
2 2

2
1

1... , ...,

' '

n n
n

i LPM
T w T w T v v

w
a

i

E r
i

T f

w

λ
− − −

−∞

= ∀
 
 

∂ − 
 
 

∂

∫ w r r dr

 (14) 

 
The difference between the portfolios is in terms of the market price of risk.  Instead of 

normalizing the weights by security 1, I can normalize by security i, and then change the order of 

integration such that the outside integral is for security i.  Leibniz’s rule can then be applied to 

derive the partial derivatives: 

 

For value-at risk: 
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( ) ( )

( ) ( )

( ) ( ) ( )

1 11

1 1 1 1 1 1

1 1 1 1

* ... ...

1 1 1 1 1 1
2

If = .. . ,..., ... ...

then = ,

,* ... ...and  ,

i i n

i i i i n n

i

v v vv

i n n i i

V w v w v w v w v
w

i i i i

i i ii i i i n n
i i i

i i i

F r f r r dr dr dr dr

G w F r w dr

dG w F r wV w v w v w v w vF r w dr
dw w w

− +

− − + +

+ −
−∞ −∞ −∞ −∞

− − − − −

−∞

− − + + ∂− − − − −
= − +

∂

∫ ∫ ∫ ∫

∫

( )

( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

* ... ...

1* ... ...

1 1 1 1 1 1
2

thus 

,* ... ...,

i i i i n n

i

i i i i n n

i

V w v w v w v w v
w

i VaR
V w v w v w v w v

w
i ii i i i n n

i i i
i i

E r

F r wV w v w v w v w vF r w dr
w w

λ

− − + +

− − + +

− − − − −

−∞

− − − − −

− − + +

−∞

=

∂− − − − −
− +

∂

∫

∫
 (15) 

 
A similar result holds for the lower partial moment measure of risk. 

 

By assumption, the distribution of returns is not affected by the reallocation.  Also, these 

equalities should hold for a given security, or even for the entire portfolio.  What this means is 

there can be three variants of the capital asset pricing model, with different risk measures, with 

the most familiar being the one from the mean-variance framework: 

  

 

( )
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )
( )

( ) ( )

( ) ( )

,
2

'

'

p i i

i p

p i p

p i
i p

p

i i p

E r r E r f
E r E r

E r r E r f

E r E r

E r E r

σ
σ

β

∞

−∞
∞

−∞

− −
=

− −

→ =

→ =

∫

∫

w r r dr

w r r dr

 (16) 
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The resulting investment opportunity sets (with mean excess return plotted versus standard 

deviation, value-at-risk, lower partial moment(1,0) and lower partial moment(2,0)), using daily 

data on the Standard and Poor’s 500 and the Dow Jones 2 Year Corporate Bond Index from 

December 31, 1996 to March 18, 2005, are shown in Figures 1 through 4. 

 

Figure 1 Investment Opportunity Set Defined According to Mean (Excess Return)-Standard Deviation 
Paradigm 
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Figure 2 
VaR
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Figure 3 
LPM(1,0)

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045

Ex
pe

ct
ed

 R
is

k 
Pr

em
iu

m

 
 
Figure 4 

LPM(2,0)
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To get an idea about the relationship between these frontiers, Figure 5 plots the value-at-risk 

versus the standard deviation.  As is clear, there is a strong, but not perfectly linear, relationship 

between these measures. The divergence between the measures is especially apparent in the 

extremes, which suggests that investment decisions based on either measure will be similar for 

“low” risk ventures, but could be markedly different for higher risk prospects. 
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Figure 5 VaR versus Standard Deviation from Efficient Frontiers 
VaR vs. Std. Dev.
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Which Measure is Best? 

To answer the question about which measure is best requires a bit of qualification: is this a 

normative or a positive question?  Normatively, I could argue which measure I think is the best, 

and then advocate the use of that pricing formula.  Positively, I can look at the data and see 

which pricing formula best fits the data; inferring from that, which risk measure investors 

probably actually use in their portfolio construction decisions.  Given that the purpose of this 

paper is to present “a better way” of measuring risk, I will use the normative approach, showing 

which method yields the highest investment returns. 

 

To test which measure is the best, I conducted a simulation study, pitting six investment 

strategies against each other.  I constructed a portfolio allocation problem, using daily data from 

December 31, 1996 to March 18, 2005, on two indexes: the Standard and Poor’s 500 and the 

Dow Jones 2 Year Corporate Bond Index.  An investor is assumed to reallocate their portfolio 

between these two indexes daily, using data from the past 60 trading days to construct their 

empirical probability distribution for the next day.  The investor picks the portfolio (with no 

short-selling allowed) that maximizes the market price of risk, recalibrating the portfolio every 

day.  Six measures of risk are used: standard deviation, value-at-risk at the five percent 
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significance level, and four lower partial moments (one through four with a minimal acceptable 

excess return of zero). 

 

To pit the portfolio strategies against each other, I wrote a program that—for every day—

calculated the market price of risk using portfolio allocation weights ranging from zero to one, 

increasing by increments of 0.01.  All these portfolio allocations were compared, with the one 

that yielded the highest market price of risk being the allocation used for the next trading day.  

Cumulative excess returns (over the federal funds rate) were compared at the end of the 

simulation study. 

 

The active management definitely yielded higher returns than a passive investment in either 

index.  Table 1 shows the amount that $1 invested on December 31, 1996 would have been 

worth, using each strategy, above the risk-free rate of return.  The best strategy was maximizing 

the LPM(1,0) based market price of risk. These excess returns can be seen in Figure 6. 

 

 

Table 1 Returns, Average Allocations, and Standard Deviations of Allocations Using the Different Investment 
Strategies 
Strategy Value of $1, above the risk-free rate, 

Invested on 12/31/1996 as of 3/18/2005 

Average 

Allocation to 

Stocks 

Standard Deviation 

of Allocation 

VaR 1.7265 0.2885 0.4057 

LPM(1,0) 1.8231 0.3168 0.4357 

LPM(2,0) 0.9196 0.2253 0.3519 
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LPM(3,0) 1.0216 0.22170 0.3529 

LPM(4,0) 1.0195 0.2189 0.3520 

Std. Dev. 1.7425 0.3088 0.4266 

 

 

 

Figure 6 Excess Return Comparison of Investment Strategies 
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Clearly, the active management yields excess returns, but they also require active management of 

the portfolio.  Each day, the investor must shift money between these two indexes, sometimes 

completely liquidating their position in one and shifting to the other. 
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The average allocation into the SP500 and the DJBond index for each method, along with the 

standard deviation of the allocations is presented in Table 1.  The actual allocation histograms 

using each strategy are shown in Figures 7 through 12. 

 

Figure 7 Std. Deviation histogram of allocations to stock index 
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Figure 8 

VaR Allocation Frequency
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Figure 9 

LPM(1,0) Allocation Frequency
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Figure 10 

LPM(2,0) Allocation Frequency
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Figure 11 

LPM(3,0) Allocation Frequency
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Figure 12 

LPM(4,0) Allocation Frequency
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The allocation suggested by all the methods tends to not favor strategic diversification across 

asset classes; rather, the simulations are suggestive of a sort of extreme form of tactical asset 

allocation, exploiting opportunities while they arise.  Philosophically, this makes sense to me as 

to get to the long-term (the realm of strategic allocation), we must pass through the short-term 

(tactical asset allocation).  The traditional arguments in favor of strategic asset allocation—that 

trading costs will eat up any excess gains from short-term trading—are disintegrating as trading 

costs fall and data becomes cheaper to obtain and process.  Strategic asset allocation has its 
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place, but primarily for those who do not want to actively monitor their portfolios.  With the 

extent of the market expanding, there are now specialists who will actively monitor your 

portfolio for you, so this active management can easily and cheaply be outsourced.  So, in my 

opinion, tactical asset allocation based on using the LPM(1,0) measure of risk is a rational 

alternative to naïve strategic asset allocation.  Now, the strategic decision is more an issue of 

selecting the specialist who will monitor your portfolio than selecting a static asset mix to hold 

onto regardless of what happens. 

 

Forecasting Distributions (Distributional Scaling) 

Allocation tools should be prospective, not retrospective, but usually the past is where our 

forecasts for the future distributions of returns come from.  Mandelbrot (2001 a, b, c, d, 2005) 

advocates the recognition of scaling in financial markets.  To this end, I have enriched the 

Mandelbrot model with economic fundamentals to identify the invariants across time scales of 

return distributions. 

 

Figures 13 through 14 show that a modified version of a time elasticity of price has a 

characteristic distribution for an asset across time scales.  Define ( )P t as the price process of an 

asset.  The ratio 

( )
( )

( )

ln

ln
MJ

P t
P t

t
t

β

+ ∆ 
 
 =

+ ∆ 
 
 

has a similar distributional form across different time 

steps,∆ . 
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Figure 13 MJ-Beta Distribution for Tick-by-Tick Prices of Crude Oil for March 24, 2005, from Reuters-
Bridge Station 
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Figure 14 MJ-Beta Distribution for Daily Close Prices of Crude Oil from March 24, 2004 to March 25, 2005, 
from Reuters-Bridge Station 
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This implies that daily observations are distributed in a manner similar to tick-by-tick 

observations, or year-by-year observations, by a multifractal process (Mandelbrot, Fisher, and 

Calvet, 1997).  A multifractal process can be thought of as a stochastic scaling factor from one 

time scale to another.  When it comes to forecasting distributions, or determining which 

distributional assumptions to make about returns, the daily close distribution (transformed) can 

be used with the appropriate multifractal applied.  The scaling function of the distribution must 
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be appropriately applied to go from one time scale to another, which can be derived from the 

self-similarity of the distributions.  What this means is that one time scale is a transformation of 

the distribution from another time-scale, which may be idiosyncratic to that particular asset.  For 

example, Figure 15 shows the scaling function from the tick-by-tick distribution of crude oil 

MJβ to the daily close distribution.  This function can be applied to go from one time scale to 

another for inferring prospective distributions of returns. 

 

Figure 15 Scaling Function from Tick-by-Tick Distribution of Crude Oil MJ-Beta to Daily Close MJ-Beta 
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Conclusion 

The standard mean-variance efficient frontier has mathematical properties that make it easy to 

work with.  However, the mathematical ease comes at a high price: it does not acceptably capture 

investors’ preferences; nor does it generate superior investment returns.  A modified efficient 

frontier must be optimized to determine the best mix of securities to add to a portfolio 

(essentially, measuring the marginal VaR or LPM through simulation), but the cost is offset by 

the benefit of higher returns with lower risk…whatever “risk” means to each individual. 
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Prospectively, distributions can be derived from the self-similarity of return distributions—

properly transformed.  
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