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1. Introduction

In this paper we seek to generalise the constant volatility analysis of American op-

tion pricing to the stochastic volatility case. We focus on Heston’s (1993) square root

model, and use the free surface series expansion of Tzavalis & Wang (2003) to produce

analytic approximations for the early exercise surface and price of an American call op-

tion. We derive these results using the incomplete Fourier transform method of McKean

(1965), accompanied by a simplification presented by Jamshidian (1992). In this way

we demonstrate how Heston’s results for the European call, there derived using charac-

teristic functions, may also be found by means of Fourier transforms. We then proceed

to numerically solve the resulting integral equation system for the free surface using an

iterative method involving numerical integration, based on the techniques considered by

Kallast & Kivinukk (2003) and Chiarella & Ziogas (2005). We consider the efficiency of

such a solution method, and demonstrate the impact that stochastic volatility has on

American options relative to those priced under the Black-Scholes model.

Stochastic volatility models for pricing derivative securities have been developed as an

extension to the original, constant volatility model of Black & Scholes (1973). Many

studies of market prices for option contracts have consistently found that implied volatil-

ities vary with respect to both maturity and the moneyness of the option. Directly mod-

elling the volatility of the underlying using an additional stochastic process provides one

means by which this feature can be incorporated into the Black-Scholes pricing frame-

work.

There are a number of methods one can use to model volatility stochastically. Hull

& White (1987) model the variance using a geometric Brownian motion, as well as an

Ornstein-Uhlenbeck process with mean-reversion related to the volatility. In the general

case, mean-reversion is considered to be an essential feature of observed volatility, and

thus all plausible models are of the Ornstein-Uhlenbeck type. Wiggins (1987) models

the logarithm of the volatility with mean-reversion, whereas Scott (1987), Johnson &

Shanno (1987), Heston (1993) and Stein & Stein (1991) model the variance using a

square root process. Zhu (2000) also considers a double square root process, which
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is an extension of the basic square root process in which both the drift and diffusion

coefficients involve the volatility. In this paper we focus on Heston’s square root model,

under which Heston (1993) provides an analytic expression for European option prices.

Pricing American options under stochastic volatility is a much more complicated task.

In the constant volatility case, it is well known that the price of an American call

option can be decomposed into the sum of a corresponding European call and an early

exercise premium term. Kim (1990), Jacka (1991) and Carr, Jarrow & Myneni (1992)

demonstrate this result using a variety of different approaches. The American call price

takes the form of an integral equation involving the unknown early exercise boundary.

By evaluating this equation at the free boundary, a corresponding integral equation for

the early exercise condition is produced.

Since the cash flows arising from early exercise are typically independent of the volatil-

ity, generalising American option pricing theory from the constant volatility case to

stochastic volatility is relatively straightforward. Lewis (2000) indicates that the free

boundary becomes a two-dimensional free surface, in which the early exercise value of

the underlying is a function of time to maturity and the volatility level. Touzi (1999)

proves a number of fundamental properties for the free boundary and option price under

stochastic volatility for the American put example, focusing on how the surface changes

with respect to the volatility.

It becomes impossible, however, to derive analytic integral equations for the option price

and free boundary under stochastic volatility without the use of asymptotic expansions.

One such example is presented by Fouque, Papanicolaou & Sircar (2000), where they

use a series expansion based around the square-root of the rate of mean reversion for

the volatility. This method provides an adjustment to the Black-Scholes solution, taking

advantage of the fact that the mean reversion feature dominates the volatility dynamics

over a sufficient time period. The downside to this approach is that the expansion is

poor close to expiry and near the early exercise surface, since the mean reversion will

not dominate the volatility dynamics in these cases.
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Since analytic expressions cannot be found without the use of assumptions or asymp-

totics, the most common solution methods in the literature involve a discrete grid or

lattice. These are typically used to estimate the distribution of the underlying asset,

or to numerically solve the partial differential equation for the option price. Using a

GARCH model for the stochastic volatility price process, Ritchken & Trevor (1999) and

Cakici & Topyan (2000) develop lattice methods for pricing European and American

options, although such methods tend to provide poor free surface estimates.

Ikonen & Toivanen (2004) solve the second order PDE for the American put option

under stochastic volatility using several implicit finite difference schemes for the space

variables. They apply an operator splitting technique for the time component, and the

method is easier to compute than fully implicit schemes. Multigrid methods are a related

technique which involve solving a problem using a finite difference scheme on successively

coarser grids to better control the error, and then interpolating the results back up to

the original fine grid. The advantage is that less computation is required to solve the

problem for a high level of accuracy, and this is of particular interest for multidimensional

problems. Clarke & Parrott (1999), Oosterlee (2003) and Reisinger & Wittum (2004)

all provide applications of these methods to option pricing under stochastic volatility.

Furthermoe, Zvan, Forsyth & Vetzal (1998) solve the problem using a hybrid method,

involving finite elements for the diffusion terms and finite volume for the convection

terms.

There is currently very little work in the existing literature that deals with trying to

find analytic integral equations for American options under stochastic volatility. One

rare example is presented by Tzavalis & Wang (2003), in which they approximate the

logarithm of the early exercise boundary using a Taylor series expansion around the

long-run volatility. They cite the empirical findings of Broadie, Detemple, Ghysels &

Torrès (2000) as justification for this assumption, and this leads them to a generalisation

of Kim’s (1990) expression for the early exercise premium, with an analytical form that

generalises Heston’s (1993) results for the European call option. To solve the resulting

integral equation system, Tzavalis & Wang (2003) approximate the free boundary using

Chebyshev polynomials, and are able to produce a fast approximation that leads to
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accurate option prices. In this paper we propose an iterative numerical integration

scheme for estimating the free boundary, based on solution techniques typically applied

to Volterra equations.

The remainder of this paper is structured as follows. Section 2 outlines the pricing

problem for an American call option under Heston’s square root process. Section 3 uses

the Fourier transform method to provide a general solution to the problem, and shows

that an analytic representation is not possible without making some assumption about

the nature of the free boundary. Using the series expansion of Tzavalis & Wang (2003),

we proceed to find an analytic integral equation for the option price in Section 4. A

linked integral equation system for the early exercise boundary is provided in Section

5, along with a discussion on how this system may be solved using iterative techniques.

Section 6 presents some numerical examples based on numerical integration techniques,

along with an analysis of the impact that stochastic volatility has on the price and

free boundary. Concluding remarks are presented in Section 7. Most of the lengthy

mathematical derivations are given in appendices.

2. Problem Statement - the Heston Model

Let CA(S, v, τ) be the price of an American call option written on S with time to expiry

τ and strike price K. We assume that the dynamics of S are given by the stochastic

differential equation

dS = µSdt+
√
vSdZ1, (1)

where µ is the instantaneous return per unit time, v is the instantaneous squared volatil-

ity per unit time, and Z1 is a standard Wiener process. We allow v to also evolve

stochastically, using the square root process of Heston (1993). The dynamics for v are

dv = κ[θ − v]dt+ σ
√
vdZ2, (2)

where θ is the long-run mean for v, κ is the rate of mean reversion, σ is the instantaneous

volatility of v per unit time, and Z2 is a standard Wiener process correlated with Z1
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such that

E[dZ1dZ2] = ρdt.

Let r be the risk-free rate of interest, and assume that S pays a continuously compounded

dividend yield at rate q, Furthermore, we shall assume that the market price of volatility

risk is equal to λv, as per Heston (1993). Using standard hedging arguments and an

application of Ito’s lemma, it can be shown that the C satisfies the partial differential

equation (PDE)

∂CA
∂τ

=
vS2

2

∂2CA
∂S2

+ ρσvS
∂2CA
∂S∂v

+
σ2v

2

∂2CA
∂v2

+ (r − q)S
∂CA
∂S

+ (κ[θ − v] − vλ)
∂CA
∂v

− rCA, (3)

in the region 0 ≤ τ ≤ T , 0 < S ≤ b(v, τ), and 0 ≤ v < ∞, where b(v, τ) denotes

the early exercise boundary at time τ and volatility level v. The initial and boundary

conditions for (3) in the case of an American call option are

CA(S, v, 0) = max(S −K, 0), (4)

CA(b(v, τ), v, τ) = b(v, τ) −K, (5)

lim
S→b(v,τ)

∂CA
∂S

= 1, (6)

lim
S→b(v,τ)

∂CA
∂v

= 0. (7)

Condition (4) is the payoff for the call. The additional boundary conditions are provided

by Fouque et al. (2000), and they generalise the American call problem in the case of

stochastic volatility. Equation (5) is the value-matching condition, and equations (6)-(7)

are the smooth-pasting conditions. These collectively ensure that C, ∂C/∂S and ∂C/∂v

will be continuous, thus preventing arbitrage. Figure 1 demonstrates the payoff, price

profile and early exercise boundary for the American call under consideration.

The first step towards finding a solution to the free boundary value problem (3)-(7)

involves a change of variable. Let S ≡ ex, with UA(x, v, τ) ≡ erτCA(S, v, τ). It is
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CA(S, v, τ)

K b(v, τ) S

Continuation region Stopping region

Figure 1. Continuation region for the American call option, for a given
value of v.

straightforward to show that the PDE becomes

∂UA
∂τ

=
v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v

+
σ2v

2

∂2UA
∂v2

+
(

r − q − v

2

) ∂UA
∂x

+ (α− βv)
∂UA
∂V

, (8)

which must now be solved in the region 0 ≤ τ ≤ T , −∞ < x < ln b(v, τ), and 0 ≤ v <∞,

where α ≡ κθ and β ≡ κ+ λ. The initial and boundary conditions become

UA(x, v, 0) = max(ex −K, 0), (9)

UA(ln b(v, τ), v, τ) = (b(v, τ) −K)erτ (10)

lim
x→ln b(v,τ)

∂UA
∂x

= b(v, τ)erτ , (11)

lim
x→ln b(v,τ)

∂UA
∂v

= 0. (12)

While it is possible to solve the free boundary value problem (8)-(12) using the incom-

plete Fourier transform method of McKean (1965), there is a more elegant approach

available. Jamshidian (1992) shows that in the case of constant volatility, there exists

an inhomogenous PDE in the unrestricted domain −∞ < y < ∞ that is equivalent

to solving the Black-Scholes PDE for the American call price in a restricted domain

−∞ < y < b(v, τ). We can derive a similar result for the stochastic volatility case using

McKean’s incomplete Fourier transform.
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Define the Fourier transform of U(x, v, τ) with respect to x as

F{U(x, v, τ)} =

∫

∞

−∞

U(x, v, τ)eiφxdx = Û(φ, v, τ), (13)

with inversion

F−1{Û(φ, v, τ)} =
1

2π

∫

∞

−∞

Û(φ, v, τ)e−iφxdx = U(x, v, τ). (14)

Furthermore, we define the Heaviside step function, H(x) as

H(x) =



















1, x > 0,

1
2 , x = 0,

0, x < 0.

(15)

We can use these definitions to derive the Jamshidian (1992) formulation of the free

boundary value problem.

Proposition 2.1. The free boundary value problem (8)-(12) for U(x, v, τ) in the re-

stricted domain −∞ < x < b(v, τ) is equivalent to the inhomogeneous PDE

∂UA
∂τ

=
v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v

+
σ2v

2

∂2UA
∂v2

+
(

r − q − v

2

) ∂UA
∂x

+(α− βv)
∂UA
∂v

+H(x− ln b(v, τ)){erτ (qex − rK)}, (16)

solved in the unrestricted domain −∞ < x < ∞, 0 < v < ∞, 0 ≤ τ ≤ T , subject to the

initial condition (9), where H(x) is the Heaviside step function defined by (15). Note

that the boundary conditions (10)-(12) still apply.

Proof: Refer to Appendix 1.

�

It should be noted that the inhomogeneous term represents the cash flows received by a

portfolio composed of a long position in one unit of S, and a loan of K borrowed at the

risk-free rate. This portfolio arises whenever the option holder exercises the American

call early, and hence the cash flows only arise when x > ln b(v, τ). Thus qex − rK
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represents the net income from dividends earned and interest paid for the portfolio

S −K.

3. General Solution using Fourier Transforms

Since the PDE (16) is an inhomogeneous variant of the PDE presented by Heston (1993)

for the European call, we will consider a solution that includes Heston’s result. Let

U(x, v, τ) denote the Heston solution for the corresponding European call option, gen-

eralised to allow for a continuous dividend yield at rate q. We guess a solution to (16)

of the form

UA(x, v, τ) = U(x, v, τ) + V (x, v, τ), (17)

where we define

V (x, v, τ) ≡
∫ τ

0

∫

∞

0

∫

∞

−∞

H(u− ln(b(w, ξ)))(qeu − rK)erξF (x, v, τ − ξ;u,w)dudwdξ,

(18)

for the yet to be determined function F (x, v, τ − ξ;u,w).

Before proceeding, we provide some motivation for this “guess”. Given that the payoff

for the American call does not explicitly depend upon v, it is reasonable to assert that

the American call price under both constant and stochastic volatility can be decomposed

into a European component, here U(x, v, τ), plus an early exercise premium, in this case

V (x, v, τ), as per the results of Kim (1990). U is the complimentary function for the

solution UA, since it satisfies the homogeneous PDE (8) in the domain −∞ < x <∞.

V is the particular integral component of solution UA. The form of V is a generalization

of the constant volatility case, in which the early exercise premium is given by the

expected present value of (qS − rK) in the stopping region, for all future times until

expiry, (τ −ξ). The main adjustment for stochastic volatility addresses the fact that the

free boundary depends upon v. Thus we must consider all possible values of v, and infer

that F will be the joint transition density for x and v. Further motivation is provided

by Tzavalis & Wang (2003) who analyse this problem using discounted expectations.

Thus our objective is to determine the functions U and V . The U function has already
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been provided by Heston (1993). To find V we will need to determine the functional

form of F .

Substituting UA(x, v, τ) from (17) into the PDE (16), we have

∂U

∂τ
+

∫

∞

0

∫

∞

−∞

H(u− ln(b(w, τ)))(qeu − rK)erτF (x, v, 0;u,w)dudw

+

∫ τ

0

∫

∞

0

∫

∞

−∞

H(u− ln(b(w, ξ)))(qeu −K)erξF (x, v, τ − ξ;u,w)dudwdξ

=
v

2

∂2U

∂x2
+ ρσv

∂2U

∂x∂v
+
σ2v

2

∂2U

∂v2
+
(

r − q − v

2

) ∂U

∂x
+ (α− βv)

∂U

∂v

+

∫ τ

0

∫

∞

0

∫

∞

−∞

H(u− ln(b(w, ξ)))(qeu −K)erξ

×
{

v

2

∂2F

∂x2
+ ρσv

∂2F

∂x∂v
+
σ2v

2

∂2F

∂v2
+
(

r − q − v

2

) ∂F

∂x
+ (α− βv)

∂F

∂v

}

dudwdξ

+H(x− ln(b(v, τ))erτ (qex − rK). (19)

At this point we have placed no conditions on the function F , but we note that if we set

F (x, v, 0;u,w) = δ(u− x)δ(w − v), (20)

where δ(x) is the Dirac-delta function, then the last term on the right-hand side of (19)

will cancel with the first integral term on the left hand side. Equation (19) then becomes

∂U

∂τ
− v

2

∂2U

∂x2
− ρσv

∂2U

∂x∂v
− σ2v

2

∂2U

∂v2
−
(

r − q − v

2

) ∂U

∂x
− (α− βv)

∂U

∂v

= −
∫ τ

0

∫

∞

0

∫

∞

−∞

H(u− ln(b(w, ξ)))(qeu −K)erξ (21)

×
{

∂F

∂τ
− v

2

∂2F

∂x2
− ρσv

∂2F

∂x∂v
− σ2v

2

∂F

∂2v2
−
(

r − q − v

2

) ∂F

∂v
− (α− βv)

∂F

∂v

}

dudwdξ

For equation (21) to hold for general functions U and F , it must follow that

∂U

∂τ
=
v

2

∂2U

∂x2
+ ρσv

∂2U

∂x∂v
+
σ2v

2

∂2U

∂v2
+
(

r − q − v

2

) ∂U

∂x
+ (α− βv)

∂U

∂v
, (22)

and

∂F

∂τ
=
v

2

∂2F

∂x2
+ ρσv

∂2F

∂x∂v
+
σ2v

2

∂2F

∂v2
+
(

r − q − v

2

) ∂F

∂x
+ (α− βv)

∂F

∂v
. (23)
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The PDE (22) is solved subject to the initial condition (9). As previously stated,

U(x, v, τ) is given by generalising the results of Heston (1993) to include dividends,

and can be found using characteristic functions or Fourier transforms. We derive U

using Fourier transforms in Appendix 5. Equation (23) must be solved subject to the

initial condition (20).

It is possible to use the Fourier transform approach to reduce the dimensionality of (23).

If we denote the Fourier transform of F with respect to x as

F̂ (φ, v, τ − ξ;u,w) =

∫

∞

−∞

eiφxF (x, v, τ − ξ;u,w)dx,

then the Fourier transform of (23) is

∂F̂

∂τ
=
σ2v

2

∂2F̂

∂v2
+ (α− (β + ρσiφ)v)

∂F̂

∂v
−
(v

2
φ2 + i

(

r − q − v

2

)

φ
)

F̂ , (24)

which must be solved subject to

F̂ (φ, v, 0;u,w) = eiφwδ(w − v). (25)

At this point we can proceed no further using this approach, as equation (24) can only

be solved analytically for certain types of initial conditions. The initial condition (25)

does not lead to an analytic solution for F̂ because it involves the function δ(w − v).

Thus we cannot find F̂ analytically1 for a general free boundary b(v, τ).

4. Approximate Solution using Taylor Series

Since we are unable to find an analytic expression for F (x, v, τ − ξ;u,w) for a general

early exercise boundary b(v, τ), we shall consider an approximation for the free boundary

suggested by Tzavalis & Wang (2003). Given the empirical findings of Broadie et al.

(2000), there is evidence that ln b(v, τ) is well approximated by a function that is linear

in v. If we expand ln b(v, τ) in a Taylor series about θ we can approximate b(v, τ)

according to

ln b(v, τ) ≈ b0(τ) + vb1(τ), (26)

1Of course one could solve the PDE (24) numerically for F̂ , but this offers no benefits over solving (8)

numerically, given that the function we ultimately wish to find is F , not F̂ .
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where b0 and b1 are functions of τ . We now use Fourier transforms to demonstrate

that this approximation will lead to an analytic solution for the early exercise premium

V (x, v, τ).

Firstly, rewrite the early exercise premium (18) as

V (x, v, τ) =

∫ τ

0

∫

∞

0

∫

∞

−∞

H(u− ln b(w, ξ))(qeu − rK)erξ

×
{

1

2π

∫

∞

−∞

e−iφuf̂2(x, v, τ − ξ;φ,w)dφ

}

dudwdξ

where we define

f̂2(x, v, τ − ξ;φ,w) ≡
∫

∞

−∞

eiφuF (x, v, τ − ξ;u,w)du. (27)

Making the change of integration variable y = u− ln b(w, ξ) we have

V (x, v, τ) =

∫ τ

0

∫

∞

0

∫

∞

−∞

H(y)(qey+ln b(w,ξ) − rK)erξ

×
{

1

2π

∫

∞

−∞

e−iφ(y+ln b(w,ξ))f̂2(x, v, τ − ξ;φ,w)dφ

}

dydwdξ.

Substituting (26) for ln b(v, τ) we find that

V (x, v, τ) =

∫ τ

0

∫

∞

0

∫

∞

0
(qey+b0(ξ)+wb1(ξ) − rK)erξ

× 1

2π

∫

∞

−∞

e−iφ(y+b0(ξ)+wb1(ξ))f̂2(x, v, τ − ξ;φ,w)dφdydwdξ.

(28)

We now express V (x, v, τ) in a form that will lead us towards an analytic solution.

Proposition 4.1. The early exercise premium V (x, v, τ) can be written as

V (x, v, τ) = I1(x, v, τ) − I2(x, v, τ), (29)

where

I1(x, v, τ) ≡
∫ τ

0

∫

∞

−∞

qerξe−iφb0(ξ)

2π

(
∫

∞

0
e−iφydy

)

f2(x, v, τ − ξ;φ− i,−b1(ξ)φ)dφdξ,

(30)
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and

I2(x, v, τ) ≡
∫ τ

0

∫

∞

−∞

rKerξe−iφb0(ξ)

2π

(
∫

∞

0
e−iφydy

)

f2(x, v, τ − ξ;φ,−b1(ξ)φ)dφdξ,

(31)

with

f2(x, v, τ ;φ, ψ) ≡
∫

∞

−∞

H(w)f̂2(x, v, τ − ξφ,w)eiψwdw. (32)

Note that f2 is the Fourier transform of f̂2 with respect to w.

Proof: Refer to Appendix 2.

�

Thus under the assumption (26) for the free boundary, we are now faced with the task

of finding the functional form of f2.

Recall from Section 3 that F (x, v, τ−ξ;u,w) satisfies the PDE (23) subject to the initial

condition (20). If we take the two-dimensional Fourier transform of (23) with respect

to u and w, which according to equation (32) is

f2(x, v, τ − ξ;φ, ψ) =

∫

∞

−∞

∫

∞

−∞

H(w)eiφueiψwF (x, v, τ − ξ;u,w)dudw,

the PDE (23) becomes

∂f2

∂τ
=
v

2

∂2f2

∂x2
+ ρσv

∂2f2

∂x∂v
+
σ2v

2

∂2f2

∂v2
+
(

r − q − v

2

) ∂f2

∂x
+ (α− βv)

∂f2

∂v
(33)

solved subject to the initial condition

f2(x, v, 0;φ, ψ) = eiφxeiψv, (34)

in the domain −∞ < x <∞, 0 ≤ v <∞. This initial condition will lead to an analytic

solution for f2, as we now demonstrate.

Proposition 4.2. The solution to the PDE (33) subject to the initial condition (34) is

f2(x, v, τ − ξ;φ, ψ) = exp{g0(φ, ψ, τ − ξ) + g1(φ, ψ, τ − ξ)x+ g2(φ, ψ, τ − ξ)v}, (35)
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where

g0(φ, ψ, τ − ξ) = (r − q)iφ(τ − ξ) (36)

+
α

σ2

{

(β − ρσiφ+D2)(τ − ξ) − 2 ln

[

1 −G2(ψ)eD2(τ−ξ)

1 −G2(ψ)

]}

,

g1(φ, ψ, τ − ξ) = iφ, (37)

g2(φ, ψ, τ − ξ) = iψ +
β − ρσiφ− σ2iψ +D2

σ2

[

1 − eD2(τ−ξ)

1 −G2(ψ)eD2(τ−ξ)

]

, (38)

with

D2
2 ≡ (ρσiφ− β)2 + σ2φ(φ+ i), (39)

and

G2(ψ) ≡ β − ρσiφ− σ2iψ +D2

β − ρσiφ− σ2iψ −D2
. (40)

Proof: Refer to Appendix 3.

�

With a closed form expression established for f2, we can now express the early exercise

premium, V (x, v, τ), in terms of the inverse Fourier transform of f2. In particular, we

shall express V in a form that generalises the American call early exercise premium term

presented by Kim (1990) to the case where volatility changes randomly.

Proposition 4.3. The early exercise premium, V (x, v, τ), is given by

V (x, v, τ)

= exerτ
∫ τ

0
qe−q(τ−ξ)

(

1

2
+

1

π

∫

∞

0
Re

(

e−b0(ξ)iφ

iφ
f1(x, v, τ − ξ;φ,−b1(ξ)φ)

)

dφ

)

dξ

−
∫ τ

0
rKerξ

(

1

2
+

1

π

∫

∞

0
Re

(

e−b0(ξ)iφ

iφ
f2(x, v, τ − ξ;φ,−b1(ξ)φ)

)

dφ

)

dξ, (41)

where

f1(x, v, τ − ξ;φ, ψ) ≡ e−xe−(r−q)(τ−ξ)f2(x, v, τ − ξ;φ− i, ψ), (42)

and f2(x, v, τ − ξ;φ, ψ) is given in Proposition 4.2.
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Proof: Refer to Appendix 4.

�

Referring to equation (17), all that remains is to determine the European call price,

U(x, v, τ). While Heston (1993) derives this using characteristic functions, we provide a

slightly different derivation using Fourier transforms.

Proposition 4.4. The price of the European call option, U(x, v, τ), is given by

U(x, v, τ) = exe(r−q)τ
(

1

2
+

1

π

∫

∞

0
Re

(

e−iφ lnK

iφ
f1(x, v, τ ;φ, 0)

)

dφ

)

−K

(

1

2
+

1

π

∫

∞

0
Re

(

e−iφ lnK

iφ
f2(x, v, τ ;φ, 0)

)

dφ

)

, (43)

where f1(x, v, τ ;φ, ψ) and f2(x, v, τ ;φ, ψ) are given in Propositions 4.3 and 4.2.

Proof: Refer to Appendix 5.

�

We can now combine the results of Propositions 4.3 and 4.4 to determine the integral

equation for the American call option in terms of the original state variable S.

Proposition 4.5. The price of an American call option written on S, where S evolves

according to the dynamics (1)-(2), is

CA(S, v, τ) = Se−qτP1(S, v, τ,K; 0) −Ke−rτP2(S, v, τ,K; 0) (44)

+

∫ τ

0
qSe−q(τ−ξ)P1(S, v, τ − ξ, eb0(ξ);−b1(ξ)φ)dξ

−
∫ τ

0
rKe−r(τ−ξ)P2(S, v, τ − ξ, eb0(ξ);−b1(ξ)φ)dξ,

where

Pj(S, v, τ,K;ψ) ≡ 1

2
+

1

π

∫

∞

0
Re

(

e−iφ lnK

iφ
fj(lnS, v, τ ;φ, ψ)

)

dφ, (45)

for j = 1, 2, and fj(x, v, τ ;φ, ψ) is given by Propositions 4.3 and 4.2.

Proof: Recall that S = ex and CA(S, v, τ) = e−rτU(x, v, τ), and substitute into (43)

and (41).



16 CARL CHIARELLA AND ANDREW ZIOGAS

�

Comparing equation (44) with Kim’s (1990) solution, we can readily draw parallels

between the cumulative normal density functions appearing in the constant volatility

case, and the Pj terms occurring under stochastic volatility, here expressed as inverse

Fourier transforms. We highlight, however, that analytic functional forms for the Pj

terms in the early exercise premium are only possible when we approximate the early

exercise boundary b(v, τ) using the series expansion (26).

5. Early Exercise Boundary

While equation (44) provides us with an analytic expression for the American call option

price, it depends upon the unknown free boundary b(v, τ). By evaluating (44) at S =

b(v, τ) we can determine an integral equation for b(v, τ). Using the boundary condition

(5), we have

CA(b(v, τ), v, τ) = b(v, τ) −K ≈ eb0(τ)+vb1(τ) −K. (46)

Since there are two unknown time-dependent functions, b0(τ) and b1(τ), we must eval-

uate (46) at two distinct values of v, thus forming a linked system of integral equations

for b0 and b1. If we let v0 and v1 denote distinct values of v, then the system of integral

equations for b(v, τ) is

CA(b(v0(τ), τ), v, τ) = eb0(τ)+v0(τ)b1(τ) −K (47)

CA(b(v1(τ), τ), v, τ) = eb0(τ)+v1(τ)b1(τ) −K. (48)

We propose solving this system using an iterative method based on numerical techniques

frequently applied to Volterra integral equations. We discretise the time domain into

N subintervals of length ∆τ , such that T = N∆τ . At step n = 0 we know from Kim

(1990) that the early exercise boundary is

b(v, 0) = max

(

r

q
K, K

)

, (49)

a result which also holds true under stochastic volatility, since the payoff for the Ameri-

can call does not explicitly depend upon v. It follows that for the linear approximation
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of the free boundary

b0(0) = max

(

ln

[

r

q
K

]

, lnK

)

, b1(0) = 0. (50)

This provides us with the initial values of b0 and b1 for the time-stepping procedure.

At each subsequent time step, n = 1, 2, ..., N we must determine two unknowns, namely

bn0 = b0(n∆τ) and bn1 = b1(n∆τ), whose values depend upon each other, as well as on

previous values of b0(n∆τ) and b1(n∆τ) for n = 0, 1, 2, ..., N − 1. When iterating for

bn0 and bn1 we take as our initial approximations bn0,0 = bn−1
0 , and bn1,0 = bn−1

1 . We then

solve the linked system of integral equations according to

bn1,j =
1

vn0

(

ln
[

CA(exp(bn0,j−1 + vn0 b
n
1,j), v

n
0 , τ) +K

]

− bn0,i−1

)

(51)

bn0,j = ln
[

CA(exp(bn0,j + vn0 b
n
1,j), v

n
1 , τ) +K

]

− vn1 b
n
1,j . (52)

We continue sequentially, solving (51)-(52) for j = 1, 2, ... until both |bn0,i − bn0,i−1| < ε0

and |bn1,i − bn1,i−1| < ε1, for arbitrary values of ε0 and ε1. Once the solutions have

converged to the desired level of tolerance, the method advances to the next time step.

Since we are approximating the true early exercise boundary with a linear function of v,

we seek values of v0 and v1 that will maximise the accuracy of this estimate. Tzavalis &

Wang (2003) suggest using ET [v(0)] and ET [v(τ)], since these values represent expected

values of v over the time intervals applicable to the early exercise premium2. Dufresne

(2001) shows that these expectations are given by

ET [v(τ)] = θ + (v(T ) − θ)e−κ(T−τ). (53)

To ensure that the iterative scheme converges, we specify v0 and v1 according to

v0 = max (ET [v(τ)], ET [v(0)]) (54)

v1 = min (ET [v(τ)], ET [v(0)]) . (55)

2Recall that τ is time remaining until maturity. Hence ET [v(0)] represents the expected value of the
volatility at the expiry date, taken at time T until maturity.
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This specification allows the b1 term to capture the majority of the volatility dependence

in the free boundary before estimating b0. It is important to note that when v(T ) is close

to θ, or τ is close to zero, |v0 − v1| will be very small. In these instances the iterative

scheme (51)-(52) will converge very slowly. We also note that under this method a

different b0(τ) and b1(τ) will be found for each value of v(T ). In the event that v(0) = θ,

we must find another way to select a second volatility value for fitting b0 and b1. The

simplest solution is to instead use v(T ) = θ + ∆v where ∆v is a small arbitrary value.

6. Numerical Implementation and Results

Since the equations (51) and (52) for b1 and b0 are highly nonlinear, they must be solved

using numerical techniques. We use the bisection method for root finding, and the time

integrals in (44) are approximated using the compound trapezoidal rule, as considered

by Kallast & Kivinukk (2003), with a time step size of ∆τ = 0.01. While the order of

accuracy for the trapezoidal rule is not very large, the weights for the method do not vary

for even and odd numbers of integration points. Since we add one additional point to the

integration scheme at each increasing time step, the compound trapezoidal rule provides

a consistent free boundary estimate for each time step. The integral terms in (45) are

estimated numerically using the Laguerre integration scheme with 50 integration points.

The tolerance levels for the algorithm were set at 5× 10−8 for the bisection method and

5 × 10−4 for the iterative scheme solving (51)-(52). In the case when v0 = v1, we select

∆v = 1 × 10−3.

Firstly we present the price and early exercise boundary estimates for an American call

option with a particular set of parameters, found using the iterative scheme in Section

5. The parameter values are provided in Table 1.

Figure 2 presents the price profile for an American call option under stochastic volatility

for a range of v values. As one would expect, for any given value of v the profile has

the standard shape for an American call. The price increases as v increases. The

corresponding early exercise surface estimate is provided in Figure 3. Again, for a given

value of v the shape of the early exercise boundary is typical for an American call option.

The free boundary increases as v increases, which is an intuitive result.
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Parameter Value Parameter Value
T 0.25 κ 4.00
r 0.03 θ 0.09
q 0.05 σ 0.10
K 100 λ 0
ρ 0

Table 1. Parameter values used to generate the price profile and early
exercise surface in figures 2 and 3.
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Figure 2. Price profile for a 3-month American call option. Parameter
values are as listed in Table 1.

Next we shall examine the impact of stochastic volatility on the American call price

relative to the constant volatility Black-Scholes model. We select v(τ) = 0.04 and

compute the early exercise boundary for the American call for ρ = −0.5, 0, 0.5, with all

other parameter values as given in Table 1. To maintain consistency for the comparison,

we select the volatility for the Black-Scholes model according to

vBS = θ − 1

τ
(v0 − θ)(e−κτ − 1),

and so in this case vBS = 0.05839.

Figure 4 presents the early exercise boundary for the different values of ρ, as well as

the constant volatility case. In all cases the early exercise boundary is lower than under

constant volatility. It is interesting to note that near τ = 0.25 the boundary for negative
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Figure 3. Early exercise surface for a 3-month American call option.
Parameter values are as listed in Table 1.

correlation begins to rise above the constant volatility result. This indicates that under

stochastic volatility, the option holder is likely to exercise the call early for lower values

of S for options with a time to maturity of up to 3 months.
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Figure 4. Comparing the early exercise boundary of a 3-month Amer-
ican call option for a range of correlation values. The constant volatility
case is also provided. For the stochastic volatility model v(τ) = 0.04,
and for the Black-Scholes model vBS = 0.05839. Other parameter values
are as listed in Table 1.
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Figure 5. Comparing the price differences between the stochastic
volatility and constant volatility American call option for a range of cor-
relation values. For the stochastic volatility model v(τ) = 0.04, and for
the Black-Scholes model vBS = 0.05839. Other parameter values are as
listed in Table 1.

Finally, Figure 5 presents the price differences for the American call option under sto-

chastic volatility and constant volatility, for the same range of ρ values shown in Figure

4. The differences are computed as the stochastic volatility price less the Black-Scholes

model price. The results for ρ = −0.5 and ρ = 0.5 are very similar to those presented

by Heston (1993). We can see that under positive correlation, the American call is

more expensive out-of-the-money than for the constant volatility case, and vice versa

in-the-money. Negative correlation produces an inverse impact on the price differences.

For zero correlation, it is interesting to note that the differences are similar in structure

to the positive correlation case, but are much less pronounced. We also note that the

differences rapidly become zero near the early exercise boundary for the American call.

The early exercise feature effectively truncates the typical price differences observed in

the European case, since early exercise immediately sets the option value equal to the

payoff function. Thus Figure 5 implies that stochastic volatility can be used to model

the volatility skews observed in financial market option prices, with the correlation pa-

rameter determining the direction of the skew.
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With regards to the efficiency of this approach, we can make several comments. The

computational speed is largely dependent upon the proximity of the “fitting volatilities”,

v0 and v1, to each other. As mentioned in Section 5, when v(τ) is close to θ, v0 and v1

are also close, making equations (51) and (52) almost coincident. In this case the system

is essentially ill-conditioned, and the basic iterative scheme converges very slowly to the

true solution, and in some cases the scheme fails to converge at all. To generate the

free boundary surface in Figure 3, the runtime is 43.92 minutes3, or an average of 1.42

minutes per volatility grid point. However, it should be noted that for v(τ) = 0.04, the

computation time is 3.89 minutes, demonstrating that the time required depends greatly

on the relative values of v(τ) and θ. One possible solution is to expand on the selection

process for v0 and v1, with a view to finding values that will be consistently well-spaced

whilst still providing a good approximation for the true early exercise boundary.

7. Conclusion

In this paper we have presented an analytical integral equation for the price and early

exercise boundary of an American call option under the square root process of Heston

(1993). As suggested by Tzavalis & Wang (2003), we expanded the logarithm of the early

exercise premium in a Taylor series about the long-run mean volatility level. Under this

assumption we were able to derive the integral equations for the price and free boundary

in analytic form using a combination of McKean’s (1965) incomplete Fourier transform

approach, and the volume potential method of Jamshidian (1992).

Under this Taylor series expansion, one must numerically determine two time-dependent

functions in order to estimate the free boundary. We presented an iterative scheme for

solving the linked system of integral equations for these functions, combining the volatil-

ity fitting methodology proposed by Tzavalis & Wang (2003) with the numerical inte-

gration scheme suggested by Kallast & Kivinukk (2003). We implemented this scheme,

providing a sample price profile and early exercise surface for an American call option.

In addition, we demonstrated the impact of stochastic volatility to the free boundary

3All code was implemented using LAHEYTMFORTRAN 95 running on a PC with a Pentium 4 2.40
GHz processor, 521MB RAM, and running the Windows XP Professional operating system.
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and price profile of an American call option relative to the constant volatility model

of Black & Scholes (1973) for a range of correlation values. We found similar results

to Heston (1993), with the added feature that the price differences in-the-money decay

rapidly around the early exercise boundary.

There are several directions for future research based on these findings. The accuracy

of the price and free boundary estimate under the series expansion for the early exercise

boundary needs to be examined. In particular, this estimate should be compared with

a proxy for the “true” free boundary, found using finite differences or the method of

lines in two dimensions. This will allow further analysis of the accuracy and efficiency of

the iterative solution technique presented in this paper. The proposed algorithm could

be made more efficient by considering alternative choices for the “fitting volatilities”

in the iterative scheme. A wider range of parameter values should also be explored,

in particular the case where the risk-free rate is greater than the dividend yield, and

different values for the time to expiry and rate of mean reversion.

Furthermore, these results could be expanded upon by considering the American call

option under stochastic volatility in the case where there are jumps in the price process

for the underlying asset. We infer that under such a model will not be possible to obtain

an analytical integral expression for the early exercise premium, even when using the

Taylor series expansion of Tzavalis & Wang (2003) for the early exercise boundary. This

suggests that it is impossible to analyse American options under such a model using

characteristic functions or Fourier transforms, preventing the use of solution techniques

based on numerical integration, and implies the need to explore other numerical solution

methods for such a problem.

Appendix 1. Deriving the Jamshidian Formulation under Stochastic

Volatility

Here we make use of McKean’s (1965) incomplete Fourier transform method to derive a

generalisation of Jamshidian’s (1992) representation of the free boundary value problem

for American call options in the case of stochastic volatility. To apply the Fourier

transform (13) to the PDE (8), we extend the domain to −∞ < x <∞ by multiplying
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(8) by H(ln b(v, τ) − x), where H(x) is the Heaviside step function given by (15). The

incomplete Fourier transform of (8) with respect to x is therefore

∫ ln b(v,τ)

−∞

eiφx
{

v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v

+
σ2v

2

∂2UA
∂v2

+
(

r − q − v

2

) ∂UA
∂x

+ (α− βv)
∂UA
∂v

− ∂UA
∂τ

}

dx = 0,

which, using the properties of integral calculus, can be rewritten as

∫

∞

−∞

eiφx
{

v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v2

+
(

r − q − v

2

) ∂UA
∂x

+ (α− βv)
∂UA
∂v

− ∂UA
∂τ

}

dx

=

∫

∞

ln b(v,τ)
eiφx

{

v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v

+
σ2v

2

∂2UA
∂v2

+
(

r − q − v

2

) ∂UA
∂x

+(α− βv)
∂UA
∂v

− ∂UA
∂τ

}

dx.

Taking the inverse Fourier transform according to (14), and noting that when x ≥

ln b(v, τ), the American call option price is simply given by the payoff function, UA(x, v, τ) =

(ex −K)erτ , we have

v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v

+
σ2v

2

∂2UA
∂v2

+
(

r − q − v

2

) ∂UA
∂x

+ (α− βv)
∂UA
∂v

− ∂UA
∂τ

= H(x− ln b(v, τ))
{v

2
exerτ +

(

r − q − v

2

)

exerτ − (ex −K)rerτ
}

,

which simplifies to

∂UA
∂τ

=
v

2

∂2UA
∂x2

+ ρσv
∂2UA
∂x∂v

+
σ2v

2

∂2UA
∂v2

+
(

r − q − v

2

) ∂UA
∂x

+ (α− βv)
∂UA
∂v

+H(x− ln b(v, τ)){erτ (qex − rK)},

which must now be solved in the domain 0 ≤ τ ≤ T , −∞ < x < ∞, and 0 ≤ v < ∞,

subject to the initial condition (9). This is a generalisation of the Jamshidian (1992)

formulation of the problem, which requires us to solve an inhomogeneous PDE for the

American call option price in an unrestricted domain.
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Appendix 2. Proof of Proposition 4.1

From equation (28), we can linearly decompose V (x, v, τ) into two integral terms, such

that

V (x, v, τ) = I1(x, v, τ) − I2(x, v, τ).

Firstly we define I1 as

I1(x, v, τ) =

∫ τ

0

∫

∞

0

∫

∞

0

qey+b0(ξ)

2π
erξ
∫

∞

−∞

ewb1(ξ)e−iφ(y+b0(ξ))e−iwb1(ξ)φ

× f̂2(x, v, τ − ξ;φ,w)dφdydwdξ

=

∫ τ

0

∫

∞

0

qey+b0(ξ)erξ

2π

∫

∞

−∞

∫

∞

0
e−iφ(y+b0(ξ))eiwb1(ξ)[−φ−i]

× f̂2(x, v, τ − ξ;φ,w)dwdφdydξ

=

∫ τ

0

∫

∞

0

qey+b0(ξ)erξ

2π

∫

∞

−∞

e−iφ(y+b0(ξ))

×
∫

∞

−∞

H(w)eiwb1(ξ)[−φ−i]f̂2(x, v, τ − ξ;φ,w)dwdφdydξ

=

∫ τ

0

∫

∞

0

qey+b0(ξ)erξ

2π

∫

∞

−∞

e−iφ(y+b0(ξ))f2(x, v, τ − ξ;φ,−b1(ξ)(φ+ i))dφdydξ,

where

f2(x, v, τ ;φ, ψ) ≡
∫

∞

−∞

H(w)f̂2(x, v, τ − ξφ,w)eiψwdw.

Thus

I1(x, v, τ) =

∫ τ

0

∫

∞

−∞

qe(1−iφ)b0(ξ)erξ

2π

∫

∞

0
ey(1−iφ)dyf2(x, v, τ − ξ;φ,−b1(ξ)(φ+ i))dφdξ.

Changing the integration variable from φ to φ− i gives

I1(x, v, τ) =

∫ τ

0

∫

∞

−∞

qe−b0(ξ)iφerξ

2π

(
∫

∞

0
e−yiφdy

)

f2(x, v, τ − ξ;φ− i,−b1(ξ)φ)dφdξ.
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Similarly for I2(x, v, τ) we have

I2(x, v, τ) =

∫ τ

0

∫

∞

0

∫

∞

0

rKerξ

2π

∫

∞

−∞

e−iφ(y+b0(ξ))e−iwb1(ξ)φf̂(x, v, τ − ξ;φ,w)dφdydudξ

=

∫ τ

0

rKerξ

2π

∫

∞

0

∫

∞

−∞

e−iφ(y+b0(ξ))

∫

∞

−∞

H(w)e−iwb1(ξ)φ

× f̂(x, v, τ − ξ;φ,w)dwdφdydξ

=

∫ τ

0

rKerξ

2π

∫

∞

−∞

e−iφb0(ξ)

(
∫

∞

0
e−iφydy

)

f2(x, v, τ − ξ;φ,−b1(ξ)φ)dφdξ.

Appendix 3. Solving for f2

We begin by assuming that the solution to (33) is of the form

f2(x, v, τ − ξ;φ, ψ) = exp{g0(φ, ψ, τ − ξ) + g1(φ, ψ, τ − ξ)x+ g2(φ, ψ, τ − ξ)v}.

Substituting this into (33) yields

{

g2
1

2
+ g1g2ρσ +

σ2g2
2

2
− g1

2
− βg2 −

∂g2
∂τ

}

v −
{

∂g1
∂τ

}

x+

{

(r − q)g1 + αg2 −
∂g0
∂τ

}

.

Equating coefficients of x and v, we arrive at a system of three ordinary differential

equations (ODEs) for the functions g0, g1, and g2, given by

∂g2
∂τ

=
g2
1

2
− g1

2
+ g1g2ρσ +

σ2

2
g2
2 − βg2, (56)

∂g1
∂τ

= 0, (57)

∂g0
∂τ

= (r − q)g1 + αg2. (58)

The initial conditions for this system are

g2(φ, ψ, 0) = iψ, g1(φ, ψ, 0) = iφ, g0(φ, ψ, 0) = 0.

It is trivial to show that the solution to (57) is

g1(φ, ψ, τ − ξ) = iφ.
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Substituting for g1 in (56) we have

∂g2
∂τ

=
σ2

2
g2
2 − βg2 −

φ2

2
− iφ

2
+ ρσiφg2,

which we recognise as being a Ricatti equation with solution4

g2(φ, ψ, τ − ξ) =
β − ρσiφ

σ2
− D2[a1e

D2

2
(τ−ξ) − a2e

−
D2

2
(τ−ξ)]

σ2[a1e
D2

2
(τ−ξ) + a2e

−
D2

2
(τ−ξ)]

where we define

D2
2 ≡ (ρσiφ− β)2 + σ2φ(φ+ i),

and a1, a2 are constants. From the initial condition we find that

a1 − a2

a1 + a2
=
β − ρσiφ− σ2iψ

D2
,

and thus we have a1 = 1 + γ and a2 = 1 − γ, where we set

γ ≡ β − ρσiφ− σ2iφ

D2
.

Substituting for a1 and a2 we obtain

g2(φ, ψ, τ − ξ) =
β − ρσiφ

σ2
− D2

σ2

[eD2(τ−ξ) − 1 + γ(eD2(τ−ξ) + 1)]

[eD2(τ−ξ) + 1 + γ(eD2(τ−ξ) − 1)]
.

Using the definition of γ, we can rewrite g2 as

g2(φ, ψ, τ − ξ) = iψ +
β − ρσiφ− σ2iψ +D2

σ2

[

1 − eD2(τ−ξ)

1 −G2(ψ)eD2(τ−ξ)

]

,

where we set

G2(ψ) ≡ β − ρσiφ− σ2iψ +D2

β − ρσiφ− σ2iψ −D2
.

Now we turn to solving equation (58). Integrating with respect to τ , and making use of

the initial condition for g0, we have

∫ τ

ξ

∂g0
∂s

(φ, ψ, s− ξ)ds = (r − q)iφ(τ − ξ) + α

∫ τ

ξ

g2(φ, ψ, s− ξ)ds.

4In Appendix 5 we provide further details on how to solve Ricatti equations such as (56).
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Consider the integral term

∫ τ

ξ

g2(φ, ψ, s− ξ)ds = iψ(τ − ξ) +
β − ρσiφ− σ2iψ +D2

σ2

∫ τ

ξ

1 − eD2(s−ξ)

1 −G2(ψ)eD2(s−ξ)
ds.

After making the change of integration variable ζ = G2(ψ)eD2(s−ξ), extensive manipu-

lations result in

g0(φ, ψ, τ − ξ) = (r − q)iφ(τ − ξ)

+
α

σ2

{

(β − ρσiφ+D2)(τ − ξ) − 2 ln

[

1 −G2(ψ)eD2(τ−ξ)

1 −G2(ψ)

]}

.

It should be noted that while our final expressions for g0 and g2 differ in appearance

from those presented by Tzavalis & Wang (2003), both solutions have been verified as

identical5. We present these alternative forms for g0 and g2 because they generalise the

solution for the European call presented by Heston (1993).

Appendix 4. Deriving a Generalisation of Kim’s Expression for the Early

Exercise Premium

To express V (x, v, τ) in a way that generalises Kim (1990) to the stochastic volatility

case, we must focus on the term I1(x, v, τ) from equation (30). From I1(x, v, τ) we have

f2(x, v, τ − ξ;φ− i, ψ) = exp{g0(φ− i, ψ, τ − ξ)+g1(φ− i, ψ, τ − ξ)x+g2(φ− i, ψ, τ − ξ)}.

Firstly consider g1(φ− i, ψ, τ − ξ) which is simply

g1(φ− i, ψ, τ − ξ) = i(φ− i) = g1(φ, ψ, τ − ξ) + 1.

For g2(φ− i, ψ, τ − ξ) we have

g2(φ− i, ψ, τ − ξ) = iψ +
β − ρσ(1 + iφ) − σ2iψ +D2

σ2

[

1 − eD1(τ−ξ)

1 −G1(ψ)eD1(τ−ξ)

]

≡ ḡ2(φ, ψ, τ − ξ), (59)

5This verification involves a tedious amount of straightforward algebra which we have chosen to omit.
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where

D2
1 ≡ (ρσiφ− β + ρσ)2 + σ2φ(φ− i), (60)

and

G1(ψ) ≡ β − ρσiφ− ρσ − σ2iψ −D1

β − ρσiφ− ρσ − σ2iψ +D1
. (61)

Finally, g0(φ− i, ψ, τ − ξ) is given by

g0(φ− i, ψ, τ − ξ) = (r − q)(1 + iφ)(τ − ξ)

+
α

σ2

{

(β − ρσ(1 + iφ) +D1)(τ − ξ) − 2 ln

[

1 −G1(ψ)eD1(τ−ξ)

1 −G1(ψ)

]}

≡ (r − q)(τ − ξ) + ḡ0(φ, ψ, τ − ξ). (62)

This leads us to the definition

f2(x, v, τ − ξ;φ− i, ψ)

= exp{(r − q)(τ − ξ) + ḡ0(φ, ψ, τ − ξ) + x+ g1(φ, ψ, τ − ξ)x+ ḡ2(φ, ψ, τ − ξ)v}

≡ exe(r−q)(τ−ξ)f1(x, v, τ − ξ;φ, ψ).

We can re-express the integrals I1 and I2 using results from Shephard (1991)6, combined

with the properties of complex conjugates. Beginning with I1,

I1(x, v, τ) =

∫ τ

0

∫

∞

−∞

qe−b0(ξ)iφerτ

2π

[

e−yiφ

−iφ

]∞

0

× exe(r−q)(τ−ξ)f1(x, v, τ − ξ;φ,−b1(ξ)φ)dφdξ

= exerτ
∫ τ

0
qe−q(τ−ξ)

(

1

2π

∫

∞

−∞

e−b0(ξ)iφ

iφ
f1(x, v, τ − ξ;φ,−b1(ξ)φ)dφ

− lim
y→∞

1

2π

∫

∞

−∞

e−(b0(ξ)+y)iφ

iφ
f1(x, v, τ − ξ;φ,−b1(ξ)φ)dφ

)

dξ

= exerτ
∫ τ

0
qe−q(τ−ξ)

×
(

1

2
+

1

π

∫

∞

0
Re

(

e−b0(ξ)iφ

iφ
f1(x, v, τ − ξ;φ,−b1(ξ)φ)

)

dφ

)

dξ,

6See Appendix 5 for further details.
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where Re( ) denotes the real-valued component of a complex function. For I2 similar

steps yield

I2(x, v, τ) =

∫ τ

0
rKerξ

(

1

2
+

1

π

∫

∞

0
Re

(

e−b0(ξ)iφ

iφ
f2(x, v, τ − ξ;φ,−b1(ξ)φ)

)

dφ

)

dξ,

and substituting I1 and I2 into (29) results in equation (41).

Appendix 5. Deriving Heston’s Solution using Fourier Transforms

The European call price U(x, v, τ) satisfies the PDE (22) subject to the initial condition

U(x, v, 0) = max(ex −K, 0) ≡ h(x).

In keeping with our derivation for the early exercise premium, we shall solve this problem

using Fourier transforms. Define the Fourier transform of U(x, v, τ) with respect to x

as

F{U(x, v, τ)} ≡
∫

∞

−∞

U(x, v, τ)eiφxdx = Û(φ, v, τ).

Applying this transform7 to the PDE (22), we have

∂Û

∂τ
=
σ2v

2

∂2Û

∂v2
+ (α− (β + ρσiφ)v)

∂Û

∂v
−
(v

2
φ2 + i

(

r − q − v

2

)

φ
)

Û .

Thus we now need to solve a 1-dimensional PDE for Û(φ, v, τ) subject to the transformed

initial condition Û(φ, v, 0) ≡ ĥ(φ).

We assume that the form of the solution is

Û(φ, v, τ) = ĥ(φ) exp{A(−φ, τ) +B(−φ, τ)v} (63)

7In applying the transform we assume that U , ∂U/∂x and ∂2U/∂x2 all tend to zero as x tends to ±∞.
This is not true in practice for U and ∂U/∂x in the case where U is a European call. To validate this
assumption, one must instead take the complex Fourier transform of U , by allowing φ to be a complex
valued parameter, and then consider a strip in the complex plane for which the transforms of U , ∂U/∂x
and ∂2U/∂x2 will be finite. Lewis (2000) shows that such a strip exists, and our assumptions lead to
the correct solution by virtue of this result.
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where A(−φ, 0) = B(−φ, 0) = 0. Substituting this into the PDE we have

[

∂B(−φ, τ)
∂τ

+ (β + ρσiφ)B(−φ, τ) − σ2

2
B2(−φ, τ) +

φ2

2
− iφ

2

]

v

= −A(−φ, τ)
∂τ

+ αB(−φ, τ) − iφ(r − q).

Equating coefficients for powers of v we have the system of ODEs

∂B(φ, τ)

∂τ
=
σ2

2
B2(φ, τ) − (β − ρσiφ)B(φ, 0, τ) − φ2

2
− iφ

2
(64)

∂A(φ, τ)

∂τ
= αB(φ, τ) + iφ(r − q), (65)

solved subject to the initial condition A(φ, 0) = B(φ, 0) = 0.

Consider firstly the ODE (64). This is a Ricatti equation, and is solved by first setting

B(φ, τ) = − 2z
′
(τ)

σ2z(τ)
+
β − ρσiφ

σ2
,

and noting that
∂B(φ, τ)

∂τ
= − 2

σ2

[

zz′′ − (z′)2

z2

]

,

where z′(τ) = ∂z/∂τ . Substituting this into the ODE gives

z′′ − 1

4

[

(β − ρσiφ)2 + σ2φ(φ+ i)
]

z = 0,

which is a second order ODE with solution

z(τ) = a1e
D2

2
τ + a2e

−
D2

2
τ ,

where a1, a2 are constants, and D2 is defined by equation (39). Thus B(φ, τ) becomes

B(φ, τ) =
β − ρσiφ

σ2
− D2[a1e

D2

2
τ − a2e

−
D2

2
τ ]

σ2[a1e
D2

2
τ + a2e

−
D2

2
τ ]
.

Applying the initial condition B(φ, 0) = 0, we have

a1 − a2

a1 + a2
=
β − ρσiφ

D2
,



32 CARL CHIARELLA AND ANDREW ZIOGAS

and thus a1 = 1 + γ and a2 = 1 − γ, where we set γ ≡ (β − ρσiφ)/D2. Substituting for

a1 and a2, extensive manipulations result in

B(φ, τ) =
β − ρσiφ+D2

σ2

[

1 − eD2τ

1 −G2(0)eD2τ

]

= g2(φ, 0, τ),

where G2(ψ) is defined by equation (40), and g2(φ, ψ, τ) is given by (38).

For the second ODE (65), we can integrate with respect to τ and use the initial condition

A(φ, 0) = 0 to obtain

A(φ, τ) = α

∫ τ

0
B(φ, s)ds+ iφ(r − q)τ.

Consider the integral term, which is given by

∫ τ

0
B(φ, s)ds =

∫ τ

0

(β − ρσiφ+D2)

σ2

(

1 − eD2s

1 −G2(0)eD2s

)

ds.

Making a change of integration variable according to ζ = G2(0)eD2s, we eventually find

that

∫ τ

0
B(φ, s)ds =

(β − ρσiφ+D2)

σ2
τ − 2

σ2
ln

(

1 −G2(0)eD2τ

1 −G2(0)

)

,

and hence

A(φ, τ) = iφ(r − q)τ +
α

σ2

{

(β − ρσiφ+D2)τ − 2 ln

(

1 −G2(0)eD2τ

1 −G2(0)

)}

= g0(φ, 0, τ),

where g0(φ, ψ, τ) is given by equation (36).

Having found Û(φ, v, τ), we can invert the Fourier transform to obtain U(x, v, τ). By

use of the convolution theorem8 we have

U(x, v, τ) =

∫

∞

∞

h(ζ)

{

1

2π

∫

∞

−∞

e−iφ(x−ζ)eg0(−φ,0,τ)+g2(−φ,0,τ)vdφ

}

dζ.

Changing the integration variable from φ to −φ we have

U(x, v, τ) =

∫

∞

−∞

h(ζ)

{

1

2π

∫

∞

−∞

eiφ(x−ζ) exp{g0(φ, 0, τ) + g2(φ, 0, τ)v}dφ
}

dζ.

8We recall that the convolution theorem for Fourier transforms is

F

{
∫ ∞

−∞

f(u)g(x − u)du

}

= F (φ)G(φ).
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We recall from equation (35) that

f2(x, v, τ ;φ, ψ) = exp{g0(φ, ψ, τ) + g2(φ, ψ, τ)v + ixφ},

and thus using Fubini’s theorem we have

U(x, v, τ) =
1

2π

∫

∞

−∞

f2(x, v, τ ;φ, 0)

(
∫

∞

−∞

u(ζ)e−iφζ
)

dφ.

Since we are dealing with a European call option, h(ζ) = max(eζ −K, 0), and thus

U(x, v, τ) = Ī1(x, v, τ) −KĪ2(x, v, τ), (66)

where

Ī1(x, v, τ) ≡
1

2π

∫

∞

−∞

f2(x, v, τ ;φ, 0)

∫

∞

lnK
eζe−iφζdζdφ,

and

Ī2(x, v, τ) ≡
1

2π

∫

∞

−∞

f2(x, v, τ ;φ, 0)

∫

∞

lnK
e−iφζdζdφ.

Consider firstly Ī1(x, v, τ) which can be expressed as

Ī1(x, v, τ) =
1

2π

∫

∞

−∞

f2(x, v, τ ;φ, 0)

∫

∞

lnK
e(l−iφ)ζdζdφ.

Changing the integration variable from φ to φ+ i gives

Ī1(x, v, τ) =
1

2π

∫

∞

−∞

f2(x, v, τ ;φ− i, 0)

∫

∞

lnK
e−iwζdζdw.

The kernal f2 is given by

f2(x, v, τ ;φ− i, 0) = exp{g0(φ− i, 0, τ) + g2(φ− i, 0, τ)v + x(φ− i)i}.

Evaluating g0 we have

g0(φ− i, 0, τ) = i(φ− i)(r − q)τ+

α

σ2

{

(β − ρσi[φ− i])τ − 2 ln

(

1 −G1(0)eD1τ

1 −G1(0)

)}

,

≡ (r − q)τ + ḡ0(φ, 0, τ),
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where D1 and G1(ψ) are given by equations (60) and (61) respectively. If we also define

g2(φ− i, 0, τ) =
β − ρσiφ+ ρσ +D1

σ2

[

1 − eD1τ

1 −G1(0)eD1τ

]

≡ ḡ2(φ, 0, τ),

we have

f2(x, v, τ ;φ− i, 0) = exp{ḡ0(φ, 0, τ) + ḡ2(φ, 0, τ)v + ixφ}ex+(r−q)τ

≡ f1(x, v, τ ;φ, 0)ex+(r−q)τ ,

and hence

Ī1(x, v, τ) =
1

2π

∫

∞

−∞

ex+(r−q)τf1(x, v, τ ;φ, 0)

∫

∞

lnK
e−iφζdζdφ.

We can show that

Ī1(x, v, τ) = lim
ζ→∞

{

1

2π

∫

∞

−∞

ex+(r−q)τf1(x, v, τ ;φ, 0)

[

e−iφζ − e−iφ lnK

−iφ

]

dφ

}

= lim
ζ→∞

ex+(r−q)τ 1

2π

∫

∞

0

(

e−iφ lnK − e−iφζ

iφ
f1(x, v, τ ;φ, 0)

−e
iφ lnK − eiφζ

iφ
f1(x, v, τ ;−φ, 0)

)

dφ

= ex+(r−q)τ

(

1

2π

∫

∞

0

f1(x, v, τ ;φ, 0)e−iφ lnK − f1(x, v, τ ;φ, 0)eiφ lnK

iφ
dφ

)

− ex+(r−q)τ lim
ζ→∞

(

1

2π

∫

∞

0

f1(x, v, τ ;φ, 0)e−iφζ − f1(x, v, τ ;−φ, 0)eiφζ

iφ
dφ

)

.

In order to arrive at Heston’s (1993) form for Ī1, we will now need to consider results

that are unique to characteristic functions. Shephard (1991) shows that

F (x) =
1

2
− 1

2π

∫

∞

0

f(φ)e−iφx − f(−φ)eiφx

iφ
dφ,

where F (x) is a cumulative density function. Note also that the complex conjugate of

fj(x, v, τ ;φ, ψ)e−iφx/iφ is given by

fj(x, v, τ ;φ, ψ)e−iφx

iφ
=
fj(x, v, τ ;−φ,−ψ)eiφx

−iφ

for j = 1, 2. This is easily proven by substitution using equations (42) and (35).
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Thus we have

Ī1(x, v, τ) = ex+(r−q)τ

(

1

2π

∫

∞

0
2Re

(

f1(x, v, τ ;φ, 0)e−iφ lnK

iφ

)

dφ+ lim
ζ→∞

F (ζ) − 1

2

)

= ex+(r−q)τ

(

1

2
+

1

π

∫

∞

0
Re

(

f1(x, v, τ ;φ, 0)e−iφ lnK

iφ

)

dφ

)

,

and similarly for Ī2(x, v, τ) we have

Ī2(x, v, τ) =
1

2
+

1

π

∫

∞

0
Re

(

f2(x, v, τ ;φ, 0)e−iφ lnK

iφ

)

dφ.

Substituting for Ī1 and Ī2 into (66) yields the result in Proposition 4.4.
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