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Abstract 
 
In this paper, we describe an extension of the datamining framework with automated causal 
diagnosis, offering the possibility to automatically detect and explain exceptional values to 
support business decision tasks. This functionality can be built into the conventional OLAP 
(On-Line Analytical Processing) or datamining system using a generic explanation formalism, 
which mimics the work of business decision makers in diagnostic processes. The diagnostic 
process is now carried out manually by (business) analysts, where the analyst explores the 
multidimensional data to spot exceptions, and navigate the data to find the reasons for these 
exceptions. Such functionality can be provided by extending the conventional datamining 
system with an explanation formalism, which mimics the work of human decision makers in 
diagnostic processes. Here diagnosis is defined as finding the best explanation of unexpected 
behaviour (symptoms or exceptional values) of a system under study. This definition assumes 
that we know which behaviour we may expect from a correctly working system, otherwise we 
would not be able to determine whether the actual behaviour is what we expect it or not. The 
expected behaviour in a datamining environment can be derived from some statistical model 
or can be expert knowledge from analysts. The central goal is the identification of specific 
knowledge structures and reasoning methods required to construct computerized explanations 
from multidimensional data and business models. A methodology that automatically generates 
explanations for exceptional values in multidimensional business data is proposed. The 
methodology was tested on a case study involving the comparison of financial results of a 
firm’s business units. 
 
Keywords: Datamining, Multidimensional databases, OLAP, Explanation, Business 
Intelligence. 
 
1. Introduction 
 

Today’s OLAP (On-Line Analytical Processing) and datamining systems have limited 
explanation or diagnosis capabilities. The diagnostic process is now carried out manually by 
(business) analysts, where the analyst explores the multidimensional data to spot exceptions, 
and navigate the data with operators like drill-down, roll-up, and selection to find the reasons 
for these exceptions. Such functionality can be provided by extending the conventional 
datamining system with an explanation formalism, which mimics the work of human decision 
makers in diagnostic processes. Here diagnosis is defined as finding the best explanation of 
unexpected behaviour (symptoms or exceptional values) of a system under study [18]. This 
definition assumes that we know which behaviour we may expect from a correctly working 
system, otherwise we would not be able to determine whether the actual behaviour is what we 
expect it or not. The expected behaviour or norm model in a datamining environment can be 
derived from some statistical model or can be expert knowledge from analysts.  

The core component of a datamining system is the data warehouse, which is a decision-
support database that is periodically updated by extracting, transforming, and loading data 
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from several OLTP (On-Line Transaction Processing) databases. A popular data model is the 
multidimensional or OLAP database, also known as the data cube, where data is organized 
using the dimensional modelling approach, which classifies data into measures and 
dimensions. Measures like, for example, sales figures and costs, are the basic units of interest 
for analysis. Dimensions correspond to different perspectives for viewing measures. 
Dimensions are usually organised as dimension hierarchies, which offer the possibility to 
view measures at different dimension levels (e.g. month quarter year≺ ≺ ). Some typical 
OLAP operations for interactive querying and analysis are: rollup (i.e. aggregation on a data 
cube), drilldown (i.e. reverse of roll-up), slice (i.e. selection on one dimension) dice (i.e. 
defining a sub-cube), and pivot (i.e. rotates the data axes).  

The objective of this paper is to extend the OLAP system with a complete diagnostic 
process. Two important phases in the diagnostic process are: problem identification and 
explanation generation. In the problem identification phase the OLAP data is mined for 
exceptional values. And when a discrepancy between actual and norm behaviour is 
discovered, and is qualified as unacceptable with respect to some specified norm, the next 
step is to expla in this discrepancy using our “understanding” of the multidimensional model. 
In short, we automate the current user-driven analysis of OLAP data, with an explanation 
formalism that finds exceptions, and subsequently finds out why exceptions have emerged. 

Our exposition on diagnostic reasoning and causal explanation is largely based on 
Feelders and Daniels’ notion of explanations in [3, 5], which is essentially based on 
Humpreys’ notion of aleatory explanations [11] and the theory of explaining differences by 
Hesslow [7]. The canonical form for causal explanations is taken from [3, 5]: 
 

 , ,  because , despite .a F r C C+ −〈 〉  (1) 

 
where , ,a F r〈 〉  is the symptom to be explained, C+ is non-empty set of contributing causes, 
and C– a (possibly empty) set of counteracting causes. The explanation itself consists of the 
causes to which C+ jointly refers. C– is not part of the explanation, but gives a clearer notion 
of how the members of C+ actually brought about the symptom. The explanandum is a three-
place relation between an object a (e.g. the ABC-company), a property F (e.g. having a low 
profit) and a reference class r (e.g. other companies in the same branch or industry). The task 
is not to explain why a has property F, but rather to explain why a has property F when the 
members of r do not. This general formalism for explanation constitutes the basis of the 
framework for diagnosis in a OLAP/datamining context developed in this paper. 

To position this paper we discuss some related work regarding the explanation of 
differences and the exploration of multidimensional data. In [13] Sarawagi presented an 
operator for data cubes that lets the analyst get summarized reasons for drops or increases 
observed at an aggregated level. In [14] the authors developed a discovery-driven exploration 
paradigm that mines the data for exceptions and summarizes the exceptions at appropriate 
levels in advance. The discovery-driven method is guided by pre-computed indicators of 
exceptions at various levels of detail in the cube. In comparison with the explanation 
formalism, this model does not generate causes, but is a model to identify symptoms. 

The remainder of this paper is organized as follows. Section 2 introduces the notation for 
the multidimensional model, followed by a description of normative models appropriate for 
diagnosis in Section 3. In Section 4 the explanation formalism is extended for multidimen-
sional data in order to automatically generate explanations, and in Section 5 the complete 
method is illustrated in a case study on OLAP sales data. Finally, conclusions are discussed in 
Section 6. 
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2. Notation and equations  
 
Many different notations and definitions of multidimensional data schemata can be found in 
literature [1, 16, 17]. Here we introduce a generic notation that is particular suitable for 
combining the concepts of measures, dimensions, and dimension hierarchies. A measure is 
defined as a function on multiple domains: 1 2 1 2

1 2:n ni i i ii i
ny D D D× × × →… … ¡. Each domain iD  

has a number of hierarchies ordered by max max 1 0i i
i i iD D D−≺ ≺…≺ , where 0

iD  is the highest 

level and maxi
iD  is the lowest level in iD . A dimension’s top level has a single level instance 

{ }0 AlliD = . For example, for the time dimension we could have the following hierarchy 
2 1 0T T T≺ ≺ , where { }0T All-T= , { }1T 2000,2001= , and 2T = { }Q1,Q2,Q3,Q4 . Sometimes 

we will write T[Quarter] for 2T . A cell is denoted by 1 2( , , , )nd d d… , where id  are elements 
of the domain hierarchy at some level, so for example (2000,Amsterdam,Beer) is a cell. Each 
cell contains data, which are the values of the measures y like, for example, 122sales (2000, 
Amsterdam,Beer). If no confusion can arise we will leave out the upper indices indicating 
level hierarchies and write sales(2000,Amsterdam,Beer). Furthermore, the combination of a 
cell and a measure we call a data point. It is important to mention that a cell can be present at 
multiple aggregation levels or contexts. For example, suppose that (2001.Q2,Germany) is a 
cell in a 2-dimensional data cube with the dimensions Time and Location and the hierarchy 
quarter year≺ . The possible contexts for the above cell are the following: {(Year.Q2,Ger-
many), (2001.Quarter,Germany), (2001.Q2,Country), (Year.Quarter,Germany), (2001.Quar-
ter,Country), (Year.Q2,Country), and (Year.Quarter, Country)}. 

The measure values at the lowest level possible ( maxi
iD ) are entries of the base cube. If a 

measure value is on the base cube level, then the hierarchies of the domains can be used to 
aggregate the measure values using aggregation operators like SUM, COUNT, or, AVG. By 
applying suitable equations, we can alter the level of detail and map low level cubes to high 
level cubes and vice versa. For example, aggregating measure values along the dimension 
hierarchy (i.e. rollup) creates a multidimensional view on the data, and de-aggregating the 
measures on the data cube to a lower dimension level (i.e. drilldown), creates a more specific 
cube. Here we investigate the common situation where the aggregation operator is the 
summarization of measures in the dimension hierarchy. So y is an additive measure if in each 
dimension and hierarchy level of the data cube: 
 

 1 1 1

1
( , , ) ( , , )q n q n

Ji i i i i i
j

j
y a y a−

=
= ∑… … … …… … … … , (2)  

 
where 1q

ia D −∈ , q
j ia D∈ , q is some level in the dimension hierarchy, and J represents the 

number of level ins tances in q
iD . An example equation corresponding to two roll-up 

operations reads: 
 

4 20
102 212

1 1
sales (2001,All-Locations,Beer) sales (2001.Q ,Country ,Beer)j k

j k= =
= ∑∑ . 

 
If there is no confusion about the level in the dimension hierarchy we will use y(…,+,…), for 
the left-hand side of the above equation. In general, a “+” in place of an instance denotes that 
summing has occurred in that domain. In this way a data cube with only two dimensions is 
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represented by a table where the row totals are given by y(d1,+), column totals are given by 
y(+,d2), and the grand total is given by y(+,+). 

Furthermore, we assume a business model M is given representing relations between 
measures. These relations can be derived from many domains, like finance, accounting, 
logistics, and so forth. Relations are denoted by 

 1 2 1 2
1 2 1 2( , , , ) ( ( , , , ))n ni i i i i i

n ny d d d f d d d= x… …… … , (3) 

 
where 1( , , )nx x=x … , and 1, , , ny x x…  are measures defined on the same domains. Business 
model equations mostly hold on equal aggregation levels in the data cube, therefore we may 
leave out upper indices if no confusion can arise. In Table 1, an example of a business model 
with quantitative relations from a sales database is given. 
 
Table 1 
Example business model M 
1. Gross Profit = Revenues - Cost of Goods 
2. Revenues = Volume · Unit Price 
3. Cost of Goods = Variable Cost + Indirect Cost 
4. Variable Cost = Volume · Unit Cost 
5. Indirect Cost = 30% · Variable Cost 

 
3 Normative models 
 

The normative model specifies the reference class that should be used to compare. It also 
specifies the measures with respect to which the comparison should be made. We distinguish 
between two broad classes of reference objects namely: external and internal. External refe-
rence objects refer to norm values that are derived from other sources then the data under 
consideration, and internal reference objects are based on data in the database. Examples of 
external norm values are industry averages or plans and budgets [5].  

There are many ways to construct internal reference objects for multidimensional data. 
The simplest way is pairwise comparison [13], where a value of a measure y is compared with 
another in the data cube, the reference variable norm(y) In general, only the cells on the same 
aggregation levels will be used for obvious reasons, like the measurement scale of the 
variable. For example, we can compare sales(2000,Germany,All-Products) with the sales of 
the previous year, norm(sales(1999,Germany,All-Products)), as an historical norm value. 

Other common internal norm values are the average or expected value of a cell. We use 
the following notation: 

 

 
1

1
( , , ) ( , , )

J

j
jJ

y y a
=

+ = ∑… … … … , (4) 

 
and for the average over all domains we write ( , , , )y + + +… . Expected values are based on 
statistical models. A huge variety of statistical models exists for two-way (contingency) 
tables, three-way tables, etc., see Scheffé [15] and Tukey in [8, 9]. Here we only consider two 
models namely the additive model and the model of independence. For a multidimensional 
data set, in the situation of only two dimensions, we can write the expected value as an 
additive function of three terms obtained from the possible aggregates of the table:  

 1 2 1 2ˆ ( , ) ( , ) ( , ) ( , ).y d d y d y d y= + + + − + +        (5) 
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Where we assume that the joint contribu-tion of the aggregates is the sum of the separate 
contributions from each aggregate and 2

1 2( , ) (0, )d d Nε σ∼ . The coefficients of the model are 
estimated by OLS.  

Another standard model to compute expected values logically follows from the 
independence assumption. Consider a two-dimensional cube (two-way table) with row 
variables (in D1) and column variables (in D2) where the values in the cells represent counts 
of some measure y. The null hypothesis is that there is no association between the row 
variable and the column variable. We can model the data as a multinomial distribution with 
row and column variables. Now, let p(d1,d2) denote the unknown probability of an 
observation being in the cell (d1,d2) of the table, and p(d1,+), p(+,d2), are the marginal proba-
bilities of the row and column variables. Then from the multiplication law of probability, 
independence between the row and the column variables implies that: 

 
 1 2 1 2( , ) ( , ) ( , )p d d p d p d= + +  (6) 

The probabilities are estimated from the realisations in the table, it can be shown that 
1 1ˆ ( , ) ( , ) / ( , )p d y d y+ = + + + , and 2 2ˆ ( , ) ( , ) / ( , )p d y d y+ = + + +  (these are also the maximum 

likelihood estimates). Now the estimate of the “expected value” under the null hypothesis of 
independence is given by: 

 1 2
1 2

( , ) ( , )
ˆ ( , )

( , )
y d y d

y d d
y
+ +

=
+ +

. (7) 

In addition, the null hypothesis can be tested with Pearson’s chi-squared statistic. Similar 
definitions can be found for multidimensional tables in literature on contingency tables [5]. 

Now the expression ∂y = y – norm(y) = q ( { }low,highq ∈ ) specifies a symptom in the data 
cube, i.e. the occurrence of a quantitative difference between the actual and norm value. 
Problem identification is the process that computes a value g(y,norm(y)) for each cell, where g 
is some user-specified function such as percentage difference or absolute difference. We can 
scale the residual with the standard deviation ( )yσ . In that case, a cell is a exceptional value 
or surprise value [14] if ( ( ) ) /y norm y σ−  is higher than some threshold δ .  
 
4. Methodology 
 
4.1. Explanation in multidimensional databases 
 

Explanations of events are usually based on general laws expressing relations between 
events, such as cause effect relations. In the data cube, two types of relations are available for 
explanation generation namely: multiple additive relations in the dimension hierarchies (a) 
and the business model relations between measures (b) like, for example: 

(a) 
4

102 202

1
profit (2000,Amsterdam,Beer) profit (2000. ,Amsterdam,Beer)j

j
quarter

=
= ∑ , 

(b) 102 102 102profit revenues costs= − . 
 
We are interested in explaining the difference between object a and r. Contributing and coun-
teracting causes that explain ∂y are determined by the calculation of a measure of influence [5, 
10]. The correct interpretation of the measure depends on the form of the function f; the 
function has to satisfy the so-called conjunctiveness constraint. This constraint captures the 
intuitive notion that the influence of a single variable should not turn around when it is 
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considered in conjunction with the influence of other variables. The conjunctive-ness 
constraint holds for monotone and additive functions [3, 5], which frequently occur in the 
business model and the hierarchical dimension relations. 

First we discuss the situation where explanation is supported by relations in the business 
model, after that we elaborate on the situation where explanation is supported by dimension 
hierarchies. The definition of the measure of influence for a model equation reads: 
 

 inf( , ) (norm( ), ) norm( )i i ix y f x y−= −x , (8) 

 
where (norm( ), )i if x−x  denotes the value of ( )f x  with all measures evaluated at their norm 

values, except the measure ix . All measures are evaluated at the same aggregation level. In 
words, inf( , )ix y  indicates what the difference between the actual and norm value of y would 
have been if only the measure ix  would have deviated from its norm value. In the dimension 
hierarchy f is additive by definition, it follows from (7) that: 
 

1 1 1 1 1inf( ( , , ), ( , , )) ( , , ) norm( ( , , ))q n q n q n q ni i i i i i i i i i i i
j j jy a y a y a y a− = −… … … … … … … …… … … … … … … … . (9) 

 
When explanation is supported by a business model equa tion the set of contributing (counter-
acting) causes C+ (C–) consists of measures xi of the business model with: inf( , ) 0ix y y× ∆ >  
( 0)< . In words, the contributing causes are those variables whose influence values have the 
same sign as ∂y, and the counteracting causes are those variables whose influence values have 
the opposite sign. If explanation is supported by the dimension hierarchy, the set of 
contributing (counteracting) causes C+ (C–) consists of the set of child instances ja  of 

dimension level qi  out of the hierarchy of a specific dimension with 1inf( ( , , ),q ni i i
jy a… … … …  

1 1 ( , , )) 0q ni i iy a y− × ∆ >… … … … ( 0)< . 
 
4.2. Reducing the number of explanations 
 

Because every applicable equation yields a possible explanation, the number of generated 
explanations for a single symptom can be quite large. Especially when explanations are 
chained together to form a tree of explanations we might get lost in an intractable branching 
tree. In order to leave insignificant influences out of the explanation we introduce three 
generic concepts.  

Firstly, in the problem identification phase the analyst distillates a set of symptoms. This 
means that if a cell does not have a large deviating value – based on some statistical model or 
defined by a user – it is not identified as a symptom and therefore not considered for 
explanation generation.  

Secondly, small influences are left out in the explanation by a filter. In [3, 5] the set of 
causes is reduced to the so-called parsimonious set of causes. The parsimonious set of contri-
buting causes pC+  is the smallest subset of the set of contributing causes, such that its influen-
ce on y exceeds a particular fraction (T+) of the influence of the complete set. The fraction T+ 
is a number between 0 and 1, and will typically 0.8 or so. 

A third way to reduce the number of explanations is by applying a measure of specificity 
for each applicable equation. This measure quantifies the “interestingness” of the explanation 
step. The measure is defined as: 
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# possible causes

specificity = 
# actual causes

. (10) 

 
The number of possib le causes is the number of right-hand side elements of each equation, 
and the number of actual causes is the number of elements in the parsimonious set of causes. 
Using this measure of specificity we can order the explanation paths from specific to general 
and if desired only list the most specific steps. 
 
4.3. Multi-level explanations 
 

The explanation generation process for multidimensional data is quite similar to the 
knowledge mining process at multiple dimension levels. Especially, the idea of progressive 
deepening [6] seems very “natural” in the explanation generation process; start symptom 
detection on an aggregated level in the data cube and progressively deepen it to find the 
causes for that symptom at lower levels of the dimension hierarchy or business model. This 
idea we will adopt for so-called multi-level explanations. In the previous parts, we have 
discussed “one- level” explanations; explanations based on a single relation from the business 
model or dimension hierarchy. For diagnostic purposes, however, it is meaningful to continue 
an explanation of ∂y = q, by explaining the quantitative differences between the actual and 
norm values of its contributing causes. In multi- level explanation this process is continued un-
til a parsimonious contributing cause is encountered that cannot be explained further because:  
• the business model equations do not contain an equation in which the contributing cause 

appears on the left-hand side. 
• the dimension hierarchies do not contain a hierarchical equation in which the contributing 

cause appears on the left-hand side. 
 
The result of this process is an explanation tree of causes, where y is the root of the tree with 
two types of children, corresponding to its parsimonious contributing and counteracting cau-
ses respectively. A node that corresponds to a parsimonious contributing cause is a new symp-
tom that can be explained further, and a node that corresponds to a parsimonious counter- 
acting cause has no successors. In the explanation tree there are numerous explana tion paths 
from the root to the leaf nodes. This implies that many different explanations can be generated  
for a symptom. In most practical cases one would therefore apply the pruning methods discus-
sed above yielding a comprehensive tree of the most important causes. Interchanging the 
order of equations in explanation generation may give different explanatory trees, in general 
commutativety does not always hold. In fact commutativety only holds if after expanding the 
original equation by substitution, the same end-result is obtained for both orders. 
 
4.4. Canonical chain of reference objects 
 
The explanation model applies an equation of the form (2) or (3) to generate causes for an 
identified symptom. In order to identify causes, reference objects have to be formed in the 
explanation generation process for all the RHS variables of the equation used for explanation. 
Now we state that there is a natural way to construc t reference variables for variables on the 
RHS of the equation. The basic idea is that the context and reference object selected for 
determining the reference value of the LHS variable are the basis for determining the 
reference objects for the RHS variables of the equation used for explanation. In addition, if 
the RHS variable has a relation in which it appears on the LHS the construction of reference 
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can be continued for the RHS variables of this relation following the same basic idea. In this 
way, a chain of reference objects is formed for the next explanation step from the previous 
step. Although there is a canonical way in forming reference objects in the explanation gene-
ration process typical situations exist in forming reference objects for the RHS variables. The 
use of a drilldown equation of the form (2), or the use of a business model equation of the 
form (3) enforces different requirements on the chain of reference objects.  

In the next two paragraphs we elaborate on these typical situations and present examples 
to illustrate them. In the presented examples we suppose that first a symptom (∂profit= “high” 
or “low”; from now we write y for the measure profit) is detected using a particular reference 
object ry  in a context 1 1

1( , , , , )i nq qq
i nD D D−… …  of the GoSales data cube [2] using the (simple 

additive) multi-way ANOVA model.  Now the next step in the diagnostic process is to explain 
the symptom using the explanation model and canonical reference objects for the RHS varia-
bles in each explanation step.  

The typical situation in constructing reference objects for RHS variables 1 2, , , nx x x…  of a 
business model equation is that the same context and statistical model are applied as in deter-
mining the reference object for the LHS variable y. It has to be remarked that the context and 
statistical model have to be related to the RHS variable (measure) ix  under consideration. We 
illustrate this with the following example.  
 
Example 1   
Suppose that we have detected the symptom (2001,Germany)="low"profit∂  in the context 
(Year,Country) . To derive this symptom we computed the additive model ˆ (2001,Ger-y  
many) (2001, ) ( ,Germany) ( , )y y y= + + + − + +  to get the reference value for the actual 

datapoint (2001,Germany)ay . We now apply the business model rela tion 110profit =  
110 110revenues costs−  (in short 1 2y x x= − ) to generate explanations. Therefore, canonical 

reference values for the measures 1x  and 2x  have to be determined in the (same) context 

(Year,Country)ix  with the additive model ˆ (2001,Germany) (2001, ) ( ,Germany)i i ix x x= + + +  

( , )ix− + +  where { }1,2i = .  
 

The typical situation in constructing reference objects for RHS variables of drilldown 
equations is that reference objects have to be determined in the context 

1
1( , , , , )i nq qq

i ny D D D… … , derived with a drilldown on dimension 1iq
iD −  (the dimension selected 

for explanation), with application of the same statistical model. The obvious remark is that the 
context and statistical model have to be related to the actual RHS variables 1 ( , , )q ni i i

jy a… … … …  
under consideration. We illustrate this with the following example.  
 
Example 2 
Now we explain the symptom of Example 1 in the dimension hierarchy of the Location 

dimension. We apply the drilldown equation 
2

110 120

1
(2001,Germany) (2001,Germany.

j
y y

=
= ∑  

City )j  for explanation generation. The reference object for the LHS variable 110 (2001,Ger-y  
many)  was determined in the context (Year,Country), therefore the canonical reference 
objects for the RHS variables have to be determined in the context (Year,Country.City). To 
derive this context we drill-down in the dimension hierarchy of the Location (L) dimension 
from the level Country ( 1L ) to the level City ( 2L ). Furthermore, because Year and Country 
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are on the rolled-up level in the initial context for determining the reference object for the 
LHS variable, they remain on the roll-up level in determining the reference objects for the 
RHS variables. The reference values are computed with the additive model ˆ (2001,y  

120 120 120Germany.City ) (2001, ) ( ,Germany.City ) ( , )j jy y y= + + + − + + . 
 
5. Case study: sport equipment sales data 
 

We use a dataset (called “GOSales”) obtained from the Cognos OLAP product PowerPlay 
[2] as a case study for our method. The data consist of 42.063 records and four dimensions 
organised in a star schema; see Fig. 1.  

 

Profit
Revenues
Costs
UnitSalePrice
UnitCosts
Volume
Variable_Costs
Indirect_Costs

Financial Facts

Month (36)
Quarter (12)
Year (3)

Time (t)

Name (88)
Position (70)
City (28)
Country (20)

Location (l)

Product (115)
ProductType (21)
ProductLine (5)

Product (p)

 
Fig. 1. Star schema describing the dimensions and measures of the GOSales dataset 

 
In the fact table “Financial Facts” the measures of the dataset are listed. The numbers within 
brackets denote the cardinality of that level. The relations between the measures are defined in 
Table 1. An important condition for summarizability is compatibility of the measures with the  
statistical function applied. Two types of measures are present, namely: “flow type” (Profit, 
Revenues, Costs, Variable Cost, Indirect Cost, and Volume) and “value-per-unit type” (Unit 
Sale Price and Unit Cost). The flow measures are summarized however the summarization of 
value-per-unit measures is not meaningful [12]. Therefore, we take weighted averages of the-
se measures. In calculating the average we take into account the volumes associated with it. 

In the case study we present examples of the explanation process namely: the multi- level 
explanation of a symptom in the product dimension, the special handling of norm values in 
the time dimension, and explanation in the business model M of the data cube. The explana-
tion formalism is implemented in MS Excel, and the diagnosis was carried out using this 
prototype. Symptom detection in the cube starts on an aggregated level, where the analyst has 
to select the context, the combination of aggregation levels from the domains, from where to 
start the explanation generation process. Suppose that an analyst starts exploring the cube in 
the context (Year,Country,All-Products) and problem identification yields the symptom S= 
{∂profit(2001,Spain,All-Products)=”low”}. Under the assumptions of the additive model we 
calculate the expected values for the context, using (5): ˆ (year,country) (year, )y y= + +  

( ,country) ( , )y y+ − + + , and standardize the residuals. Here we choose 1.28δ =  correspond-
ding to a probability of 90% in the normal distribution, and find that the standardized residual 
for Spain in the year 2001 (=1.33) is larger than the threshold value. A full specification of the 
event to be explained is: < y (2001,Spain,All-Products), ∂profit=”low”, norm( ŷ (2001,Spain, 
All-Products))>. We want to omit insignificant influences from the explanations, therefore we 
take 0.75T T+ −= = . Explanation generation may start in the product dimension (P) for the 
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detected symptom, where explanation is sustained by additive relations. First the decrease in 
profit on the All-Products level is examined on the ProductLine level of the dimension hierar-
chy P[Product]≺ P[ProductType] ≺ P[ProductLine]≺ P[All-Products]. Hence the first corres-
ponding additive equation using (2) applied for explanation generation is : 

 
5

110 111

1
profit (.,.,All-Products) profit (.,.,ProductLine )j

j =
= ∑  

 
Therefore, 110profit (2001,Spain,All-Products) is the root of the explanation tree. The norm 
values for explanation generation are based on the expected values for the entries of the 
dimension level ProductLine in the context (Year,Country,ProductLine). Computation of the 
influences of the individual variables for the additive equation above with (9) yields the 
results in Table 2. From the data in Table 2 it can be concluded that pC+ = {profit(.,.,Personal 
Accessories), profit(.,.,Golf Equipment), profit(.,.,Mountaineering Equipment )}, since only 
these three relatively large causes are needed to explain the desired fraction of 
inf( ,profit(.,.,All-products)C+ . Obviously, pC− = { }.  
 
Table 2 
Data for explanation of S = {∂profit(2001,Spain,All-Products) = ”low”} 

Profit(2001,Spain,All-Products) Norm Actual Inf 
Profit(.,.,All-Products) 242,169.03 145,976.67  
Profit(.,.,Camping Equipment) 6,488.07 -8,684.36 -15.172.43 
Profit(.,.,Personal Accessories) 46,610.41 22,521.12 -24,089.29 
Profit(.,.,Outdoor Protection) 17,807.01 10,033.18 -7,773.83 
Profit(.,.,Golf Equipment) 99,048.87 79,928.64 -19,120.23 
Profit(.,.,Mountaineering Equipment) 72,214.67 42,178.09 -30,036.58 

 

The parsimonious causes are explained further on the level ProductType, the data for 
comparison of the entries on the level ProductType of the ProductLine Personal Accessories 
is presented in Table 3. From the data in Table 3 it follows that pC+ = {profit(.,.,Watches),pro-

fit(.,.,Knives),profit(.,.,Binoculars),profit(.,.,Navigation)}, and pC− = { }. Here the relatively 
large cause Watches contributes significantly to the low profit for Personal Accessories, 
therefore explanation generation continues downwards in the Product level. However the 
other parsimonious causes (Knives, Binoculars, and Navigation) are presented on the 
aggregated level, to avoid too much detail for the analyst.  
 
Table 3 
Data for explanation of S = {∂profit(2001,Spain,Personal Accessories) = ”low”} 

Profit(2001,Spain,Personal Accessories) Norm Actual Inf 
Profit(.,.,Personal Accessories) 46,610.41 22,521.12  
Profit(.,.,Personal Accessories.Watches ) 24,409.07 13,345.47 -11,063.60 
Profit(.,.,Personal Accessories.Eyewear) 4,686.22 2,302.91 -2,383.31 
Profit(.,.,Personal Accessories.Knives) 6,664.91 2,535.36 -4,129.55 
Profit(.,.,Personal Accessories.Binoculars) 4,792.63 1,385.56 -3,407.07 
Profit(.,.,Personal Accessories.Navigation) 6,057.59 2,951.82 -3,105.77 
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Fig. 2. Diagnosis S = {∂profit(2001,Spain,All-Products)=”low”} in the product dimension 

 
Now the previous examples of one- level explanations are combined to a complete diagnosis 
in the product dimension. Fig. 2 summarizes the results of the multi- level diagnosis, where the  
lines indicate contributing causes (possible dotted lines indicate counteracting causes) and the 
numbers indicate the specificity value of the explanation step. The specificity values are 
determined using (10). Moreover, explanation trees can be constructed in the same way for 
the time and location dimension. 

In addition, the symptom S={∂profit(2001,Spain,All-Products)=”low”} can also be 
explained in the business model M of the data cube. Hence the corresponding equation in 
Table 1 is: 110 110 110profit revenues costs= − . The norm values for the  measures revenues(.,.,.) 
and costs (.,.,.) are both based on the context (Year,Country,All-Products). Computation of 
the influences of the individual measures in the equation for profit by applying (8) yields the 
following results: 
 
Table 4 
Data for explanation of S = {∂profit(2001,Spain,All-Products) = ”low”} 

 
 
 
 

 
From the data in Table 4 it follows that: profit(.,.,.)=”low”, because pC+ = {revenues(.,.,.)}, 

despite pC− = {costs(.,.,.)}. Explanation generation may continue  for the contributing cause. 
The results of Table 4 for the one- level diagnosis in the business model are summarized in 
Fig. 3.   

revenues110(.,.,.) costs110(.,.,.)

110profit (2001,Spain,All-Products) " "low∂ =

2/1

 
Fig. 3. Diagnosis S = {∂profit(2001,Spain,All-Products)=”low”} in the business model M 

  
6. Summary and conclusion 
 

In this paper, we presented a formal framework for explanation and diagnosis in 
datamining systems, in particular, for the multidimensional or OLAP model. Explanation 
generation in multidimensional data can proceed in two directions: in the direction of the 
business model equations and downwards in the dimension hierarchies. The methodology as 
proposed uses the concept of an explanation tree of causes, where explanation generation is 
continued until a parsimonious contributing cause cannot be explained further. The result of 

(2001,Spain,All-Products) Norm Actual Inf 
Profit(.,.,.) 242,169.02 145,976.67  
Revenues(.,.,.) 2,269,708.27 1,698,895.10 -570,813.17 
Costs(.,.,.) 2,027,539.25 1,552,918.43 474,620.82 
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the process is a semantic tree, where the main causes for a symptom can be presented to the 
analyst. To prevent information overload to the analyst, several techniques are discussed to 
prune the explanation tree. The methodology is demonstrated by applying it on a multidimen-
sional sales dataset with dimension hierarchies and a financial business model.  

We believe that this framework could assist analysts in generating explanations for 
exceptional values in multidimensional data. Moreover, the framework can easily be applied 
to all kinds of business models. In general, the novel framework could lead to better decisions 
based on multidimensional business data, especially when the dataset is large. The result of 
this research can be used to develop an analytical tool as an add-on for OLAP systems.  
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