
Using a Nonlinear Filter to Estimatea Multifator Term Struture Modelwith Gaussian Mixture InnovationsPreliminary Version.Comments welome!Wolfgang Lemke∗May 30, 2005AbstratThis paper proposes a multifator term struture model with fatorinnovations that have a Gaussian mixture distribution. The model allowsfor �exible modeling of the distribution of bond yields. Under the on-dition of no-arbitrage, yields are a�ne funtions of fators. The modelis estimated in a state spae framework using a new nonlinear �lteringalgorithm. Estimation results for US data show that the mixture model isable to apture nonnormality in bond yield hanges.1 IntrodutionThe term struture of interest rates is a subjet of interest in maroeonomisand �nane alike. Learning about the nature of bond yield dynamis and itsdriving fores is important in di�erent areas suh as foreasting, monetary pol-iy, debt poliy, and derivative priing.1 A�ne term struture models2 simul-taneously apture the dynami and the ross-setion properties of bond yields
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while onstraining the family of bond prie proesses to be arbitrage-free. Theterm 'a�ne' is due to the fat that bond yields are a�ne funtions of a limitednumber of fators.The stohasti properties of the fator proess are inherited by bond yields.If, for instane, the fator proess is a Gaussian VAR, bond yields of all ma-turities will be Gaussian as well. However, there is empirial evidene thatbond yields and their �rst di�erenes are not normally distributed. This paperprovides an approah for a �exible modeling of the distribution of bond yieldswhile staying within the lass of a�ne models. Based on an idea in Bakuset al. (1998) this is ahieved by allowing fator innovations to be distributedas Gaussian mixtures. We derive an analytial formula for bond yields as afuntion of fators. The model allows the resulting distribution of yields andyield hanges to assume a wide variety of shapes. In partiular, it an aountfor non-vanishing skewness and exess kurtosis that varies with maturity.For the estimation of multifator term struture models using time seriesdata of yields for di�erent maturities, it has beome ommon in the literatureto translate the theoretial model into the statistial state spae form. The mea-surement vetor ontains a set of bond yields for di�erent maturities, the statevetor represents the latent fators driving the term struture. The state spaeframework allows for adding measurement errors to the bond priing equations.It permits to estimate unknown parameters and to �lter out the unobservablefator proesses. For a�ne multifator Gaussian models, the orrespondingstate spae model is linear and Gaussian. Hene, it an be estimated by max-imum likelihood based on the Kalman �lter. The literature ontains numerousexamples for this approah, e.g. De Jong (2000) and Cassola and Luis (2003).For the lass of term struture models onsidered in this paper, the orre-sponding state spae model has a transition equation for whih the innovationis distributed as a Gaussian mixture. As it is already shown by Sorenson andAlspah (1971), the exat �lter for suh a state spae model is nonlinear in ob-servations. Moreover, the exat �ltering density at time t is a Gaussian mixturefor whih the number of omponents is exponentially growing with time. Forinstane, if the state innovation is distributed as a mixture of 2 normal distri-butions, the exat �ltering density at time t ontains 2t omponent densities,rendering a pratial appliation of the exat �lter impossible. To deal withthis problem we propose an approximate �lter that preserves the nonlinearity ofthe exat solution but that restrits the number of omponents in the mixturedistributions involved. The degree of omplexity is ontrolled by a parameter
k, so that in the example the true �ltering density at time t is approximated bya mixture of 2k densities only.A two-fator term struture model with Gaussian mixture innovations isestimated with US data using the approximate nonlinear �lter. The data set2



ontains time series of monthly yields for �ve di�erent maturities. For ompari-son, we also estimate pure Gaussian models using the Kalman �lter. Estimatingthe distribution of di�erened yields from the data and omparing it to the dis-tributions implied by the models, it turns out that the mixture model is superiorompared to the Gaussian models.The paper is organized as follows. Setion 2 presents the data set andderives some stylized fats. In setion 3, the term struture model is developedand the yield equation is derived. In setion 4, the estimation approah isdesribed whih is employed for the empirial appliation in setion 5. Setion6 onludes, the appendix provides details of the exat �lter algorithm and ourapproximation.2 Data and Stylized FatsIn this setion we introdue the data set that will be used for the empirialappliation below. It also serves to derive some stylized fats that will motivatethe term struture model in the following setion. The data set is based onMCulloh and Kwon (1993) and Bliss (1997). It is the same set as used byDu�ee (2002).3 It onsists of monthly observations of annual zero bond yieldsfor the period of January 1962 to Deember 1998. The sample ontains yieldsfor maturities of 3, 6, 12, 24, 60 and 120 months. Thus, we have 6 time seriesof 444 observations eah. Three of the six time series are graphed in �gure 1,table 1 provides summary statistis of the data.Mat Mean Std Dev Skew Kurt Auto Corr3 6.32 2.67 1.29 1.80 0.9746 6.56 2.70 1.23 1.60 0.97512 6.77 2.68 1.12 1.24 0.97624 7.02 2.59 1.05 1.02 0.97860 7.36 2.47 0.95 0.68 0.983120 7.58 2.40 0.78 0.31 0.987Table 1: Summary statistis of yields in levels. For eah time to maturity (Mat)the olumns ontain mean, standard deviation, skewness, exess kurtosis, andautoorrelation at lag 1.As table 1 shows, yields at all maturities are highly persistent. The meaninreases with time to maturity. Ignoring the three-month yield, the standarddeviation falls with maturity. For interpreting the oe�ient of skewness and3We obtained it from G. R. Du�ee's website http://faulty.haas.berkeley.edu/du�ee/a�ne.htm.3



Figure 1: Yields from 01/1962 - 12/1998Mat 3 6 12 24 60 1203 1.0006 0.996 1.00012 0.986 0.995 1.00024 0.962 0.975 0.990 1.00060 0.909 0.924 0.950 0.982 1.000120 0.862 0.878 0.908 0.952 0.991 1.000Table 2: Correlation of yields in levelsexess kurtosis, note that they should be lose to zero if the data were normallydistributed.The means of yields are graphed against the orresponding maturity in �gure2. Data are represented by �lled irles. The onneting lines are drawn foroptial onveniene only. The piture shows that the mean yield urve has aonave shape: mean yields inrease with maturity, but the inrease beomessmaller as one moves along the absissa. This is a typial shape for the meanyield urve. However, the shape of the yield urve observed from day to day anassume a variety of shapes. It may be inverted, i.e. monotonially dereasing,or ontain 'humps'.Finally, table 2 shows that yields exhibit a high ontemporaneous orrelationat all maturities. That is, interest rates of di�erent maturities tend to movetogether. 4



Figure 2: Mean yield urveWe now turn from levels to yields in �rst di�erenes. That is, if {yni

1 , . . . , y
ni

T }denotes an observed time series of the ni-month yield in levels, we now onsiderthe orresponding time series {∆yni

2 , . . . ,∆y
ni

T } with ∆yni
t = yni

t − yni

t−1.Three of the six time series are graphed in �gure 3. Table 3 shows summarystatistis of yields in �rst di�erenes. Again, the standard deviation falls withMat Mean Std Dev Skew Kurt Auto Corr3 0.0038 0.58 -1.80 14.32 0.1156 0.0034 0.57 -1.66 15.76 0.15512 0.0030 0.56 -0.77 12.31 0.15824 0.0024 0.50 -0.36 10.35 0.14660 0.0016 0.40 0.12 4.04 0.096120 0.0015 0.33 -0.11 2.29 0.087Table 3: Summary statistis of yields in �rst di�erenestime to maturity. The high autoorrelation that we have observed for yieldsin levels has vanished. Skewness is still moderate but exess kurtosis is vastlyexeeding zero. Moreover, exess kurtosis di�ers with maturity having a generaltendeny to derease with it. This leads to the interpretation that espeiallyat the short end of the term struture, extreme observations our muh moreoften as being ompatible with the assumption of a normal distribution.The ontemporaneous orrelation of di�erened yields is also high, as evident5



Figure 3: First di�erene of yieldsfrom table 4. However, the orrelations are onsistently lower than for yields inlevels. Mat 3 6 12 24 60 1203 1.0006 0.952 1.00012 0.867 0.957 1.00024 0.783 0.887 0.960 1.00060 0.645 0.762 0.859 0.936 1.000120 0.547 0.659 0.742 0.830 0.934 1.000Table 4: Correlation of yields in �rst di�erenes
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3 The ModelWe introdue a dynami multifator model in disrete time. Let Pn
t denote theprie at time t of a zero-oupon bond that pays one unit of aount at time

t+ n. The orresponding yield to maturity is given by
yn

t = − lnPn
t

n
. (3.1)A stohasti disount fator (SDF) or priing kernel Mt pries bonds of allmaturities, guaranteeing the absene of arbitrage opportunities. Thus, Mt is astritly positive random variable with

E|MtP
i
t | <∞and

Pn
t = E(Mt+1P

n−1
t+1 |Ft). (3.2)for all n and t, where Ft denotes the information set given at time t.4 In the fol-lowing we will use the short-hand notation Et(·) for the onditional expetation

E(·|Ft).In the framework of onsumption-based asset priing, the SDF representsthe marginal rate of substitution between onsumption in period t and period
t+ 1.5 As suh, the spei�ation of Mt depends on the spei� utility funtionassumed. However, as onsumption-based models fail to aount for importantfeatures of asset pries, it has beome ommon to speify the SDF as a moregeneral funtion of explanatory variables. Moreover, in this paper we will treatthe fators driving the SDF as latent variables as frequently done in the empirialterm struture literature.We denote by Xt the d-dimensional vetor of fators. Its dynami evolutionis spei�ed as a VAR(1) proess, i.e.

Xt = a+ KXt−1 + ut, (3.3)where a is a d× 1 vetor of onstants, and K is a d× d matrix. The eigenvaluesof K are assumed to lie inside the unit irle, whih guarantees stationarity ofthe proess {Xt}.The priing kernel is a�ne in the vetor of fators and its innovations,
− lnMt+1 = δ + γ′Xt + λ′ut+1, (3.4)4For a proof of the equivalene between the existene of an SDF and the absene of arbitrageopportunities see Irle (1998).5See, e.g., Campbell, Lo, and MaKinlay (1997) or Cohrane (2001).7



where δ is a salar and γ and λ are both d× 1 vetors. The omponents of thevetor λ will be referred to as the market prie of risk parameters.A solution of the model is a family of funtions gn(·) that map the fatorvetor Xt into the orresponding arbitrage-free yield yn
t for eah n,

yn
t = gn(Xt).Thus, the whole term struture of interest rates at time t is determined by therealization of Xt. The dynamis of any yield yn

t and its stationary distributiondepend on the dynamis of Xt.If for the model (3.3) - (3.4) the fator innovation is Gaussian, the solutionfuntion is a�ne, i.e. we have6
yn

t =
An

n
+

1

n
B′

nXt, (3.5)where An and Bn are a salar and a d× 1 vetor, respetively, that depend onthe model parameters and time to maturity n but not on t.The yield equation (3.5) implies that if Xt is a stationary Gaussian VAR,yields of all maturities will be normally distributed. The same holds for alllinear ombination of yields, e.g. term spreads, and for yields in �rst di�er-enes. However, normality of yield hanges is at odds with the stylized fats asillustrated above.One approah to generate non-normal yields with an arbitrage-free model isto replae the simple normal distribution by a mixture of normal distributions.This is done by Bakus et al. (1998) for a one-fator model. The model anapture exess kurtosis in yield hanges. However, sine there is only one soureof randomness in the model, yields of all maturities share the same kurtosis.This paper generalizes the idea of Bakus et al. to the multivariate ase. Thatis, for the multifator model (3.3) - (3.4) above it is assumed that ut has amultivariate Gaussian mixture distribution. We write
ut ∼ i.i.d.

B∑

b=1

ωbN(µb, Vb),
B∑

b=1

ωb = 1,
B∑

b=1

ωbµb = 0, (3.6)to denote that the density of ut is given by
p(x) =

B∑

b=1

ωb

1√
(2π)g|Vb|

exp

(
−1

2
(x− µb)

′V −1
b (x− µb)

)
.This formulation allows high �exibility in modeling the shape of the distribution.For instane, the density of ut may be asymmetri, fat-tailed or bimodal.76See, e.g., Bakus et al. (1998) or Campbell et al. (1997).7For a treatment of �nite mixture models and their properties see MLahlan and Peel(2000) or Titterington, Smith, and Makov (1985).8



Fortunately, by going from a simple normal to a normal mixture, the stru-ture of the solution for bond pries is retained as the following propositionshows.Proposition 3.1 (Yields in the linear multifator Gaussian mixturemodel). For the multifator model (3.3), (3.4), (3.6), zero bond yields are givenas
yn

t =
An

n
+

1

n
B′

nXt (3.7)with8
Bn = (I −Kn)(I −K)−1γ (3.8)
An =

n−1∑

i=0

G(Bi) (3.9)where
G(Bi) = δ +B′

ia− ln

[
B∑

b=1

ωb · e−(λ+Bi)
′µb+

1

2
(λ+Bi)

′Vb(λ+Bi)

]
.Proof. We start with the guess that bond pries are a�ne in fators.

− lnPn
t = An +B′

nXtFor omputing the funtional forms of the salar An and the d-dimensionalvetor Bn we use the fundamental priing equation (3.2) in logs
− lnPn+1

t = − lnEt(Mt+1P
n
t+1). (3.10)The logarithm of the produt on the right-hand side is given by

lnMt+1 + lnPn
t+1

= −δ −An −B′
na− (γ′ +B′

nK)Xt − (λ′ +B′
n)ut+1

:= Vt+1.The onditional distribution of Vt+1 is not normal but a d-variate normal mix-ture with B omponents. For the right-hand side or (3.10) we have to ompute
Et

(
eln Mt+1+ln P n

t+1

)whih has the form
Et

(
ec0+c′

1
ut+1

)with c0 = −δ −An −B′
na− (γ′ +B′

nK)Xt, c1 = −(λ+Bn).8Empty sums are evaluated as zero. 9



Following from a result in Lemke (2005), we have
Et

(
ec0+c′

1
ut+1

)

= ec0

(
B∑

b=1

ωb e
c′
1
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1

2
c′
1
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)
.Plugging bak in the original variables we thus obtain

lnEt

(
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)

= −δ −An −B′
na− (γ′ +B′

nK)Xt

+ ln

[
B∑
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ωb · e−(λ+Bn)′µb+
1

2
(λ+Bn)′Vb(λ+Bn)

]
.For the fundamental priing equation (3.10) to hold, the oe�ient funtions

An and Bn have to satisfy the following set of di�erene equations
Bn+1 = γ + K′Bn (3.11)
An+1 = δ +An +B′

na

− ln

[
B∑

b=1

ωb · e−(λ+Bn)′µb+
1

2
(λ+Bn)′Vb(λ+Bn)

]
. (3.12)with initial onditions A0 = 0 and B0 = 0. The vetor di�erene equation for

Bn is the same as in the Gaussian multifator model, so again
Bn = (I + K′ + K′2 + . . .+ K′n−1)γ = (I −K′n)(I −K′)−1γ.The solution of the di�erene equation for An leads to (3.9).The mixture model nests the linear Gaussian multifator model as a speialase. In Lemke (2005) the properties of the model are analyzed in more detail.For instane, it turns out that the model an exhibit exess kurtosis that varieswith time to maturity. As regards the stationary distribution of yields, the pureGaussian model implies a Gaussian distribution for yields. For the mixturemodel, the unonditional distribution of yields is not straightforward to derive.We leave this as a topi for future researh. For a given set of model parameters,however, the distribution of yields an be approximated by using Monte Carlomethods as done in setion 5 below.4 Estimation ApproahIn the literature, the state spae approah has often been adopted for the esti-mation of term struture models.9 The statistial state spae model is a rep-resentation of the joint dynami evolution of an observable random vetor yt9This has mostly been done for ontinuous-time models, as, for instane, by Babbs andNowman (1999), Babbs and Nowman (1998), Ball and Torous (1996), de Jong (2000), Duan10



and a generally unobservable state vetor αt.10 The state spae model ontainsa measurement equation and a transition equation. The transition equationgoverns the evolution of the state vetor,
αt = Tαt−1 + c+ ηt. (4.1)The measurement equation spei�es how the state interats with the vetor ofobservations,
yt = Mαt + d+ ǫt. (4.2)The quantities d, c, M , T , H, Q are vetors and matries of appropriate dimen-sion. ηt is the innovation of the state proess, ǫt is referred to as the measurementerror. The model is ompleted by speifying the distribution of the initial statevetor α0 and the joint evolution of ηt and ǫt.One the term struture model of the preeding setion is ast into statespae form, the statistial inferene assoiated with state spae models an beonduted to estimate unknown model parameters, to estimate the latent fatorproess driving the term struture, and to make one- or multistep-preditions.Moreover, goodness-of-�t riteria developed for state spae models an be em-ployed to judge the adequay of the term struture model spei�ation underonsideration.For estimating our term struture model in state spae form, we �rst trans-form the fator evolution to the form of a state spae model's transition equation.This is straightforward as the fator evolution in (3.3) is already of the form(4.1). That is, we have c = a, T = K, and ηt = ut.The measurement equation arises by hoosing observed interest rates as left-hand-side variables, whereas the right-hand-side is the sum of the theoretialsolution implied by the term struture model and a measurement error. Reallthat bond yields are given by
yn

t =
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n
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1

n
B′

nXt, (4.3)where An and Bn depend on the parameters of the fator proess and on marketprie of risk parameters olleted in a vetor λ. Let the measurement vetor attime t ontain observed yields of k di�erent maturities, say n1, . . . , nk. Thenthe theoretial model implies that
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αt. (4.4)and Simonato (1999), Geyer and Pihler (1999) and Shwaar (1999). Cassola and Luis (2003)is an example for estimating a disrete-time Gaussian model.10See, e.g., Brokwell and Davis (1996), Durbin and Koopman (2001) or Hamilton (1994).11



Adding a vetor of measurement errors ǫt = (ǫn1

t , . . . , ǫnk
t )′ leads to a linearmeasurement equation of the form (4.2),

yt = d+Mαt + ǫt, (4.5)with obvious de�nitions of the vetor d and the matrix M .Denote by Ys = {y0, y1, . . . , ys} a sequene of observations of the measure-ment vetor. If ηt and ǫt are both Gaussian, the �ltering densities p(αt|Yt) aswell as the predition densities p(αt|Yt−1) and p(yt|Yt−1) are Gaussian. Theyan be omputed by the Kalman �lter. Unknown model parameters an beestimated by maximum likelihood. The log-likelihood is given by
l(ψ;YT ) =

T∑

i=1

p(yt|Yt−1) (4.6)where ψ ontains the unknown model parameters.For the model onsidered here, we assume that the measurement error is infat normally distributed, i.e.
ǫt ∼ N(0, H). (4.7)However, the distribution of the state innovation ηt is not a simple normal buta mixture of normals, given by (3.6),

ηt ∼
B∑

b=1

ωbN(µb, Vb).The impliation of this deviation from the linear purely Gaussian state spaemodel is that now the �ltering and predition densities are not Gaussian anymore as shown by Sorenson and Alspah (1971). They are rather mixtures ofnormals. The �ltering density at time t is given by
p(αt|Yt) =

lt∑

i=1

ωi t|t · φ(αt; ai t|t, Σi t|t), (4.8)where ai t|t and Σi t|t are the means and variane-ovariane matries of the om-ponent densities, respetively. These as well as the weights ωi t|t are nonlinearfuntions of the observations.The onditional expetation and its variane-ovariane matrix an be om-puted as
E(αt|Yt) =

lt∑

i=1

ωi, t|t ai, t|t =: at|t,12



and
V ar(αt|Yt)

=

lt∑

i=1

ωi, t|t

(
Σi, t|t + (ai, t|t − at|t)(ai, t|t − at|t)

′
)

=: Σt|trespetively.The one-step predition densities for the state and observation-vetor, p(αt|Yt−1)and p(yt|Yt−1), have a similar struture. Aordingly, the log-likelihood is a sumof mixture distributions. Details are given in the appendix.The �ltering and predition densities an be omputed in an iterative fash-ion. The algorithm is desribed in the appendix and an be interpreted as abunh of Kalman �lters working parallel. The main problem, however, is thatthe number of omponents is growing exponentially with time: at time t theexat �ltering density given above has
lt = Btomponents. That is, if our model has B = 2 omponents in the mixturedistribution, the �ltering density at time t = 10 is a mixture of 1024 normals.Hene, for time series of length typially enountered in pratie, omputing theexat �lter beomes impossible. This is why we use an approximate �lter, thestruture of whih will be skethed in the following. The appendix ontains amore detailed desription.For our proposed approximation sheme, the maximum number of ompo-nents appearing in the employed mixture distributions is governed by a param-eter k < T . After an initial phase, the exat �ltering and predition densities �mixtures with Bt omponents � are approximated by mixtures with Bk ompo-nents only. This approximating density results from applying the exat �lter tothe most reent k observations only. A suitable initialization of the �lter takesthe �rst t − k observations into aount in a ondensed form. We abbreviatethe approximation sheme as AMF(k), standing for 'approximate mixture �lterof degree k'. Next, we desribe verbally how the approximation works.11First, the exat �lter is run up to time t = k yielding the exat �lteringdensities p(αt|Yt) for t = 1, . . . , k. The last of these densities, p(αk|Yk) is amixture of Bk normals.Continuing with the exat �lter would deliver the exat density for time

t = k + 1 as a mixture with Bk+1 omponents. However, we want to on-strain the number of omponents to Bk. The idea is now to apply the exat11We will refer to the �ltering densities only. The idea is the same for the preditiondensities. In the summary of the approximation algorithm below, it will be doumented howthey are omputed. 13



�lter algorithm, but only to the last k observations of Yk+1, i.e. to the sub-sequene {y2, . . . , yk+1}. The �lter is initialized by the univariate normal withmean a1|1 and variane Σ1|1, the latter being the mean and the variane of the
B-omponent mixture p(α1|Y1). Thus, the initial ondition ontains informa-tion about y1 in a ondensed form, the exat density p(α1|Y1) is replaed by asimple normal. Applying the exat �lter in this fashion to the most reent kobservations yields a mixture with Bk omponents, denoted by p̃(αk+1|Yk+1),that approximates the exat �ltering density at time k + 1.A similar proedure is applied for approximating eah of the �ltering densi-ties from t = k + 1 to t = 2k. For obtaining an approximation of the density
p(αt|Yt), the exat �lter is applied to the k most reent observations only. The�rst t− k observations {y1, . . . , yt−k}, however, are not ignored. They enter theestimation proess through the initial ondition. The exat �lter is initialized bya simple normal, and the mean of that normal is at−k|t−k, the optimal estimateof the state at t− k, given the observations from 1 to t− k. Sine the algorithmis iteratively applied, the estimate at−k|t−k and its variane-ovariane matrix
Σt−k|t−k are already available.In this fashion approximate densities p̃(αt|Yt) for t = k + 1, . . . , 2k are ob-tained. Eah of them is a mixture of Bk omponents.Analog operations an be onduted for approximating the �ltering densitiesfor t = 2k + 1, . . . , T . At time t ≥ 2k + 1 the approximate density is generatedby an appliation of the exat �lter to {yt−k+1, . . . , yt}. For omputing theinitial ondition at time t − k, one would again ollapse the mixture density
p(αt−k|Yt−k) to a simple normal. However, sine we are beyond t = 2k, we donot have the exat �ltering density p(αt−k|Yt−k) for time t−k available. We onlyhave p̃(αt−k|Yt−k) available, a mixture of Bk omponents that approximates
p(αt−k|Yt−k). Nevertheless, we an proeed as usual and ollapse this densityinto a simple normal.Similar to the �ltering densities, the predition densities are also approxi-mated by mixtures with Bk omponents. With the sequene of approximatepredition densities at hand, an approximate log-likelihood an be onstrutedby replaing the exat densities p(yt|Yt−1) in (4.6) by their approximating oun-terparts p̃(yt|Yt−1).In Lemke (2005) Monte Carlo simulations have been arried out to assess theproperties of the AMF(k) . It turns out that for the data generating proessesonsidered there, the approximate �ltering densities generated by the AMF(k)are good approximations to the exat ones (whih have been omputed for timeseries of length T = 10), even for small k suh as k = 1, 2, 3. Moreover, it turnsout that for B = 2, inreasing k beyond 3 does not yield any substantial hangesof results. In most ases, k = 1 does already lead to quite good approximationsof the exat �lter. Finally, results from the AMF(k) have been ompared to14



results from the Kalman �lter whih is still the best linear �lter for the linearstate spae model with mixture innovations. The AMF(k) performs onsistentlybetter than the Kalman �lter, the degree of improvement being dependent onthe model parameterization.5 Empirial AppliationWith the estimation methodology at hand we now ondut an empirial studyin whih we estimate three disrete-time term struture models. We use thedata set of US treasury yields that has been presented in setion 2. It is notlaimed that the models that we use in our study are in some sense optimalspei�ations for our data set. Rather, the main purpose of this setion is toshow the methodology at work. Moreover, we want to point out what di�ereneit an make to use a mixture model as opposed to a Gaussian model with thesame number of fators.5.1 Models and ParameterizationWe estimate three spei�ations of the model desribed in setion 3: a Gaussiantwo-fator model, a two-fator model with a two-omponent mixture, and athree-fator Gaussian model. Reall that the mixture model from setion 3nests a purely Gaussian model as a speial ase.12The models are haraterized by a vetor-valued fator proess
Xt = KXt−1 + ut (5.1)and a spei�ation of the stohasti disount fator (SDF), that is of the form

− lnMt+1 = δ + ι′Xt + λ′ut+1. (5.2)Note that we have set the interept in the fator proess equal to zero. Asdesribed in more detail in Lemke (2005), the model in its original spei�ationis overparameterized, so dropping the interept is innouous.For the Gaussian models, the fator innovation satis�es
ut ∼ N(0, V ), (5.3)whereas for the mixture model

ut ∼
B∑

b=1

ωbN(µb, Vb),
B∑

b=1

ωb = 1,
B∑

b=1

ωbµb = 0. (5.4)12Stritly speaking we should refer to the model outlined in setion 3 as 'a lass of models'.15



Going from the general to the spei�, the fator proess of the two-fatorGaussian model is given by
(
X1t

X2t

)
=
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)
+
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u1t
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) (5.5)where the distribution of the fator innovation is
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. (5.6)The SDF satis�es

− lnMt+1 = δ +X1t +X2t + λ1u1 t+1 + λ2u2 t+1. (5.7)Interhanging the two fators will not alter the implied term struture. Forthe Gaussian two-fator model and the mixture model that will be desribedhereafter, we will sort the fators by their persistene. That is, they are arrangedsuh that κ1 > κ2.Conerning the two-fator mixture model, the fator proess and the SDFequation are of the same form as for the two-fator Gaussian model. The dis-tribution of the fator innovation is spei�ed as a Gaussian mixture with twoomponents,
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))(5.8)We have tried three di�erent spei�ations, one with v11 6= v12 and v21 6= v22,another with v11 6= v12 and v21 = v22, and a third with v11 = v12 and v21 6= v22.It turned out that the third one performed best and we only report the resultsof this spei�ation. In order to identify the two omponents we assume that
v21 ≥ v22. This assumption is embedded into the spei�ation by parameterizingthe �rst omponent variane as a multiple of the seond. Summing up, we willassume that

v11 = v12 =: v1, and v2
21 = c22v

2
22, c22 ≥ 1. (5.9)Finally, the three-fator Gaussian model onsists of the fator proess




X1t

X2t

X3t


 =




κ1 0 0

0 κ2 0

0 0 κ3







X1 t−1

X2 t−1

X3 t−1


+




u1t

u2t

u3t


 (5.10)with 


u1t

u2t

u3t


 ∼ N







0

0

0


 ,




v2
1 0 0

0 v2
2 0

0 0 v2
3





 (5.11)16



The priing kernel is given by
− lnMt+1 = δ +X1t +X2t +X3t + λ1u1 t+1 + λ2u2 t+1 + λ3u3 t+1. (5.12)Similarly as for the two-fator models, we assume that κ1 > κ2 > κ3.All three models have the property that both the matrix K and the (om-ponent) variane-ovariane matries are diagonal. For all three models, thisimplies that the fators are independent from eah other. Of ourse, this is arestritive assumption whose validity ould be tested for. For the two-fatormodels, orrelation of the fators ould be indued by introduing an additionalfree parameter for the (2,1)-element of K. The hypothesis of unorrelated fa-tors would then orrespond to this parameter being zero. Suh a test, however,will not be onduted here and we will stik to the more simple spei�ation.Eah model is ast into its orresponding state spae form and the parame-ters are estimated by maximum likelihood. For the Gaussian models, the statespae model is linear and Gaussian, and the exat likelihood an be onstrutedusing the Kalman �lter. For the two-fator mixture model, the state spaemodel is linear but the state innovations are distributed as a Gaussian mixture.For this model, we onstrut an approximate likelihood based on the AMF(1)�lter.13 We will now explain some details of the estimation proess and turn tothe results in the next setion.From the data set presented in setion 2, we use time series of yields formaturities of 3, 6, 12, 24, 60, and 120 months. The yields are annualized, themodels, however, hold for monthly yields. The models imply that for somearbitrary n, the joint evolution of fator and yield are given by (5.1) and (4.3).Then the annualized yield ỹn

t := 1200 · yn
t satis�es14

ỹn
t =

A∗
n

n
+

1

n
B∗

n
′Xt

Xt = KXt−1 + utwith A∗
n = 1200·An and B∗

n = 1200·Bn. It is this kind of representation that weuse in the empirial study. This implies that the parameters that we obtain arethose that orrespond to the original monthly yields. Aordingly, they an beompared in size with parameters from the literature that have been obtainedfor other samples using possibly di�erent statistial tehniques. The reason forusing annualized yields (as opposed to monthly yields) lies in the fat that formonthly yields the measurement error in the orresponding state spae modelwould have a have a very low standard deviation (of around 7e-6). This wouldpossibly lead to numerial di�ulties.13Using the AMF(2) �lter delivered nearly the same results.14We have to multiply by 1200 (and not by 12 only) sine yields in the data set are expressedin perentages. 17



We do not want to arry on with the tilde on top of our annualized yields,so we drop it from here on and understand eah yn
t as an annualized yield.For the state spae models assoiated with our theoretial term struturemodels, the measurement vetor yt is �ve-dimensional,

yt = (yn1

t , yn2

t , . . . , yn5

t )′, (n1, n2, . . . , n5)
′ = (3, 6, 12, 60, 120)′.For eah term struture model we identify the fator vetor with the state vetor,i.e. αt = Xt. The measurement equation has the form
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 (5.13)where the funtional forms of the Ani

and the Bni
di�er aross models, of ourse.Written more ompat in the familiar notation of a state spae model,

yt = d+Mαt + ǫt. (5.14)For the measurement error we use the simple spei�ation
ǫt ∼ N(0, h2I5). (5.15)This is not an innouous assumption sine it implies that the di�erene betweentheoretial and observed yields has the same variane for all maturities. Wealso tried a spei�ation in whih the varianes were allowed to be pairwisedi�erent. However, it turned out that the other parameter estimates have notbeen a�eted muh by this hange of spei�ation.For the two-fator Gaussian model, the unknown model parameters to beestimated are κ1, v2

1, λ1, κ2, v2
2, λ2, δ, and h2. The parameters κ1, v2

1, κ2,
v2
2 of the theoretial model appear in both, the transition equation and themeasurement equation, whereas the parameters λ1, λ2, and δ appear in theinterept vetor d of the measurement equation only.Conerning the four parameters v2

1, λ1, v2
2 and λ2, the model may be equiv-alently parameterized in v1, λ1v1, v2, and λ2v2.15 This an be seen as follows.The only plaes in whih the parameters λ1 and λ2 appear are the funtions

An. For a Gaussian model, An is omputed as
An =

n−1∑

i=0

G(Bi) (5.16)where
G(Bi) = δ +B′

ia−
1

2
(λ+Bi)

′V (λ+Bi).15This is also done by Cassola and Luis (2003).18



With a diagonal V matrix, expanding the expression (λ+Bi)
′V (λ+Bi) yields

(λ+Bi)
′V (λ+Bi) =

2∑

j=1

λ2
jv

2
j + 2Bijλjv

2
j +B2

ijv
2
j (5.17)

=
2∑

j=1

(λjvj)
2 + 2Bij(λjvj) · vj +B2

ijv
2
j (5.18)where Bij , j = 1, 2 denotes the jth omponent of Bi. Thus, λj only shows upas a multiplier of vj .The same argument goes through for the three-fator model, whih will beparameterized in v1, λ1v1, v2, λ2v2, v3, λ3v3. A similar reasoning holds for thetwo-fator mixture model. For eah mixture omponent b one an expand theexponent (λ+Bi)

′Vb(λ+Bi) in (3.9) in the same fashion as just shown for theGaussian ase.16 Thus, our two-fator model is parameterized in v1, λ1v1, v22,
v21 = (

√
c22v22), and λ2v22.Estimating the model, it turned out that δ and the market prie of riskparameters λ1v1 and λ2v2 annot be estimated very aurately. Moreover, theestimated ovariane matrix shows that they are highly orrelated.17 In parti-ular, the parameter λ1v1 has been individually insigni�ant, so we dropped itfrom the model.Summing up, the following parameters will be estimated. For the Gaussiantwo-fator model,

κ1, v1, κ2, v2, λ2v2, δ, h
2,for the Gaussian two-fator mixture model,

κ1, v1, κ2, v22, λ2v22, c22, ω, δ, h
2and for the Gaussian three-fator model,

κ1, v1, κ2, v2, λ2v2, κ3, v3, λ3v3, δ, h
2.Note that some of the parameters have to satisfy ertain restritions. Wehave:

−1 ≤ κi ≤ 1, i = 1, 2, 3 (stationarity of the fator proess)
vi ≥ 0, i = 1, 2, 3, and v22 ≥ 0 (vi and v22 are standard deviations)

c22 ≥ 1 (by our assumption above)
0 < ω < 1 (ω is a omponent weight)

h2 ≥ 0 (h2 is a variane)16The parameterization that we use would not be possible if µb 6= 0 as an be seen from(3.9).17All of these three parameters only enter the interept vetor d and do not show up else-where in the model. However, there is no identi�ation problem as one might suspet. Allof these parameters are individually identi�ed, sine we use �ve yields in the measurementvetor. 19



These onstraints have been taken are of by reparameterizing the model pa-rameters aordingly (for example by squaring to ensure nonnegativity).5.2 Estimation ResultsTable 5 ontains the maximum likelihood estimates of the parameters. Esti-mated standard errors are given in parentheses.The dimension and sign of theestimates are reasonable for all parameters.The �rst fator is highly persistent as the estimate of κ1 is nearly one forall models. Estimated standard errors may be interpreted with some autionsine the estimate is very lose to the boundary of the parameter spae. Forfuture studies we suggest using the bootstrap in order to obtain reliable on�-dene intervals. The standard deviation v1 of the �rst fator is estimated withsatis�able preision and it does not di�er muh aross models.The seond fator exhibits lower autoorrelation (κ2) than the �rst fator,but it is still very high. The innovation of the seond fator is the plae in whihthe Gaussian models di�er from the mixture model. For the latter model, themarginal distribution of the fator innovation is a mixture of two normals,
u2t ∼ ωN(0, v2

21) + (1 − ω)N(0, v2
22), with v2

21 = c22 · v2
22.Judging on the basis of a standard t-test, the estimate of the weight ω is signif-iantly di�erent from zero and the estimate of the variane ratio c22 is di�erentfrom unity.18 So the results suggest that for the sample at hand the density forthe seond fator innovation is in fat a 'true' mixture of normals. It an be in-terpreted in suh a way that in 86.2 perent of the time the innovation is drawnfrom a normal with standard deviation v22 = 0.00023, and in 13.8 perent it isdrawn from a normal whose standard deviation is 5.11(=

√
26.1) times bigger.For the mixture model, the estimates of v22, ω and c22 imply that the esti-mate of the standard deviation of the seond fator innovation is given by

v̂2 :=
(
ω̂ · ĉ22 · v̂2

22 + (1 − ω̂) · v̂2
22

)0.5
= 0.000486.This does not deviate muh from the estimated standard deviation of the seondfator innovation for the Gaussian two-fator model.In the mixture model, the parameter estimates imply for the exess kurtosisof u2t,

k̂urt(u2t) =
3
[
ω̂ ·
(
ĉ22 · v̂2

22

)2
+ (1 − ω̂) · v̂4

22

]

v̂4
2

− 3 = 11.284,18In fae of the fat that we use the approximate likelihood generated by the AMF, theestimated standard deviations should be used with aution.20



Reall that the exess kurtosis is zero (by de�nition) for the Gaussian models.The two panels in �gure 4 show the marginal densities of the fator inno-vations that are implied by the parameter estimates. The left panel ontainsthe estimated densities of u1t, the innovation of the �rst fator. The solid lineorresponds to the Gaussian two-fator model, the dashed line orresponds tothe mixture model. Reall that both densities are normal. They di�er fromeah other due to the fat that they have slightly di�erent varianes. The rightpanel shows a more substantial di�erene. The solid line depits the density of
u2t for the Gaussian model. The dashed line represents the density of u2t for themixture model. The density is a Gaussian mixture with two omponents. It isremarkably di�erent ompared to its Gaussian ounterpart although it impliesnearly the same variane.

Figure 4: For the two-fator models: Estimated densities of the innovation ofthe �rst fator (left panel) and the seond fator (right panel)For all three models, the market prie of risk parameters, λ2v2 and λ2v22have the expeted negative sign whih orresponds to a positive term premium.These parameters are estimated with lower relative preision ompared to theother parameters disussed so far. For the three-fator model, λ2v2 is not evensigni�antly di�erent from zero. The parameter δ that governs the averagelevel of the yield urve is individually estimated quite preisely. However, theestimated autoorrelation matrix of estimates (not reported here) shows thatfor all models onsidered, the orrelation of the market prie of risk parametersand δ is high.Heuristially, these properties may be explained by the fat that the marketprie of risk parameters and δ only show up in the interept vetor d of themeasurement equation. Sine the fators have mean zero, it is easy to see fromequation (5.14) that the vetor d ontains the individual means of yields inludedin yt. Now, sine all yields are highly autoorrelated, their means - and in turnthe parameters that parameterize them - annot be estimated very preisely.21



For the three-fator model, the parameters κ3, v3, and λ3v3 of the additionalfator proess had to be estimated. The estimate of the autoorrelation param-eter κ3 is remarkably smaller than those of the �rst two fators. The estimatedinnovation variane v32 is similar in size to that of the seond fator. Unlikefor the seond fator, the market prie of risk parameter λ3v3 is individuallysigni�antly di�erent from zero.The estimated variane ĥ2 of the measurement error has the same size forboth two-fator models. Reall that the measurement error aptures the dif-ferene between observed annualized yields and the theoretial yields impliedby the respetive model under onsideration. The estimates for the two-fatormodels imply that this error has a standard deviation of 0.186(=
√

0.0346) per-entage points. The standard deviation implied by the three-fator model ishalf as large, it amounts to 0.092 perentage points.The bottom of table 5 ontains the values of the log-likelihood at maximumfor the three models. We also provide the value of Akaike's information riterion,de�ned as
AIC = −2 lnL(ψ̂) + 2wwhere w is the number of unknown parameters. The AIC dereases in the valueof the likelihood and inreases in the number of parameters that have to beestimated. Using the AIC as a model seletion riterion, the model with thesmallest value of the AIC is hosen. Employing this measure for seleting oneof our three models, the three-fator model would be preferred. Comparingbetween the two two-fator models only, the mixture model would beat thepure Gaussian model. A worthwhile exerise for future researh would onsistof hoosing a mixture distribution for the innovations of the three-fator modeland heking if this enhaned three-fator model beats the pure Gaussian oneonsidered here.Figure 5 displays the average observed yield urve together with the averageestimated yield urves for the three models.19 For onveniene the points of theaverage observed yield urve are onneted in the piture. For (n1, n2, . . . , n6)

′ =

(3, 6, 12, 24, 60, 120)′, the observed average yield urve onsists of the points
(ni, ȳ

ni
t ), where

ȳni
t =

1

T

T∑

t=1

yni
t , i = 1, . . . , 6,is the average of the annualized ni-month yields over the 444 observations.Note that the 24-month yield, that has not been used for the estimation, isalso inluded. The average estimated yield urve is given by the points (ni, ŷ

ni
t )19The points representing the two-fator Gaussian model and those representing the two-fator mixture model nearly oinide and are hard to distinguish from eah other.22



where
ŷni

t =
1

T

T∑

t=1

(
Âni

ni

+
1

ni

B̂′
ni
at|t

)
. (5.19)Here Âni

and B̂ni
are the oe�ient funtions implied by the models where theparameters are replaed by their maximum likelihood estimates. The at|t arethe �ltered states at time t. Thus, for a given time t, at|t is an estimate of thefator vetor Xt, whih is onstruted using all information up to this point intime. The �gure shows that the mean yield urve is mathed well by all models

Figure 5: Mean yield urvewhereas the three-fator model seems to have a slight edge over the other twomodels.In univariate time series analysis, diagnosti tests for �tted models are oftenbased on residuals. In partiular, residuals should be unorrelated over time.Tests for the orrelation of residuals are based on the autoorrelations of theestimated residuals. In multivariate time series analysis there is more than oneautoorrelation for a given lag. Let {vt} be a vetor valued series of residuals,where the vt are of dimension N × 1 eah. Then for a given lag k there are
N2 possibly di�erent autoorrelations, namely between vi t and vj, t−k for allpairs (i, j), i = 1, . . . , N , j = 1, . . . , N .20 In the literature that deals with theestimation of term struture models in a state spae framework, the analysis is20Note that in general the autoorrelation between vi t and vj, t−k is di�erent from thatbetween vj t and vi, t−k. 23



generally restrited to to univariate autoorrelations, i.e those between vi t and
vi t−k.For our models we want to provide two measures for the autoorrelationof residuals. First, we will show the �ve univariate autoorrelation funtions.Seond, we provide a measure that tries to apture multivariate autoorrelationin a ondensed form. We do not seek to formally test on autoorrelation ofresiduals by, for instane, using a multivariate portmenteau statisti. This ispartly due to the fat that we do not know how suh a statisti would behavefor our model with Gaussian mixture innovations.The residual vetor vt at time t is given by

vt = yt − yt|t−1,where yt|t−1 is the one-step foreast of yt based on observations up to time t−1.The (i, j)-element of the autoorrelation matrix of vt for lag k, Γ(k), is givenby21
Γ(k)ij =

∑T
t=15+k(vi t − v̄i)(vj, t−k − v̄j)√∑T

t=15+k(vi t − v̄i)2 ·
√∑T

t=15+k(vj t − v̄j)2
, (5.20)where

v̄l =
1

T − 15

T∑

t=16

vl t., l = i, j.The �rst �ve panels in �gure 6 depit the univariate autoorrelation funtions
Γ(k)ii for i = 1, 2, . . . , 5. The piture in the lower right orner is intended to givean overall measure of autoorrelation of the residuals. For eah lag k, we plottedfor eah model the norm ||Γ(k)|| of the autoorrelation matrix Γ(k) against thelag k. We have de�ned this norm as22

||Γ(k)|| := max
i,j

|Γ(k)i,j |. (5.21)That is, for eah lag k, the �gure ontains the largest (in absolute value) elementof the 25 elements of the autoorrelation matrix.The �rst thing to be noted is that the �ve univariate autoorrelation fun-tions do not di�er muh aross models. At lag 1 the ACFs assume their max-imum with Γ(1)ii amounting to a level between about 0.2 and 0.3. For higherlags, the ACFs �utuate around zero. Using the popular bounds of ± 2/
√
Twhih orresponds to the interval [−0.097, 0.097] here, it turns out that for

i = 1 (residuals of three-month yields) eight of the estimated autoorrelationsfall outside this interval. This is the ase for all three models. For 60-month21Note that we have dropped the �rst 15 observations in order to remove any dependeneon the initialisation of the �lters.22Of ourse, there are several alternatives to de�ne the norm of a matrix.24



yields, only three of the autoorrelations fall outside the interval. Overall, theautoorrelations of residuals appear to be a little too high, but the observedpatterns do not point towards strong misspei�ation.Up to now we have said little about the fators that drive the term struture.Reall that with the �ltering tehniques at hand we are able to estimate the pathof the unobservable fators. Figure 7 depits the estimated paths of the �rst andseond fator for our two-fator models. That is, we have drawn the �rst andseond omponent of the �ltered state vetor at|t (multiplied by 1200) againsttime. The �rst thing to note is that the results for the Gaussian model and themixture model are similar. Seond, omparing with �gure 1 above, the path ofthe �rst fator seems to resemble the pattern of the evolution of the level of theyield urve.23 In fat, the orrelation between the �ltered fator proess andyields is high for eah maturity. For both two-fator models, it reahes from0.80 (orrelation with the three-month yield) to 0.99 (orrelation with the ten-year yield). Similar results are obtained for the three-fator model where theorrelation is between 0.78 and 0.99. Against this bakground, the �rst fatormay be referred to as a level fator.This interpretation is supported if we look at the estimated fator loadingsof the two-fator Gaussian model in �gure 8.24 The fator loading of the ithfator on the n-month yield is given by the ith omponent of the vetor Bn/n.Note that for all models onsidered, the vetor Bn/n only depends on the κiparameters. In our models with diagonal K matries, the ith omponent of Bnis simply given by κn
i . The interpretation of an arbitrary point on one of theurves of fator loadings is as follows: if that fator is inreased, eteris paribus,by one unit, the yield with time to maturity n is inreased by the amount givenon the axis of ordinates. Here, an inrease in the �rst fator shifts up yields of allmaturities nearly proportionally. Hene, the name 'level fator' is justi�ed. Theseond fator leads to a shift in the term struture that is strong at the short endof the yield urve and beomes weaker as time to maturity rises. Aordingly,the seond fator may be referred to as a twisting fator.For the three-fator model, the same type of piture is drawn. Figure 9shows that the �rst two fators an be given the same interpretation as beforefor the two-fator models. The additional fator works mostly at the short endof the yield urve.In their paper, Cassola and Luis (2003) try to math the term struture ofvolatility. For them, the term struture of observed volatility onsists of thepairs (ni, V ar

emp(yni
t )) where V aremp(yni

t ) is the empirial variane of the ni-month yield. This is ompared to the theoretial term struture of volatility, i.e.23Of ourse it is parallel shifted by some amount, sine the fator proess has mean zero byassumption.24The results of the two-fator mixture model imply nearly the same piture, thus it is notshown here. 25



Figure 6: First �ve panels (from left to right and top to bottom): ACF of theresiduals of 3-, 6-, 12-, 60-, and 120-month yields. Right panel in the last row:norm of the multivariate autoorrelation matries plotted against lags.
26



Figure 7: Filtered proess of the �rst fator (left panel) and the seond fator(right panel)the varianes implied by the model. Cassola and Luis ome up with the resultsthat the variane of yields implied by their two-fator model is unreasonablewith respet to the observed variane. Therefore, they alter their estimationapproah by inluding observed varianes in the measurement equation. Thisleads to parameter estimates that are suh that the observed volatility mathesthe theoretial volatility.However, due to the fat that yields are highly autoorrelated, the empirialvariane is a biased estimate of the true variane of a time series of yields.Thus, it may not be sensible to ompare the estimated theoretial variane withthe empirial one for small samples. Therefore, instead of trying to math thevolatility urve of yield levels, we have a look at the volatilities of yields in �rstdi�erenes. As seen in table 3 in setion 2, their autoorrelation is low.Figure 10 shows standard deviations of �rst di�erenes in yields that arepart of our data set. The solid line onnets the empirial standard deviationsomputed from the data. These are drawn together with the standard deviationsthat the estimated models imply for these yield hanges.25 The values in thepiture are omputed aording to the formulas in the appendix, where theparameters are replaed by the maximum likelihood estimates. The �gure showsthat all models imply a volatility urve that is dereasing in time to maturity.For maturities of two, �ve and ten years, the three-fator model omes loser tothe observed volatility, but it overestimates the volatility at the short end. Thetwo-fator models, in ontrast, underestimate the volatility urve for maturitiesthat exeed one year. However, all of these omparisons have to be made withaution sine even for di�erened yields we do not know how well the empirialstandard deviations estimate the true ones.Our last omments on the estimation results fous on the di�erene between25See Lemke (2005) for the respetive formulas.27



Figure 8: Fator loadings for the two-fator modelthe Gaussian models and the mixture model. As already pointed out, table 3shows that yield hanges exhibit onsiderable exess kurtosis. Multifator termstruture models with Gaussian innovations, however, imply zero exess kurto-sis for yields in levels and yields in �rst di�erenes. Lemke (2005) provides theformula for the kurtosis of di�erened yields implied by multifator models withmixture innovations. Based on the maximum likelihood estimates of the param-eters, the kurtosis has been omputed for the maturities in the data set. Thesemeasures of kurtosis are graphed together with their empirial ounterparts in�gure 11. The important point to note is that the model in fat implies thatthe kurtosis is di�erent from zero and that it dereases with maturity. Gaussianmodels imply a kurtosis whih is identially zero for all maturities. One-fatormodels with mixture innovations, as disussed by Bakus et al. (1998) are a-pable of generating exess kurtosis, but the latter is onstant for all maturities.Thus, onerning the mathing of fourth moments, our simple two-fator modelan be regarded as a step into the right diretion.Up to now we have disussed to what extent our three models are able toapture the behavior of �rst, seond and fourth moments of yields in levels or�rst di�erenes. Now, we want to look at the distribution at the whole. Thiswill be done exemplarily for the three-month yield, representing the short endof the yield urve, and the �ve-year yield, representing longer maturities. Theanalysis is done for �rst di�erenes again.The solid line in �gure 12 depits a kernel estimate for the distribution28



Figure 9: Fator loadings for the three-fator modelof ∆y3
t . It is based on our 444 observations and uses a Gaussian kernel withbandwidth b = 1.364σ̂N , where N is the number of observations and σ̂ is theirstandard deviation.26 The other lines are the density funtions implied by theestimated models. The following desribes how they are omputed.For the mixture model, it is not so simple to derive the unonditional den-sity of ∆y3

t . We therefore onstrut the density implied by the model using aMonte Carlo simulation. Based on the maximum likelihood estimates of the pa-rameters, we generate 10,000 observations of ∆y3
t from the two-fator mixturemodel.27 Based on them, a kernel estimate of the density is onstruted anddrawn into �gure 12. In order to work under the same onditions for all mod-els, the densities for the Gaussian models have been generated by analoguoussimulations.The �gure suggests that the two-fator mixture model aptures the shapeof the density best, followed by the two-fator Gaussian model. The densityimplied by the three fator model does not appear to apture the distributionwell.We also use QQ-plots for omparing the distributions implied by the modelswith that given from the data. The QQ-plots in �gure 13 (three of them drawninto one piture) are based on the probabilities 0.01, 0.02, . . ., 0.99. For eah of26This is the default bandwidth suggested by Gauss' TSM pakage.27The observations are generated without superimposing a measurement error.29



Figure 10: Standard deviation of yield hangesthese probabilities, the orresponding quantile implied by the models is plottedagainst the empirial quantile of the data. If the points orresponding to a modelwere lying on the 45 degree line, this model would share the same quantiles withthe data. Deviations from that line an be interpreted as a measure of distanebetween the two distributions. Like the density plot above, the QQ-plots suggestthat the distribution implied by the two-fator mixture model omes loser tothe distribution of the data than that implied by the two-fator Gaussian model.Again, the three-fator model performs worst.A similar ranking an be inferred by looking at �ve-year yields. For hangesof the �ve-year yield, �gure 14 ontains the three densities implied by the modelsas well as the density estimated from the data. The QQ-plots in �gure 15 suggestthat for the �ve-year yield, the advantage of the two-fator mixture model overthe other two models shows up quite learly.
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Figure 11: Exess kurtosis of yield hanges

Figure 12: Density of monthly hanges in three-month yield31



Two Fators, Two Fators, Three Fators,Gaussian Mixture Gaussian
κ1 0.998 0.998 0.999(2.36e-4) (2.38e-4) (1.48e-4)
v1 0.000285 0.000263 0.000281(8.27e-6) (1.14e-5) (1.13e-5)
κ2 0.949 0.950 0.954(1.20e-3) (1.94e-3) (1.34e-3)
v2 0.000439 0.000510(9.54e-6) (2.13e-5)
λ2v2 -0.142 -0.0465(0.0560) (0.0442)
δ 0.00669 0.0121 0.0117(6.19e-4) (2.53e-3) (9.77e-4)
v22 0.000230(2.10e-5)
λ2v22 -0.049(0.0158)
c22 26.10(8.130)
ω 0.138(0.0386)
κ3 0.687(0.0150)
v3 0.000506(2.20e-5)
λ3v3 -0.340(0.0518)
h2 0.0346 0.0345 0.00855(6.96e-4) (1.28e-3) (3.95e-4)

lnL(ψ̂) -479.90 -404.07 157.36
AIC 973.79 826.13 -294.72Table 5: Estimation results. Estimated standard errors are given in parentheses.
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Figure 13: QQ-plots for monthly hanges in three-month yield.

Figure 14: Density of monthly hanges in �ve-year yield33



Figure 15: QQ-plots for monthly hanges in �ve-year yield.
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6 ConlusionAs a generalization of the one-fator model by Bakus et al. (1998), we haveintrodued a d-fator model, for whih the distribution of fator innovations is aGaussian mixture with B omponents. This model allows for a �exible modelingof the distribution of yields in levels and �rst di�erenes, while yields are a�nefuntions of the fators.For estimation, it has been shown how the theoretial model an be trans-lated into the statistial state spae form. The orresponding state spae modelhas a transition equation for whih the innovation is distributed as a Gaussianmixture. The exat �lter assoiated with this type of state spae model involvesGaussian mixtures with an exponentially growing number of omponents. Inorder to make estimation of the model numerially feasible, an approximationof the exat �lter, the AMF(k) algorithm, has been introdued.We have estimated two Gaussian models and one model involving a Gaussianmixture distribution. For the Gaussian models, maximum likelihood estimationbased on the Kalman �lter has been onduted. For the mixture model, we haveemployed the AMF(1) algorithm.Parameter estimates are reasonable in size and have the orret signs. Theautoorrelations of residuals do not point towards severe misspei�ation. Thethree-fator model is seleted by the AIC. However, with respet to higher mo-ments of the data, the two-fator mixture model appears to have an edge overthe two Gaussian models.For future researh, an integration of the mixture spei�ation into the three-fator model is imaginable. Furthermore, a more elaborate spei�ation of themixture distribution ould be tried. More reliable standard errors for the pa-rameter estimates may be obtained by using the bootstrap. Moreover, it wouldbe instrutive to use a di�erent sample period and another ountry for theestimation. With regard to the fous of this paper, it would be partiularlyinteresting to see how the estimated distributions of fator innovations hangewhen the sample hanges. Finally, it may be a worthwhile attempt to ombinethe struture of the a�ne models by Du�e and Kan (1996), in whih volatilityis level-dependent, with that of our model.
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A The Exat Filter for the State Spae Model withMixture InnovationsConsider a state spae model for whih the transition equation is given by
αt = Tαt−1 + c+ ηt, (A.1)where for the innovation vetor ηt

ηt ∼ i.i.d.
B∑

b=1

ωbN(µb, Qb),
B∑

b=1

ωb = 1,
B∑

b=1

ωbµb = 0. (A.2)That is, the density of ηt is given by28
p(ηt) =

B∑

b=1

ωbφ(ηt;µb, Qb). (A.3)For the variane-ovariane matrix of ηt we have
V ar(ηt) =

B∑

b=1

ωb

(
Qb + µb µ

′
b

)
=: Q. (A.4)The measurement equation is

yt = Mαt + d+ ǫt, (A.5)and the measurement error is normally distributed,
ǫt ∼ i.i.d.N(0, H). (A.6)The measurement error ǫt and the state innovation ηs are independent for alltimes s and t.The weights ωb as well as the system matries and vetors T , c, M , d, H,

µb, and Qb are all assumed to be time-invariant.The initial state is assumed to be normally distributed,
α0 ∼ N(ā0, P̄0), (A.7)and both, ηt and ǫt are independent from the initial state for all t.We �rst assume that the system matries are known and present the ex-at solution to the �ltering problem and the one-step-predition problem. Let

at|t−1, ŷt|t−1 and at|t denote the onditional expetations orresponding to theonditional densities p(αt|Yt−1), p(Yt|Yt−1) and p(αt|Yt), and denote by Σt|t−1,28φ(x; µ, Q) denotes the density funtion of N(µ, Q) evaluated at x.36



Ft and Σt|t the orresponding variane-ovariane matries. It turns out thatfor the mixture model, the �ltering and predition densities an be generated inan iterative fashion. They are all mixtures of normals, with the number of om-ponents inreasing exponentially with time. The relationships between �lteringand predition densities are given by the following theorems.29Theorem A.1 (Predition density for the mixture model). Let the �l-tering density at time t−1, t = 1, 2, . . . , T , be given by a Gaussian mixture with
lt−1 omponents,

p(αt−1|Yt−1) =

lt−1∑

i=1

ωi, t−1|t−1 · φ(αt−1; ai, t−1|t−1, Σi, t−1|t−1).Then the one-step-predition density for the state is
p(αt|Yt−1)

=
B∑

b=1

lt−1∑

i=1

ωbi, t|t−1 φ(αt; abi, t|t−1,Σbi, t|t−1) (A.8)with
ωbi, t|t−1 = ωb ωi, t−1|t−1, (A.9)
abi, t|t−1 = Tai, t−1|t−1 + c+ µb, (A.10)
Σbi, t|t−1 = TΣi, t−1|t−1T

′ +Qb. (A.11)After reindexing and setting lt = B · lt−1 the predition density an be writtenas
p(αt|Yt−1) =

lt∑

i=1

ωi, t|t−1φ(αt; ai, t|t−1,Σi, t|t−1). (A.12)The one-step-predition density for the observation vetor is
p(yt|Yt−1) =

lt∑

i=1

ωi, t|t−1 φ(yt; ŷi, t|t−1, Fi, t) (A.13)with
ŷi, t|t−1 = Mai, t|t−1 + d, (A.14)

Fi, t = MΣi, t|t−1M
′ +H. (A.15)Theorem A.2 (Filtering density for the mixture model). Let the predi-tion densities p(αt|Yt−1) and p(yt|Yt−1) at time t, t = 1, 2, . . . , T , be given bythe Gaussian mixtures (A.12) and (A.13). Then the �ltering density is

p(αt|Yt) =

lt∑

i=1

ωi t|t φ(αt; ai, t|t,Σi, t|t) (A.16)29The earliest derivation of these relations for the ase of salar measurement and transitionequation may be attributed to Sorenson and Alspah (1971).37



with
ai, t|t = ai, t|t−1 +Ki, t(yt − ŷi, t|t−1), (A.17)
Σi, t|t = Σi, t|t−1 −Ki, tMΣi, t|t−1, (A.18)
Ki, t = Σi, t|t−1M

′F−1
i, t , (A.19)

ωi, t|t =
ωi, t|t−1 φ(yt; ŷi, t|t−1, Fi, t)∑lt
i=1 ωi, t|t−1 φ(yt; ŷi, t|t−1, Fi, t)

. (A.20)For a proof, see Lemke (2005).A remark is in order that theorems A.1 and A.2 are in fat appliable to time
t = 1. For the initial �ltering density used in theorem A.1 we have p(α0|Y0) =

p(α0|1N ) = p(α0). Thus, tehnially speaking, the �ltering density is the densityof the initial state, that has been spei�ed in (A.7) as a normal. It an be writtenas a mixture with one omponent, l0 = 1, thus
p(α0|Y0) =

l0∑

i=1

1φ(α0; ā0, P̄0).Hene, theorem A.1 an be applied to this density yielding p(α1|Y0) and p(y1|Y0)as mixtures with B omponents. To these in turn, theorem A.2 an be appliedyielding p(α1|Y1).With the onditional densities at hand, point estimators an be readily om-puted as the orresponding onditional expetations,
E(αt|Yt−1) =

lt∑

i=1

ωi, t|t−1 ai, t|t−1 =: at|t−1, (A.21)
E(yt|Yt−1) =

lt∑

i=1

ωi, t|t−1 ŷi, t|t−1 =: ŷt|t−1, (A.22)
E(αt|Yt) =

lt∑

i=1

ωi, t|t ai, t|t =: at|t. (A.23)The orresponding onditional variane-ovariane matries are given by
V ar(αt|Yt−1) =

lt∑

i=1

ωi, t|t−1

(
Σi, t|t−1 + (ai, t|t−1 − at|t−1)(ai, t|t−1 − at|t−1)

′
)

=: Σt|t−1 (A.24)
V ar(yt|Yt−1) =

lt∑

i=1

ωi, t|t−1

(
Fi, t + (ŷi, t|t−1 − ŷt|t−1)(ŷi, t|t−1 − ŷt|t−1)

′
)

=: Ft|t−1 (A.25)
V ar(αt|Yt) =

lt∑

i=1

ωi, t|t

(
Σi, t|t + (ai, t|t − at|t)(ai, t|t − at|t)

′
)

=: Σt|t. (A.26)38



The latter results follow from the general properties of Gaussian mixtures. Notethat the expetation is just the weighted average of the expetations of the nor-mal densities that onstitute the mixture, whereas the variane has an additionalterm taking the variation of the means into aount.The steps of the exat �lter for the mixture model an be summarized asfollows:Given observations {y1, . . . , yT }, and an initial density α0 ∼ N(ā0, P̄0), thealgorithm omputes
• the sequenes of onditional densities,

p(αt|Yt−1), t = 1, . . . , T,

p(y|Yt−1), t = 1, . . . , T,

p(αt|Yt), t = 1, . . . , T,eah haraterized by the orresponding omponents (weights, means,varianes),
ωi, t|t−1, ai, t|t−1,Σi, t|t−1, i = 1, . . . , lt t = 1, . . . , T,

ωi, t|t−1, ŷi, t|t−1, Fi, t, i = 1, . . . , lt t = 1, . . . , T,

ωi, t|t, ai, t|t,Σi, t|t, i = 1, . . . , lt t = 1, . . . , T,

• and the sequenes of point estimates (onditional means) and orrespond-ing variane ovariane matries
at|t−1,Σt|t−1, t = 1, . . . , T,

ŷt|t−1, Ft, t = 1, . . . , T,

at|t,Σt|t, t = 1, . . . , T.These are omputed aording to the following sheme:Algorithm A.1 (The exat �lter).
• Step 1, InitializationSet

a1, 0|0 = ā0, Σ1, 0|0 = P̄0, ω1, 0|0 = 1, l0 = 1.Set t = 1. 39



• Step 2, Predition step from t− 1 to tSet lt = Bt.Compute ωi, t|t−1, ai, t|t−1, Σi, t|t−1, ŷi, t|t−1, and Fi, t for i = 1, . . . , lt, a-ording to theorem A.1.Use these quantities to ompute at|t−1, ŷt|t−1, Σt|t−1, , and Ft aordingto (A.21), (A.22), (A.24) and (A.25) respetively.
• Step 3, Updating step at tCompute ωi, t|t, ai, t|t, and Σi, t|t, for i = 1, . . . , lt, aording to theoremA.2.Use theses quantities to ompute at|t and Σt|t, aording to (A.23) and(A.26), respetively.
• Step 4If t < T , set t := t+ 1, and go to Step 2;else, STOP.If the moments of the initial onditions are not known, one an proeed asin the ase of a simple normal. If the state proess is stationary, the �lter an beinitialized using the unonditional mean and variane-ovariane matrix. Theondition for stationarity of the state proess is the same as in the Gaussianase: all eigenvalues of the transition matrix T have to have modulus less thanone.B The Approximate Filter AMF(k)The following gives the algorithm for the approximate mixture �lter of order k(AMF(k) ).Algorithm B.1 (The approximate �lter AMF(k)).
• Step 1Apply the exat �lter to the sequene {y1, . . . , yk} with initial ondition
α0 ∼ N(ā0, P̄0).Obtain the exat �ltering densities

p(αt|Yt), p(αt|Yt−1), p(yt|Yt−1), t = 1, . . . , k,with orresponding moments
at|t, Σt|t, at|t−1, Σt|t−1, ŷt|t−1, Ft.40



• Step 2For t = 1, . . . , k set:
p̃(αt|Yt) = p(αt|Yt), ãt|t = at|t, Σ̃t|t = Σt|t

p̃(αt|Yt−1) = p(αt|Yt−1), ãt|t−1 = at|t−1, Σ̃t|t−1 = Σt|t−1

p̃(yt|Yt−1) = p(yt|Yt−1), ˜̂yt|t−1 = ŷt|t−1, F̃t = Ft.Set t = k + 1.
• Step 3Apply the exat �lter to the sequene {yt−k+1, . . . , yt} with initial ondition
αt−k ∼ N(ãt−k|t−k, Σ̃t−k|t−k).Store the �nal �ltering and predition densities as p̃(αt|Yt), p̃(αt|Yt−1),and p̃(yt|Yt−1). That is, store the orresponding omponents ω̃i, t|t, ãi, t|t,Σ̃i, t|t,
ω̃i, t|t−1, ãi, t|t−1,Σ̃i, t|t−1, ˜̂yi, t|t−1, F̃i, t, i = 1, . . . , Bk.Compute the orresponding means and varianes ãt|t, Σ̃t|t, ãt|t−1, Σ̃t|t−1,
˜̂yt|t−1, and F̃t.

• Step 4If t < T , set t := t+ 1, and go to Step 3;else, STOP.
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