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Abstract

Using the Pricing Equation in a panel-data framework, we construct a novel

consistent estimator of the stochastic discount factor (SDF) which relies on the

fact that its logarithm is the serial-correlation �common feature�in every asset

return of the economy. Our estimator is a simple function of asset returns, does

not depend on any parametric function representing preferences, is suitable for

testing di¤erent preference speci�cations or investigating intertemporal substi-

tution puzzles, and can be a basis to construct an estimator of the risk-free

rate.

For post-war data, our estimator is close to unity most of the time, yielding

an average annual real discount rate of 2.46%. In formal testing, we cannot

reject standard preference speci�cations used in the literature and estimates of

the relative risk-aversion coe¢ cient are between 1 and 2, and statistically equal

to unity. Using our SDF estimator, we found little signs of the equity-premium

puzzle for the U.S.
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1 Introduction

In this paper, we derive a novel consistent estimator of the stochastic discount factor

(or pricing kernel) that takes seriously the consequences of the Pricing Equation es-

tablished by Harrison and Kreps (1979), Hansen and Richard (1987), and Hansen and

Jagannathan (1991), where asset prices today are a function of their expected future

payo¤s discounted by the stochastic discount factor (SDF). If the Pricing Equation

is valid for all assets at all times, it can serve as a basis to construct an estimator of

the SDF in a panel-data framework when the number of assets and time periods is

su¢ ciently large. This is exactly the approach taken here.

We start with a general Taylor Expansion of the Pricing Equation to derive the

determinants of the logarithm of returns once we impose the moment restriction

implied by the Pricing Equation. The identi�cation strategy employed to recover the

logarithm of the SDF relies on one of its basic properties �it is the serial-correlation

�common feature,�in the sense of Engle and Kozicki (1993), in every asset return of

the economy. Under mild restrictions on the behavior of asset returns, used frequently

elsewhere, we show how to construct a consistent estimator for the SDF which is a

simple function of the arithmetic and geometric averages of asset returns alone, and

does not depend on any parametric function used to characterize preferences.

A major bene�t of our approach is that we are able to study intertemporal asset

pricing without the need to characterize preferences or use of consumption data; see

a similar approach by Hansen and Jagannathan (1991) and Campbell (1993). This

yields several advantages of our SDF estimator over possible alternatives. First, since

it does not depend on any parametric assumptions about preferences, there is no risk

of misspeci�cation in choosing an inappropriate functional form for the estimation of

the SDF. Moreover, our estimator can be used to test directly di¤erent parametric-

preference speci�cations commonly used in �nance and macroeconomics. Second,

since it does not depend on consumption data, our estimator does not inherit the

smoothness observed in previous consumption-based estimates which generated im-
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portant puzzles in �nance and in macroeconomics, such as excess smoothness (excess

sensitivity) in consumption, the equity-premium puzzle, etc.; see Hansen and Single-

ton (1982, 1983, 1984), Mehra and Prescott (1985), Campbell (1987), Campbell and

Deaton (1989), and Epstein and Zin (1991). Third, because of the close relationship

between the SDF and the risk-free rate, a consistent estimator of the latter can be

based on a consistent estimator of the former.

Our approach is related to research done in three di¤erent �elds. From economet-

rics, it is related to the common-features literature after Engle and Kozicki (1993).

Indeed, we attempt to bridge the gap between a large literature on serial-correlation

common features applied to macroeconomics, e.g., Vahid and Engle (1993, 1997),

Engle and Issler (1995), Issler and Vahid (2001, 2005), Vahid and Issler (2002), and

Hecq, Palm and Urbain (2005), and the �nancial econometrics literature related to

the SDF approach, perhaps best represented by the research on orthonormal poly-

nomials of Chapman (1998), by the kernel estimation of the risk-neutral density of

Aït-Sahalia and Lo (1998, 2000), by the work on empirical pricing kernels of Rosen-

berg and Engle (2002), and by the sieves estimator approach on preferences of Chen

and Ludvigson (2004). It is also related respectively to work on common factors in

macroeconomics and in �nance; see Geweke (1977), Stock and Watson (1989, 1993)

Forni et al. (2000), Bai and Ng (2004), and Boivin and Ng (2005) as examples of the

former, and a large literature in �nance perhaps best exempli�ed by Fama and French

(1992, 1993) and Lettau and Ludvigson (2001) as examples of the latter. From macro-

economics, it is related to the work using panel data for testing optimal behavior in

consumption, e.g., Runkle (1991), Blundell, Browning, and Meghir (1994), Attanasio

and Browning (1995), Attanasio and Weber (1995), Meghir and Weber (1996), and to

the recent work of Mulligan (2002, 2004) on cross-sectional aggregation, intertemporal

substitution, and the volatility of the SDF.

The set of assumptions needed to derive our results are common to many papers

in �nancial econometrics: the Pricing Equation is assumed in virtually all studies
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estimating the SDF, and the restrictions we impose on the stochastic behavior of

asset returns are fairly standard. What we see as non-standard in our approach is an

attempt to bridge the gap between economic and econometric theory in devising an

econometric estimator of a random process which has a straightforward economic in-

terpretation: it is the common feature of asset returns. Once the estimation problem

is put in these terms, it is straightforward to apply panel-data techniques to con-

struct a consistent estimator for the SDF. By construction, it will not depend on any

parametric function used to characterize preferences, which we see as a major bene�t

following the arguments in the seminal work of Hansen and Jagannathan (1991).

When applied to quarterly data of U.S.$ real returns, from 1972:1 through 2002:4,

using ultimately thousands of assets available to the average U.S. investor, our es-

timator of the SDF is close to unity most of the time and bound by the interval

[0:85; 1:15], with an equivalent average annual discount factor of 0:9760, or an aver-

age annual real discount rate of 2:46%. When we examined the appropriateness of

di¤erent functional forms to represent preferences, we concluded that standard pref-

erence representations cannot be rejected by the data. Moreover, estimates of the

relative risk-aversion coe¢ cient are close to what can be expected a priori �between

1 and 2, statistically signi�cant, and not di¤erent from unity in statistical tests. A

direct test of the equity-premium puzzle using our SDF estimator cannot reject that

the discounted equity premium in the U.S. has mean zero. If one takes the equity-

premium puzzle to mean the need to have incredible parameter values either for the

discount factor of future utility or the relative risk-aversion coe¢ cient (or both) in

order to achieve a mean-zero discounted equity premium in the U.S., then our results

show little signs of the equity-premium puzzle.

The next Section presents basic theoretical results and our estimation techniques,

discussing �rst consistency and then e¢ ciency in estimation. Section 3 shows how to

use our estimator to evaluate the Consumption-based Capital Asset-Pricing Model

(CCAPM) with formal statistical methods. Section 4 presents empirical results using
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the techniques proposed here, and Section 5 concludes.

2 Economic Theory and Our SDF Estimator

2.1 A Simple Consistent Estimator

Harrison and Kreps (1979), Hansen and Richard (1987), and Hansen and Jagannathan

(1991) describe a general framework to asset pricing, associated to the stochastic

discount factor (SDF), which relies on the Pricing Equation1:

Et fMt+1xi;t+1g = pi;t; i = 1; 2; : : : ; N; or (1)

Et fMt+1Ri;t+1g = 1; i = 1; 2; : : : ; N; (2)

where Et(�) denotes the conditional expectation given the information available at

time t, Mt is the stochastic discount factor, pi;t denotes the price of the i-th asset at

time t, xi;t+1 denotes the payo¤ of the i-th asset in t + 1, Ri;t+1 =
xi;t+1
pi;t

denotes the

gross return of the i-th asset in t+ 1, and N is the number of assets in the economy.

The existence of a SDF Mt+1 that prices assets in (1) is obtained under very

mild conditions. In particular, there is no need to assume a complete set of security

markets. Uniqueness of Mt+1, however, requires the existence of complete markets.

If markets are incomplete, i.e., if they do not span the entire set of contingencies,

there will be an in�nite number of stochastic discount factors Mt+1 pricing all traded

securities. Despite that, there will still exist a unique discount factor M�
t+1, which is

an element of the payo¤ space, pricing all traded securities. Moreover, any discount

factor Mt+1 can be decomposed as the sum of M�
t+1 and an error term orthogonal

to payo¤s, i.e., Mt+1 = M�
t+1 + �t+1, where Et (�t+1xi;t+1) = 0. The important fact

here is that the pricing implications of any Mt+1 are the same as those of M�
t+1, also

known as the mimicking portfolio.

1See also Rubinstein(1976) and Ross(1978).
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We now state the four basic assumptions needed to construct our estimator:

Assumption 1: The Pricing Equation (2) holds.

Assumption 2: The stochastic discount factor obeys Mt > 0. The same holds for

the mimicking portfolio M�
t .

Assumption 3: There exists a risk-free rate, labelled Rft+1, which is measurable

with respect to the sigma-algebra generated by the conditioning set used in

computing conditional moments Et (�).

Assumption 4: Let Rt = (R1;t; R2;t; ::: RN;t)
0 be an N � 1 vector stacking all as-

set returns in the economy. Then, the vector process fln (MtRt)g is assumed

to be covariance-stationary with �nite �rst and second moments. Let "i;t =

ln (MtRi;t) � Et�1fln (MtRi;t)g denote the innovation in predicting ln (MtRi;t).

Then, we further assume that lim
N!1

1
N2

PN
i=1

PN
j=1 jE ("i;t"j;t)j = 0.

Assumption 1 is present, either implicitly or explicitly, in virtually all studies in

�nance and macroeconomics dealing with asset pricing and intertemporal substitu-

tion; see, e.g., Hansen and Singleton (1982, 1983, 1984), Mehra and Prescott (1985),

Epstein and Zin (1991), Fama and French (1992, 1993), Attanasio and Browning

(1995), Lettau and Ludvigson (2001) and Mulligan (2002). The Pricing Equation (2)

is essentially equivalent to the �law of one price��where securities with identical

payo¤s in all states of the world must have the same price. Although its validity im-

plies mild restrictions on preferences as noted by Cochrane (2001), it does not imply

any parametric choice for preferences.

Assumption 2 is required because we will take logs ofMt in proving our asymptotic

results. Mt > 0 implies that there are no-arbritrage opportunities, which is slightly

stronger than the law of one price associated with Assumption 1. All CCAPM studies

implicitly assume Mt > 0, since Mt = � u0(ct)
u0(ct�1)

> 0, where ct is consumption, � 2

(0; 1) and u0 (�) > 0.
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Assumption 3 is necessary wherever there is a discussion about the equity-premium

puzzle; see, inter alia, Hansen and Singleton (1982, 1983, 1984), and Mehra and

Prescott (1985). The existence of a risk-free rate also augments the payo¤ space,

since there will be one asset that pays the same amount in every state of nature.

Assumption 4 controls the degree of time-series and cross-sectional dependence in

the data. In empirical work, asset returns have clear signs of conditional heteroskedas-

ticity; see Bollerslev, Engle andWooldridge (1988), Engle, Ito and Lin (1990), Harvey,

Ruiz and Shepard (1994), and Engle and Marcucci (2005). Of course, weak stationary

processes can display conditional heteroskedasticity as long as second moments are

�nite; see Engle (1982) and Bollerslev (1986). Therefore, Assumption 4 allows for con-

ditional heteroskedasticity in all returns used in computing our estimator, being an im-

portant feature of our assumptions. The condition lim
N!1

1
N2

PN
i=1

PN
j=1 jE ("i;t"j;t)j = 0

simply controls the degree of cross-sectional dependence present in the data. It guar-

antees convergence in probability of cross-sectional means. Similar conditions, al-

though in a less restrictive format, can be found in Bai and Ng (2004). One impor-

tant case where this condition is violated is when the error terms have a common

component of the form "i;t = �t + �i;t, where we assume that �t is orthogonal to �i;t

at all leads and lags. Violation happens also under perfect correlation among errors,

although this case is less realistic.

To construct a consistent estimator for fMtg we consider a second-order Taylor

Expansion of the exponential function around x; with increment h; as follows:

ex+h = ex + hex +
h2ex+�(h)�h

2
; (3)

with �(h) : R! (0; 1) : (4)

For the expansion of a generic function, �(�) would depend on x and h. However,

dividing (3) by ex:

eh = 1 + h+
h2e�(h)�h

2
; (5)
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shows that (5) does not depend on x. Therefore, we get a closed-form solution for

�(�) as function of h alone:

�(h) =

8><>:
1
h
� ln

�
2�(eh�1�h)

h2

�
; h 6= 0

1=3; h = 0;

where �(�) maps from the real line into (0; 1). To connect (5) with the Pricing

Equation (2), we impose h = ln(MtRi;t) in (5) to obtain:

MtRi;t = 1 + ln(MtRi;t) +
[ln(MtRi;t)]

2 e�(ln(MtRi;t))�ln(MtRi;t)

2
; (6)

which shows that the behavior ofMtRi;t will be governed solely by that of ln(MtRi;t).

It is useful to de�ne the random variable zi;t � 1
2
� [ln(MtRi;t)]

2 e�(ln(MtRi;t))�ln(MtRi;t).

Taking the conditional expectation of both sides of (6), imposing the Pricing Equa-

tion, and rearranging terms, gives:

Et�1 (zi;t) = �Et�1 fln(MtRi;t)g : (7)

Notice that Et�1 (zi;t) will be a function of Et�1 fln(MtRi;t)g alone if and only if the

Pricing Equation holds, otherwise it will also be a function of Et�1(MtRi;t). Moreover,

zi;t � 0 for all (i; t). Therefore, Et�1 (zi;t) � 2i;t � 0, and we denote it as 2i;t

to stress the fact that it is non-negative. Let 2t �
�
21;t; 

2
2;t ; :::; 

2
N;t

�0
and "t �

("1;t; "2;t; :::; "N;t)
0 stack respectively the conditional means 2i;t and the forecast errors

"i;t. Then, from the de�nition of "t we have:

ln(MtRt) = Et�1fln(MtRt)g+ "t

= �2t + "t: (8)

Denoting by rt = ln (Rt) and by mt = ln (Mt), and using these de�nitions in (8), we
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get the following system of equations2:

ri;t = �mt � 2i;t + "i;t; i = 1; 2; : : : ; N: (11)

The system (11) shows that the (log of the) SDF is the serial-correlation common

feature, in the sense of Engle and Kozicki (1993), of all (logged) asset returns. For

any two economic series, a common feature exists if it is present in both of them

and can be removed by linear combination. An early example of common features is

cointegration, where the feature is a common unit root component that is removed

by the cointegrating vector. Serial-correlation common features are discussed in great

detail in Vahid and Engle (1993, 1997) and in Hecq, Palm and Urbain (2005).

Looking at (11), asset returns are decomposed into three terms: the �rst is the

logarithm of the SDF, mt, which is common to all returns and is a random vari-

able. The second is 2i;t = Et�1 (zi;t). It is idiosyncratic and, given past information,

also deterministic. The third is "i;t. It is also idiosyncratic and unforecastable, and

therefore has no serial correlation. Hence, disregarding deterministic terms, the only

source of serial correlation is mt. Notice that mt can be removed by linearly com-

bining returns: for any two assets i and j, ri;t � rj;t will not contain the feature mt,

which makes (1;�1) a �cofeature vector�(vector removing the feature) for all asset

pairs.3

2We could have obtained (11) following Blundell, Browning, and Meghir (1994, p. 60, eq. (2.10)),
writing the Pricing Equation as:

Mt+1Ri;t+1 = 1� ui;t+1; i = 1; 2; : : : ; N; (9)

where Et (ui;t+1) = 1, i = 1; 2; : : : ; N . Taking now logs of (9), decomposing ln (ui;t+1) =
Et fln (ui;t+1)g+ "i;t+1, we get:

ri;t+1 = �mt+1 + Et fln (ui;t+1)g+ "i;t+1; i = 1; 2; : : : ; N: (10)

Blundell, Browning, and Meghir argue that, in general, Et fln (ui;t+1)g will be a function of
higher-order moments of ln (ui;t+1). Our expansion (6) just makes clear the exact way in which
Et fln (ui;t+1)g depends on the higher-order moments of ln (ui;t+1) if the Pricing Equation holds,
and our consistency proof follows directly from this connection.

3There is a serial-correlation common feature between any two I (0) random variables xt and
yt, if both have serial correlation but, for some constant number e�, xt � e�yt does not have serial
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We now state our most important result.

Proposition 1 If the vector process fln (MtRt)g satis�es assumptions 1, 2, 3 and 4,

the realization of the SDF at time t, denoted by Mt, can be consistently estimated as

N; T !1, using: cMt =
R
G

t

1
T

TP
j=1

�
R
G

j R
A

j

� ;

where R
G

t =
QN
i=1R

� 1
N

i;t and R
A

t =
1
N

NP
i=1

Ri;t are respectively the geometric average of

the reciprocal of all asset returns and the arithmetic average of all asset returns.

Proof. Because ln(MtRt) is weakly stationary, for every one of its elements ln(MtRi;t),

there exists a Wold representation of the form:

ln(MtRi;t) = �i +
1X
j=0

bi;j"i;t�j (12)

where, for all i, bi;0 = 1, �i < 1,
P1

j=0 b
2
i;j < 1, and "i;t is white noise. Taking the

unconditional expectation of (7), in light of (12), leads to:

2i � E(zi;t) = �E fln(MtRi;t)g = ��i; (13)

which is well de�ned and time-invariant under Assumption 4. Taking conditional

correlation. This is usually veri�ed using the condition: Et�1 (xt � e�yt) = 0. However, if there are
deterministic terms in xt�e�yt such as constant term, for example, this will prevent Et�1 (xt � e�yt) =
0 from holding, even if the serial-correlation component of xt and yt is eliminated by the linear
combination xt � e�yt. That is the reason why any deterministic components have to be subtracted
from the cofeature linear combination to use this conditional moment restriction. The term 2i;t is
deterministic given past information, since it is a (t� 1)�adapted series. Therefore:

ri;t + 
2
i;t = �mt + "i;t; i = 1; : : : ; N;

makes clear that mt is the serial-correlation common feature of ri;t+2i;t, which are (log) returns ad-
justed for the deterministic terms 2i;t, or simply �risk-adjusted returns,�because 

2
i;t is a conditional

moment that involves the square of returns.
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expectations Et�1 (�) of (12), using "i;t = ln (MtRi;t)� Et�1fln (MtRi;t)g, yields:

ri;t = �mt � 2i + "i;t �
1X
j=1

bi;j"i;t�j; i = 1; 2; : : : ; N; (14)

which is just a di¤erent way of writing (11), where it becomes obvious that:

2i;t = 
2
i +

1X
j=1

bi;j"i;t�j:

We consider now a cross-sectional average of (14):

1

N

NX
i=1

ri;t = �mt �
1

N

NX
i=1

2i +
1

N

NX
i=1

"i;t �
1

N

NX
i=1

1X
j=1

bi;j"i;t�j; (15)

and examine convergence in probability of 1
N

PN
i=1 ri;t+mt using (15). Because every

term ln(MtRi;t) has a �nite mean �i = � 2i , even in the limit, the limit of their

average must be �nite, i.e.,

lim
N!1

� 1

N

NX
i=1

2i � �2 <1:

Assumption 4 is a su¢ cient condition to apply a Markov Law-of-Large-Numbers to
1
N

PN
i=1 "i;t, since:

VAR

 
1

N

NX
i=1

"i;t

!
=

1

N2

NX
i=1

NX
j=1

E ("i;t"j;t) �
1

N2

NX
i=1

NX
j=1

jE ("i;t"j;t)j ;

but, by Assumption 4, we obtain,

lim
N!1

VAR

 
1

N

NX
i=1

"i;t

!
= 0, and

1

N

NX
i=1

"i;t
p! 0:
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The last term in (15), � 1
N

PN
i=1

P1
j=1 bi;j"i;t�j, involves averages of the

non-contemporaneous MA (1) terms in the Wold representation (12). There is no

cross correlation between "i;t and "j;t�k, k = 1; 2; : : :. Therefore, in computing the

variance of 1
N

PN
i=1

P1
j=1 bi;j"i;t�j, we need only to consider the sum of the variances

of terms of the form 1
N

PN
i=1 bik"i;t�k. These are given by:

VAR

 
1

N

NX
i=1

bi;k"i;t�k

!
=

1

N2

NX
i=1

NX
j=1

bi;kbj;kE ("i;t"j;t) ; (16)

due to weak stationarity of "t. We now examine the limit of the generic term in (16)

with detail:

VAR

 
1

N

NX
i=1

bi;k"i;t�k

!
=

1

N2

NX
i=1

NX
j=1

bi;kbj;kE ("i;t"j;t) �

1

N2

NX
i=1

NX
j=1

jbi;kbj;kE ("i;t"j;t)j =
1

N2

NX
i=1

NX
j=1

jbi;kbj;kj jE ("i;t"j;t)j � (17)

�
max
i;j
jbi;kbj;kj

�
1

N2

NX
i=1

NX
j=1

jE ("i;t"j;t)j : (18)

Hence:

lim
N!1

VAR

 
1

N

NX
i=1

bi;k"i;t�k

!
� lim

N!1

�
max
i;j
jbi;kbj;kj

�
�

lim
N!1

1

N2

NX
i=1

NX
j=1

jE ("i;t"j;t)j = 0;

since the sequence fbi;jg1j=0 is square-summable, yielding lim
N!1

�
max
i;j
jbi;kbj;kj

�
� 1,

and Assumption 4 imposes lim
N!1

1
N2

PN
i=1

PN
j=1 jE ("i;t"j;t)j = 0. Thus all variances are

zero in the limit, as well as their sum, which gives:

1

N

NX
i=1

1X
j=1

bi;j"i;t�j
p! 0, and,

1

N

NX
i=1

ri;t +mt
p! �2:

13



Therefore, a consistent estimator for e
2 �Mt = fMt is given by:

cfM t =
NY
i=1

R
� 1
N

i;t : (19)

We now show how to estimate e
2
consistently and therefore to �nd a consistent

estimator for Mt. Multiply the pricing equation by e
2
to get:

e
2

= Et�1
�
e
2

2 MtRi;t

�
= Et�1

nfMtRi;t

o
:

Take now the unconditional expectation and average across i = 1; 2; :::; N to get:

e
2

=
1

N

NX
i=1

E
nfMtRi;t

o
:

It is now straightforward to obtain a consistent estimator for e
2
using (19):

ce2 = 1

N

NX
i=1

 
1

T

TX
t=1

cfM tRi;t

!
=
1

T

TX
t=1

 
NY
i=1

R
� 1
N

i;t

1

N

NX
i=1

Ri;t

!
=
1

T

TX
t=1

R
G

t R
A

t :

We can �nally propose a consistent estimator for Mt:

cMt =
cfM tce2 = R

G

t

1
T

PT
j=1R

G

j R
A

j

;

a simple function of asset returns.

There are three important features of cMt: (i) it provides a fully non-parametric

way of consistently estimating the realizations of the SDF at a very low computa-

tional cost; (ii) asset returns used in computing cMt are allowed to be heteroskedastic,

which widens the application of this estimator to (ultra) high-frequency data; (iii)

there are important special cases of Proposition 1: under conditional log-Normality

of ln(MtRt), with or without a time-varying variance-covariance matrix for "t. As a
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consequence of Proposition 1, we can now propose a way of consistently estimating

the risk-free rate Rft :

Proposition 2 Using cMt as in Proposition 1 above o¤ers a consistent estimator of

the risk-free rate, Rft , as follows:

c
Rft =

1

Et�1
ncMt

o :
Proof. Because Rft+1 is measurable:

1 = Et
n
Mt+1R

f
t+1

o
= Rft+1Et fMt+1g ; or Rft+1 =

1

Et fMt+1g
;

which o¤ers an immediate consistent estimator for the risk-free rate Rft+1:

d
Rft+1 =

1

Et
n
[Mt+1

o ;
which can be implemented based on an econometric model for Et

n
[Mt+1

o
:

2.2 An Alternative Equivalent Estimator

In several contexts it is convenient to assume homoskedasticity of asset returns, espe-

cially for the sake of simplicity. This is very unrealistic for high-frequency data (daily,

weekly or even monthly), but may be reasonable as the frequency of observations de-

creases to quarterly or annual data; see Drost and Nijman (1993), and Meddahi and

Renault (2002) for a discussion. Under homoskedasticity and a log-Normal distribu-

tion for ln (MtRt), (11) is:

ri;t = �mt �
1

2
�2i + "i;t; i = 1; 2; � � � ; N; (20)
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which decomposes (logged) returns in a time-invariant �xed e¤ect, �1
2
�2i , a purely

time-varying common component, �mt, and a normally distributed unforecastable

error, "i;t, with mean zero and variance �2i .

Panel-data regression equations (20) correspond to a standard unobserved �xed-

e¤ect model with no explanatory variables other than time dummies, also known

as the two-way �xed-e¤ect model (see Wallace and Hussain, 1969; Amemiya, 1971).

Stacking the least-square estimates of the coe¢ cients of the time dummies then pro-

vides a consistent estimate for the log-SDFs, whereas the �xed e¤ects capture the

individual heterogeneity that stem from the variances of logged returns.

We now discuss least-square estimation of (20). De�ne: yit � ri;t, ai � �1
2
�2i ,

�t � �mt. Then, model (20) is:

yi;t = ai + �t + "i;t;

and we are interested in an estimate of f�tg
T
t=1. Here, since regressors are time

dummies and constants, the assumption that they are strictly exogenous for the ai�s

and �t respectively can be comfortably made. Regressors are deterministic, therefore,

current and past values of returns cannot explain their behavior. Using standard

notation,

yi= �Tai + IT� + "i; i = 1; :::; N; (21)

where, yi =
h
yi;1 yi;2 ::: yi;T

i0
, � =

h
�1 �2 ::: �T

i0
,

"i =
h
"i;1 "i;2 ::: "i;T

i0
, where IT is an identity matrix of order T and �T is a

T � 1 vector of ones.

Denoting by Q the standard �time-demeaning transformation�

Q = IT��T (�
0
T �T )

�1�0T , where Q is idempotent and symmetric, we get:

Qyi= Q�Tai+QIT� +Q"i= Q� +Q"i:
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The pooled OLS estimate of � is not identi�ed, since the identi�cation condition

is:

rank (E [Q0Q]) = T;

but we have E [Q0Q] = Q and rank(Q) = tr(Q) = T � 1, showing that E [Q0Q] is

rank-de�cient.

Nevertheless, a reparameterization can be made in order to get a consistent esti-

mator. Consider,

yi;t = ai + e�t + �1 + "i;t; (22)

where e�t = �t��1 = � (mt �m1) = � ln
�
Mt

M1

�
, i.e., is the (log of) the �normalized�

SDF, relative to its initial value. It is obvious that e�1 = 0, and the model can be

rewritten as:

yi = �T (ai + �1) +Xe� + "i (23)

where: X
T�(T�1)

=
h
00 IT�1

i0
, and e�

(T�1)�1
=
h e�2 ::: e�T i0 : Applying Q to (23)

yields:

Qyi = Q�T (ai + �1) +QX
e� +Q"i

= QXe� +Q"i: (24)

It is straightforward to show that QX is now full-column rank, and therefore we

can compute the pooled OLS estimator of (24):

be� = " NX
i=1

X0QX

#�1 " NX
i=1

X0Qyi

#
=
1

N

NX
i=1

yi �
 
1

NT

NX
i=1

TX
t=1

yit

!
�T�1; (25)

which yields, in more familiar notation,

�be�t = \mt �m1 =
1

NT

NX
j=1

TX
t=1

rj;t �
1

N

NX
i=1

ri;t = ln
�
�R � �RGt

�
; (26)
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where �R =
NQ
i=1

TQ
t=1

(Ri;t)
1
NT is the overall geometric average of returns and �RGt =

NQ
i=1

(Ri;t)
� 1
N is the geometric average of the reciprocal of returns. Equation (26) shows

that the estimator ofmt�m1 depends exclusively on appropriate averages of the asset

gross returns, viz. ln
�
�R � �RGt

�
. We are now ready to state the asymptotic distribution

of be�.
Proposition 3 Under Assumptions 1, 2, 3, and 4, if the error terms "t are ho-

moskedastic and Normally distributed, then
p
N

�be� � �� converges weakly to a mul-
tivariate Gaussian distribution with mean zero and covariance matrix:


 = (X0QX)
�1
P�NX

0Q (�
 IT ) QXP�N (X
0QX)

�1
; (27)

where � denotes the covariance matrix of "t, and P�N= �N(�
0

N�N)
�1�

0
N , where �N is

a N � 1 vector of ones.

Proof. Rewriting (25) in terms of the projection matrix P�N= �N(�
0

N�N)
�1�

0
N yields

be� = (X0QX)
�1
P�NX

0Qy = � � (X0QX)
�1
P�NX

0Q";

where y = (y01; : : : ;y
0
T )
0 and " = ("01; : : : ; "

0
T )
0 are NT � 1 vectors. Then, the covari-

ance matrix of be� is:

 = E

��be� � ���be� � ��0�
= E

h
(X0QX)

�1
P�NX

0Q""0QXP�N (X
0QX)

�1
i

= (X0QX)
�1
P�NX

0Q (�
 IT ) QXP�N (X
0QX)

�1
:

Asymptotic normality follows from standard panel-data results.

Up to this point we have a consistent estimator for e� = �t � �1, t = 2; :::; T .

However, we are not interested in an estimator for mt�m1 but for Mt or mt. To get
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it we start with a consistent estimator for Mt

M1
, easily obtained from (26):

dMt

M1

= �R � �RGt :

Dividing lagged Pricing Equation (2) by the realizationM1, which is measurable with

respect to the information set used by the agent4, taking unconditional expectations

and averaging across assets, yields:

1

M1

=
1

N

NX
i=1

E
�
Mt

M1

Ri;t

�
;

which leads to the following consistent estimator for M1:

cM1 =
1

1
N

PN
i=1

1
T

PT
t=1
cMt

M1
Ri;t

=
1

�R � 1
T

PT
t=1

�RGt �R
A
t

:

Finally, a consistent estimator forMt, t = 2; 3; � � � ; T , identical to that in Proposition

1, is obtained:

cMt =
dMt

M1

� cM1 =
�R � �RGt

�R � 1
T

PT
j=1

�RGj
�RAj
=

�RGt
1
T

PT
j=1

�RGj
�RAj
: (28)

There are several interesting points to note. First, because of the normality as-

sumption for errors "i;t, if the "i;t�s are uncorrelated in the cross-sectional dimension,

then pooled OLS yields a consistent and fully e¢ cient estimator for ln
�
Mt

M1

�
. The

term M1 serves here as a mean correction for the SDF. Second, in the more realistic

case where returns have correlated shocks, then the estimator for ln
�
Mt

M1

�
will still be

consistent but will not be fully e¢ cient. In this case, a GLS approach will produce a

fully e¢ cient estimator. However, for the latter to be feasible, we need:

T >
N (N + 1)

2
;

4Since it is a realization, it can be treated as a constant rather than as a random variable.
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and asymptotic results will require T to grow at rate N2, which will certainly be a

binding constraint. An alternative to GLS is to use OLS with a robust estimator

for the variance-covariance matrix of estimated parameters along the lines of Newey

and West (1987). Finally, in either case, uncorrelated or correlated shocks to returns,

we do not have a fully e¢ cient estimator for Mt, or for mt, but only for a corrected

version of the latter, and even so only at the cost of assuming homoskedastic normal

errors.

2.3 Properties of the Mt Estimator

The �rst characteristic of our estimator of Mt, labelled cMt, is that it is a function

of asset-return data alone. No assumptions whatsoever about preferences or even

about any �nance theories have been made so far. Second, our estimator is unique,

since it can be seen as a pooled OLS estimate, as shown in the previous section.

Moreover, looking at the normalized SDF estimator �the estimator of � ln
�
Mt

M1

�
in

(26) �shows that it is a linear combination of logged returns. Using the logarithmic

approximation ln (1 + x) ' x, ln
�cMt

M1

�
' cMt

M1
� 1, and ri;t ' Ri;t � 1, makes it clear

that the normalized SDF estimator cMt

M1
is a linear function of Ri;t+1. Hence, it lies in

the space of payo¤s. Because M1 only acts as mean correction, our estimator cMt will

lie in the space of payo¤s if that space contains an asset that pays the same amount

in every state of nature. That is why we must assume the existence of a risk-free

asset (Assumption 3).

Since there is a unique SDF that lies in the space of payo¤s � the mimicking

portfolio M�
t �our estimator identi�es it. It is important to stress that with incom-

plete markets there exists an in�nite number of SDF�s, all of which can be written

as Mt+1 = M
�
t+1 + �t+1, where Et (�t+1xi;t+1) = 0. In this context, any econometric

technique could only hope to identify M�
t , which is what we do here.

Third, because cMt is a consistent estimator, it is interesting to discuss what it

converges to. Of course, the SDF is a stochastic process: fMtg. Since convergence
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in probability requires a limiting degenerate distribution, our estimator cMt converges

to the realization of M at time t.

Fourth, from a di¤erent angle, it is straightforward to verify that our estimator

was constructed to obey:

plim
N;T!1

1

N

NX
i=1

1

T

TX
t=1

[Mt+1Ri;t+1 = 1; (29)

which is a natural property arising from the moment restrictions in (2), when popu-

lational means of the time-series and of the cross-sectional distributions are replaced

by sample means.

2.4 Comparisons with the Literature

As far as we are aware of, early studies in �nance and macroeconomics dealing with

the SDF did not try to obtain a direct estimate of it as we do: we treated fMtg

as a stochastic process and constructed an estimate cMt, such that cMt � Mt
p! 0.

Conversely, most of the previous literature estimated the SDF indirectly as a func-

tion of consumption data from the National Income and Product Accounts (NIPA),

using a parametric function to represent preferences; see Hansen and Singleton (1982,

1983, 1984), Brown and Gibbons (1985) and Epstein and Zin (1991). As noted by

Rosenberg and Engle (2002), there are several sources of measurement error for NIPA

consumption data that can pose a signi�cant problem for this type of estimate. Even

if this were not the case, there is always the risk that an incorrect choice of parametric

function used to represent preferences will contaminate the �nal SDF estimate.

One of the major features of early estimates of the SDF was that their correlation

with the equity premium was not large and negative, generating the equity-premium

puzzle; see Hansen and Singleton (1982), Mehra and Prescott (1985), and the latest

discussion in Mulligan (2004). Epstein and Zin propose a functional form forMt that

makes it depend on the reciprocal of the return on the optimal portfolio. Because
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returns are strongly positively-correlated, this speci�cation will make the correlation

between Mt and equity premium to be large and negative, which can perhaps serve

as a remedy for earlier estimates with regard to the equity-premium puzzle. Our ex-

pression for Mt in Proposition 1 naturally delivers a negative correlation between Mt

and the equity premium: the denominator 1
T

PT
t=1

�
R
G

t R
A

t

�
will be approximately

constant for large T , but the numerator
QN
i=1 (Ri;t)

� 1
N =

QN
i=1

�
1
Ri;t

� 1
N
is the geo-

metric average of the reciprocals of returns, which should generate a strong negative

correlation between cMt and the equity premium.

Hansen and Jagannathan (1991) point out that early studies imposed potentially

stringent limits on the class of admissible asset-pricing models. They avoid dealing

with a direct estimate of the SDF, but note that the SDF has its behavior (and in

particular its variance) bounded by two restrictions. The �rst is Pricing Equation

(2) and the second is Mt > 0. They exploit the fact that it is always possible to

project M onto the space of payo¤s, which makes it straightforward to express M�,

the mimicking portfolio, only as a function of observables, as we do in (28):

M�
t+1 = �

0
N

�
Et
�
Rt+1R

0
t+1

���1
Rt+1; (30)

where �N is a N � 1 vector of ones, and Rt+1 is a N � 1 vector stacking all asset

returns. Although they do not discuss it at any length in their paper, equation (30)

shows that it is possible to identifyM�
t+1 in the Hansen and Jagannathan framework.

As in our case, (30) delivers an estimate of the SDF that is solely a function of asset

returns and can therefore be used to verify whether preference-parameter values are

admissible or not.

If one regards (30) as a means to identifyM�, there are some limitations that must

be pointed out. First, it is obvious from (30) that a conditional econometric model is

needed to implement an estimate for M�
t+1, since one has to compute the conditional

moment Et
�
Rt+1R

0
t+1

�
. Second, as the number of assets increases (N !1) the use
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of (30) will su¤er numerical problems in computing an estimate of
�
Et
�
Rt+1R

0
t+1

���1
.

In the limit, the matrix Et
�
Rt+1R

0
t+1

�
will be of in�nite order. Even for �nite but

large N there will be possible singularities in it, as the correlation between some

assets may be very close to unity.

Our approach is very close to Mulligan�s (2002), where return data is super-

aggregated to compute the return to aggregate capital. For algebraic convenience, we

use the log-utility assumption for preferences �where Mt+j = �
ct
ct+j

�as well as the

assumption of no production in the economy in illustrating their similarities.

Since asset prices are the expected present value of the dividend �ows, and since

with no production dividends are equal to consumption in every period, the price of

the portfolio representing aggregate capital �pt is:

�pt = Et

( 1X
i=1

�i
ct
ct+i

ct+i

)
=

�

1� � ct:

Hence, the return on aggregate capital Rt+1 is given by:

Rt+1 =
�pt+1 + ct+1

�pt
=
�ct+1 + (1� �)ct+1

�ct
=
ct+1
�ct

=
1

Mt+1

; (31)

which is the reciprocal of the SDF. Therefore there is a duality between the approach

in Mulligan and ours in the context above.

Taking logs of both sides of (31), using rt+1 = lnRt+1, yields:

rt+1 = �mt+1;

which shows that the common feature in (11) is indeed the return to aggregate capital.

Of course, it may not be so simple to derive this duality result under more general

conditions but it can still be thought of as an approximation. Although similar in

spirit, Mulligan�s work and ours follow very di¤erent paths in empirical implementa-

tion. Our goal is to extract �mt+1 from a large data set of asset returns, whereas
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Mulligan uses national-account data to construct the return to aggregate capital. Be-

cause national-account data are prone to be measured with error, which will increase

as the level of aggregation increases, the approach taken by Mulligan is likely to gen-

erate measurement error in the estimate of Rt. However, our approach can avoid

these problems for two reasons. First, we work with asset-return data, which is more

reliable than national-account data. Second, averaging returns in the way we propose

factors out idiosyncratic measurement error in cMt.

Factor models within the CCAPM framework have a long tradition in �nance and

in �nancial econometrics; see, for example, Fama and French (1993) and Lettau and

Ludvigson (2001), who propose, respectively, a three- and a two-factor model where,

in the former, factors are related to �rm size, book-to-market equity and the aggre-

gate stock market, and, in the latter, to a time-varying risk premium and deviations

from the long-run consumption-wealth ratio. Compared to these papers, our focus is

to consider only the �rst-order factor, mt, in a novel way, i.e., a parsimonious repre-

sentation. The discussion in Cochrane (2001, ch. 7) shows that increasing the number

of factors in �nance models does not necessarily generate a better model, since the

risk of over�tting and instability across di¤erent samples is always present. Our ef-

fort was to �nd a parsimonious factor model with reasonable explanatory power for

the behavior of asset returns, where the factor has a straightforward macroeconomic

interpretation derived from theory � it is the stochastic discount factor pricing all

assets, or the return to aggregate capital. The econometric technique itself allows for

out-of-sample assessment of our estimator in pricing alternative assets not included

in the computation of cMt. In our view, this is how we can impose discipline on our

empirical model of Mt.

In recent years there has been a trend to build less restrictive estimates of the SDF

compared to the early functions of consumption growth; see, among others, Chapman

(1998), Aït-Sahalia and Lo (1998, 2000), Rosenberg and Engle (2002), and Chen and

Ludvigson (2004). In some of these papers a parametric function is still used to repre-
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sent the SDF, although the latter does not depend on consumption; see Rosenberg and

Engle, who project the SDF onto the payo¤s of a single traded asset, and Aït-Sahalia

and Lo (1998, 2000), who rely on equity-index option prices to nonparametrically

estimate the projection of the average stochastic discount factor onto equity-return

states. Sometimes non-parametric or semi-parametric methods are used, but the SDF

is still a function of current or lagged values of consumption; see Chen and Ludvig-

son, who propose a semiparametric estimate of the functional form of the habit level

given contemporaneous and lagged consumption, and Chapman, who approximates

the pricing kernel using orthonormal Legendre polynomials in state variables that are

functions of aggregate consumption. Although these e¤orts represent a step forward

in terms of reducing the degree of stringent assumptions made to estimate the SDF,

they still impose restrictions on preferences to achieve identi�cation. In our frame-

work, �preferences are revealed� in the common component of asset returns after

using the Pricing Equation.

3 Using our Estimator to Evaluate the

CCAPM

3.1 Testing Preference Speci�cations within the

CCAPM

An important question that can be addressed with our estimator of Mt is how to

test and validate speci�c preference representations. Here we focus on three di¤erent

preference speci�cations: the CRRA speci�cation, which has a long tradition in the �-

nance and macroeconomic literatures, the external-habit speci�cation of Abel (1990),

and the Kreps and Porteus (1978) speci�cation used in Epstein and Zin (1991), which

are respectively:

MCRRA
t+1 = �

�
ct+1
ct

��
(32)
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MEH
t+1 = �

�
ct+1
ct

�� �
ct
ct�1

��(�1)
(33)

MKP
t+1 =

"
�

�
ct+1
ct

��# 1�
� �

1

Bt

�1� 1�
�

; (34)

where ct denotes consumption, Bt is the return on the optimal portfolio, � is the

discount factor,  is the relative risk-aversion coe¢ cient, and � is the time-separation

parameter in the habit-formation speci�cation. Notice that MEH
t+1 is a weighted av-

erage of MCRRA
t+1 and

�
ct
ct�1

�
. In the Kreps-Porteus speci�cation the intertemporal

elasticity of substitution in consumption is given by 1=(1 � �) and � = 1 �  deter-

mines the agent�s behavior towards risk. If we denote � = 1�
�
, it is clear that MKP

t+1

is a weighted average of MCRRA
t+1 and

�
1
Bt

�
, with weights � and 1� �, respectively.

For consistent estimates, we can always write:

mt+1 =[mt+1 + �t+1; (35)

where �t+1 is the approximation error between mt+1 and its estimate [mt+1.

The properties of �t+1 will depend on the properties of Mt+1 and Ri;t+1, and, in

general, it will be serially dependent and heterogeneous. Using (35) and the expres-

sions in (32), (33) and (34), we arrive at:

[mt+1 = ln � � � ln ct+1 � �CRRAt+1 ; (36)

[mt+1 = ln � � � ln ct+1 + � ( � 1)� ln ct � �EHt+1; (37)

[mt+1 = � ln � � �� ln ct+1 � (1� �) lnBt+1 � �KPt+1; (38)

Perhaps the most appealing way of estimating (36), (37) and (38), simultaneously

testing for over-identifying restrictions, is to use the generalized method of moments

(GMM) proposed by Hansen (1982). Lagged values of returns, consumption and

income growth, and also of the logged consumption-to-income ratio can be used as
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instruments in this case. Since (36) is nested into (37), we can also perform a redun-

dancy test for � ln ct in (36). The same applies regarding (36) and (38), since the

latter collapses to the former when lnBt+1 is redundant.

4 Empirical Application

4.1 Data

We apply our techniques to returns available to the average U.S. investor, who has

increasingly become more interested in global assets over time. Real returns were

computed using the consumer price index in the U.S. Our data base covers U.S.$

real returns on G7-country stock indices and short-term government bonds, where

exchange-rate data was used to transform returns denominated in foreign currency

into U.S.$. In addition to G7 returns on stocks and bonds, we also use U.S.$ real

returns on gold, U.S. real estate, bonds on AAA U.S. corporations, and on the SP

500. The U.S. government bond is chosen to be the 90-day T-Bill, considered by

many to be a �riskless asset.�All data were extracted from the DRI database, with

the exception of real returns on real-estate trusts, which are computed by the National

Association of Real-Estate Investment Trusts in the U.S.5 Our sample period starts

in 1972:1 and ends in 2001:4. Overall, we averaged the real U.S.$ returns on these

18 portfolios or assets6, which are, in turn, a function of thousands of assets. These

are predominantly U.S. based, but we also cover a wide spectrum of investment

opportunities across the globe. This is important element of our choice of assets,

5Data on the return on real estate are measured using the return of all publicly traded REITs �
Real-Estate Investment Trusts.

6The complete list of the 18 portfolio- or asset-returns, all measured in U.S.$ real terms, is: returns
on the NYSE, Canadian Stock market, French Stock market, West Germany Stock market, Italian
Stock market, Japanese Stock market, U.K. Stock market, 90-day T-Bill, Short-Term Canadian
Government Bond, Short-Term French Government Bond, Short-Term West Germany Government
Bond, Short-Term Italian Government Bond, Short-Term Japanese Government Bond, Short-Term
U.K. Government Bond. As well as on the return of all publicly traded REITs � Real-Estate
Investment Trusts in the U.S., on Bonds of AAA U.S. Corporations, Gold, and on the SP 500.
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since diversi�cation allows reducing the degree of correlation of returns across assets,

whereas too much correlation may generate no convergence in probability for sample

means such as those appearing in Proposition 1.

In estimating equations (36) and (37), we must use additional series. Real per-

capita consumption growth was computed using private consumption of non-durable

goods and services in constant U.S.$. We also used real per-capita GNP as a measure

of income �an instrument in running some of these regressions. Consumption and

income series were seasonally adjusted.

4.2 Estimating the SDF Mt and the Risk-Free Rate R
f
t

Figure 1 below shows our estimator of the SDF �cMt �for the period 1972:1 to 2001:4.

It is close to unity most of the time and bounded by the interval [0:85; 1:15]. The

sample mean of cMt is 0:9939, implying an annual discount factor of 0:9760, or an

annual discount rate of 2:46%, a very reasonable estimate.
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0.95

1.00
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1975 1980 1985 1990 1995 2000

Figure 1: Stochastic Discount Factor

In order to get a conditional model for the SDF, we project our SDF estimator

on the �rst two powers of lag one and two of the returns used in computing it, of

lag one and two of consumption and income growth, and of the log of the lagged
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consumption�income ratio. In constructing the estimate of the risk-free rate Rft we

take the reciprocal of the predicted value of this conditional model. The mean real

return of our risk-free rate estimator is 3:12% on an annual basis, slightly higher than

the mean real return of the T-Bill, 2:39% a year. Next, cRft was then used to generate
an estimator of the equity premium relative to the real return of the NYSE. The

usual equity premium using the 90-day T-Bill was also computed, and a plot of both

is presented in Figure 2. The correlation coe¢ cient between these two series is 0:9431,

and, as it is obvious from the picture, there is little di¤erence in their behavior.
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Figure 2: Equity Premia

4.3 Estimating Preference Speci�cations within the

CCAPM

Tables 1, 2, and 3 present GMM estimation of equations (36), (37) and (38), respec-

tively. We used as a basic instrument list two lags of all real returns employed in

computing cMt, two lags of ln
�

ct
ct�1

�
, two lags of ln

�
yt
yt�1

�
, and one lag of ln

�
ct
yt

�
.

This basic list was altered in order to verify the robustness of empirical results. We

also include OLS estimates to serve as benchmarks in all three tables.
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Table 1
Power-Utility Function Estimatescmt = ln � � � ln ct � �CRRAt

Instrument Set �  OIR Test
(SE) (SE) (P-Value)

OLS Estimate 1.002 1.979 �
(0.006) (0.884)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; constant 0.999 1.125 (0.9953)
(0.003) (0.517)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.001 1.370 (0.9964)
� ln ct�1;� ln ct�2; constant (0.003) (0.511)
ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.000 1.189 (0.9958)
� ln yt�1;� ln yt�2; constant (0.003) (0.523)
ri;t�1; ri;t�2;8i = 1; 2; � � �N;� ln ct�1; 0.999 1.204 (0.9985)
� ln ct�2;� ln yt�1;� ln yt�2; ln

ct�1
yt�1

; const. (0.003) (0.514)

Notes: (1) Except when noted, all estimates are obtained using the generalized method
of moments (GMM) of Hansen (1982), with robust Newey and West (1987) estimates for
the variance-covariance matrix of estimated parameters. (2) OIR Test denotes the over-
identifying restrictions test discussed in Hansen (1982).

Table 1 reports results obtained using a power-utility speci�cation for prefer-

ences. The �rst thing to notice is that there is no evidence of rejection in over-

identifying restrictions tests in any GMM regression we have run. Moreover, all of

them showed sensible estimates for the discount factor and the risk-aversion coef-

�cient: b� 2 [0:999; 1:001], where in all cases the discount factor is not statistically
di¤erent from unity and b 2 [1:125; 1:370], where in all cases the relative risk-aversion
coe¢ cient is likewise not statistically di¤erent from unity. Our preferred regression is

the last one in Table 1, where all instruments are used in estimation. There, b� = 0:999
and b = 1:204. These numbers are close to what could be expected a priori when

power utility is considered; see the discussion in Mehra and Prescott (1985). They are

in line with several panel-data estimates of the relative risk-aversion coe¢ cient, such

as Runkle (1991), Attanasio and Weber (1985) and Blundell, Browning and Meghir

(1994). For the latter, the intertemporal substitution elasticity at the sample mean

(�1= here) is found to be between �0:77 and �0:75. Here, it would be between

�0:89 and �0:72. Our estimates are also in line with recent results using time-series
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data obtained in Mulligan (2002), where the estimates of 1= are close to unity most

of the time.

Our estimates b� and b in Table 1 are somewhat di¤erent from early estimates

of Hansen and Singleton (1982, 1984). As is well known, the equity-premium puz-

zle emerged as a result of rejecting the over-identifying restrictions implied by the

complete system involving real returns on equity and on the T-Bill: Hansen and

Singleton�s estimates of  are between 0:09 and 0:16, with a median of 0:14, all sta-

tistically insigni�cant in testing. All of our estimates are statistically signi�cant, and

their median estimate is 1:20 �almost ten times higher.

Table 2
External-Habit Utility-Function Estimatescmt = ln � � � ln ct + � ( � 1)� ln ct�1 � �EHt

Instrument Set �  � OIR Test
(SE) (SE) (SE) (P-Value)

OLS Estimate 1.002 1.975 -0.008 �
(0.006) (0.972) (0.997)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; constant 1.005 1.263 -2.847 (0.9911)
(0.003) (0.618) (8.333)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; 0.9954 1.308 1.997 (0.9954)
� ln ct�1;� ln ct�2; constant (0.003) (0.562) (3.272)
ri;t�1; ri;t�2;8i = 1; 2; � � �N; 0.987 1.592 3.588 (0.9951)
� ln yt�1;� ln yt�2; constant (0.003) (0.688) (3.742)
ri;t�1; ri;t�2;8i = 1; 2; � � �N;� ln ct�1; 0.987 1.161 8.834 (0.9980)
� ln ct�2;� ln yt�1;� ln yt�2; ln

ct�1
yt�1

; const. (0.002) (0.621) (32.769)
Notes: Same as Table 1.

Table 2 reports results obtained when (external) habit formation is considered in

preferences. Results are very similar to those obtained with power utility. A slight

di¤erence is the fact that, with one exception, all estimates of the discount factor

are smaller than unity. We cannot reject time-separation for all regressions we have

run �� is statistically zero in testing everywhere. In this case, the external-habit

speci�cation collapses to that of power-utility, which should be preferred as a more

parsimonious model.
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Table 3
Kreps�Porteus Utility-Function Estimatescmt = � ln � � �� ln ct � (1� �) lnBt � �KPt

Instrument Set �  � OIR Test
(SE) (SE) (SE) (P-Value)

OLS Estimate 1.007 3.141 0.831 �
(0.006) (0.886) (0.022)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; constant 1.001 1.343 0.933 (0.9963)
(0.004) (0.723) (0.014)

ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.003 1.360 0.922 (0.9980)
� ln ct�1;� ln ct�2; constant (0.004) (0.768) (0.012)
ri;t�1; ri;t�2;8i = 1; 2; � � �N; 1.000 0.926 0.927 (0.9969)
� ln yt�1;� ln yt�2; constant (0.004) (0.756) (0.013)
ri;t�1; ri;t�2;8i = 1; 2; � � �N;� ln ct�1; 0.997 0.362 0.901 (0.9996)
� ln ct�2;� ln yt�1;� ln yt�2; ln

ct�1
yt�1

; const. (0.004) (0.761) (0.012)
Notes: Same as Table 1.

Results using the Kreps-Porteus speci�cation are reported in Table 3. To im-

plement its estimation a �rst step is to �nd a proxy to the optimal portfolio. We

followed Epstein and Zin (1991) in choosing the NYSE for that role, although we are

aware of the limitations they raise for this choice. With that caveat, we �nd that the

optimal portfolio term has a coe¢ cient that is close to zero in value (� close to unity),

although (1� �) is not statically zero in any regressions we have run. If it were, then

the Kreps-Porteus would collapse to the power-utility speci�cation. The estimates of

the relative risk-aversion coe¢ cient are not very similar across regressions, ranging

from 0:362 to 1:360. Moreover, they are not statistically di¤erent from zero at the 5%

signi�cance level, which di¤ers from previous estimates in Tables 1 and 2. There is

no evidence of rejection in over-identifying restrictions tests in any GMM regression

we have run, which is in sharp contrast to the early results of Epstein and Zin using

this same speci�cation.

Since the Kreps-Porteus encompasses the power utility speci�cation, the former

should be preferred to the latter in principle because (1� �) is not statistically zero.

A reason against it is the limitation in choosing a proxy for the optimal portfolio.

Therefore, the picture that emerges from the analysis of Tables 1, 2 and 3 is that both
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the power-utility and the Kreps-Porteus speci�cations �t the CCAPM reasonably well

when our estimator of the SDF is employed in estimation. These results resurrect the

CCAPM as Lettau and Ludvigson (2001) propose, and to which Mulligan (2002,

2004) implicitly agrees.

4.4 Investigating the Equity-Premium Puzzle

We now turn to investigating the existence of the Equity-Premium Puzzle (EPP)

using our estimator of Mt. Signs of the EPP have been known since the early GMM

estimates in Hansen and Singleton (1982, 1984), because of rejections in the over-

identifying restrictions tests. Mehra and Prescott (1985) put forth the EPP in some-

what di¤erent terms. To avoid estimation of CCAPM parameters, they use a �cali-

bration�argument: if the discount-factor coe¢ cient � is set at a �reasonable�level,

then an absurd value for the risk-aversion coe¢ cient ( > 10, at least) is needed to

explain the historical di¤erence between the return on equity and on a riskless bond

(the equity premium). This di¤erence is 6:2% per year in real terms in their sample

and 7:6% in ours. Therefore, the puzzle is the inability of the CCAPM to explain

such a large equity premium once we consider reasonable values for � and  with a

CRRA speci�cation.

In the previous Section we have shown that it is possible to obtain reasonable

estimates for � and  when our estimator of the SDF is used in the analysis, c.f.

Tables 1, 2 and 3. To claim that there is not an EPP, we still have to show that,

using our estimator of Mt, the observed behavior of the equity premium is consistent

with economic theory. We look for some testable implications arising from theory that

involve the equity premium and our SDF estimator. Recall the Pricing Equation:

Et�1 fMtRi;tg = 1; i = 1; 2; : : : ; N: (39)

If we focus on the behavior of a risky asset, whose return is labelled Ret , and a risk-free
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asset, whose return is labelled Rft , we can combine the two resulting equations and

use the Law-of-Iterated Expectation to obtain,

E
n
Mt

�
Ret �R

f
t

�o
= 0: (40)

Equation (40) o¤ers a testable implication of the equity premium using our esti-

mator ofMt: Mt

�
Ret �R

f
t

�
must have a zero mean. Following Hansen and Singleton

and Mehra and Prescott, who considered the return on the risky asset to be the re-

turn on equity, and on the riskless asset to be the return on the T-Bill,
�
Ret �R

f
t

�
is

observable, and a direct test of the existence of the EPP using our estimator of Mt

consists in verifying whether (40) holds. There is one interesting variant of this test

that we also implement here, which is the use of consumption-based estimates of Mt

in verifying (40).

In addition to these tests, we go a step further investigating the existence of the

EPP, asking whether or not there is any statistical di¤erence between the mean real

return on the T-Bill, labelled RT�Billt , and that on our estimate of Rft . There are no

theoretical grounds to implement such a test, because there is no basis to treat the

T-Bill as measurable, given that its real return is not known in advance. Nevertheless,

several authors believe that the T-Bill is a close enough approximation to a riskless

asset. Therefore, we also test whether

E
�
RT�Billt �Rft

�
= 0 (41)

holds.

Zero-mean tests such as those in (40) and (41) are straightforward to implement.

The only issue is how to construct a robust estimate for the variance of sample-mean

estimates, taking into account possible serial correlation and heteroskedasticity in

their components. Here we employ the non-parametric estimate proposed by Newey

and West (1987).
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Table 4
Equity-Premium Tests

Version of Mt Used in Testing Null Hypothesis in Two-Sided Tests
E
�
Mt

�
Ret �RT�Billt

�	
= 0

Sample Mean
(Robust P-Value)

Estimator in 0.014064
Proposition 1 (0.0859)

Consumption-Based 0.018146
CRRA Speci�cation (0.0287)
Consumption-Based 0.017972

Habit-Formation Speci�cation (0.0292)
Consumption-Based 0.017200

Kreps-Porteus Speci�cation (0.0383)

Notes: (1) The return on equity is labelled Ret and the risk-free return is labelled R
T�Bill
t .

(2) The return on equity used the NYSE index in real terms and the risk-free return used
the real return on the 90-day T-Bill. (3) There are four possible series used to represent Mt

�the estimator in Proposition 1, and consumption-based estimates using the CRRA, Habit-
Formation and Kreps-Porteus speci�cations, with parameter estimates in the last rows of
Tables 1, 2, and 3, respectively. (4) P-values come from the asymptotic distribution when
the variance of the sample mean is computed using the non-parametric estimate proposed
by Newey and West (1987).

Table 4 summarizes the results of equity-premium tests. When we use our es-

timator of Mt to investigate whether or not the zero-mean condition in (40) holds,

we obtained a sample mean for Mt

�
Ret �RT�Billt

�
of 0:014, with a p-value of 0:086,

not rejecting the null at the 5% level. A di¤erent picture emerges when we use

consumption-based estimates ofMt. If the CRRA speci�cation is employed, the sam-

ple mean forMt

�
Ret �RT�Billt

�
is 0:018, with a p-value of 0:029, which rejects the null

at this same level. The same happens when the Habit-Formation and Kreps-Porteus

speci�cations are used: the sample means for Mt

�
Ret �RT�Billt

�
are 0:018 and 0:017,

respectively, which yield the following respective p-values: 0:029 and 0:038, both

rejecting the null at the usual levels.

It is important to reconcile our �ndings with previous investigations of the EPP,

the literature on which spans two decades. In order to obtain E
�
Mt

�
Ret �RT�Billt

�	
=
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0 one needs a large negative covariance betweenMt and
�
Ret �RT�Billt

�
. This happens

because E (Mt) �= 1, therefore, E
�
Mt

�
Ret �RT�Billt

�	
= 0 implies:

�Cov
�
Mt;

�
Ret �RT�Billt

�� �= E �Ret �RT�Billt

�
:

Notice that E
�
Ret �RT�Billt

�
is the mean equity premium, a large number by all ac-

counts. Therefore, (40) requires �rst a negative covariance betweenMt and
�
Ret �RT�Billt

�
,

which must be su¢ ciently large in absolute value.

Turning to sample estimates, the equity premium is 0:0186 per quarter in our

sample. The CRRA speci�cation yields the smallest covariance (in absolute value)

among SDF estimates (�0:000072), followed by the Habit-Formation speci�cation

(�0:000153), by the Kreps-Porteus speci�cation (�0:00181), and by our estimator in

Proposition 1 (�0:003371), which is almost twice the largest absolute covariance of

consumption-based estimates. Perhaps it is easier to look at correlation coe¢ cients,

which are, respectively, �0:1321, �0:2396, �0:7363, �0:7567. Therefore, rejections

of E
�
Mt

�
Ret �RT�Billt

�	
= 0 are a consequence of a small correlation (in absolute

value) between Mt and
�
Ret �RT�Billt

�
: our estimator has just the appropriate co-

variance with
�
Ret �RT�Billt

�
to yield a mean zero for Mt

�
Ret �RT�Billt

�
.

We now investigate whether or not the zero-mean condition in (41) holds. The

mean di¤erence between the return on cRft and that of the T-Bill is �0:001633 on a
quarterly basis. Testing whether the mean di¤erence is zero yields a robust p-value

of 0:6702 �showing that E
n�
Rft �RT�Billt

�o
= 0 when our estimator of the risk-

free rate is used. This is not surprising, given that the sample average of the former

is 2:39% a year and that of the latter is 3:12%; see also their implied risk-premia

depicted in Figure 2.
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5 Conclusions

In this paper, we propose a novel estimator for the stochastic discount factor (SDF),

or pricing kernel, that exploits both the time-series and the cross-sectional dimen-

sions of the data. It depends exclusively on appropriate averages of asset returns,

which makes its computation a simple and direct exercise. In deriving it, instead of

assuming a parametric function to characterize preferences, we treat the SDF as a

random process that can be estimated consistently as the number of time periods

and assets grow without bounds. Because our SDF estimator does not depend on

any assumptions about preferences, or on consumption data, we are able to use it to

test directly di¤erent preference speci�cations which are commonly used in �nance

and in macroeconomics. Moreover, our SDF estimator o¤ers an immediate estimate

of the risk-free rate, allowing us to discuss important issues in �nance, such as the

equity-premium puzzle.

A key feature of our approach is that it combines a general Taylor Expansion of

the Pricing Equation with standard panel-data asymptotic theory to derive a novel

consistent estimator for the SDF. In this context, we show that the econometric

identi�cation of the SDF only requires using the �serial-correlation common-feature

property�of the logarithm of the SDF. We have followed two trends here: �rst, in

�nancial econometrics, recent work avoids imposing stringent functional-form restric-

tions on preferences prior to estimation of the SDF; see Chapman (1998), Aït-Sahalia

and Lo (1998, 2000), Rosenberg and Engle (2002), and Chen and Ludvigson (2004);

second, in macroeconomics, early rejections of the optimal behavior for consumption

using time-series data found by Hall(1978), Flavin(1981, 1993), Hansen and Single-

ton(1982, 1983, 1984), Mehra and Prescott(1985), Campbell (1987), Campbell and

Deaton(1989), and Epstein and Zin(1991) were overruled by subsequent results using

panel data by Runkle (1991), Blundell, Browning, and Meghir (1994) and Attanasio

and Browning (1995), among others.

The techniques discussed above were applied to quarterly data of U.S.$ real re-
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turns from 1972:1 through 2002:4 representing investment opportunities available to

the average U.S. investor. They cover thousands of assets worldwide, but are pre-

dominantly U.S.-based. Our SDF estimator �cMt �is close to unity most of the time

and bounded by the interval [0:85; 1:15], with an equivalent average annual discount

factor of 0:9760, or an annual discount rate of 2:46%. When we examined the appro-

priateness of di¤erent functional forms to represent preferences, we concluded that

standard preference representations used in �nance and in macroeconomics cannot

be rejected by the data. Moreover, estimates of the relative risk-aversion coe¢ cient

are close to what can be expected a priori �between 1 and 2, statistically signi�cant

and not di¤erent from unity in statistical tests. These results can be reconciled with

the recent literature using time-series data (Mulligan(2002)) and panel-data estimates

(Blundell, Browning and Meghir (1994)).

A direct test of the equity-premium puzzle using our SDF estimator cannot reject

that the discounted equity premium in the U.S. has mean zero. If one takes the equity-

premium puzzle to mean the need to have incredible parameter values either for the

discount factor � or the relative risk-aversion coe¢ cient  (or both) in order to achieve

a mean-zero discounted equity premium in the U.S., then our results show little signs

of the equity-premium puzzle. This happens mainly because our estimator of the SDF

is highly negatively-correlated with the equity premium (�0:7567), whereas standard

consumption-based estimates of the SDF have too small a correlation with it.

As we have argued above, the set of assumptions needed to derive our results

is common to many papers in macroeconomics, �nance, and �nancial econometrics.

However, our estimator of the SDF and our empirical results are not. A striking

characteristic of our approach is the combination of economic theory (Pricing Equa-

tion) with basic econometric tools (standard panel-data asymptotics) in deriving an

estimator of Mt which is �preference free,�delivers sensible overall empirical results,

and bears little evidence of the equity-premium puzzle.
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