
Using a Nonlinear Filter to Estimatea Multifa
tor Term Stru
ture Modelwith Gaussian Mixture InnovationsPreliminary Version.Comments wel
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tThis paper proposes a multifa
tor term stru
ture model with fa
torinnovations that have a Gaussian mixture distribution. The model allowsfor �exible modeling of the distribution of bond yields. Under the 
on-dition of no-arbitrage, yields are a�ne fun
tions of fa
tors. The modelis estimated in a state spa
e framework using a new nonlinear �lteringalgorithm. Estimation results for US data show that the mixture model isable to 
apture nonnormality in bond yield 
hanges.1 Introdu
tionThe term stru
ture of interest rates is a subje
t of interest in ma
roe
onomi
sand �nan
e alike. Learning about the nature of bond yield dynami
s and itsdriving for
es is important in di�erent areas su
h as fore
asting, monetary pol-i
y, debt poli
y, and derivative pri
ing.1 A�ne term stru
ture models2 simul-taneously 
apture the dynami
 and the 
ross-se
tion properties of bond yields
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rete-timeversion. 1



while 
onstraining the family of bond pri
e pro
esses to be arbitrage-free. Theterm 'a�ne' is due to the fa
t that bond yields are a�ne fun
tions of a limitednumber of fa
tors.The sto
hasti
 properties of the fa
tor pro
ess are inherited by bond yields.If, for instan
e, the fa
tor pro
ess is a Gaussian VAR, bond yields of all ma-turities will be Gaussian as well. However, there is empiri
al eviden
e thatbond yields and their �rst di�eren
es are not normally distributed. This paperprovides an approa
h for a �exible modeling of the distribution of bond yieldswhile staying within the 
lass of a�ne models. Based on an idea in Ba
kuset al. (1998) this is a
hieved by allowing fa
tor innovations to be distributedas Gaussian mixtures. We derive an analyti
al formula for bond yields as afun
tion of fa
tors. The model allows the resulting distribution of yields andyield 
hanges to assume a wide variety of shapes. In parti
ular, it 
an a

ountfor non-vanishing skewness and ex
ess kurtosis that varies with maturity.For the estimation of multifa
tor term stru
ture models using time seriesdata of yields for di�erent maturities, it has be
ome 
ommon in the literatureto translate the theoreti
al model into the statisti
al state spa
e form. The mea-surement ve
tor 
ontains a set of bond yields for di�erent maturities, the stateve
tor represents the latent fa
tors driving the term stru
ture. The state spa
eframework allows for adding measurement errors to the bond pri
ing equations.It permits to estimate unknown parameters and to �lter out the unobservablefa
tor pro
esses. For a�ne multifa
tor Gaussian models, the 
orrespondingstate spa
e model is linear and Gaussian. Hen
e, it 
an be estimated by max-imum likelihood based on the Kalman �lter. The literature 
ontains numerousexamples for this approa
h, e.g. De Jong (2000) and Cassola and Luis (2003).For the 
lass of term stru
ture models 
onsidered in this paper, the 
orre-sponding state spa
e model has a transition equation for whi
h the innovationis distributed as a Gaussian mixture. As it is already shown by Sorenson andAlspa
h (1971), the exa
t �lter for su
h a state spa
e model is nonlinear in ob-servations. Moreover, the exa
t �ltering density at time t is a Gaussian mixturefor whi
h the number of 
omponents is exponentially growing with time. Forinstan
e, if the state innovation is distributed as a mixture of 2 normal distri-butions, the exa
t �ltering density at time t 
ontains 2t 
omponent densities,rendering a pra
ti
al appli
ation of the exa
t �lter impossible. To deal withthis problem we propose an approximate �lter that preserves the nonlinearity ofthe exa
t solution but that restri
ts the number of 
omponents in the mixturedistributions involved. The degree of 
omplexity is 
ontrolled by a parameter
k, so that in the example the true �ltering density at time t is approximated bya mixture of 2k densities only.A two-fa
tor term stru
ture model with Gaussian mixture innovations isestimated with US data using the approximate nonlinear �lter. The data set2




ontains time series of monthly yields for �ve di�erent maturities. For 
ompari-son, we also estimate pure Gaussian models using the Kalman �lter. Estimatingthe distribution of di�eren
ed yields from the data and 
omparing it to the dis-tributions implied by the models, it turns out that the mixture model is superior
ompared to the Gaussian models.The paper is organized as follows. Se
tion 2 presents the data set andderives some stylized fa
ts. In se
tion 3, the term stru
ture model is developedand the yield equation is derived. In se
tion 4, the estimation approa
h isdes
ribed whi
h is employed for the empiri
al appli
ation in se
tion 5. Se
tion6 
on
ludes, the appendix provides details of the exa
t �lter algorithm and ourapproximation.2 Data and Stylized Fa
tsIn this se
tion we introdu
e the data set that will be used for the empiri
alappli
ation below. It also serves to derive some stylized fa
ts that will motivatethe term stru
ture model in the following se
tion. The data set is based onM
Cullo
h and Kwon (1993) and Bliss (1997). It is the same set as used byDu�ee (2002).3 It 
onsists of monthly observations of annual zero bond yieldsfor the period of January 1962 to De
ember 1998. The sample 
ontains yieldsfor maturities of 3, 6, 12, 24, 60 and 120 months. Thus, we have 6 time seriesof 444 observations ea
h. Three of the six time series are graphed in �gure 1,table 1 provides summary statisti
s of the data.Mat Mean Std Dev Skew Kurt Auto Corr3 6.32 2.67 1.29 1.80 0.9746 6.56 2.70 1.23 1.60 0.97512 6.77 2.68 1.12 1.24 0.97624 7.02 2.59 1.05 1.02 0.97860 7.36 2.47 0.95 0.68 0.983120 7.58 2.40 0.78 0.31 0.987Table 1: Summary statisti
s of yields in levels. For ea
h time to maturity (Mat)the 
olumns 
ontain mean, standard deviation, skewness, ex
ess kurtosis, andauto
orrelation at lag 1.As table 1 shows, yields at all maturities are highly persistent. The meanin
reases with time to maturity. Ignoring the three-month yield, the standarddeviation falls with maturity. For interpreting the 
oe�
ient of skewness and3We obtained it from G. R. Du�ee's website http://fa
ulty.haas.berkeley.edu/du�ee/a�ne.htm.3



Figure 1: Yields from 01/1962 - 12/1998Mat 3 6 12 24 60 1203 1.0006 0.996 1.00012 0.986 0.995 1.00024 0.962 0.975 0.990 1.00060 0.909 0.924 0.950 0.982 1.000120 0.862 0.878 0.908 0.952 0.991 1.000Table 2: Correlation of yields in levelsex
ess kurtosis, note that they should be 
lose to zero if the data were normallydistributed.The means of yields are graphed against the 
orresponding maturity in �gure2. Data are represented by �lled 
ir
les. The 
onne
ting lines are drawn foropti
al 
onvenien
e only. The pi
ture shows that the mean yield 
urve has a
on
ave shape: mean yields in
rease with maturity, but the in
rease be
omessmaller as one moves along the abs
issa. This is a typi
al shape for the meanyield 
urve. However, the shape of the yield 
urve observed from day to day 
anassume a variety of shapes. It may be inverted, i.e. monotoni
ally de
reasing,or 
ontain 'humps'.Finally, table 2 shows that yields exhibit a high 
ontemporaneous 
orrelationat all maturities. That is, interest rates of di�erent maturities tend to movetogether. 4



Figure 2: Mean yield 
urveWe now turn from levels to yields in �rst di�eren
es. That is, if {yni

1 , . . . , y
ni

T }denotes an observed time series of the ni-month yield in levels, we now 
onsiderthe 
orresponding time series {∆yni

2 , . . . ,∆y
ni

T } with ∆yni
t = yni

t − yni

t−1.Three of the six time series are graphed in �gure 3. Table 3 shows summarystatisti
s of yields in �rst di�eren
es. Again, the standard deviation falls withMat Mean Std Dev Skew Kurt Auto Corr3 0.0038 0.58 -1.80 14.32 0.1156 0.0034 0.57 -1.66 15.76 0.15512 0.0030 0.56 -0.77 12.31 0.15824 0.0024 0.50 -0.36 10.35 0.14660 0.0016 0.40 0.12 4.04 0.096120 0.0015 0.33 -0.11 2.29 0.087Table 3: Summary statisti
s of yields in �rst di�eren
estime to maturity. The high auto
orrelation that we have observed for yieldsin levels has vanished. Skewness is still moderate but ex
ess kurtosis is vastlyex
eeding zero. Moreover, ex
ess kurtosis di�ers with maturity having a generaltenden
y to de
rease with it. This leads to the interpretation that espe
iallyat the short end of the term stru
ture, extreme observations o

ur mu
h moreoften as being 
ompatible with the assumption of a normal distribution.The 
ontemporaneous 
orrelation of di�eren
ed yields is also high, as evident5



Figure 3: First di�eren
e of yieldsfrom table 4. However, the 
orrelations are 
onsistently lower than for yields inlevels. Mat 3 6 12 24 60 1203 1.0006 0.952 1.00012 0.867 0.957 1.00024 0.783 0.887 0.960 1.00060 0.645 0.762 0.859 0.936 1.000120 0.547 0.659 0.742 0.830 0.934 1.000Table 4: Correlation of yields in �rst di�eren
es
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3 The ModelWe introdu
e a dynami
 multifa
tor model in dis
rete time. Let Pn
t denote thepri
e at time t of a zero-
oupon bond that pays one unit of a

ount at time

t+ n. The 
orresponding yield to maturity is given by
yn

t = − lnPn
t

n
. (3.1)A sto
hasti
 dis
ount fa
tor (SDF) or pri
ing kernel Mt pri
es bonds of allmaturities, guaranteeing the absen
e of arbitrage opportunities. Thus, Mt is astri
tly positive random variable with

E|MtP
i
t | <∞and

Pn
t = E(Mt+1P

n−1
t+1 |Ft). (3.2)for all n and t, where Ft denotes the information set given at time t.4 In the fol-lowing we will use the short-hand notation Et(·) for the 
onditional expe
tation

E(·|Ft).In the framework of 
onsumption-based asset pri
ing, the SDF representsthe marginal rate of substitution between 
onsumption in period t and period
t+ 1.5 As su
h, the spe
i�
ation of Mt depends on the spe
i�
 utility fun
tionassumed. However, as 
onsumption-based models fail to a

ount for importantfeatures of asset pri
es, it has be
ome 
ommon to spe
ify the SDF as a moregeneral fun
tion of explanatory variables. Moreover, in this paper we will treatthe fa
tors driving the SDF as latent variables as frequently done in the empiri
alterm stru
ture literature.We denote by Xt the d-dimensional ve
tor of fa
tors. Its dynami
 evolutionis spe
i�ed as a VAR(1) pro
ess, i.e.

Xt = a+ KXt−1 + ut, (3.3)where a is a d× 1 ve
tor of 
onstants, and K is a d× d matrix. The eigenvaluesof K are assumed to lie inside the unit 
ir
le, whi
h guarantees stationarity ofthe pro
ess {Xt}.The pri
ing kernel is a�ne in the ve
tor of fa
tors and its innovations,
− lnMt+1 = δ + γ′Xt + λ′ut+1, (3.4)4For a proof of the equivalen
e between the existen
e of an SDF and the absen
e of arbitrageopportunities see Irle (1998).5See, e.g., Campbell, Lo, and Ma
Kinlay (1997) or Co
hrane (2001).7



where δ is a s
alar and γ and λ are both d× 1 ve
tors. The 
omponents of theve
tor λ will be referred to as the market pri
e of risk parameters.A solution of the model is a family of fun
tions gn(·) that map the fa
torve
tor Xt into the 
orresponding arbitrage-free yield yn
t for ea
h n,

yn
t = gn(Xt).Thus, the whole term stru
ture of interest rates at time t is determined by therealization of Xt. The dynami
s of any yield yn

t and its stationary distributiondepend on the dynami
s of Xt.If for the model (3.3) - (3.4) the fa
tor innovation is Gaussian, the solutionfun
tion is a�ne, i.e. we have6
yn

t =
An

n
+

1

n
B′

nXt, (3.5)where An and Bn are a s
alar and a d× 1 ve
tor, respe
tively, that depend onthe model parameters and time to maturity n but not on t.The yield equation (3.5) implies that if Xt is a stationary Gaussian VAR,yields of all maturities will be normally distributed. The same holds for alllinear 
ombination of yields, e.g. term spreads, and for yields in �rst di�er-en
es. However, normality of yield 
hanges is at odds with the stylized fa
ts asillustrated above.One approa
h to generate non-normal yields with an arbitrage-free model isto repla
e the simple normal distribution by a mixture of normal distributions.This is done by Ba
kus et al. (1998) for a one-fa
tor model. The model 
an
apture ex
ess kurtosis in yield 
hanges. However, sin
e there is only one sour
eof randomness in the model, yields of all maturities share the same kurtosis.This paper generalizes the idea of Ba
kus et al. to the multivariate 
ase. Thatis, for the multifa
tor model (3.3) - (3.4) above it is assumed that ut has amultivariate Gaussian mixture distribution. We write
ut ∼ i.i.d.

B∑

b=1

ωbN(µb, Vb),
B∑

b=1

ωb = 1,
B∑

b=1

ωbµb = 0, (3.6)to denote that the density of ut is given by
p(x) =

B∑

b=1

ωb

1√
(2π)g|Vb|

exp

(
−1

2
(x− µb)

′V −1
b (x− µb)

)
.This formulation allows high �exibility in modeling the shape of the distribution.For instan
e, the density of ut may be asymmetri
, fat-tailed or bimodal.76See, e.g., Ba
kus et al. (1998) or Campbell et al. (1997).7For a treatment of �nite mixture models and their properties see M
La
hlan and Peel(2000) or Titterington, Smith, and Makov (1985).8



Fortunately, by going from a simple normal to a normal mixture, the stru
-ture of the solution for bond pri
es is retained as the following propositionshows.Proposition 3.1 (Yields in the linear multifa
tor Gaussian mixturemodel). For the multifa
tor model (3.3), (3.4), (3.6), zero bond yields are givenas
yn

t =
An

n
+

1

n
B′

nXt (3.7)with8
Bn = (I −Kn)(I −K)−1γ (3.8)
An =

n−1∑

i=0

G(Bi) (3.9)where
G(Bi) = δ +B′

ia− ln

[
B∑

b=1

ωb · e−(λ+Bi)
′µb+

1

2
(λ+Bi)

′Vb(λ+Bi)

]
.Proof. We start with the guess that bond pri
es are a�ne in fa
tors.

− lnPn
t = An +B′

nXtFor 
omputing the fun
tional forms of the s
alar An and the d-dimensionalve
tor Bn we use the fundamental pri
ing equation (3.2) in logs
− lnPn+1

t = − lnEt(Mt+1P
n
t+1). (3.10)The logarithm of the produ
t on the right-hand side is given by

lnMt+1 + lnPn
t+1

= −δ −An −B′
na− (γ′ +B′

nK)Xt − (λ′ +B′
n)ut+1

:= Vt+1.The 
onditional distribution of Vt+1 is not normal but a d-variate normal mix-ture with B 
omponents. For the right-hand side or (3.10) we have to 
ompute
Et

(
eln Mt+1+ln P n

t+1

)whi
h has the form
Et

(
ec0+c′

1
ut+1

)with c0 = −δ −An −B′
na− (γ′ +B′

nK)Xt, c1 = −(λ+Bn).8Empty sums are evaluated as zero. 9



Following from a result in Lemke (2005), we have
Et

(
ec0+c′

1
ut+1

)

= ec0

(
B∑

b=1

ωb e
c′
1
µb+

1

2
c′
1
Vbc1

)
.Plugging ba
k in the original variables we thus obtain

lnEt

(
eln Mt+1+ln P n

t+1

)

= −δ −An −B′
na− (γ′ +B′

nK)Xt

+ ln

[
B∑

b=1

ωb · e−(λ+Bn)′µb+
1

2
(λ+Bn)′Vb(λ+Bn)

]
.For the fundamental pri
ing equation (3.10) to hold, the 
oe�
ient fun
tions

An and Bn have to satisfy the following set of di�eren
e equations
Bn+1 = γ + K′Bn (3.11)
An+1 = δ +An +B′

na

− ln

[
B∑

b=1

ωb · e−(λ+Bn)′µb+
1

2
(λ+Bn)′Vb(λ+Bn)

]
. (3.12)with initial 
onditions A0 = 0 and B0 = 0. The ve
tor di�eren
e equation for

Bn is the same as in the Gaussian multifa
tor model, so again
Bn = (I + K′ + K′2 + . . .+ K′n−1)γ = (I −K′n)(I −K′)−1γ.The solution of the di�eren
e equation for An leads to (3.9).The mixture model nests the linear Gaussian multifa
tor model as a spe
ial
ase. In Lemke (2005) the properties of the model are analyzed in more detail.For instan
e, it turns out that the model 
an exhibit ex
ess kurtosis that varieswith time to maturity. As regards the stationary distribution of yields, the pureGaussian model implies a Gaussian distribution for yields. For the mixturemodel, the un
onditional distribution of yields is not straightforward to derive.We leave this as a topi
 for future resear
h. For a given set of model parameters,however, the distribution of yields 
an be approximated by using Monte Carlomethods as done in se
tion 5 below.4 Estimation Approa
hIn the literature, the state spa
e approa
h has often been adopted for the esti-mation of term stru
ture models.9 The statisti
al state spa
e model is a rep-resentation of the joint dynami
 evolution of an observable random ve
tor yt9This has mostly been done for 
ontinuous-time models, as, for instan
e, by Babbs andNowman (1999), Babbs and Nowman (1998), Ball and Torous (1996), de Jong (2000), Duan10



and a generally unobservable state ve
tor αt.10 The state spa
e model 
ontainsa measurement equation and a transition equation. The transition equationgoverns the evolution of the state ve
tor,
αt = Tαt−1 + c+ ηt. (4.1)The measurement equation spe
i�es how the state intera
ts with the ve
tor ofobservations,
yt = Mαt + d+ ǫt. (4.2)The quantities d, c, M , T , H, Q are ve
tors and matri
es of appropriate dimen-sion. ηt is the innovation of the state pro
ess, ǫt is referred to as the measurementerror. The model is 
ompleted by spe
ifying the distribution of the initial stateve
tor α0 and the joint evolution of ηt and ǫt.On
e the term stru
ture model of the pre
eding se
tion is 
ast into statespa
e form, the statisti
al inferen
e asso
iated with state spa
e models 
an be
ondu
ted to estimate unknown model parameters, to estimate the latent fa
torpro
ess driving the term stru
ture, and to make one- or multistep-predi
tions.Moreover, goodness-of-�t 
riteria developed for state spa
e models 
an be em-ployed to judge the adequa
y of the term stru
ture model spe
i�
ation under
onsideration.For estimating our term stru
ture model in state spa
e form, we �rst trans-form the fa
tor evolution to the form of a state spa
e model's transition equation.This is straightforward as the fa
tor evolution in (3.3) is already of the form(4.1). That is, we have c = a, T = K, and ηt = ut.The measurement equation arises by 
hoosing observed interest rates as left-hand-side variables, whereas the right-hand-side is the sum of the theoreti
alsolution implied by the term stru
ture model and a measurement error. Re
allthat bond yields are given by
yn

t =
An

n
+

1

n
B′

nXt, (4.3)where An and Bn depend on the parameters of the fa
tor pro
ess and on marketpri
e of risk parameters 
olle
ted in a ve
tor λ. Let the measurement ve
tor attime t 
ontain observed yields of k di�erent maturities, say n1, . . . , nk. Thenthe theoreti
al model implies that



yn1

t...
ynk

t


 =




1
n1
An1...

1
nk
Ank


+




1
n1
B′

n1...
1

nk
B′

nk


αt. (4.4)and Simonato (1999), Geyer and Pi
hler (1999) and S
hwaar (1999). Cassola and Luis (2003)is an example for estimating a dis
rete-time Gaussian model.10See, e.g., Bro
kwell and Davis (1996), Durbin and Koopman (2001) or Hamilton (1994).11



Adding a ve
tor of measurement errors ǫt = (ǫn1

t , . . . , ǫnk
t )′ leads to a linearmeasurement equation of the form (4.2),

yt = d+Mαt + ǫt, (4.5)with obvious de�nitions of the ve
tor d and the matrix M .Denote by Ys = {y0, y1, . . . , ys} a sequen
e of observations of the measure-ment ve
tor. If ηt and ǫt are both Gaussian, the �ltering densities p(αt|Yt) aswell as the predi
tion densities p(αt|Yt−1) and p(yt|Yt−1) are Gaussian. They
an be 
omputed by the Kalman �lter. Unknown model parameters 
an beestimated by maximum likelihood. The log-likelihood is given by
l(ψ;YT ) =

T∑

i=1

p(yt|Yt−1) (4.6)where ψ 
ontains the unknown model parameters.For the model 
onsidered here, we assume that the measurement error is infa
t normally distributed, i.e.
ǫt ∼ N(0, H). (4.7)However, the distribution of the state innovation ηt is not a simple normal buta mixture of normals, given by (3.6),

ηt ∼
B∑

b=1

ωbN(µb, Vb).The impli
ation of this deviation from the linear purely Gaussian state spa
emodel is that now the �ltering and predi
tion densities are not Gaussian anymore as shown by Sorenson and Alspa
h (1971). They are rather mixtures ofnormals. The �ltering density at time t is given by
p(αt|Yt) =

lt∑

i=1

ωi t|t · φ(αt; ai t|t, Σi t|t), (4.8)where ai t|t and Σi t|t are the means and varian
e-
ovarian
e matri
es of the 
om-ponent densities, respe
tively. These as well as the weights ωi t|t are nonlinearfun
tions of the observations.The 
onditional expe
tation and its varian
e-
ovarian
e matrix 
an be 
om-puted as
E(αt|Yt) =

lt∑

i=1

ωi, t|t ai, t|t =: at|t,12



and
V ar(αt|Yt)

=

lt∑

i=1

ωi, t|t

(
Σi, t|t + (ai, t|t − at|t)(ai, t|t − at|t)

′
)

=: Σt|trespe
tively.The one-step predi
tion densities for the state and observation-ve
tor, p(αt|Yt−1)and p(yt|Yt−1), have a similar stru
ture. A

ordingly, the log-likelihood is a sumof mixture distributions. Details are given in the appendix.The �ltering and predi
tion densities 
an be 
omputed in an iterative fash-ion. The algorithm is des
ribed in the appendix and 
an be interpreted as abun
h of Kalman �lters working parallel. The main problem, however, is thatthe number of 
omponents is growing exponentially with time: at time t theexa
t �ltering density given above has
lt = Bt
omponents. That is, if our model has B = 2 
omponents in the mixturedistribution, the �ltering density at time t = 10 is a mixture of 1024 normals.Hen
e, for time series of length typi
ally en
ountered in pra
ti
e, 
omputing theexa
t �lter be
omes impossible. This is why we use an approximate �lter, thestru
ture of whi
h will be sket
hed in the following. The appendix 
ontains amore detailed des
ription.For our proposed approximation s
heme, the maximum number of 
ompo-nents appearing in the employed mixture distributions is governed by a param-eter k < T . After an initial phase, the exa
t �ltering and predi
tion densities �mixtures with Bt 
omponents � are approximated by mixtures with Bk 
ompo-nents only. This approximating density results from applying the exa
t �lter tothe most re
ent k observations only. A suitable initialization of the �lter takesthe �rst t − k observations into a

ount in a 
ondensed form. We abbreviatethe approximation s
heme as AMF(k), standing for 'approximate mixture �lterof degree k'. Next, we des
ribe verbally how the approximation works.11First, the exa
t �lter is run up to time t = k yielding the exa
t �lteringdensities p(αt|Yt) for t = 1, . . . , k. The last of these densities, p(αk|Yk) is amixture of Bk normals.Continuing with the exa
t �lter would deliver the exa
t density for time

t = k + 1 as a mixture with Bk+1 
omponents. However, we want to 
on-strain the number of 
omponents to Bk. The idea is now to apply the exa
t11We will refer to the �ltering densities only. The idea is the same for the predi
tiondensities. In the summary of the approximation algorithm below, it will be do
umented howthey are 
omputed. 13



�lter algorithm, but only to the last k observations of Yk+1, i.e. to the sub-sequen
e {y2, . . . , yk+1}. The �lter is initialized by the univariate normal withmean a1|1 and varian
e Σ1|1, the latter being the mean and the varian
e of the
B-
omponent mixture p(α1|Y1). Thus, the initial 
ondition 
ontains informa-tion about y1 in a 
ondensed form, the exa
t density p(α1|Y1) is repla
ed by asimple normal. Applying the exa
t �lter in this fashion to the most re
ent kobservations yields a mixture with Bk 
omponents, denoted by p̃(αk+1|Yk+1),that approximates the exa
t �ltering density at time k + 1.A similar pro
edure is applied for approximating ea
h of the �ltering densi-ties from t = k + 1 to t = 2k. For obtaining an approximation of the density
p(αt|Yt), the exa
t �lter is applied to the k most re
ent observations only. The�rst t− k observations {y1, . . . , yt−k}, however, are not ignored. They enter theestimation pro
ess through the initial 
ondition. The exa
t �lter is initialized bya simple normal, and the mean of that normal is at−k|t−k, the optimal estimateof the state at t− k, given the observations from 1 to t− k. Sin
e the algorithmis iteratively applied, the estimate at−k|t−k and its varian
e-
ovarian
e matrix
Σt−k|t−k are already available.In this fashion approximate densities p̃(αt|Yt) for t = k + 1, . . . , 2k are ob-tained. Ea
h of them is a mixture of Bk 
omponents.Analog operations 
an be 
ondu
ted for approximating the �ltering densitiesfor t = 2k + 1, . . . , T . At time t ≥ 2k + 1 the approximate density is generatedby an appli
ation of the exa
t �lter to {yt−k+1, . . . , yt}. For 
omputing theinitial 
ondition at time t − k, one would again 
ollapse the mixture density
p(αt−k|Yt−k) to a simple normal. However, sin
e we are beyond t = 2k, we donot have the exa
t �ltering density p(αt−k|Yt−k) for time t−k available. We onlyhave p̃(αt−k|Yt−k) available, a mixture of Bk 
omponents that approximates
p(αt−k|Yt−k). Nevertheless, we 
an pro
eed as usual and 
ollapse this densityinto a simple normal.Similar to the �ltering densities, the predi
tion densities are also approxi-mated by mixtures with Bk 
omponents. With the sequen
e of approximatepredi
tion densities at hand, an approximate log-likelihood 
an be 
onstru
tedby repla
ing the exa
t densities p(yt|Yt−1) in (4.6) by their approximating 
oun-terparts p̃(yt|Yt−1).In Lemke (2005) Monte Carlo simulations have been 
arried out to assess theproperties of the AMF(k) . It turns out that for the data generating pro
esses
onsidered there, the approximate �ltering densities generated by the AMF(k)are good approximations to the exa
t ones (whi
h have been 
omputed for timeseries of length T = 10), even for small k su
h as k = 1, 2, 3. Moreover, it turnsout that for B = 2, in
reasing k beyond 3 does not yield any substantial 
hangesof results. In most 
ases, k = 1 does already lead to quite good approximationsof the exa
t �lter. Finally, results from the AMF(k) have been 
ompared to14



results from the Kalman �lter whi
h is still the best linear �lter for the linearstate spa
e model with mixture innovations. The AMF(k) performs 
onsistentlybetter than the Kalman �lter, the degree of improvement being dependent onthe model parameterization.5 Empiri
al Appli
ationWith the estimation methodology at hand we now 
ondu
t an empiri
al studyin whi
h we estimate three dis
rete-time term stru
ture models. We use thedata set of US treasury yields that has been presented in se
tion 2. It is not
laimed that the models that we use in our study are in some sense optimalspe
i�
ations for our data set. Rather, the main purpose of this se
tion is toshow the methodology at work. Moreover, we want to point out what di�eren
eit 
an make to use a mixture model as opposed to a Gaussian model with thesame number of fa
tors.5.1 Models and ParameterizationWe estimate three spe
i�
ations of the model des
ribed in se
tion 3: a Gaussiantwo-fa
tor model, a two-fa
tor model with a two-
omponent mixture, and athree-fa
tor Gaussian model. Re
all that the mixture model from se
tion 3nests a purely Gaussian model as a spe
ial 
ase.12The models are 
hara
terized by a ve
tor-valued fa
tor pro
ess
Xt = KXt−1 + ut (5.1)and a spe
i�
ation of the sto
hasti
 dis
ount fa
tor (SDF), that is of the form

− lnMt+1 = δ + ι′Xt + λ′ut+1. (5.2)Note that we have set the inter
ept in the fa
tor pro
ess equal to zero. Asdes
ribed in more detail in Lemke (2005), the model in its original spe
i�
ationis overparameterized, so dropping the inter
ept is inno
uous.For the Gaussian models, the fa
tor innovation satis�es
ut ∼ N(0, V ), (5.3)whereas for the mixture model

ut ∼
B∑

b=1

ωbN(µb, Vb),
B∑

b=1

ωb = 1,
B∑

b=1

ωbµb = 0. (5.4)12Stri
tly speaking we should refer to the model outlined in se
tion 3 as 'a 
lass of models'.15



Going from the general to the spe
i�
, the fa
tor pro
ess of the two-fa
torGaussian model is given by
(
X1t

X2t

)
=

(
κ1 0

0 κ2

)(
X1 t−1

X2 t−1

)
+

(
u1t

u2t

) (5.5)where the distribution of the fa
tor innovation is
(
u1t

u2t

)
∼ N

((
0

0

)
,

(
v2
1 0

0 v2
2

))
. (5.6)The SDF satis�es

− lnMt+1 = δ +X1t +X2t + λ1u1 t+1 + λ2u2 t+1. (5.7)Inter
hanging the two fa
tors will not alter the implied term stru
ture. Forthe Gaussian two-fa
tor model and the mixture model that will be des
ribedhereafter, we will sort the fa
tors by their persisten
e. That is, they are arrangedsu
h that κ1 > κ2.Con
erning the two-fa
tor mixture model, the fa
tor pro
ess and the SDFequation are of the same form as for the two-fa
tor Gaussian model. The dis-tribution of the fa
tor innovation is spe
i�ed as a Gaussian mixture with two
omponents,
(
u1t

u2t

)
∼ ωN

((
0

0

)
,

(
v2
11 0

0 v2
21

))
+(1−ω)N

((
0

0

)
,

(
v2
12 0

0 v2
22

))(5.8)We have tried three di�erent spe
i�
ations, one with v11 6= v12 and v21 6= v22,another with v11 6= v12 and v21 = v22, and a third with v11 = v12 and v21 6= v22.It turned out that the third one performed best and we only report the resultsof this spe
i�
ation. In order to identify the two 
omponents we assume that
v21 ≥ v22. This assumption is embedded into the spe
i�
ation by parameterizingthe �rst 
omponent varian
e as a multiple of the se
ond. Summing up, we willassume that

v11 = v12 =: v1, and v2
21 = c22v

2
22, c22 ≥ 1. (5.9)Finally, the three-fa
tor Gaussian model 
onsists of the fa
tor pro
ess




X1t

X2t

X3t


 =




κ1 0 0

0 κ2 0

0 0 κ3







X1 t−1

X2 t−1

X3 t−1


+




u1t

u2t

u3t


 (5.10)with 


u1t

u2t

u3t


 ∼ N







0

0

0


 ,




v2
1 0 0

0 v2
2 0

0 0 v2
3





 (5.11)16



The pri
ing kernel is given by
− lnMt+1 = δ +X1t +X2t +X3t + λ1u1 t+1 + λ2u2 t+1 + λ3u3 t+1. (5.12)Similarly as for the two-fa
tor models, we assume that κ1 > κ2 > κ3.All three models have the property that both the matrix K and the (
om-ponent) varian
e-
ovarian
e matri
es are diagonal. For all three models, thisimplies that the fa
tors are independent from ea
h other. Of 
ourse, this is arestri
tive assumption whose validity 
ould be tested for. For the two-fa
tormodels, 
orrelation of the fa
tors 
ould be indu
ed by introdu
ing an additionalfree parameter for the (2,1)-element of K. The hypothesis of un
orrelated fa
-tors would then 
orrespond to this parameter being zero. Su
h a test, however,will not be 
ondu
ted here and we will sti
k to the more simple spe
i�
ation.Ea
h model is 
ast into its 
orresponding state spa
e form and the parame-ters are estimated by maximum likelihood. For the Gaussian models, the statespa
e model is linear and Gaussian, and the exa
t likelihood 
an be 
onstru
tedusing the Kalman �lter. For the two-fa
tor mixture model, the state spa
emodel is linear but the state innovations are distributed as a Gaussian mixture.For this model, we 
onstru
t an approximate likelihood based on the AMF(1)�lter.13 We will now explain some details of the estimation pro
ess and turn tothe results in the next se
tion.From the data set presented in se
tion 2, we use time series of yields formaturities of 3, 6, 12, 24, 60, and 120 months. The yields are annualized, themodels, however, hold for monthly yields. The models imply that for somearbitrary n, the joint evolution of fa
tor and yield are given by (5.1) and (4.3).Then the annualized yield ỹn

t := 1200 · yn
t satis�es14

ỹn
t =

A∗
n

n
+

1

n
B∗

n
′Xt

Xt = KXt−1 + utwith A∗
n = 1200·An and B∗

n = 1200·Bn. It is this kind of representation that weuse in the empiri
al study. This implies that the parameters that we obtain arethose that 
orrespond to the original monthly yields. A

ordingly, they 
an be
ompared in size with parameters from the literature that have been obtainedfor other samples using possibly di�erent statisti
al te
hniques. The reason forusing annualized yields (as opposed to monthly yields) lies in the fa
t that formonthly yields the measurement error in the 
orresponding state spa
e modelwould have a have a very low standard deviation (of around 7e-6). This wouldpossibly lead to numeri
al di�
ulties.13Using the AMF(2) �lter delivered nearly the same results.14We have to multiply by 1200 (and not by 12 only) sin
e yields in the data set are expressedin per
entages. 17



We do not want to 
arry on with the tilde on top of our annualized yields,so we drop it from here on and understand ea
h yn
t as an annualized yield.For the state spa
e models asso
iated with our theoreti
al term stru
turemodels, the measurement ve
tor yt is �ve-dimensional,

yt = (yn1

t , yn2

t , . . . , yn5

t )′, (n1, n2, . . . , n5)
′ = (3, 6, 12, 60, 120)′.For ea
h term stru
ture model we identify the fa
tor ve
tor with the state ve
tor,i.e. αt = Xt. The measurement equation has the form




yn1

t...
yn5

t


 =




1200 · 1
n1
An1...

1200 · 1
n5
An5


+




1200 · 1
n1
B′

n1...
1200 · 1

n5
B′

n5


αt +




ǫ1t...
ǫ5t.


 (5.13)where the fun
tional forms of the Ani

and the Bni
di�er a
ross models, of 
ourse.Written more 
ompa
t in the familiar notation of a state spa
e model,

yt = d+Mαt + ǫt. (5.14)For the measurement error we use the simple spe
i�
ation
ǫt ∼ N(0, h2I5). (5.15)This is not an inno
uous assumption sin
e it implies that the di�eren
e betweentheoreti
al and observed yields has the same varian
e for all maturities. Wealso tried a spe
i�
ation in whi
h the varian
es were allowed to be pairwisedi�erent. However, it turned out that the other parameter estimates have notbeen a�e
ted mu
h by this 
hange of spe
i�
ation.For the two-fa
tor Gaussian model, the unknown model parameters to beestimated are κ1, v2

1, λ1, κ2, v2
2, λ2, δ, and h2. The parameters κ1, v2

1, κ2,
v2
2 of the theoreti
al model appear in both, the transition equation and themeasurement equation, whereas the parameters λ1, λ2, and δ appear in theinter
ept ve
tor d of the measurement equation only.Con
erning the four parameters v2

1, λ1, v2
2 and λ2, the model may be equiv-alently parameterized in v1, λ1v1, v2, and λ2v2.15 This 
an be seen as follows.The only pla
es in whi
h the parameters λ1 and λ2 appear are the fun
tions

An. For a Gaussian model, An is 
omputed as
An =

n−1∑

i=0

G(Bi) (5.16)where
G(Bi) = δ +B′

ia−
1

2
(λ+Bi)

′V (λ+Bi).15This is also done by Cassola and Luis (2003).18



With a diagonal V matrix, expanding the expression (λ+Bi)
′V (λ+Bi) yields

(λ+Bi)
′V (λ+Bi) =

2∑

j=1

λ2
jv

2
j + 2Bijλjv

2
j +B2

ijv
2
j (5.17)

=
2∑

j=1

(λjvj)
2 + 2Bij(λjvj) · vj +B2

ijv
2
j (5.18)where Bij , j = 1, 2 denotes the jth 
omponent of Bi. Thus, λj only shows upas a multiplier of vj .The same argument goes through for the three-fa
tor model, whi
h will beparameterized in v1, λ1v1, v2, λ2v2, v3, λ3v3. A similar reasoning holds for thetwo-fa
tor mixture model. For ea
h mixture 
omponent b one 
an expand theexponent (λ+Bi)

′Vb(λ+Bi) in (3.9) in the same fashion as just shown for theGaussian 
ase.16 Thus, our two-fa
tor model is parameterized in v1, λ1v1, v22,
v21 = (

√
c22v22), and λ2v22.Estimating the model, it turned out that δ and the market pri
e of riskparameters λ1v1 and λ2v2 
annot be estimated very a

urately. Moreover, theestimated 
ovarian
e matrix shows that they are highly 
orrelated.17 In parti
-ular, the parameter λ1v1 has been individually insigni�
ant, so we dropped itfrom the model.Summing up, the following parameters will be estimated. For the Gaussiantwo-fa
tor model,

κ1, v1, κ2, v2, λ2v2, δ, h
2,for the Gaussian two-fa
tor mixture model,

κ1, v1, κ2, v22, λ2v22, c22, ω, δ, h
2and for the Gaussian three-fa
tor model,

κ1, v1, κ2, v2, λ2v2, κ3, v3, λ3v3, δ, h
2.Note that some of the parameters have to satisfy 
ertain restri
tions. Wehave:

−1 ≤ κi ≤ 1, i = 1, 2, 3 (stationarity of the fa
tor pro
ess)
vi ≥ 0, i = 1, 2, 3, and v22 ≥ 0 (vi and v22 are standard deviations)

c22 ≥ 1 (by our assumption above)
0 < ω < 1 (ω is a 
omponent weight)

h2 ≥ 0 (h2 is a varian
e)16The parameterization that we use would not be possible if µb 6= 0 as 
an be seen from(3.9).17All of these three parameters only enter the inter
ept ve
tor d and do not show up else-where in the model. However, there is no identi�
ation problem as one might suspe
t. Allof these parameters are individually identi�ed, sin
e we use �ve yields in the measurementve
tor. 19



These 
onstraints have been taken 
are of by reparameterizing the model pa-rameters a

ordingly (for example by squaring to ensure nonnegativity).5.2 Estimation ResultsTable 5 
ontains the maximum likelihood estimates of the parameters. Esti-mated standard errors are given in parentheses.The dimension and sign of theestimates are reasonable for all parameters.The �rst fa
tor is highly persistent as the estimate of κ1 is nearly one forall models. Estimated standard errors may be interpreted with some 
autionsin
e the estimate is very 
lose to the boundary of the parameter spa
e. Forfuture studies we suggest using the bootstrap in order to obtain reliable 
on�-den
e intervals. The standard deviation v1 of the �rst fa
tor is estimated withsatis�able pre
ision and it does not di�er mu
h a
ross models.The se
ond fa
tor exhibits lower auto
orrelation (κ2) than the �rst fa
tor,but it is still very high. The innovation of the se
ond fa
tor is the pla
e in whi
hthe Gaussian models di�er from the mixture model. For the latter model, themarginal distribution of the fa
tor innovation is a mixture of two normals,
u2t ∼ ωN(0, v2

21) + (1 − ω)N(0, v2
22), with v2

21 = c22 · v2
22.Judging on the basis of a standard t-test, the estimate of the weight ω is signif-i
antly di�erent from zero and the estimate of the varian
e ratio c22 is di�erentfrom unity.18 So the results suggest that for the sample at hand the density forthe se
ond fa
tor innovation is in fa
t a 'true' mixture of normals. It 
an be in-terpreted in su
h a way that in 86.2 per
ent of the time the innovation is drawnfrom a normal with standard deviation v22 = 0.00023, and in 13.8 per
ent it isdrawn from a normal whose standard deviation is 5.11(=

√
26.1) times bigger.For the mixture model, the estimates of v22, ω and c22 imply that the esti-mate of the standard deviation of the se
ond fa
tor innovation is given by

v̂2 :=
(
ω̂ · ĉ22 · v̂2

22 + (1 − ω̂) · v̂2
22

)0.5
= 0.000486.This does not deviate mu
h from the estimated standard deviation of the se
ondfa
tor innovation for the Gaussian two-fa
tor model.In the mixture model, the parameter estimates imply for the ex
ess kurtosisof u2t,

k̂urt(u2t) =
3
[
ω̂ ·
(
ĉ22 · v̂2

22

)2
+ (1 − ω̂) · v̂4

22

]

v̂4
2

− 3 = 11.284,18In fa
e of the fa
t that we use the approximate likelihood generated by the AMF, theestimated standard deviations should be used with 
aution.20



Re
all that the ex
ess kurtosis is zero (by de�nition) for the Gaussian models.The two panels in �gure 4 show the marginal densities of the fa
tor inno-vations that are implied by the parameter estimates. The left panel 
ontainsthe estimated densities of u1t, the innovation of the �rst fa
tor. The solid line
orresponds to the Gaussian two-fa
tor model, the dashed line 
orresponds tothe mixture model. Re
all that both densities are normal. They di�er fromea
h other due to the fa
t that they have slightly di�erent varian
es. The rightpanel shows a more substantial di�eren
e. The solid line depi
ts the density of
u2t for the Gaussian model. The dashed line represents the density of u2t for themixture model. The density is a Gaussian mixture with two 
omponents. It isremarkably di�erent 
ompared to its Gaussian 
ounterpart although it impliesnearly the same varian
e.

Figure 4: For the two-fa
tor models: Estimated densities of the innovation ofthe �rst fa
tor (left panel) and the se
ond fa
tor (right panel)For all three models, the market pri
e of risk parameters, λ2v2 and λ2v22have the expe
ted negative sign whi
h 
orresponds to a positive term premium.These parameters are estimated with lower relative pre
ision 
ompared to theother parameters dis
ussed so far. For the three-fa
tor model, λ2v2 is not evensigni�
antly di�erent from zero. The parameter δ that governs the averagelevel of the yield 
urve is individually estimated quite pre
isely. However, theestimated auto
orrelation matrix of estimates (not reported here) shows thatfor all models 
onsidered, the 
orrelation of the market pri
e of risk parametersand δ is high.Heuristi
ally, these properties may be explained by the fa
t that the marketpri
e of risk parameters and δ only show up in the inter
ept ve
tor d of themeasurement equation. Sin
e the fa
tors have mean zero, it is easy to see fromequation (5.14) that the ve
tor d 
ontains the individual means of yields in
ludedin yt. Now, sin
e all yields are highly auto
orrelated, their means - and in turnthe parameters that parameterize them - 
annot be estimated very pre
isely.21



For the three-fa
tor model, the parameters κ3, v3, and λ3v3 of the additionalfa
tor pro
ess had to be estimated. The estimate of the auto
orrelation param-eter κ3 is remarkably smaller than those of the �rst two fa
tors. The estimatedinnovation varian
e v32 is similar in size to that of the se
ond fa
tor. Unlikefor the se
ond fa
tor, the market pri
e of risk parameter λ3v3 is individuallysigni�
antly di�erent from zero.The estimated varian
e ĥ2 of the measurement error has the same size forboth two-fa
tor models. Re
all that the measurement error 
aptures the dif-feren
e between observed annualized yields and the theoreti
al yields impliedby the respe
tive model under 
onsideration. The estimates for the two-fa
tormodels imply that this error has a standard deviation of 0.186(=
√

0.0346) per-
entage points. The standard deviation implied by the three-fa
tor model ishalf as large, it amounts to 0.092 per
entage points.The bottom of table 5 
ontains the values of the log-likelihood at maximumfor the three models. We also provide the value of Akaike's information 
riterion,de�ned as
AIC = −2 lnL(ψ̂) + 2wwhere w is the number of unknown parameters. The AIC de
reases in the valueof the likelihood and in
reases in the number of parameters that have to beestimated. Using the AIC as a model sele
tion 
riterion, the model with thesmallest value of the AIC is 
hosen. Employing this measure for sele
ting oneof our three models, the three-fa
tor model would be preferred. Comparingbetween the two two-fa
tor models only, the mixture model would beat thepure Gaussian model. A worthwhile exer
ise for future resear
h would 
onsistof 
hoosing a mixture distribution for the innovations of the three-fa
tor modeland 
he
king if this enhan
ed three-fa
tor model beats the pure Gaussian one
onsidered here.Figure 5 displays the average observed yield 
urve together with the averageestimated yield 
urves for the three models.19 For 
onvenien
e the points of theaverage observed yield 
urve are 
onne
ted in the pi
ture. For (n1, n2, . . . , n6)

′ =

(3, 6, 12, 24, 60, 120)′, the observed average yield 
urve 
onsists of the points
(ni, ȳ

ni
t ), where

ȳni
t =

1

T

T∑

t=1

yni
t , i = 1, . . . , 6,is the average of the annualized ni-month yields over the 444 observations.Note that the 24-month yield, that has not been used for the estimation, isalso in
luded. The average estimated yield 
urve is given by the points (ni, ŷ

ni
t )19The points representing the two-fa
tor Gaussian model and those representing the two-fa
tor mixture model nearly 
oin
ide and are hard to distinguish from ea
h other.22



where
ŷni

t =
1

T

T∑

t=1

(
Âni

ni

+
1

ni

B̂′
ni
at|t

)
. (5.19)Here Âni

and B̂ni
are the 
oe�
ient fun
tions implied by the models where theparameters are repla
ed by their maximum likelihood estimates. The at|t arethe �ltered states at time t. Thus, for a given time t, at|t is an estimate of thefa
tor ve
tor Xt, whi
h is 
onstru
ted using all information up to this point intime. The �gure shows that the mean yield 
urve is mat
hed well by all models

Figure 5: Mean yield 
urvewhereas the three-fa
tor model seems to have a slight edge over the other twomodels.In univariate time series analysis, diagnosti
 tests for �tted models are oftenbased on residuals. In parti
ular, residuals should be un
orrelated over time.Tests for the 
orrelation of residuals are based on the auto
orrelations of theestimated residuals. In multivariate time series analysis there is more than oneauto
orrelation for a given lag. Let {vt} be a ve
tor valued series of residuals,where the vt are of dimension N × 1 ea
h. Then for a given lag k there are
N2 possibly di�erent auto
orrelations, namely between vi t and vj, t−k for allpairs (i, j), i = 1, . . . , N , j = 1, . . . , N .20 In the literature that deals with theestimation of term stru
ture models in a state spa
e framework, the analysis is20Note that in general the auto
orrelation between vi t and vj, t−k is di�erent from thatbetween vj t and vi, t−k. 23



generally restri
ted to to univariate auto
orrelations, i.e those between vi t and
vi t−k.For our models we want to provide two measures for the auto
orrelationof residuals. First, we will show the �ve univariate auto
orrelation fun
tions.Se
ond, we provide a measure that tries to 
apture multivariate auto
orrelationin a 
ondensed form. We do not seek to formally test on auto
orrelation ofresiduals by, for instan
e, using a multivariate portmenteau statisti
. This ispartly due to the fa
t that we do not know how su
h a statisti
 would behavefor our model with Gaussian mixture innovations.The residual ve
tor vt at time t is given by

vt = yt − yt|t−1,where yt|t−1 is the one-step fore
ast of yt based on observations up to time t−1.The (i, j)-element of the auto
orrelation matrix of vt for lag k, Γ(k), is givenby21
Γ(k)ij =

∑T
t=15+k(vi t − v̄i)(vj, t−k − v̄j)√∑T

t=15+k(vi t − v̄i)2 ·
√∑T

t=15+k(vj t − v̄j)2
, (5.20)where

v̄l =
1

T − 15

T∑

t=16

vl t., l = i, j.The �rst �ve panels in �gure 6 depi
t the univariate auto
orrelation fun
tions
Γ(k)ii for i = 1, 2, . . . , 5. The pi
ture in the lower right 
orner is intended to givean overall measure of auto
orrelation of the residuals. For ea
h lag k, we plottedfor ea
h model the norm ||Γ(k)|| of the auto
orrelation matrix Γ(k) against thelag k. We have de�ned this norm as22

||Γ(k)|| := max
i,j

|Γ(k)i,j |. (5.21)That is, for ea
h lag k, the �gure 
ontains the largest (in absolute value) elementof the 25 elements of the auto
orrelation matrix.The �rst thing to be noted is that the �ve univariate auto
orrelation fun
-tions do not di�er mu
h a
ross models. At lag 1 the ACFs assume their max-imum with Γ(1)ii amounting to a level between about 0.2 and 0.3. For higherlags, the ACFs �u
tuate around zero. Using the popular bounds of ± 2/
√
Twhi
h 
orresponds to the interval [−0.097, 0.097] here, it turns out that for

i = 1 (residuals of three-month yields) eight of the estimated auto
orrelationsfall outside this interval. This is the 
ase for all three models. For 60-month21Note that we have dropped the �rst 15 observations in order to remove any dependen
eon the initialisation of the �lters.22Of 
ourse, there are several alternatives to de�ne the norm of a matrix.24



yields, only three of the auto
orrelations fall outside the interval. Overall, theauto
orrelations of residuals appear to be a little too high, but the observedpatterns do not point towards strong misspe
i�
ation.Up to now we have said little about the fa
tors that drive the term stru
ture.Re
all that with the �ltering te
hniques at hand we are able to estimate the pathof the unobservable fa
tors. Figure 7 depi
ts the estimated paths of the �rst andse
ond fa
tor for our two-fa
tor models. That is, we have drawn the �rst andse
ond 
omponent of the �ltered state ve
tor at|t (multiplied by 1200) againsttime. The �rst thing to note is that the results for the Gaussian model and themixture model are similar. Se
ond, 
omparing with �gure 1 above, the path ofthe �rst fa
tor seems to resemble the pattern of the evolution of the level of theyield 
urve.23 In fa
t, the 
orrelation between the �ltered fa
tor pro
ess andyields is high for ea
h maturity. For both two-fa
tor models, it rea
hes from0.80 (
orrelation with the three-month yield) to 0.99 (
orrelation with the ten-year yield). Similar results are obtained for the three-fa
tor model where the
orrelation is between 0.78 and 0.99. Against this ba
kground, the �rst fa
tormay be referred to as a level fa
tor.This interpretation is supported if we look at the estimated fa
tor loadingsof the two-fa
tor Gaussian model in �gure 8.24 The fa
tor loading of the ithfa
tor on the n-month yield is given by the ith 
omponent of the ve
tor Bn/n.Note that for all models 
onsidered, the ve
tor Bn/n only depends on the κiparameters. In our models with diagonal K matri
es, the ith 
omponent of Bnis simply given by κn
i . The interpretation of an arbitrary point on one of the
urves of fa
tor loadings is as follows: if that fa
tor is in
reased, 
eteris paribus,by one unit, the yield with time to maturity n is in
reased by the amount givenon the axis of ordinates. Here, an in
rease in the �rst fa
tor shifts up yields of allmaturities nearly proportionally. Hen
e, the name 'level fa
tor' is justi�ed. These
ond fa
tor leads to a shift in the term stru
ture that is strong at the short endof the yield 
urve and be
omes weaker as time to maturity rises. A

ordingly,the se
ond fa
tor may be referred to as a twisting fa
tor.For the three-fa
tor model, the same type of pi
ture is drawn. Figure 9shows that the �rst two fa
tors 
an be given the same interpretation as beforefor the two-fa
tor models. The additional fa
tor works mostly at the short endof the yield 
urve.In their paper, Cassola and Luis (2003) try to mat
h the term stru
ture ofvolatility. For them, the term stru
ture of observed volatility 
onsists of thepairs (ni, V ar

emp(yni
t )) where V aremp(yni

t ) is the empiri
al varian
e of the ni-month yield. This is 
ompared to the theoreti
al term stru
ture of volatility, i.e.23Of 
ourse it is parallel shifted by some amount, sin
e the fa
tor pro
ess has mean zero byassumption.24The results of the two-fa
tor mixture model imply nearly the same pi
ture, thus it is notshown here. 25



Figure 6: First �ve panels (from left to right and top to bottom): ACF of theresiduals of 3-, 6-, 12-, 60-, and 120-month yields. Right panel in the last row:norm of the multivariate auto
orrelation matri
es plotted against lags.
26



Figure 7: Filtered pro
ess of the �rst fa
tor (left panel) and the se
ond fa
tor(right panel)the varian
es implied by the model. Cassola and Luis 
ome up with the resultsthat the varian
e of yields implied by their two-fa
tor model is unreasonablewith respe
t to the observed varian
e. Therefore, they alter their estimationapproa
h by in
luding observed varian
es in the measurement equation. Thisleads to parameter estimates that are su
h that the observed volatility mat
hesthe theoreti
al volatility.However, due to the fa
t that yields are highly auto
orrelated, the empiri
alvarian
e is a biased estimate of the true varian
e of a time series of yields.Thus, it may not be sensible to 
ompare the estimated theoreti
al varian
e withthe empiri
al one for small samples. Therefore, instead of trying to mat
h thevolatility 
urve of yield levels, we have a look at the volatilities of yields in �rstdi�eren
es. As seen in table 3 in se
tion 2, their auto
orrelation is low.Figure 10 shows standard deviations of �rst di�eren
es in yields that arepart of our data set. The solid line 
onne
ts the empiri
al standard deviations
omputed from the data. These are drawn together with the standard deviationsthat the estimated models imply for these yield 
hanges.25 The values in thepi
ture are 
omputed a

ording to the formulas in the appendix, where theparameters are repla
ed by the maximum likelihood estimates. The �gure showsthat all models imply a volatility 
urve that is de
reasing in time to maturity.For maturities of two, �ve and ten years, the three-fa
tor model 
omes 
loser tothe observed volatility, but it overestimates the volatility at the short end. Thetwo-fa
tor models, in 
ontrast, underestimate the volatility 
urve for maturitiesthat ex
eed one year. However, all of these 
omparisons have to be made with
aution sin
e even for di�eren
ed yields we do not know how well the empiri
alstandard deviations estimate the true ones.Our last 
omments on the estimation results fo
us on the di�eren
e between25See Lemke (2005) for the respe
tive formulas.27



Figure 8: Fa
tor loadings for the two-fa
tor modelthe Gaussian models and the mixture model. As already pointed out, table 3shows that yield 
hanges exhibit 
onsiderable ex
ess kurtosis. Multifa
tor termstru
ture models with Gaussian innovations, however, imply zero ex
ess kurto-sis for yields in levels and yields in �rst di�eren
es. Lemke (2005) provides theformula for the kurtosis of di�eren
ed yields implied by multifa
tor models withmixture innovations. Based on the maximum likelihood estimates of the param-eters, the kurtosis has been 
omputed for the maturities in the data set. Thesemeasures of kurtosis are graphed together with their empiri
al 
ounterparts in�gure 11. The important point to note is that the model in fa
t implies thatthe kurtosis is di�erent from zero and that it de
reases with maturity. Gaussianmodels imply a kurtosis whi
h is identi
ally zero for all maturities. One-fa
tormodels with mixture innovations, as dis
ussed by Ba
kus et al. (1998) are 
a-pable of generating ex
ess kurtosis, but the latter is 
onstant for all maturities.Thus, 
on
erning the mat
hing of fourth moments, our simple two-fa
tor model
an be regarded as a step into the right dire
tion.Up to now we have dis
ussed to what extent our three models are able to
apture the behavior of �rst, se
ond and fourth moments of yields in levels or�rst di�eren
es. Now, we want to look at the distribution at the whole. Thiswill be done exemplarily for the three-month yield, representing the short endof the yield 
urve, and the �ve-year yield, representing longer maturities. Theanalysis is done for �rst di�eren
es again.The solid line in �gure 12 depi
ts a kernel estimate for the distribution28



Figure 9: Fa
tor loadings for the three-fa
tor modelof ∆y3
t . It is based on our 444 observations and uses a Gaussian kernel withbandwidth b = 1.364σ̂N , where N is the number of observations and σ̂ is theirstandard deviation.26 The other lines are the density fun
tions implied by theestimated models. The following des
ribes how they are 
omputed.For the mixture model, it is not so simple to derive the un
onditional den-sity of ∆y3

t . We therefore 
onstru
t the density implied by the model using aMonte Carlo simulation. Based on the maximum likelihood estimates of the pa-rameters, we generate 10,000 observations of ∆y3
t from the two-fa
tor mixturemodel.27 Based on them, a kernel estimate of the density is 
onstru
ted anddrawn into �gure 12. In order to work under the same 
onditions for all mod-els, the densities for the Gaussian models have been generated by analoguoussimulations.The �gure suggests that the two-fa
tor mixture model 
aptures the shapeof the density best, followed by the two-fa
tor Gaussian model. The densityimplied by the three fa
tor model does not appear to 
apture the distributionwell.We also use QQ-plots for 
omparing the distributions implied by the modelswith that given from the data. The QQ-plots in �gure 13 (three of them drawninto one pi
ture) are based on the probabilities 0.01, 0.02, . . ., 0.99. For ea
h of26This is the default bandwidth suggested by Gauss' TSM pa
kage.27The observations are generated without superimposing a measurement error.29



Figure 10: Standard deviation of yield 
hangesthese probabilities, the 
orresponding quantile implied by the models is plottedagainst the empiri
al quantile of the data. If the points 
orresponding to a modelwere lying on the 45 degree line, this model would share the same quantiles withthe data. Deviations from that line 
an be interpreted as a measure of distan
ebetween the two distributions. Like the density plot above, the QQ-plots suggestthat the distribution implied by the two-fa
tor mixture model 
omes 
loser tothe distribution of the data than that implied by the two-fa
tor Gaussian model.Again, the three-fa
tor model performs worst.A similar ranking 
an be inferred by looking at �ve-year yields. For 
hangesof the �ve-year yield, �gure 14 
ontains the three densities implied by the modelsas well as the density estimated from the data. The QQ-plots in �gure 15 suggestthat for the �ve-year yield, the advantage of the two-fa
tor mixture model overthe other two models shows up quite 
learly.
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Figure 11: Ex
ess kurtosis of yield 
hanges

Figure 12: Density of monthly 
hanges in three-month yield31



Two Fa
tors, Two Fa
tors, Three Fa
tors,Gaussian Mixture Gaussian
κ1 0.998 0.998 0.999(2.36e-4) (2.38e-4) (1.48e-4)
v1 0.000285 0.000263 0.000281(8.27e-6) (1.14e-5) (1.13e-5)
κ2 0.949 0.950 0.954(1.20e-3) (1.94e-3) (1.34e-3)
v2 0.000439 0.000510(9.54e-6) (2.13e-5)
λ2v2 -0.142 -0.0465(0.0560) (0.0442)
δ 0.00669 0.0121 0.0117(6.19e-4) (2.53e-3) (9.77e-4)
v22 0.000230(2.10e-5)
λ2v22 -0.049(0.0158)
c22 26.10(8.130)
ω 0.138(0.0386)
κ3 0.687(0.0150)
v3 0.000506(2.20e-5)
λ3v3 -0.340(0.0518)
h2 0.0346 0.0345 0.00855(6.96e-4) (1.28e-3) (3.95e-4)

lnL(ψ̂) -479.90 -404.07 157.36
AIC 973.79 826.13 -294.72Table 5: Estimation results. Estimated standard errors are given in parentheses.
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Figure 13: QQ-plots for monthly 
hanges in three-month yield.

Figure 14: Density of monthly 
hanges in �ve-year yield33



Figure 15: QQ-plots for monthly 
hanges in �ve-year yield.
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6 Con
lusionAs a generalization of the one-fa
tor model by Ba
kus et al. (1998), we haveintrodu
ed a d-fa
tor model, for whi
h the distribution of fa
tor innovations is aGaussian mixture with B 
omponents. This model allows for a �exible modelingof the distribution of yields in levels and �rst di�eren
es, while yields are a�nefun
tions of the fa
tors.For estimation, it has been shown how the theoreti
al model 
an be trans-lated into the statisti
al state spa
e form. The 
orresponding state spa
e modelhas a transition equation for whi
h the innovation is distributed as a Gaussianmixture. The exa
t �lter asso
iated with this type of state spa
e model involvesGaussian mixtures with an exponentially growing number of 
omponents. Inorder to make estimation of the model numeri
ally feasible, an approximationof the exa
t �lter, the AMF(k) algorithm, has been introdu
ed.We have estimated two Gaussian models and one model involving a Gaussianmixture distribution. For the Gaussian models, maximum likelihood estimationbased on the Kalman �lter has been 
ondu
ted. For the mixture model, we haveemployed the AMF(1) algorithm.Parameter estimates are reasonable in size and have the 
orre
t signs. Theauto
orrelations of residuals do not point towards severe misspe
i�
ation. Thethree-fa
tor model is sele
ted by the AIC. However, with respe
t to higher mo-ments of the data, the two-fa
tor mixture model appears to have an edge overthe two Gaussian models.For future resear
h, an integration of the mixture spe
i�
ation into the three-fa
tor model is imaginable. Furthermore, a more elaborate spe
i�
ation of themixture distribution 
ould be tried. More reliable standard errors for the pa-rameter estimates may be obtained by using the bootstrap. Moreover, it wouldbe instru
tive to use a di�erent sample period and another 
ountry for theestimation. With regard to the fo
us of this paper, it would be parti
ularlyinteresting to see how the estimated distributions of fa
tor innovations 
hangewhen the sample 
hanges. Finally, it may be a worthwhile attempt to 
ombinethe stru
ture of the a�ne models by Du�e and Kan (1996), in whi
h volatilityis level-dependent, with that of our model.
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A The Exa
t Filter for the State Spa
e Model withMixture InnovationsConsider a state spa
e model for whi
h the transition equation is given by
αt = Tαt−1 + c+ ηt, (A.1)where for the innovation ve
tor ηt

ηt ∼ i.i.d.
B∑

b=1

ωbN(µb, Qb),
B∑

b=1

ωb = 1,
B∑

b=1

ωbµb = 0. (A.2)That is, the density of ηt is given by28
p(ηt) =

B∑

b=1

ωbφ(ηt;µb, Qb). (A.3)For the varian
e-
ovarian
e matrix of ηt we have
V ar(ηt) =

B∑

b=1

ωb

(
Qb + µb µ

′
b

)
=: Q. (A.4)The measurement equation is

yt = Mαt + d+ ǫt, (A.5)and the measurement error is normally distributed,
ǫt ∼ i.i.d.N(0, H). (A.6)The measurement error ǫt and the state innovation ηs are independent for alltimes s and t.The weights ωb as well as the system matri
es and ve
tors T , c, M , d, H,

µb, and Qb are all assumed to be time-invariant.The initial state is assumed to be normally distributed,
α0 ∼ N(ā0, P̄0), (A.7)and both, ηt and ǫt are independent from the initial state for all t.We �rst assume that the system matri
es are known and present the ex-a
t solution to the �ltering problem and the one-step-predi
tion problem. Let

at|t−1, ŷt|t−1 and at|t denote the 
onditional expe
tations 
orresponding to the
onditional densities p(αt|Yt−1), p(Yt|Yt−1) and p(αt|Yt), and denote by Σt|t−1,28φ(x; µ, Q) denotes the density fun
tion of N(µ, Q) evaluated at x.36



Ft and Σt|t the 
orresponding varian
e-
ovarian
e matri
es. It turns out thatfor the mixture model, the �ltering and predi
tion densities 
an be generated inan iterative fashion. They are all mixtures of normals, with the number of 
om-ponents in
reasing exponentially with time. The relationships between �lteringand predi
tion densities are given by the following theorems.29Theorem A.1 (Predi
tion density for the mixture model). Let the �l-tering density at time t−1, t = 1, 2, . . . , T , be given by a Gaussian mixture with
lt−1 
omponents,

p(αt−1|Yt−1) =

lt−1∑

i=1

ωi, t−1|t−1 · φ(αt−1; ai, t−1|t−1, Σi, t−1|t−1).Then the one-step-predi
tion density for the state is
p(αt|Yt−1)

=
B∑

b=1

lt−1∑

i=1

ωbi, t|t−1 φ(αt; abi, t|t−1,Σbi, t|t−1) (A.8)with
ωbi, t|t−1 = ωb ωi, t−1|t−1, (A.9)
abi, t|t−1 = Tai, t−1|t−1 + c+ µb, (A.10)
Σbi, t|t−1 = TΣi, t−1|t−1T

′ +Qb. (A.11)After reindexing and setting lt = B · lt−1 the predi
tion density 
an be writtenas
p(αt|Yt−1) =

lt∑

i=1

ωi, t|t−1φ(αt; ai, t|t−1,Σi, t|t−1). (A.12)The one-step-predi
tion density for the observation ve
tor is
p(yt|Yt−1) =

lt∑

i=1

ωi, t|t−1 φ(yt; ŷi, t|t−1, Fi, t) (A.13)with
ŷi, t|t−1 = Mai, t|t−1 + d, (A.14)

Fi, t = MΣi, t|t−1M
′ +H. (A.15)Theorem A.2 (Filtering density for the mixture model). Let the predi
-tion densities p(αt|Yt−1) and p(yt|Yt−1) at time t, t = 1, 2, . . . , T , be given bythe Gaussian mixtures (A.12) and (A.13). Then the �ltering density is

p(αt|Yt) =

lt∑

i=1

ωi t|t φ(αt; ai, t|t,Σi, t|t) (A.16)29The earliest derivation of these relations for the 
ase of s
alar measurement and transitionequation may be attributed to Sorenson and Alspa
h (1971).37



with
ai, t|t = ai, t|t−1 +Ki, t(yt − ŷi, t|t−1), (A.17)
Σi, t|t = Σi, t|t−1 −Ki, tMΣi, t|t−1, (A.18)
Ki, t = Σi, t|t−1M

′F−1
i, t , (A.19)

ωi, t|t =
ωi, t|t−1 φ(yt; ŷi, t|t−1, Fi, t)∑lt
i=1 ωi, t|t−1 φ(yt; ŷi, t|t−1, Fi, t)

. (A.20)For a proof, see Lemke (2005).A remark is in order that theorems A.1 and A.2 are in fa
t appli
able to time
t = 1. For the initial �ltering density used in theorem A.1 we have p(α0|Y0) =

p(α0|1N ) = p(α0). Thus, te
hni
ally speaking, the �ltering density is the densityof the initial state, that has been spe
i�ed in (A.7) as a normal. It 
an be writtenas a mixture with one 
omponent, l0 = 1, thus
p(α0|Y0) =

l0∑

i=1

1φ(α0; ā0, P̄0).Hen
e, theorem A.1 
an be applied to this density yielding p(α1|Y0) and p(y1|Y0)as mixtures with B 
omponents. To these in turn, theorem A.2 
an be appliedyielding p(α1|Y1).With the 
onditional densities at hand, point estimators 
an be readily 
om-puted as the 
orresponding 
onditional expe
tations,
E(αt|Yt−1) =

lt∑

i=1

ωi, t|t−1 ai, t|t−1 =: at|t−1, (A.21)
E(yt|Yt−1) =

lt∑

i=1

ωi, t|t−1 ŷi, t|t−1 =: ŷt|t−1, (A.22)
E(αt|Yt) =

lt∑

i=1

ωi, t|t ai, t|t =: at|t. (A.23)The 
orresponding 
onditional varian
e-
ovarian
e matri
es are given by
V ar(αt|Yt−1) =

lt∑

i=1

ωi, t|t−1

(
Σi, t|t−1 + (ai, t|t−1 − at|t−1)(ai, t|t−1 − at|t−1)

′
)

=: Σt|t−1 (A.24)
V ar(yt|Yt−1) =

lt∑

i=1

ωi, t|t−1

(
Fi, t + (ŷi, t|t−1 − ŷt|t−1)(ŷi, t|t−1 − ŷt|t−1)

′
)

=: Ft|t−1 (A.25)
V ar(αt|Yt) =

lt∑

i=1

ωi, t|t

(
Σi, t|t + (ai, t|t − at|t)(ai, t|t − at|t)

′
)

=: Σt|t. (A.26)38



The latter results follow from the general properties of Gaussian mixtures. Notethat the expe
tation is just the weighted average of the expe
tations of the nor-mal densities that 
onstitute the mixture, whereas the varian
e has an additionalterm taking the variation of the means into a

ount.The steps of the exa
t �lter for the mixture model 
an be summarized asfollows:Given observations {y1, . . . , yT }, and an initial density α0 ∼ N(ā0, P̄0), thealgorithm 
omputes
• the sequen
es of 
onditional densities,

p(αt|Yt−1), t = 1, . . . , T,

p(y|Yt−1), t = 1, . . . , T,

p(αt|Yt), t = 1, . . . , T,ea
h 
hara
terized by the 
orresponding 
omponents (weights, means,varian
es),
ωi, t|t−1, ai, t|t−1,Σi, t|t−1, i = 1, . . . , lt t = 1, . . . , T,

ωi, t|t−1, ŷi, t|t−1, Fi, t, i = 1, . . . , lt t = 1, . . . , T,

ωi, t|t, ai, t|t,Σi, t|t, i = 1, . . . , lt t = 1, . . . , T,

• and the sequen
es of point estimates (
onditional means) and 
orrespond-ing varian
e 
ovarian
e matri
es
at|t−1,Σt|t−1, t = 1, . . . , T,

ŷt|t−1, Ft, t = 1, . . . , T,

at|t,Σt|t, t = 1, . . . , T.These are 
omputed a

ording to the following s
heme:Algorithm A.1 (The exa
t �lter).
• Step 1, InitializationSet

a1, 0|0 = ā0, Σ1, 0|0 = P̄0, ω1, 0|0 = 1, l0 = 1.Set t = 1. 39



• Step 2, Predi
tion step from t− 1 to tSet lt = Bt.Compute ωi, t|t−1, ai, t|t−1, Σi, t|t−1, ŷi, t|t−1, and Fi, t for i = 1, . . . , lt, a
-
ording to theorem A.1.Use these quantities to 
ompute at|t−1, ŷt|t−1, Σt|t−1, , and Ft a

ordingto (A.21), (A.22), (A.24) and (A.25) respe
tively.
• Step 3, Updating step at tCompute ωi, t|t, ai, t|t, and Σi, t|t, for i = 1, . . . , lt, a

ording to theoremA.2.Use theses quantities to 
ompute at|t and Σt|t, a

ording to (A.23) and(A.26), respe
tively.
• Step 4If t < T , set t := t+ 1, and go to Step 2;else, STOP.If the moments of the initial 
onditions are not known, one 
an pro
eed asin the 
ase of a simple normal. If the state pro
ess is stationary, the �lter 
an beinitialized using the un
onditional mean and varian
e-
ovarian
e matrix. The
ondition for stationarity of the state pro
ess is the same as in the Gaussian
ase: all eigenvalues of the transition matrix T have to have modulus less thanone.B The Approximate Filter AMF(k)The following gives the algorithm for the approximate mixture �lter of order k(AMF(k) ).Algorithm B.1 (The approximate �lter AMF(k)).
• Step 1Apply the exa
t �lter to the sequen
e {y1, . . . , yk} with initial 
ondition
α0 ∼ N(ā0, P̄0).Obtain the exa
t �ltering densities

p(αt|Yt), p(αt|Yt−1), p(yt|Yt−1), t = 1, . . . , k,with 
orresponding moments
at|t, Σt|t, at|t−1, Σt|t−1, ŷt|t−1, Ft.40



• Step 2For t = 1, . . . , k set:
p̃(αt|Yt) = p(αt|Yt), ãt|t = at|t, Σ̃t|t = Σt|t

p̃(αt|Yt−1) = p(αt|Yt−1), ãt|t−1 = at|t−1, Σ̃t|t−1 = Σt|t−1

p̃(yt|Yt−1) = p(yt|Yt−1), ˜̂yt|t−1 = ŷt|t−1, F̃t = Ft.Set t = k + 1.
• Step 3Apply the exa
t �lter to the sequen
e {yt−k+1, . . . , yt} with initial 
ondition
αt−k ∼ N(ãt−k|t−k, Σ̃t−k|t−k).Store the �nal �ltering and predi
tion densities as p̃(αt|Yt), p̃(αt|Yt−1),and p̃(yt|Yt−1). That is, store the 
orresponding 
omponents ω̃i, t|t, ãi, t|t,Σ̃i, t|t,
ω̃i, t|t−1, ãi, t|t−1,Σ̃i, t|t−1, ˜̂yi, t|t−1, F̃i, t, i = 1, . . . , Bk.Compute the 
orresponding means and varian
es ãt|t, Σ̃t|t, ãt|t−1, Σ̃t|t−1,
˜̂yt|t−1, and F̃t.

• Step 4If t < T , set t := t+ 1, and go to Step 3;else, STOP.
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