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Abstract

This paper proposes a multifactor term structure model with factor
innovations that have a Gaussian mixture distribution. The model allows
for flexible modeling of the distribution of bond yields. Under the con-
dition of no-arbitrage, yields are affine functions of factors. The model
is estimated in a state space framework using a new nonlinear filtering
algorithm. Estimation results for US data show that the mixture model is
able to capture nonnormality in bond yield changes.

1 Introduction

The term structure of interest rates is a subject of interest in macroeconomics
and finance alike. Learning about the nature of bond yield dynamics and its
driving forces is important in different areas such as forecasting, monetary pol-
icy, debt policy, and derivative pricing.! Affine term structure models? simul-
taneously capture the dynamic and the cross-section properties of bond yields
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while constraining the family of bond price processes to be arbitrage-free. The
term ’affine’ is due to the fact that bond yields are affine functions of a limited
number of factors.

The stochastic properties of the factor process are inherited by bond yields.
If, for instance, the factor process is a Gaussian VAR, bond yields of all ma-
turities will be Gaussian as well. However, there is empirical evidence that
bond yields and their first differences are not normally distributed. This paper
provides an approach for a flexible modeling of the distribution of bond yields
while staying within the class of affine models. Based on an idea in Backus
et al. (1998) this is achieved by allowing factor innovations to be distributed
as Gaussian mixtures. We derive an analytical formula for bond yields as a
function of factors. The model allows the resulting distribution of yields and
yield changes to assume a wide variety of shapes. In particular, it can account
for non-vanishing skewness and excess kurtosis that varies with maturity.

For the estimation of multifactor term structure models using time series
data of yields for different maturities, it has become common in the literature
to translate the theoretical model into the statistical state space form. The mea-
surement vector contains a set of bond yields for different maturities, the state
vector represents the latent factors driving the term structure. The state space
framework allows for adding measurement errors to the bond pricing equations.
It permits to estimate unknown parameters and to filter out the unobservable
factor processes. For affine multifactor Gaussian models, the corresponding
state space model is linear and Gaussian. Hence, it can be estimated by max-
imum likelihood based on the Kalman filter. The literature contains numerous
examples for this approach, e.g. De Jong (2000) and Cassola and Luis (2003).

For the class of term structure models considered in this paper, the corre-
sponding state space model has a transition equation for which the innovation
is distributed as a Gaussian mixture. As it is already shown by Sorenson and
Alspach (1971), the exact filter for such a state space model is nonlinear in ob-
servations. Moreover, the exact filtering density at time ¢ is a Gaussian mixture
for which the number of components is exponentially growing with time. For
instance, if the state innovation is distributed as a mixture of 2 normal distri-
butions, the exact filtering density at time ¢ contains 2! component densities,
rendering a practical application of the exact filter impossible. To deal with
this problem we propose an approximate filter that preserves the nonlinearity of
the exact solution but that restricts the number of components in the mixture
distributions involved. The degree of complexity is controlled by a parameter
k, so that in the example the true filtering density at time ¢ is approximated by
a mixture of 2 densities only.

A two-factor term structure model with Gaussian mixture innovations is
estimated with US data using the approximate nonlinear filter. The data set



contains time series of monthly yields for five different maturities. For compari-
son, we also estimate pure Gaussian models using the Kalman filter. Estimating
the distribution of differenced yields from the data and comparing it to the dis-
tributions implied by the models, it turns out that the mixture model is superior
compared to the Gaussian models.

The paper is organized as follows. Section 2 presents the data set and
derives some stylized facts. In section 3, the term structure model is developed
and the yield equation is derived. In section 4, the estimation approach is
described which is employed for the empirical application in section 5. Section
6 concludes, the appendix provides details of the exact filter algorithm and our

approximation.

2 Data and Stylized Facts

In this section we introduce the data set that will be used for the empirical
application below. It also serves to derive some stylized facts that will motivate
the term structure model in the following section. The data set is based on
McCulloch and Kwon (1993) and Bliss (1997). It is the same set as used by
Duffee (2002).% It consists of monthly observations of annual zero bond yields
for the period of January 1962 to December 1998. The sample contains yields
for maturities of 3, 6, 12, 24, 60 and 120 months. Thus, we have 6 time series
of 444 observations each. Three of the six time series are graphed in figure 1,

table 1 provides summary statistics of the data.

‘ Mat H Mean ‘ Std Dev ‘ Skew ‘ Kurt ‘ Auto Corr

3 6.32 2.67 1.29 | 1.80 0.974
6 6.56 2.70 1.23 | 1.60 0.975
12 6.77 2.68 1.12 | 1.24 0.976
24 7.02 2.59 1.05 | 1.02 0.978
60 7.36 247 0.95 | 0.68 0.983
120 7.58 2.40 0.78 | 0.31 0.987

Table 1: Summary statistics of yields in levels. For each time to maturity (Mat)
the columns contain mean, standard deviation, skewness, excess kurtosis, and

autocorrelation at lag 1.

As table 1 shows, yields at all maturities are highly persistent. The mean
increases with time to maturity. Ignoring the three-month yield, the standard
deviation falls with maturity. For interpreting the coefficient of skewness and

3We obtained it from G. R. Duffee’s website http://faculty.haas.berkeley.edu/duffee/affine.htm.
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Figure 1: Yields from 01/1962 - 12/1998

(Mat | 3 | 6 | 12 | 24 | 60 | 120 |
3 | 1.000
6 | 0.996 | 1.000
12 [ 0.986 | 0.995 | 1.000
24 [ 0.962 | 0.975 | 0.990 | 1.000
60 | 0.909 | 0.924 | 0.950 | 0.982 | 1.000
120 || 0.862 | 0.878 | 0.908 | 0.952 | 0.991 | 1.000

Table 2: Correlation of yields in levels

excess kurtosis, note that they should be close to zero if the data were normally
distributed.

The means of yields are graphed against the corresponding maturity in figure
2. Data are represented by filled circles. The connecting lines are drawn for
optical convenience only. The picture shows that the mean yield curve has a
concave shape: mean yields increase with maturity, but the increase becomes
smaller as one moves along the abscissa. This is a typical shape for the mean
yield curve. However, the shape of the yield curve observed from day to day can
assume a variety of shapes. It may be inverted, i.e. monotonically decreasing,

or contain "humps’.

Finally, table 2 shows that yields exhibit a high contemporaneous correlation
at all maturities. That is, interest rates of different maturities tend to move
together.
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denotes an observed time series of the n;-month yield in levels, we now consider

the corresponding time series {Ays’, ..

LAy} with Ay =yt — gty

Three of the six time series are graphed in figure 3. Table 3 shows summary

statistics of yields in first differences. Again, the standard deviation falls with

‘ Mat H Mean ‘ Std Dev ‘

Skew ‘ Kurt ‘ Auto Corr

3 0.0038 0.58 -1.80 | 14.32 0.115
6 0.0034 0.57 -1.66 | 15.76 0.155
12 || 0.0030 0.56 -0.77 | 12.31 0.158
24 || 0.0024 0.50 -0.36 | 10.35 0.146
60 || 0.0016 0.40 0.12 | 4.04 0.096
120 || 0.0015 0.33 -0.11 | 2.29 0.087

Table 3: Summary statistics of yields in first differences

time to maturity. The high autocorrelation that we have observed for yields

in levels has vanished. Skewness is still moderate but excess kurtosis is vastly

exceeding zero. Moreover, excess kurtosis differs with maturity having a general

tendency to decrease with it. This leads to the interpretation that especially

at the short end of the term structure, extreme observations occur much more

often as being compatible with the assumption of a normal distribution.

The contemporaneous correlation of differenced yields is also high, as evident
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Figure 3: First difference of yields

from table 4. However, the correlations are consistently lower than for yields in
levels.

(Mat [ 3 | 6 | 12 | 24 | 60 | 120 |
3 | 1.000
6 | 0.952 | 1.000
12 [ 0.867 | 0.957 | 1.000
24 | 0.783 | 0.887 | 0.960 | 1.000
60 | 0.645 | 0.762 | 0.859 | 0.936 | 1.000
120 || 0.547 | 0.659 | 0.742 | 0.830 | 0.934 | 1.000

Table 4: Correlation of yields in first differences



3 The Model

We introduce a dynamic multifactor model in discrete time. Let P;* denote the
price at time ¢ of a zero-coupon bond that pays one unit of account at time
t +n. The corresponding yield to maturity is given by

In PP

"= . 3.1
Yt n ( )

A stochastic discount factor (SDF) or pricing kernel M; prices bonds of all
maturities, guaranteeing the absence of arbitrage opportunities. Thus, M; is a
strictly positive random variable with

E|MP}| < oo

and
P} = BE(My1 P Fe). (3.2)

for all n and ¢, where F; denotes the information set given at time ¢.* In the fol-
lowing we will use the short-hand notation Ej(-) for the conditional expectation
E(|F)-

In the framework of consumption-based asset pricing, the SDF represents
the marginal rate of substitution between consumption in period ¢ and period
t + 1.5 As such, the specification of M; depends on the specific utility function
assumed. However, as consumption-based models fail to account for important
features of asset prices, it has become common to specify the SDF as a more
general function of explanatory variables. Moreover, in this paper we will treat
the factors driving the SDF as latent variables as frequently done in the empirical
term structure literature.

We denote by X; the d-dimensional vector of factors. Its dynamic evolution
is specified as a VAR(1) process, i.e.

Xy =a+KXp 1+ uy, (3.3)

where a is a d x 1 vector of constants, and K is a d x d matrix. The eigenvalues
of I are assumed to lie inside the unit circle, which guarantees stationarity of
the process {X;}.

The pricing kernel is affine in the vector of factors and its innovations,

—1In Mt+1 =0+ ’y/Xt + )\/ut+1, (34)

4For a proof of the equivalence between the existence of an SDF and the absence of arbitrage
opportunities see Irle (1998).
5See, e.g., Campbell, Lo, and MacKinlay (1997) or Cochrane (2001).



where § is a scalar and vy and A are both d x 1 vectors. The components of the

vector A will be referred to as the market price of risk parameters.

A solution of the model is a family of functions g,(-) that map the factor

vector X into the corresponding arbitrage-free yield y;* for each n,

ytn = gn(Xt)~

Thus, the whole term structure of interest rates at time t is determined by the
realization of X;. The dynamics of any yield y;* and its stationary distribution
depend on the dynamics of Xj.

If for the model (3.3) - (3.4) the factor innovation is Gaussian, the solution
function is affine, i.e. we have®

A 1
n n /
= —+ —B, X4, 3.5
Yt n non t ( )
where A, and B, are a scalar and a d x 1 vector, respectively, that depend on
the model parameters and time to maturity n but not on t.

The yield equation (3.5) implies that if X; is a stationary Gaussian VAR,
yields of all maturities will be normally distributed. The same holds for all
linear combination of yields, e.g. term spreads, and for yields in first differ-
ences. However, normality of yield changes is at odds with the stylized facts as
illustrated above.

One approach to generate non-normal yields with an arbitrage-free model is
to replace the simple normal distribution by a mixture of normal distributions.
This is done by Backus et al. (1998) for a one-factor model. The model can
capture excess kurtosis in yield changes. However, since there is only one source
of randomness in the model, yields of all maturities share the same kurtosis.
This paper generalizes the idea of Backus et al. to the multivariate case. That
is, for the multifactor model (3.3) - (3.4) above it is assumed that w; has a
multivariate Gaussian mixture distribution. We write

B

up ~ i.4.d. Zwa oy Vi), Zwb—l Zwbub—O (3.6)

b=1
to denote that the density of u; is given by

1 Iy—1

This formulation allows high flexibility in modeling the shape of the distribution.
For instance, the density of u; may be asymmetric, fat-tailed or bimodal.”

5See, e.g., Backus et al. (1998) or Campbell et al. (1997).
"For a treatment of finite mixture models and their properties see McLachlan and Peel
(2000) or Titterington, Smith, and Makov (1985).



Fortunately, by going from a simple normal to a normal mixture, the struc-
ture of the solution for bond prices is retained as the following proposition
shows.

Proposition 3.1 (Yields in the linear multifactor Gaussian mixture
model). For the multifactor model (3.3), (3.4), (3.6), zero bond yields are given
as

A, 1
v = e (3.7)
with®
By = (I-K"(I-K)"y (3.8)
n—1
An = D G(B) (3.9)
=0
where
B
G(B;) =5+ Bla—1In |3 w, - e~ O+BY mt 304 BV By)
b=1

Proof. We start with the guess that bond prices are affine in factors.
—InP= A, + B, X,

For computing the functional forms of the scalar A, and the d-dimensional
vector B,, we use the fundamental pricing equation (3.2) in logs

—In P = —In Ey(My1 P ). (3.10)
The logarithm of the product on the right-hand side is given by

In Myy1 +1In Py
= —6—A,—Bla— (v +B,K)X; — (N + B),)ut+1
= ‘/t-i-l-

The conditional distribution of Viy1 is not normal but a d-variate normal mix-
ture with B components. For the right-hand side or (3.10) we have to compute

E, <eln My +In Pp )

which has the form
E, (600+C’1Ut+1>

with ¢ = =0 — A, — Bl,a— (' + B,K)X¢, c1 = —(A + By).

fEmpty sums are evaluated as zero.



Following from a result in Lemke (2005), we have

E, (eCO +ciuett )

B
— % (E wbecaﬂb'f‘%C,lVbCl).

b=1

Plugging back in the original variables we thus obtain

In E, <eln Mit1+n PZLH)

= —§—A,—-B,a— (v + B,K)X;

+In

B
Zwb . 6_(A+Bn)/ub+%(A"I‘Bn)/%()\"l‘Bn)] i
b=1

For the fundamental pricing equation (3.10) to hold, the coefficient functions
A, and B, have to satisfy the following set of difference equations

Bpii = v+K'B, (3.11)
Apy1 = 6+ A, + Bla
B
—n > w .e—<A+Bn>'ub+%<A+Bn>'vb<A+Bn>] L (312)
b=1

with initial conditions Ay = 0 and By = 0. The vector difference equation for
B,, is the same as in the Gaussian multifactor model, so again

By=I+K +K*+...+ K" HYy=T-K")IT -K) Y.
The solution of the difference equation for 4, leads to (3.9). O

The mixture model nests the linear Gaussian multifactor model as a special
case. In Lemke (2005) the properties of the model are analyzed in more detail.
For instance, it turns out that the model can exhibit excess kurtosis that varies
with time to maturity. As regards the stationary distribution of yields, the pure
Gaussian model implies a Gaussian distribution for yields. For the mixture
model, the unconditional distribution of yields is not straightforward to derive.
We leave this as a topic for future research. For a given set of model parameters,
however, the distribution of yields can be approximated by using Monte Carlo
methods as done in section 5 below.

4 Estimation Approach

In the literature, the state space approach has often been adopted for the esti-
mation of term structure models.” The statistical state space model is a rep-
resentation of the joint dynamic evolution of an observable random vector 3,

9This has mostly been done for continuous-time models, as, for instance, by Babbs and
Nowman (1999), Babbs and Nowman (1998), Ball and Torous (1996), de Jong (2000), Duan
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and a generally unobservable state vector o;.!? The state space model contains
a measurement equation and a transition equation. The transition equation
governs the evolution of the state vector,

o =Toay_1+c+ . (4.1)

The measurement equation specifies how the state interacts with the vector of
observations,
Y= May + d+ €. (42)

The quantities d, ¢, M, T, H, Q are vectors and matrices of appropriate dimen-
sion. 7 is the innovation of the state process, € is referred to as the measurement
error. The model is completed by specifying the distribution of the initial state
vector ag and the joint evolution of 7; and e;.

Once the term structure model of the preceding section is cast into state
space form, the statistical inference associated with state space models can be
conducted to estimate unknown model parameters, to estimate the latent factor
process driving the term structure, and to make one- or multistep-predictions.
Moreover, goodness-of-fit criteria developed for state space models can be em-
ployed to judge the adequacy of the term structure model specification under

consideration.

For estimating our term structure model in state space form, we first trans-
form the factor evolution to the form of a state space model’s transition equation.
This is straightforward as the factor evolution in (3.3) is already of the form
(4.1). That is, we have ¢ = a, T = K, and ny = uy.

The measurement equation arises by choosing observed interest rates as left-
hand-side variables, whereas the right-hand-side is the sum of the theoretical
solution implied by the term structure model and a measurement error. Recall
that bond yields are given by

A 1
n n !

= —+-B,X 4.3
Y n non ty ( )
where A,, and B,, depend on the parameters of the factor process and on market
price of risk parameters collected in a vector A. Let the measurement vector at
time t contain observed yields of k different maturities, say ni,...,ng. Then

the theoretical model implies that

ygl nLlAnl %B;Ll
: = : + E Qg (4.4)
y?k éAnk éB;Lk

and Simonato (1999), Geyer and Pichler (1999) and Schwaar (1999). Cassola and Luis (2003)
is an example for estimating a discrete-time Gaussian model.
19Gee, e.g., Brockwell and Davis (1996), Durbin and Koopman (2001) or Hamilton (1994).

11



Adding a vector of measurement errors ¢, = (e/',...,e*) leads to a linear
measurement equation of the form (4.2),

yr=d+ Moy + €, (4.5)

with obvious definitions of the vector d and the matrix M.

Denote by Vs = {yo,y1,...,¥s} a sequence of observations of the measure-
ment vector. If n; and € are both Gaussian, the filtering densities p(a;|)};) as
well as the prediction densities p(ay|);—1) and p(y:|V;—1) are Gaussian. They
can be computed by the Kalman filter. Unknown model parameters can be
estimated by maximum likelihood. The log-likelihood is given by

T
I(Y; Yr) = Zp(yt\yt—ﬁ (4.6)
i=1

where 1) contains the unknown model parameters.

For the model considered here, we assume that the measurement error is in
fact normally distributed, i.e.

e~ N(0,H). (4.7)
However, the distribution of the state innovation 7 is not a simple normal but
a mixture of normals, given by (3.6),

B

e~ > wpN (p, V).
b=1

The implication of this deviation from the linear purely Gaussian state space
model is that now the filtering and prediction densities are not Gaussian any
more as shown by Sorenson and Alspach (1971). They are rather mixtures of
normals. The filtering density at time ¢ is given by

pla| V) = szt\t o(as @ity Sig)e), (4.8)

where a;;; and X;; are the means and variance-covariance matrices of the com-
ponent densities, respectively. These as well as the weights w;; are nonlinear
functions of the observations.

The conditional expectation and its variance-covariance matrix can be com-
puted as

E(ay| V) E Wi tt @4 tjt =+ Atfts

12



and

Var(ay| V)

Ut
= sz‘,ﬂt (B, e + (a0 — age) (ag,4e — age)’) =2 Sy
i=1

respectively.

The one-step prediction densities for the state and observation-vector, p(ay|Vi—1)
and p(y¢|V¢—1), have a similar structure. Accordingly, the log-likelihood is a sum
of mixture distributions. Details are given in the appendix.

The filtering and prediction densities can be computed in an iterative fash-
ion. The algorithm is described in the appendix and can be interpreted as a
bunch of Kalman filters working parallel. The main problem, however, is that
the number of components is growing exponentially with time: at time t the
exact filtering density given above has

l; = B'

components. That is, if our model has B = 2 components in the mixture
distribution, the filtering density at time ¢ = 10 is a mixture of 1024 normals.
Hence, for time series of length typically encountered in practice, computing the
exact filter becomes impossible. This is why we use an approximate filter, the
structure of which will be sketched in the following. The appendix contains a
more detailed description.

For our proposed approximation scheme, the maximum number of compo-
nents appearing in the employed mixture distributions is governed by a param-
eter £ < T. After an initial phase, the exact filtering and prediction densities
mixtures with B* components are approximated by mixtures with B* compo-
nents only. This approximating density results from applying the exact filter to
the most recent k observations only. A suitable initialization of the filter takes
the first ¢ — k observations into account in a condensed form. We abbreviate
the approximation scheme as AMF(k), standing for approximate mixture filter
of degree k’. Next, we describe verbally how the approximation works.!!

First, the exact filter is run up to time ¢ = k yielding the exact filtering
densities p(ay|);) for t = 1,..., k. The last of these densities, p(ag|)Vx) is a
mixture of B¥ normals.

Continuing with the exact filter would deliver the exact density for time
t = k + 1 as a mixture with B¥"! components. However, we want to con-
strain the number of components to B*. The idea is now to apply the exact

UWe will refer to the filtering densities only. The idea is the same for the prediction
densities. In the summary of the approximation algorithm below, it will be documented how
they are computed.

13



filter algorithm, but only to the last k observations of Vii1, i.e. to the sub-
sequence {y2,...,Yk+1}. The filter is initialized by the univariate normal with
mean ay); and variance Y1, the latter being the mean and the variance of the
B-component mixture p(a1|Y;). Thus, the initial condition contains informa-
tion about y; in a condensed form, the exact density p(«;|);) is replaced by a
simple normal. Applying the exact filter in this fashion to the most recent k
observations yields a mixture with B* components, denoted by p(agr1|Vit1),
that approximates the exact filtering density at time k + 1.

A similar procedure is applied for approximating each of the filtering densi-
ties from ¢t = k4 1 to t = 2k. For obtaining an approximation of the density
p(ae| V), the exact filter is applied to the k most recent observations only. The
first ¢t — k observations {y1,...,y:_k}, however, are not ignored. They enter the
estimation process through the initial condition. The exact filter is initialized by
a simple normal, and the mean of that normal is a;_g;_, the optimal estimate
of the state at ¢t — k, given the observations from 1 to t — k. Since the algorithm
is iteratively applied, the estimate a;_;_ and its variance-covariance matrix
Yt _k|¢—k are already available.

In this fashion approximate densities p(ay|);) for t = k + 1,...,2k are ob-
tained. Each of them is a mixture of B¥ components.

Analog operations can be conducted for approximating the filtering densities
fort =2k +1,...,T. At time t > 2k 4 1 the approximate density is generated
by an application of the exact filter to {y4—g+1,...,%}. For computing the
initial condition at time ¢ — k, one would again collapse the mixture density
p(a¢—g|Vi—k) to a simple normal. However, since we are beyond ¢ = 2k, we do
not have the exact filtering density p(c;—r|V;—x) for time t—k available. We only
have p(ay_r|Vi_x) available, a mixture of B* components that approximates
p(as—g|Vi—k). Nevertheless, we can proceed as usual and collapse this density
into a simple normal.

Similar to the filtering densities, the prediction densities are also approxi-
mated by mixtures with B¥ components. With the sequence of approximate
prediction densities at hand, an approximate log-likelihood can be constructed
by replacing the exact densities p(y;|);—1) in (4.6) by their approximating coun-
terparts p(y:|Vi—1).

In Lemke (2005) Monte Carlo simulations have been carried out to assess the
properties of the AMF(k) . It turns out that for the data generating processes
considered there, the approximate filtering densities generated by the AMF (k)
are good approximations to the exact ones (which have been computed for time
series of length T' = 10), even for small k£ such as k = 1,2,3. Moreover, it turns
out that for B = 2, increasing k beyond 3 does not yield any substantial changes
of results. In most cases, k = 1 does already lead to quite good approximations
of the exact filter. Finally, results from the AMF (k) have been compared to

14



results from the Kalman filter which is still the best linear filter for the linear
state space model with mixture innovations. The AMF (k) performs consistently
better than the Kalman filter, the degree of improvement being dependent on
the model parameterization.

5 Empirical Application

With the estimation methodology at hand we now conduct an empirical study
in which we estimate three discrete-time term structure models. We use the
data set of US treasury yields that has been presented in section 2. It is not
claimed that the models that we use in our study are in some sense optimal
specifications for our data set. Rather, the main purpose of this section is to
show the methodology at work. Moreover, we want to point out what difference
it can make to use a mixture model as opposed to a Gaussian model with the
same number of factors.

5.1 Models and Parameterization

We estimate three specifications of the model described in section 3: a Gaussian
two-factor model, a two-factor model with a two-component mixture, and a

three-factor Gaussian model. Recall that the mixture model from section 3

nests a purely Gaussian model as a special case.'?

The models are characterized by a vector-valued factor process
Xi =KXi1+w (5.1)
and a specification of the stochastic discount factor (SDF), that is of the form
—In My =6+ X + Nugyr. (5.2)

Note that we have set the intercept in the factor process equal to zero. As
described in more detail in Lemke (2005), the model in its original specification

is overparameterized, so dropping the intercept is innocuous.

For the Gaussian models, the factor innovation satisfies

ug ~ N(0,V), (5.3)
whereas for the mixture model
B B B
up ~ Z%N(Mb, Vb), Zwb =1, Zwbub =0. (5.4)
b=1 b=1 b=1

12Strictly speaking we should refer to the model outlined in section 3 as 'a class of models’.
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Going from the general to the specific, the factor process of the two-factor

Gaussian model is given by

Xy (s O Xi¢-1 U1t
) (o n) () () e

where the distribution of the factor innovation is
2
e on (Y)Y )). (5.6)
Ut 0 0 w3

—InMip1 =0+ Xup + Xog + Mure41 + Aouapyr. (5.7)

The SDF satisfies

Interchanging the two factors will not alter the implied term structure. For
the Gaussian two-factor model and the mixture model that will be described
hereafter, we will sort the factors by their persistence. That is, they are arranged
such that k1 > ko.

Concerning the two-factor mixture model, the factor process and the SDF
equation are of the same form as for the two-factor Gaussian model. The dis-
tribution of the factor innovation is specified as a Gaussian mixture with two

components,

U1t v? v?
o)~ ((3)- (8 ))rmom ((6):- (5 )
(5.8)

We have tried three different specifications, one with v11 # v12 and ve1 # Va9,
another with V11 75 V12 and V21 = V29, and a third with V11 = V12 and V21 7£ V29.
It turned out that the third one performed best and we only report the results
of this specification. In order to identify the two components we assume that
vo1 > voo. This assumption is embedded into the specification by parameterizing
the first component variance as a multiple of the second. Summing up, we will
assume that

. 2 _ 2
V11 = V12 =: V1, and V91 = C22V99, C29 > 1. (59)

Finally, the three-factor Gaussian model consists of the factor process

Xt kr 0 0 X1t-1 Uty
Xy | = 0 kw2 O Xop—1 |+ | u2 (5.10)
X3t 0 0 =~s X3t-1 u3t
with
Uy 0 v? 0 0
uy | ~N 0,] 0 v»3 0 (5.11)
Uy 0 0 0 3



The pricing kernel is given by
—In M1 =6+ X + Xoe + X3¢ + Mwr 41 + Aaugipr + Asuzeqr. (5.12)

Similarly as for the two-factor models, we assume that k1 > ko > Ks.

All three models have the property that both the matrix K and the (com-
ponent) variance-covariance matrices are diagonal. For all three models, this
implies that the factors are independent from each other. Of course, this is a
restrictive assumption whose validity could be tested for. For the two-factor
models, correlation of the factors could be induced by introducing an additional
free parameter for the (2,1)-element of . The hypothesis of uncorrelated fac-
tors would then correspond to this parameter being zero. Such a test, however,
will not be conducted here and we will stick to the more simple specification.

Each model is cast into its corresponding state space form and the parame-
ters are estimated by maximum likelihood. For the Gaussian models, the state
space model is linear and Gaussian, and the exact likelihood can be constructed
using the Kalman filter. For the two-factor mixture model, the state space
model is linear but the state innovations are distributed as a Gaussian mixture.
For this model, we construct an approximate likelihood based on the AMF(1)
filter.!> We will now explain some details of the estimation process and turn to
the results in the next section.

From the data set presented in section 2, we use time series of yields for
maturities of 3, 6, 12, 24, 60, and 120 months. The yields are annualized, the
models, however, hold for monthly yields. The models imply that for some
arbitrary n, the joint evolution of factor and yield are given by (5.1) and (4.3).
Then the annualized yield g3* := 1200 - y satisfies'

I = %%—%BZ/Xt
Xt = ICXt_1+ut

with A} = 1200-A4,, and B;, = 1200- B,,. It is this kind of representation that we
use in the empirical study. This implies that the parameters that we obtain are
those that correspond to the original monthly yields. Accordingly, they can be
compared in size with parameters from the literature that have been obtained
for other samples using possibly different statistical techniques. The reason for
using annualized yields (as opposed to monthly yields) lies in the fact that for
monthly yields the measurement error in the corresponding state space model
would have a have a very low standard deviation (of around 7e-6). This would
possibly lead to numerical difficulties.

13Using the AMF(2) filter delivered nearly the same results.
'We have to multiply by 1200 (and not by 12 only) since yields in the data set are expressed
in percentages.
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We do not want to carry on with the tilde on top of our annualized yields,
so we drop it from here on and understand each y;* as an annualized yield.

For the state space models associated with our theoretical term structure
models, the measurement vector y; is five-dimensional,

e = (yr v, 0, (na,na,. .., ns) = (3,6,12,60,120)".

For each term structure model we identify the factor vector with the state vector,
i.e. oy = X;. The measurement equation has the form

Y 1200 - ;L Ap, 1200 - ;L By, €1t
= : + : o+ | (5.13)
Yo 1200 - - Ay, 1200 - =By, €5t

where the functional forms of the A, and the B, differ across models, of course.
Written more compact in the familiar notation of a state space model,

Yyt =d+ Mo + €. (5.14)

For the measurement error we use the simple specification
et ~ N(0, B*I5). (5.15)

This is not an innocuous assumption since it implies that the difference between
theoretical and observed yields has the same variance for all maturities. We
also tried a specification in which the variances were allowed to be pairwise
different. However, it turned out that the other parameter estimates have not
been affected much by this change of specification.

For the two-factor Gaussian model, the unknown model parameters to be
estimated are k1, v%, A1, Ko, v%, X2, 0, and h%. The parameters ki, v%, K9,
v3 of the theoretical model appear in both, the transition equation and the
measurement equation, whereas the parameters A, Ay, and § appear in the
intercept vector d of the measurement equation only.

Concerning the four parameters v?, A1, v and g, the model may be equiv-
alently parameterized in v, A\jv1, v, and Aavs.'® This can be seen as follows.
The only places in which the parameters A\; and A9 appear are the functions
A,,. For a Gaussian model, A, is computed as

4, = ) G(B) (5.16)

where

1
G(Bi) =0+ Bla — 5()\ + B)'V(A + By).

'5This is also done by Cassola and Luis (2003).
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With a diagonal V' matrix, expanding the expression (A + B;)'V(A + B;) yields

2
A+ B)V(A+B;) = > Xuv?+2Bj\v: + Bjv] (5.17)
j=1
2
= Z()\j@j)Q + QBij()\jvj) “v; + B%’U2 (5.18)
j=1

where B;;, j = 1,2 denotes the jth component of B;. Thus, A; only shows up

as a multiplier of v;.

The same argument goes through for the three-factor model, which will be
parameterized in vy, A1v1, V2, AovU2, U3, A3v3. A similar reasoning holds for the
two-factor mixture model. For each mixture component b one can expand the
exponent (A + B;)'Vy(A+ B;) in (3.9) in the same fashion as just shown for the
Gaussian case.'® Thus, our two-factor model is parameterized in vy, A\jvy, vas,
Vo1 = (\/@UQQ), and )\22}22.

Estimating the model, it turned out that ¢ and the market price of risk
parameters A\jv; and A2vs cannot be estimated very accurately. Moreover, the
estimated covariance matrix shows that they are highly correlated.'” In partic-
ular, the parameter A\jv; has been individually insignificant, so we dropped it
from the model.

Summing up, the following parameters will be estimated. For the Gaussian
two-factor model,
K1, V1, k2, V2, >\2U27 67 h27

for the Gaussian two-factor mixture model,
K1, U1, K2, V22, Agv22, €22, w, 0, h°
and for the Gaussian three-factor model,
K1, U1, R2, V2, )\2U27 R3, U3, )\3’03, 67 h2'

Note that some of the parameters have to satisfy certain restrictions. We

have:
1<k <1,i=1,2,3
v; > 0, 1= 1,2,3, and’l)gg > 0

stationarity of the factor process)

v; and wvgo are standard deviations)

(
(
(
(

co2 > 1 by our assumption above)
Ol<w<l1 w is a component weight)
h% >0 (h? is a variance)

'The parameterization that we use would not be possible if y, # 0 as can be seen from
(3.9).

'7TAll of these three parameters only enter the intercept vector d and do not show up else-
where in the model. However, there is no identification problem as one might suspect. All
of these parameters are individually identified, since we use five yields in the measurement
vector.
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These constraints have been taken care of by reparameterizing the model pa-
rameters accordingly (for example by squaring to ensure nonnegativity).

5.2 Estimation Results

Table 5 contains the maximum likelihood estimates of the parameters. Esti-
mated standard errors are given in parentheses.The dimension and sign of the

estimates are reasonable for all parameters.

The first factor is highly persistent as the estimate of k1 is nearly one for
all models. Estimated standard errors may be interpreted with some caution
since the estimate is very close to the boundary of the parameter space. For
future studies we suggest using the bootstrap in order to obtain reliable confi-
dence intervals. The standard deviation vy of the first factor is estimated with
satisfiable precision and it does not differ much across models.

The second factor exhibits lower autocorrelation (k2) than the first factor,
but it is still very high. The innovation of the second factor is the place in which
the Gaussian models differ from the mixture model. For the latter model, the
marginal distribution of the factor innovation is a mixture of two normals,

g ~ wN(0, v3)) + (1 —w)N(0,v3y), with w3 = cog - v3.

Judging on the basis of a standard ¢-test, the estimate of the weight w is signif-
icantly different from zero and the estimate of the variance ratio cgg is different
from unity.!® So the results suggest that for the sample at hand the density for
the second factor innovation is in fact a ‘true’ mixture of normals. It can be in-
terpreted in such a way that in 86.2 percent of the time the innovation is drawn
from a normal with standard deviation v9o = 0.00023, and in 13.8 percent it is
drawn from a normal whose standard deviation is 5.11(= 1/26.1) times bigger.

For the mixture model, the estimates of voo, w and cyo imply that the esti-
mate of the standard deviation of the second factor innovation is given by

By o= (& o - 03y + (1 — @) - 83,)" = 0.000486.

This does not deviate much from the estimated standard deviation of the second
factor innovation for the Gaussian two-factor model.

In the mixture model, the parameter estimates imply for the excess kurtosis

of Ut ,

n A .92 N
3 W'(CQQ‘U%Q) —i—(l—w)-v%2

—

kurt(ua:) = ] — 3 =11.284,

-1
U

'8In face of the fact that we use the approximate likelihood generated by the AMF, the
estimated standard deviations should be used with caution.
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Recall that the excess kurtosis is zero (by definition) for the Gaussian models.

The two panels in figure 4 show the marginal densities of the factor inno-
vations that are implied by the parameter estimates. The left panel contains
the estimated densities of u1¢, the innovation of the first factor. The solid line
corresponds to the Gaussian two-factor model, the dashed line corresponds to
the mixture model. Recall that both densities are normal. They differ from
each other due to the fact that they have slightly different variances. The right
panel shows a more substantial difference. The solid line depicts the density of
ugy for the Gaussian model. The dashed line represents the density of us; for the
mixture model. The density is a Gaussian mixture with two components. It is
remarkably different compared to its Gaussian counterpart although it implies

nearly the same variance.
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Figure 4: For the two-factor models: Estimated densities of the innovation of
the first factor (left panel) and the second factor (right panel)

For all three models, the market price of risk parameters, Ayvy and Asvog
have the expected negative sign which corresponds to a positive term premium.
These parameters are estimated with lower relative precision compared to the
other parameters discussed so far. For the three-factor model, Asvo is not even
significantly different from zero. The parameter J that governs the average
level of the yield curve is individually estimated quite precisely. However, the
estimated autocorrelation matrix of estimates (not reported here) shows that
for all models considered, the correlation of the market price of risk parameters
and 9 is high.

Heuristically, these properties may be explained by the fact that the market
price of risk parameters and § only show up in the intercept vector d of the
measurement equation. Since the factors have mean zero, it is easy to see from
equation (5.14) that the vector d contains the individual means of yields included
in y;. Now, since all yields are highly autocorrelated, their means - and in turn
the parameters that parameterize them - cannot be estimated very precisely.
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For the three-factor model, the parameters k3, v3, and Aszvs of the additional
factor process had to be estimated. The estimate of the autocorrelation param-
eter k3 is remarkably smaller than those of the first two factors. The estimated
innovation variance v3? is similar in size to that of the second factor. Unlike
for the second factor, the market price of risk parameter Asvs is individually
significantly different from zero.

The estimated variance h? of the measurement error has the same size for
both two-factor models. Recall that the measurement error captures the dif-
ference between observed annualized yields and the theoretical yields implied
by the respective model under consideration. The estimates for the two-factor
models imply that this error has a standard deviation of 0.186(= 1/0.0346) per-
centage points. The standard deviation implied by the three-factor model is
half as large, it amounts to 0.092 percentage points.

The bottom of table 5 contains the values of the log-likelihood at maximum

for the three models. We also provide the value of Akaike’s information criterion,
defined as

AIC = —2In L(¢) + 2w

where w is the number of unknown parameters. The AIC decreases in the value
of the likelihood and increases in the number of parameters that have to be
estimated. Using the AIC as a model selection criterion, the model with the
smallest value of the AIC is chosen. Employing this measure for selecting one
of our three models, the three-factor model would be preferred. Comparing
between the two two-factor models only, the mixture model would beat the
pure Gaussian model. A worthwhile exercise for future research would consist
of choosing a mixture distribution for the innovations of the three-factor model
and checking if this enhanced three-factor model beats the pure Gaussian one
considered here.

Figure 5 displays the average observed yield curve together with the average
estimated yield curves for the three models."® For convenience the points of the
average observed yield curve are connected in the picture. For (ny,no,...,ng) =
(3,6,12,24,60,120)', the observed average yield curve consists of the points
(ni, g;"), where

1 T
g?lzfzy;“7 izlv"‘76)
t=1

is the average of the annualized n;-month yields over the 444 observations.
Note that the 24-month yield, that has not been used for the estimation, is
also included. The average estimated yield curve is given by the points (n;, g;")

'9The points representing the two-factor Gaussian model and those representing the two-
factor mixture model nearly coincide and are hard to distinguish from each other.
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where

T /3
1 A, 1 -
AT Uz /
Ut = = ;1 ( w + o Bniatt> . (5.19)

Here Am and Bnl are the coefficient functions implied by the models where the
parameters are replaced by their maximum likelihood estimates. The a;; are
the filtered states at time ¢. Thus, for a given time ¢, ay; is an estimate of the
factor vector X;, which is constructed using all information up to this point in
time. The figure shows that the mean yield curve is matched well by all models
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Figure 5: Mean yield curve

whereas the three-factor model seems to have a slight edge over the other two

models.

In univariate time series analysis, diagnostic tests for fitted models are often
based on residuals. In particular, residuals should be uncorrelated over time.
Tests for the correlation of residuals are based on the autocorrelations of the
estimated residuals. In multivariate time series analysis there is more than one
autocorrelation for a given lag. Let {v:} be a vector valued series of residuals,
where the v; are of dimension IV x 1 each. Then for a given lag k there are
N? possibly different autocorrelations, namely between v;; and vj, 1 for all
pairs (i,5), i =1,...,N, 5 =1,...,N.20 In the literature that deals with the
estimation of term structure models in a state space framework, the analysis is

2Note that in general the autocorrelation between v;; and vj ¢ is different from that
between v;; and v;, ¢—-
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generally restricted to to univariate autocorrelations, i.e those between v;; and

Vit—k-

For our models we want to provide two measures for the autocorrelation
of residuals. First, we will show the five univariate autocorrelation functions.
Second, we provide a measure that tries to capture multivariate autocorrelation
in a condensed form. We do not seek to formally test on autocorrelation of
residuals by, for instance, using a multivariate portmenteau statistic. This is
partly due to the fact that we do not know how such a statistic would behave
for our model with Gaussian mixture innovations.

The residual vector v; at time ¢ is given by

Ut = Yt — Yt|t—1»

where yy;_1 is the one-step forecast of y; based on observations up to time ¢ — 1.
The (i, 7)-element of the autocorrelation matrix of v, for lag k, T'(k), is given
by21

T _ _
Zt:15+k(vit - Uz‘)(vj,t—k - vj)

I'(k)i; = , (5.20)
T _ T _
\/Zt:15+k(vit — ;)% \/Zt:15+k(vjt - Uj)2
where
I XT: R
v = T—15 Uity =1,7.
t=16

The first five panels in figure 6 depict the univariate autocorrelation functions
(k)i fori=1,2,...,5. The picture in the lower right corner is intended to give
an overall measure of autocorrelation of the residuals. For each lag k, we plotted
for each model the norm ||[I'(k)|| of the autocorrelation matrix I'(k) against the

lag k. We have defined this norm as??

IT(R)| = max|D (k)i ;1. (5.21)

That is, for each lag k, the figure contains the largest (in absolute value) element
of the 25 elements of the autocorrelation matrix.

The first thing to be noted is that the five univariate autocorrelation func-
tions do not differ much across models. At lag 1 the ACFs assume their max-
imum with I'(1);; amounting to a level between about 0.2 and 0.3. For higher
lags, the ACFs fluctuate around zero. Using the popular bounds of +2/v/T
which corresponds to the interval [—0.097,0.097] here, it turns out that for
i = 1 (residuals of three-month yields) eight of the estimated autocorrelations
fall outside this interval. This is the case for all three models. For 60-month

2'Note that we have dropped the first 15 observations in order to remove any dependence
on the initialisation of the filters.
220f course, there are several alternatives to define the norm of a matrix.

24



yields, only three of the autocorrelations fall outside the interval. Overall, the
autocorrelations of residuals appear to be a little too high, but the observed
patterns do not point towards strong misspecification.

Up to now we have said little about the factors that drive the term structure.
Recall that with the filtering techniques at hand we are able to estimate the path
of the unobservable factors. Figure 7 depicts the estimated paths of the first and
second factor for our two-factor models. That is, we have drawn the first and
second component of the filtered state vector a; (multiplied by 1200) against
time. The first thing to note is that the results for the Gaussian model and the
mixture model are similar. Second, comparing with figure 1 above, the path of
the first factor seems to resemble the pattern of the evolution of the level of the
yield curve.?? In fact, the correlation between the filtered factor process and
yields is high for each maturity. For both two-factor models, it reaches from
0.80 (correlation with the three-month yield) to 0.99 (correlation with the ten-
year yield). Similar results are obtained for the three-factor model where the
correlation is between 0.78 and 0.99. Against this background, the first factor
may be referred to as a level factor.

This interpretation is supported if we look at the estimated factor loadings
of the two-factor Gaussian model in figure 824 The factor loading of the ith
factor on the n-month yield is given by the ith component of the vector By, /n.
Note that for all models considered, the vector B, /n only depends on the x;
parameters. In our models with diagonal K matrices, the ¢th component of B,
is simply given by x}'. The interpretation of an arbitrary point on one of the
curves of factor loadings is as follows: if that factor is increased, ceteris paribus,
by one unit, the yield with time to maturity n is increased by the amount given
on the axis of ordinates. Here, an increase in the first factor shifts up yields of all
maturities nearly proportionally. Hence, the name ’level factor’ is justified. The
second factor leads to a shift in the term structure that is strong at the short end
of the yield curve and becomes weaker as time to maturity rises. Accordingly,
the second factor may be referred to as a twisting factor.

For the three-factor model, the same type of picture is drawn. Figure 9
shows that the first two factors can be given the same interpretation as before
for the two-factor models. The additional factor works mostly at the short end
of the yield curve.

In their paper, Cassola and Luis (2003) try to match the term structure of
volatility. For them, the term structure of observed volatility consists of the
pairs (n;, Var®™(y;'")) where Var®™P(y,") is the empirical variance of the n;-
month yield. This is compared to the theoretical term structure of volatility, i.e.

B0Of course it is parallel shifted by some amount, since the factor process has mean zero by

assumption.
24The results of the two-factor mixture model imply nearly the same picture, thus it is not
shown here.
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Figure 6: First five panels (from left to right and top to bottom): ACF of the
residuals of 3-, 6-, 12-, 60-, and 120-month yields. Right panel in the last row:
norm of the multivariate autocorrelation matrices plotted against lags.
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Figure 7: Filtered process of the first factor (left panel) and the second factor
(right panel)

the variances implied by the model. Cassola and Luis come up with the results
that the variance of yields implied by their two-factor model is unreasonable
with respect to the observed variance. Therefore, they alter their estimation
approach by including observed variances in the measurement equation. This
leads to parameter estimates that are such that the observed volatility matches

the theoretical volatility.

However, due to the fact that yields are highly autocorrelated, the empirical
variance is a biased estimate of the true variance of a time series of yields.
Thus, it may not be sensible to compare the estimated theoretical variance with
the empirical one for small samples. Therefore, instead of trying to match the
volatility curve of yield levels, we have a look at the volatilities of yields in first
differences. As seen in table 3 in section 2, their autocorrelation is low.

Figure 10 shows standard deviations of first differences in yields that are
part of our data set. The solid line connects the empirical standard deviations
computed from the data. These are drawn together with the standard deviations
that the estimated models imply for these yield changes.?> The values in the
picture are computed according to the formulas in the appendix, where the
parameters are replaced by the maximum likelihood estimates. The figure shows
that all models imply a volatility curve that is decreasing in time to maturity.
For maturities of two, five and ten years, the three-factor model comes closer to
the observed volatility, but it overestimates the volatility at the short end. The
two-factor models, in contrast, underestimate the volatility curve for maturities
that exceed one year. However, all of these comparisons have to be made with
caution since even for differenced yields we do not know how well the empirical
standard deviations estimate the true ones.

Our last comments on the estimation results focus on the difference between

?5See Lemke (2005) for the respective formulas.
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Figure 8: Factor loadings for the two-factor model

the Gaussian models and the mixture model. As already pointed out, table 3
shows that yield changes exhibit considerable excess kurtosis. Multifactor term
structure models with Gaussian innovations, however, imply zero excess kurto-
sis for yields in levels and yields in first differences. Lemke (2005) provides the
formula for the kurtosis of differenced yields implied by multifactor models with
mixture innovations. Based on the maximum likelihood estimates of the param-
eters, the kurtosis has been computed for the maturities in the data set. These
measures of kurtosis are graphed together with their empirical counterparts in
figure 11. The important point to note is that the model in fact implies that
the kurtosis is different from zero and that it decreases with maturity. Gaussian
models imply a kurtosis which is identically zero for all maturities. One-factor
models with mixture innovations, as discussed by Backus et al. (1998) are ca-
pable of generating excess kurtosis, but the latter is constant for all maturities.
Thus, concerning the matching of fourth moments, our simple two-factor model
can be regarded as a step into the right direction.

Up to now we have discussed to what extent our three models are able to
capture the behavior of first, second and fourth moments of yields in levels or
first differences. Now, we want to look at the distribution at the whole. This
will be done exemplarily for the three-month yield, representing the short end
of the yield curve, and the five-year yield, representing longer maturities. The
analysis is done for first differences again.

The solid line in figure 12 depicts a kernel estimate for the distribution
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Figure 9: Factor loadings for the three-factor model

of Ay}, Tt is based on our 444 observations and uses a Gaussian kernel with
bandwidth b = 1.3646 N, where N is the number of observations and & is their
standard deviation.?6 The other lines are the density functions implied by the

estimated models. The following describes how they are computed.

For the mixture model, it is not so simple to derive the unconditional den-
sity of Ay?. We therefore construct the density implied by the model using a
Monte Carlo simulation. Based on the maximum likelihood estimates of the pa-
rameters, we generate 10,000 observations of Ay;;3 from the two-factor mixture
model.?” Based on them, a kernel estimate of the density is constructed and
drawn into figure 12. In order to work under the same conditions for all mod-
els, the densities for the Gaussian models have been generated by analoguous

simulations.

The figure suggests that the two-factor mixture model captures the shape
of the density best, followed by the two-factor Gaussian model. The density
implied by the three factor model does not appear to capture the distribution

well.

We also use QQ-plots for comparing the distributions implied by the models
with that given from the data. The QQ-plots in figure 13 (three of them drawn
into one picture) are based on the probabilities 0.01, 0.02, ..., 0.99. For each of

26This is the default bandwidth suggested by Gauss’ TSM package.
2"The observations are generated without superimposing a measurement error.
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Figure 10: Standard deviation of yield changes

these probabilities, the corresponding quantile implied by the models is plotted
against the empirical quantile of the data. If the points corresponding to a model
were lying on the 45 degree line, this model would share the same quantiles with
the data. Deviations from that line can be interpreted as a measure of distance
between the two distributions. Like the density plot above, the QQ-plots suggest
that the distribution implied by the two-factor mixture model comes closer to
the distribution of the data than that implied by the two-factor Gaussian model.
Again, the three-factor model performs worst.

A similar ranking can be inferred by looking at five-year yields. For changes
of the five-year yield, figure 14 contains the three densities implied by the models
as well as the density estimated from the data. The QQ-plots in figure 15 suggest
that for the five-year yield, the advantage of the two-factor mixture model over
the other two models shows up quite clearly.

30



Excess Kurtosis of Yield Changes

Density

12 14 16

10

0.8

0.6

0.4

0.2

0.0

—— Data
a- - Mixture Model

20 30 40 50 60 70 80 g0 100 110 120 130
Time to Maturity

Figure 11: Excess kurtosis of yield changes
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Figure 12: Density of monthly changes in three-month yield
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Two Factors, | Two Factors, | Three Factors,
Gaussian Mixture Gaussian
K1 0.998 0.998 0.999
(2.36e-4) (2.38e-4) (1.48e-4)
U1 0.000285 0.000263 0.000281
(8.27e-6) (1.14e-5) (1.13e-5)
Ko 0.949 0.950 0.954
(1.20e-3) (1.94e-3) (1.34e-3)
Vo 0.000439 0.000510
(9.54e-6) (2.13e-5)
Ao U9 -0.142 -0.0465
(0.0560) (0.0442)
0 0.00669 0.0121 0.0117
(6.19e-4) (2.53e-3) (9.77e-4)
99 0.000230
(2.10e-5)
)\2’022 -0.049
(0.0158)
€22 26.10
(8.130)
w 0.138
(0.0386)
K3 0.687
(0.0150)
V3 0.000506
(2.20e-5)
)\31}3 -0.340
(0.0518)
h? 0.0346 0.0345 0.00855
(6.96e-4) (1.28e-3) (3.95e-4)
In L(1) -479.90 -404.07 157.36
AIC 973.79 826.13 -294.72

Table 5: Estimation results. Estimated standard errors are given in parentheses.
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Figure 13: QQ-plots for monthly changes in three-month yield.
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Figure 14: Density of monthly changes in five-year yield
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Quantiles Implied by Models
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Figure 15: QQ-plots for monthly changes in five-year yield.
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6 Conclusion

As a generalization of the one-factor model by Backus et al. (1998), we have
introduced a d-factor model, for which the distribution of factor innovations is a
Gaussian mixture with B components. This model allows for a flexible modeling
of the distribution of yields in levels and first differences, while yields are affine
functions of the factors.

For estimation, it has been shown how the theoretical model can be trans-
lated into the statistical state space form. The corresponding state space model
has a transition equation for which the innovation is distributed as a Gaussian
mixture. The exact filter associated with this type of state space model involves
Gaussian mixtures with an exponentially growing number of components. In
order to make estimation of the model numerically feasible, an approximation
of the exact filter, the AMF (k) algorithm, has been introduced.

We have estimated two Gaussian models and one model involving a Gaussian
mixture distribution. For the Gaussian models, maximum likelihood estimation
based on the Kalman filter has been conducted. For the mixture model, we have
employed the AMF(1) algorithm.

Parameter estimates are reasonable in size and have the correct signs. The
autocorrelations of residuals do not point towards severe misspecification. The
three-factor model is selected by the AIC. However, with respect to higher mo-
ments of the data, the two-factor mixture model appears to have an edge over
the two Gaussian models.

For future research, an integration of the mixture specification into the three-
factor model is imaginable. Furthermore, a more elaborate specification of the
mixture distribution could be tried. More reliable standard errors for the pa-
rameter estimates may be obtained by using the bootstrap. Moreover, it would
be instructive to use a different sample period and another country for the
estimation. With regard to the focus of this paper, it would be particularly
interesting to see how the estimated distributions of factor innovations change
when the sample changes. Finally, it may be a worthwhile attempt to combine
the structure of the affine models by Duffie and Kan (1996), in which volatility
is level-dependent, with that of our model.
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A The Exact Filter for the State Space Model with
Mixture Innovations

Consider a state space model for which the transition equation is given by
ar =Toy_1 4+ c+ n, (A1)

where for the innovation vector 7

B

B B
me~idd > wy N, Qp), Y wp=1, Y wyup =0. (A.2)
=1 =1

b=1

That is, the density of 7; is given by?®
B
pOne) =Y wyd(nes v, Qo). (A.3)
b=1

For the variance-covariance matrix of 7, we have

B

Var(n) =Y wy Qv+ o ) =: Q. (A4)

b=1
The measurement equation is
yr = Moy +d+ e, (A.5)
and the measurement error is normally distributed,
€ ~i.i.d. N(0, H). (A.6)
The measurement error ¢, and the state innovation 7, are independent for all

times s and ¢.

The weights wy as well as the system matrices and vectors T', ¢, M, d, H,
y, and Qp are all assumed to be time-invariant.

The initial state is assumed to be normally distributed,
Qg ~ N(do, po), (A7)

and both, 7; and ¢ are independent from the initial state for all t.

We first assume that the system matrices are known and present the ex-
act solution to the filtering problem and the one-step-prediction problem. Let
agjt—1, Yye—1 and ag; denote the conditional expectations corresponding to the
conditional densities p(cu|V;—1), p(Y3|Vi—1) and p(ay|)Vy), and denote by Xy, _1,

2 (x5 1, Q) denotes the density function of N(u, Q) evaluated at z.
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Fi and X, the corresponding variance-covariance matrices. It turns out that
for the mixture model, the filtering and prediction densities can be generated in
an iterative fashion. They are all mixtures of normals, with the number of com-
ponents increasing exponentially with time. The relationships between filtering

and prediction densities are given by the following theorems.??

Theorem A.1 (Prediction density for the mixture model). Let the fil-
tering density at timet—1,t=1,2,...,T, be given by a Gaussian mizture with
ly_1 components,

l—1

plac1|Vie1) =Y wiiiaj—1 - (@15 @5 i—1j—15 S, i1je—1)-

=1

Then the one-step-prediction density for the state is

po|Vi-1)
B li—1
= D w1 G0 apg -1, S, ge-1) (A.8)
b=1 i=1
with
Wi, tlt—1 = Wh Wi t—1]t—1 (A.9)
api tjt—1 = Ta; 141+ c+ p, (A.10)
Ybijtli—1 = Tzi,t—l\t—lT/ + Qb- (A.11)
After reindezxing and setting ly = B - l;_1 the prediction density can be written
as
It
plae| V1) = Zwi,t|t—1¢(at; A4, t1t—1> Zi,t\t—l)- (A.12)
=1
The one-step-prediction density for the observation vector is
It
Pl Vi) =D Wi tje—1 $We; Fi, -1, Fit) (A.13)
i=1
with
Uite—1 = Ma; 441+ d, (A.14)
Fi,t == Mzi,tlt—lM,—i_H' (A].E))

Theorem A.2 (Filtering density for the mixture model). Let the predic-
tion densities p(ae|Vi—1) and p(ye|Vi—1) at time t, t = 1,2,...,T, be given by
the Gaussian miztures (A.12) and (A.13). Then the filtering density is

Iy
p(at|Vr) = sz‘t\t Pous ag g, Xiot) (A.16)

=1

29The earliest derivation of these relations for the case of scalar measurement and transition
equation may be attributed to Sorenson and Alspach (1971).
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with

aite = @i ge—1 + Kit(Ye — Ui eje—1), (A.17)

Yige = Bige—1 — Ki e M35 41, (A.18)

K;; = Ei,t|t—1M,F7;Tt17 (A.19)
W _ ; 0. _ ’F,

Wi = i, t|t—1 ¢(yt Yi, t|t—1 z,t) ' (A.QO)

I N
D im1 Wi tje—1 DYt Ui ee—15 Fit)
For a proof, see Lemke (2005).

A remark is in order that theorems A.1 and A.2 are in fact applicable to time
t = 1. For the initial filtering density used in theorem A.1 we have p(a|Yo) =
p(ao|ln) = p(ag). Thus, technically speaking, the filtering density is the density
of the initial state, that has been specified in (A.7) as a normal. It can be written
as a mixture with one component, Iy = 1, thus

lo
plaolYo) = 1¢(av; ao, P).

i=1
Hence, theorem A.1 can be applied to this density yielding p(a1|Yo) and p(y1])
as mixtures with B components. To these in turn, theorem A.2 can be applied
yielding p(a1[J1).
With the conditional densities at hand, point estimators can be readily com-
puted as the corresponding conditional expectations,

lt
E(aw|Yi-1) = Zwi,t\t—1 Qi te—1 =" Qgft—15 (A.21)
i=1
Iy
E(y|Yi—1) = Zwi,t\t—l @i,t\t—l =: gt\t—l» (A.22)
i=1
It
E(as|YVy) = Zwi,t\t Q; ¢t = Gyt (A.23)
i=1
The corresponding conditional variance-covariance matrices are given by
It
Var(aw|Vi-1) = Zwi,ﬂtq (B0 41—1 + (@i ge—1 — age—1) (@i 4j—1 — age—1)")
i=1
= Sy (A.24)
It
Var(y| Vi-1) = Zwi,tlt—l (Fs e+ i, -1 — Geje—1) (@i, t1—1 — Depe—1)")
i=1
= Fy (A.25)
It
Var(a|V) = Zwi,ﬂt (Ei,t|t + (ai,t|t - at|t)(ai,t\t - at\t>/)
i=1
= Et‘t' (A26)
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The latter results follow from the general properties of Gaussian mixtures. Note
that the expectation is just the weighted average of the expectations of the nor-
mal densities that constitute the mixture, whereas the variance has an additional
term taking the variation of the means into account.

The steps of the exact filter for the mixture model can be summarized as

follows:

Given observations {y1,...,yr}, and an initial density o ~ N(ag, Py), the
algorithm computes

e the sequences of conditional densities,

p(at‘yt—l)v = 17-"7T7
p(y|Ve-1), t=1,...,T,
p(at‘yt)7 t:17"'7T7

each characterized by the corresponding components (weights, means,

variances)

Y

Wi tlt—15 @i, tt—15 2a tli—1, =1, .. t=1,...,T,
wi,t|t—1>yi,t\t—17F1i,ta =1, t=1,....T,

wi,t|t7ai,t|t72i,t|t7 lzl)"'alt tzla"‘7T7

e and the sequences of point estimates (conditional means) and correspond-

ing variance covariance matrices

aglp—1, Hgp—1, t=1,...,T,
gﬂt—l:Fta tZl,---,T,
at\bzﬂt, t=1,...,T.

These are computed according to the following scheme:

Algorithm A.1 (The exact filter).

e Step 1, Initialization

Set
aiopp = do, 21,00=740, wioo=1 l=1L

Set t = 1.
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e Step 2, Prediction step fromt—1 tot
Set l; = Bt.

Compute w; 411, G ¢jt—15 24, tft—15 Ui tje—1, and Fi¢ fori=1,... 1, ac-
cording to theorem A.1.

Use these quantities to compute ayy 1, Yye—1, X¢p—1, , and Fy according

to (A.21), (A.22), (A.24) and (A.25) respectively.

e Step 3, Updating step at t

Compute w; 41, a; 4¢, and X g¢, for @ = 1,... 1, according to theorem

A.2.

Use theses quantities to compute ay; and Yy, according to (A.28) and
(A.26), respectively.

e Step 4
Ift <T, sett:=t+1, and go to Step 2;
else, STOP.

If the moments of the initial conditions are not known, one can proceed as
in the case of a simple normal. If the state process is stationary, the filter can be
initialized using the unconditional mean and variance-covariance matrix. The
condition for stationarity of the state process is the same as in the Gaussian
case: all eigenvalues of the transition matrix 7" have to have modulus less than
one.

B The Approximate Filter AMF (k)

The following gives the algorithm for the approximate mixture filter of order &
Algorithm B.1 (The approximate filter AMF(k)).

e Step 1

Apply the exact filter to the sequence {yi,...,yx} with initial condition
ap ~ N(C_L[), Po)

Obtain the ezact filtering densities

Pl Vr), plag|Vic1), p(elVio1), t=1,...,k,

with corresponding moments

Qtt, Zt|t7 Qtt—1, Et\tfl’ Ytjt—1, Fy.
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o Step 2
Fort=1,... k set:

Pl V) = plew| M), Qyjt = Q)¢ it|t = Yyt
Plar|Ve—1) = plae|Vi-1),  Ge—1 = age—1,  Sgp—1 = Sgji—1
Pl Vi-1) = oWl Ve-1)s  Geje—1 = Jepp—1,  Fr = Fy.

Sett=k+1.

o Step 3
Apply the exact filter to the sequence {ys—g41,. -, yt} with initial condition
Q| ~ N(dtfk\tfka 2t7k|tfk)-

Store the final filtering and prediction densities as p(oy|Yy), plou|Vi—1),

and p(y¢|Vi—1). That is, store the corresponding components Wi ]t Qi ¢t 24, t]t5

@i tft—15 Wi, tjt—1-50,t1t—1> Uiep—1, Fie,  i=1,..., B~
Compute the corresponding means and variances ayy, iﬂt, Ayjg—1, it|t—1;
Ugje—1, and Fi.
o Step 4
Ift < T, sett:=t+1, and go to Step 3;
else, STOP.
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