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�

The modeling of financial transaction data – price, spread, volume and duration – in an event 
basis is motivating a growing number of works. The first proposals, where limited to pure 
duration models. Then its impact on the volatility was analyzed. More recently a vector model 
also including volume was studied by Manganelli (2002). In this paper, we extend his work by 
including the bid-ask spread into the model throughout a vector autoregressive model. The 
conditional means of spread, volume and duration along with the volatility of returns evolve 
through transaction events based on an exponential formulation that we called Exponential 
Multivariate Autoregressive Conditional Model (EMACM).  
 In this new proposal, there is no constrains on the parameters. This facilitates the 
maximum likelihood estimation of the model and allows the use of simple likelihood ratio 
hypothesis tests to specify the model and obtain some clues about the interdependency structure 
of the variables.  
 
.H\ZRUGV: High frequency data, GARCH, autoregressive conditional multivariate models, 
nonlinear time series. 
 
 
 
 
 
 
 
 
 
 



 2 

 
 
��,QWURGXFWLRQ�

 
The availability of high frequency databases makes possible to understand financial 

market dynamics (intra-day basis) and test some of hypothesis brought up by the microstructure 
theory. In that way, many formulations have been suggested. 

 
Historically, we can observe three distinct phases when considering trading variables 

modeling. The first corresponds to the early developments made. In the second, the concepts 
embedded in ARCH/GARCH models, formulated in order to deal with volatility regimes in stock 
price returns, were applied to model other trading variables, specially the time between financial 
transactions (duration).  

 
Now, in the third phase, the focus is not only on the  dynamic of a specific high 

frequency variable, but also on the influence that exists among them. Here, the main goal is to 
define how the trading variables influence each other. 

  
Regarding high frequency data models, the first development occurred in 1948 when 

Wold (Skandinavisk Aktuarietidskrist - 2Q� 6WDWLRQDU\� 3RLQW� 3URFHVV� DQG� 0DUNRY� &KDQJHV) 
proposed to capture the dynamic presented in the conditional intensity through the use of ARMA 
models. In 1955, Cox (Journal of the Royal Statistical Society - 6RPH� 6WDWLVWLFDO� 0RGHOV�
&RQQHFWHG�ZLWK� 6HULHV� RI�(YHQWV) included lagged variables in order to explain the conditional 
intensity. Latter, in 1980, Lewis (Advances in Applied Probability - )LUVW�2UGHU�$XWRUHJUHVVLYH�
*DPPD�6HTXHQFHV�DQG�3RLQW�3URFHVVHV) extended the original proposal of Cox  - EARMA.  

 
In 1998, Engle e Russell (Econometrica - $XWRUHJUHVVLYH�&RQGLWLRQDO�'XUDWLRQ��$�1HZ�

0RGHO� )RU� ,UUHJXODUO\� 6SDFHG� 7UDQVDFWLRQ� 'DWD) introduced the ACD ($XWRUHJUHVVLYH�
&RQGLWLRQDO�'XUDWLRQ) model, in which the time between events has been described as a sequence 
of independent random variables with a time varying mean given by a GARCH type equation. 
Bauwens and Veredas, in 1999, defined a stochastic process for conditional duration (latent 
stochastic factor), in order to capture the market information flow (non-observable variable). 
Later, Bauwens and Giot (2000) proposed the use of a logarithmic version of ACD models, where 
the non-negativity constraint wasn’t necessary. 
 

In 2000, Engle incorporated the methodology developed before, in a volatility context 
(UHF-GARCH). After that, in 2001, Zhang, Russell and Tsay (Econometrica – $� QRQOLQHDU�
DXWRUHJUHVVLYH� FRQGLWLRQDO� GXUDWLRQ� PRGHO� ZLWK� DSSOLFDWLRQV� WR� ILQDQFLDO� WUDQVDFWLRQ� GDWD) 
extended the original model (EACD and WACD), through the using of thresholds (multiple 
regimes), in order to capture the non-linearity. In a similar way, in 2001, Fernandes and 
Gramming (CORE – $� IDPLO\� RI� DXWRUHJUHVVLYH� FRQGLWLRQDO� GXUDWLRQ� PRGHOV) added some 
changes to the model initially proposed by Engle and Russell, dealing with non-linearity through 
the application of a Box-Cox transformation over the original series. 

 
Recently, in 2002, Manganelli (ECB Working Paper Series – 'XUDWLRQ�� 9ROXPH� DQG�

9RODWLOLW\�LPSDFW�RI�WUDGHV) proposed the joint modeling of different variables (duration, volume 
and volatility) involved in the financial transaction process by the use of Vector Autoregressive 
Models (VARM). That was the first time in which volume information has been explicitly 
modeled and the work is one of the first trials of dealing with joint behavior of trading variables. 
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In this paper, we extend the work of Manganelli by including the bid-ask spread into an 
autoregressive multivariate system and proposing an exponential formulation to the conditional 
mean, avoiding the adoption of constraints in the parameters when maximizing the likelihood 
function. We called it the Exponential Multivariate Autoregressive Conditional Model 
(EMACM). The structure of the coefficient matrices of the system is tested via likelihood ratio 
tests, answering some of the questions raised in the microstructure literature about causality and 
dependency among variables. 

 
Regarding the analysis of intra-day seasonal pattern, we’ve found that the lowest 

durations (high intensity) are observed close to the opening and closing of financial market. As a 
consequence, the bid-ask spread and price volatility increase. In relation to the volume intra-day 
pattern, the highest values are observed close to the opening of transaction days, what can be 
explained by the fact that new information were not incorporated into price (after-market effects).  
 
 Considering the structure of the coefficient matrices, the likelihood ratio test pointed to 
the rejection of the hypothesis of no causality in trading day variables, since the individual 
formulation is strongly rejected. Here, the results show that the system seems to be variation-free 
as suggested by Manganelli. 
 

That article is divided as follows. Section 2 presents the model. Section 3 describes the 
seasonal adjustment (off-line estimation). Section 4 brings details of the nonlinear optimization 
algorithms used. A Monte-Carlo simulation is carried out in Section 5 and an empirical example 
is shown in Section 6. Finally, Section 7 concludes. 

 
 

��7KH�0RGHO�
 
 The model proposed in this paper is called Exponential Multivariate Autoregressive 
Conditional High Frequency Data Model (EMACM). 

 
Lets define xi as being the duration of the i-th observed financial transaction, where xi = ti 

- ti-1 (time space between trades) and zi as a vector of explanatory variables. Thus: 
 

( ) ( )θ;,~, ����� ][I][ Ω         (2.1) 

 
Where, f(xi, zi | Ωi; θ) corresponds to the joint probability distribution function of xi and zi, Ωi is 
the remaining information available until the i-th event has occurred and θ is the vector of 
unknown parameters. 

 
Letting zi’ = (vi si yi), where: vi is the volume of i-th transaction, si is the bid-ask spread 

and yi is instantaneous return. Thus, 
 

( ) ( )θ;,,,~, ������� \VY[I][ Ω        (2.2) 

 
Re-writing the joint probability distribution function (2.2) as the product of the conditional 
probability distribution, we have: 

 
( ) ( ) ( ) ( ) ( )4321 ;,,,;,,;,;, θθθθ ���������������� VY[\OY[VN[YK[J][ ΩΩΩΩ=        (2.3) 
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Equation 2.2 seems natural when the use of strategic models is considered. For example, 
Kyle (1985) modeled the informed traders behavior based on the effect of buy or sell orders into 
price, conditioning the analysis to the non-informed traders and market-makers attitude.  

 
At the moment the information became public, it’ s verified a strong offer/demand 

pressure originated, mainly, by the action of market makers. Once the time interval among events 
and the volume could indicate that some traders may be using private information, the market-
makers will use that in order to prevent losses. In that way, investors who own some information 
that is not disseminated in market will split their trades (decreasing volumes per transaction and 
increasing the number of transactions per time unit – intensity), making the identification process 
more complicated, postponing any changes in the bid and ask prices and, consequently, in the 
transaction price itself. 

 
Based on what was disposed by Kyle, it’ s clear the option made in favor of the relation 

establish by equation 2.3, in which the causality relation is shown in figure 1. 
 

 
Figure 1 – Causality relation (duration, volume, spread and price) 

 
Defining each one of the system components, the models can be determined separately:  
 

• Duration: 
 

( )1exp~. ����[ εεψ →=        (2.4) 

( )���� [( θψ ;Ω=         (2.5) 

 
o Duration: positive real numbers; 

 
• Volume: analogous to the duration models. 

 
( )1exp~. ����Y ηηφ →=        (2.6) 

( )υθυφ ;��� ( Ω=         (2.7) 

 
o Volume: positive real numbers; 

 
• Bid-ask spread: analogous to the duration models. 

 
�
	 ����� �� 33V −=         (2.8) 

 
Where, Pbuy corresponds to the buy price offered by the market makers (Psell is 
analogous). 
 

( )1exp~. ����V ϖϖϕ →=       (2.9) 

( )���� V( θϕ ;Ω=         (2.10) 
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o Spread: positive real numbers; 
 

• GARCH:  
 

( )1,0~. 1\ ���� ςςσ →=       (2.11) 

( )���� \( θσ ;22 Ω=         (2.12) 

 
o Volatility: positive real numbers; 

 
Thus, the conditional mean of the Exponential Multivariate Autoregressive Conditional 

High Frequency Data Model being considered could be defined as follows: 
 

( ) ( ) ( )∑∑
=

−
=

− ++=
�

�
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�
���� %$
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lnlnln τµγµ        (2.13) 

 
Where, µi’  = (ψi φi ϕi σ2

i), τi’  = (di vi si y2
i), γ is the vector of coefficients and A1, ..., Aq and B0, ..., 

Bp are matrices of coefficients of each one of the stochastic processes of the system. 
 

The general formulation of the complete model can be written as follows. 
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Where, εi, ηi e ωi ~ exp(1) e ζi ~ Ν(0,1). 
 
�

 6WDWH�HTXDWLRQ� 
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   (2.15) 

 
The system presents an iterative dynamic due to the fact that matrix B0 is a lower 

triangular matrix with null main diagonal elements. 
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Based on equation (2.15), we can infer about the structure of the system by testing 
different constraints. Three structures are suggested: 

 
• Complete model: the structure of coefficients matrices is exactly as shown in equation 

2.15. In that case, the conditional mean and contemporaneous and lagged variables can 
influence the dynamic of the system. The causality relation is explicitly modeled. 

 
• Variation-free: the matrices A1, A2, … and Aq in 2.15 are diagonal. The conditional mean 

of each variable cannot influence the others. 
 

• Individual: matrix B0 is null and the other matrices in 2.15 are diagonal (constraint model 
– no causality relation). Here, the conditional mean of each variable evolves based on its 
own lagged values and the ones of the original variable. The individual formulation is 
obtained (ACD, ACV, ACS and GARCH). 
 
 
Equation 2.18 presents the joint likelihood function: 
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  (2.16) 

 
 

Where, the conditional means ψi, φi, ϕi and σi
2 are defined by equation 2.13. 

 
 

��,QWUD�GD\�3DWWHUQ�$GMXVWPHQW��
 
Some of the variables being analyzed may present an intra-day pattern. As proposed by 

Engle and Russell (1998), all periodic or cyclic behavior should be removed before model 
estimation in order to avoid spurious autocorrelation. We define, 

 

( ) ( ) ( ) ( )&&
&&&&

&&&&
&&&&

&& W\
\\WV

VVW
YYW[

[[
,,,, 2

2*2***

λλυλλ ====   (3.1) 

 
Where, xi

*, vi
*, si

*, yi
2* are, respectively, the deseasonalized series of duration, volume, spread and 

volatility. 
 
In this paper we use a natural cubic spline for each variable considered in the system 

equation. In order to estimate the deterministic function that will represent the different seasonal 
patterns, the time interval between the opening and closing of trading days was divided into 
equally spaced intervals of one hour. In order to increase the flexibility, one extra node was added 
at the end of the trading day. 

 
Thus, the intra-day seasonal pattern is defined through the following equation: 
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( ) ( ) ( ) ( )[ ]∑
=

−−−−−−− −+−+−+=
'

(
()(()(()((() NWGNWGNWGF,W

1

3
11,3

2
11,211,11λ   (3.7) 

 
Where, 
 
K – number of segments; 
I – variable that represents the j-th segment of the spline (Ij =1 if kj-1 < ti-j < kj and Ij = 0, on the 
contrary). 
 
 
��(VWLPDWLRQ�3URFHVV��
 
 Two different optimization algorithms were used: Quadratic Sequential Programming 
(SQP) for the intra-day seasonal pattern determination and the Nelder-Mead Simplex Method to 
system’ s parameters estimation, because of the discontinuities of the log-likelihood function. 
 
����4XDGUDWLF�6HTXHQWLDO�3URJUDPPLQJ��
 

Based on the study of Biggs (1975), Han (1977) and Powell (1978), the method should be 
understood as a proxy of Newton’ s method (nonlinear programming without constraints), for 
constraint problem.  

 
$OJRULWKP: In each iteration, the objective function Hessian is calculated through BFGS 

method. The Hessian is then applied in a quadratic programming sub-problem. The solution is 
taken as reference to the subsequent liner search procedure, initializing a new iteration. 
 
 
����1HOGHU�0HDG�6LPSOH[�0HWKRG��

 
Introduced by Nelder e Mead (1965), the main idea of the method is the determination of 

the minimum value point of a certain N variables function through the use of a N+1 vertices 
simplex. 

 
In this method, the simplex adapts itself to the local landscape, elongating down long 

inclined planes, changing direction on encountering a valley at an angle, and contracting in the 
neighborhood of a minimum. 

 
The criterion for stopping the process has been chosen keeping in mind the application in 

statistical problem involving the maximization of the likelihood function in which the unknown 
parameters enter nonlinearly. 

 
$OJRULWKP: Consider the minimization problem of a function of N variable, without 

constraints. Let P0, P1, ..., PN as the N+1 points of the N-dimensional space defining the current 
simplex. Define yi as the function value at Pi, yh = max(yi) for i = 0, ..., N and yl = min(yi) for i = 
0, ..., N. 

 
Additionally, let Phat as being the centroid of the region defined by Pi’ s, where i is 

different from h and [Pi Pj] is the distance from Pi to Pj. For each stage in the process Ph is 
replaced by a new point; three operations are used – reflection, contraction and expansion.  
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The reflection of Ph is denoted by P* and its coordinates are defined by: 
 

( ) **,+,- 333 ..1* αα −+=         (4.2.1) 
 
Where, α is a positive constant (reflection coefficient). 
 

Thus, the point P* is on the line joining Ph and Phat, on the far side of Phat from Ph with 
[P* Phat] = α . [Ph Phat]. If yl < y* < yh, so Ph will be replaced by P* and a new simplex is 
generated. 

 
If y* < yl, i.e. if reflection has produced a new minimum point, so, P* is expanded to P** 

by the following relation: 
 

( ) .,/,0333 .1. *** γγ −+=         (4.2.2) 
 

The expansion coefficient γ (greater than unity), corresponds to the ratio between the 
distances [P** Phat] and [P* Phat]. If y** < yl, Ph is replaced by P** and the process is restarted. 
But, if y** > yl, then the reflection has failed and, before restarting the process, Ph must be 
replaced by P*. 

 
If, on reflecting P to P*, y* >yi, for all i different of h, so it must be defined a new Ph as 

being the old Ph or P* (whichever has the lower y value) and form: 
 

( ) 1,2,31 333 .1.** ββ −+=         (4.2.3) 
 

The contraction coefficient β lies between 0 and 1 and is the ratio between [P** Phat] and 
[P Phat]. In that way, Ph is replaced by P**, unless y** > min(yh, y**). If it occurs, the points Pi’ s 
are replaced by (Pi + Pi) / 2 and the process is restarted.  

 
All the process finishes when the diameter of the simplex points is smaller than a pre-

specified value.  
 
Since the Nelder-Mead Method does not use the Hessian when solving the optimization 

problem, in order to estimate Fisher Information Matrix, it’ s being proposed the use of 
Spendley’ s procedure (1962). The method consists on adjusting a quadratic surface on the region 
composed by the N+1 simplex vertices, in the neighborhood of the optimal solution. 

 
 
��9HULI\LQJ�WKH�HVWLPDWLRQ�DOJRULWKP�
 

In order to test the identification power of the proposed method, a Monte-Carlo 
Simulation was carried out. Here, the joint model, as described in equations 2.14 and 2.15, is 
simulated – EMACM(2,2). We’ ve generated 20 realizations of the process with 1000 
observations each. The parameters are estimated by maximizing the likelihood function (2.16). 

 
Through the impulse-response function analysis the real and estimated processes are 

compared. The figures bellow present the main results (red dashed line – estimated impulse-
response function values, red line – the mean of estimated values and blue line – impulse-
response of the real data generate process - DGP). 
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• 'XUDWLRQ��
 

 
Figure 2 – Duration responses due to impulse in duration, volume, spread and volatility 

�
�
• 9ROXPH��

 

 
Figure 3 – Volume responses due to impulse in duration, volume, spread and volatility 

 
 
 



 10 

 
• 6SUHDG��

 

 
Figure 4 – Spread responses due to impulse in duration, volume, spread and volatility 

 
 

• 9RODWLOLW\��
 

 
Figure 5 – Volatility responses due to impulse in duration, volume, spread and volatility 

  



 11 

Based on the impulse-response function, we’ ve found that the behavior of the estimated 
processes is close to the real one. This exercise shows that the estimation procedure presents a 
good identification power. 
 
 
��(PSLULFDO�$QDO\VHV�

 
����'DWD�%DVH��

 
The data used in the empirical analysis was built by Joel Hasbrouck e NYSE – Trades, 

Orders Reports and Quotes (TORQ). The data reflect the trades of IBM stocks, occurred between 
November 1st, 1990 and December 3rd, 1991. 

 
The data comprehend all the relevant information embedded in financial transactions – 

buys or sells (i.e., bid price, ask price, transaction price, time and volume) registered during 
regular financial market time – 9:30 AM - 4:00 PM (after-market is not considered).  

 
Since the study will focus on the modeling of tick-by-tick data (price change), some 

changes were implemented in the original data. 
 

- 'XUDWLRQ��
 

o If the price of transaction “i” is equal to the price of transaction “i-1”, the 
durations are added; 

 
o If a certain transaction presents duration equal to zero, it’ s removed. 

 
- 9ROXPH��
 

o If the price of transaction “i” is equal to the price of transaction “i-1”, the volume 
“i” will be the mean of the volumes of both transactions. 

 
- 6SUHDG��

 
o If the price of transaction “i” is equal to the price of transaction “i-1”, spread “i” 

will be the mean of the spreads “i” and “i-1” weighted by the volumes of such 
transactions. 

 
Other relevant changes and considerations: 
 

o November 23rd, 1990: was removed from the data base, due to an interruption of 
approximately one hour and fifteen minutes in the transactions. 

 
o The tick-by-tick series take the unity value of the tick as reference (US$ 0.125); 

 
o The transaction occurred during the first twenty minutes of trading day were not 

considered for estimation purposes (9:30 AM - 9:50 AM), because of opening 
postponing problems and “first trades” effects; 
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o For each day, the conditional mean of each one of the variables of the system 
(deseasonalized series) will be taken as the mean of the respective values 
observed between 9:50 AM and 10:00 AM (if there are no observations, the 
conditional mean is taken as one). 

 
 

����(PSLULFDO�7HVWV��
 

The data set used has a total of 5806 different financial transactions. The first phase of 
the experiment corresponds to the estimation1 of an EMACM(2,2), as described by equation 2.13. 
Here, the three structures are considered (tables I, II and III, in appendix, bring the results).  

 
As already mentioned, before starting the estimation process the variable must be 

deseasonalized. Thus, following section 3, the off-line determination of the intra-day seasonal 
pattern is obtained. Figure 6 shows the results for each trading variable. 

 
 

Figure 6 – Intra-day seasonal pattern 
 
Regarding the seasonal pattern of trading variables, as pointed by Engle and Russell 

(1998), the highest intensity (lower durations) is observed close to the opening and closing of the 
trading days. Additionally, we can observe that bid-ask spread and price volatility increase, as a 
consequence of that fact.  

 
Regarding volume seasonal pattern, the highest values are observed next to the opening, 

what can be explained by the fact that new information is not included in asset prices.  
 
After removing seasonal effects, the system can be estimated through the use of Nelder-

Mead Simplex Method. Following, the main results are presented and the three formulations 
proposed in that article are tested and compared. 
                                                 
1 The Hessian determination is based on the study of Spendley et al (1962) 
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• &RPSOHWH�PRGHO��
 
- $&)�
 

o Duration: figure 7 shows that the model captures the linear dependence observed 
in original data. 

 

 
Figure 7 – ACF of duration (residuals x observations) 

 
o Volume: figure 8 shows that both the original data and the residuals don’ t present 

linear dependence. However, the hypothesis of null parameters in volume process 
has been rejected for all of them. 

 

 
Figure 8 – ACF of volume (residuals x observations) 

 
o Spread: based on figure 9, we see that the model reduces the linear dependence 

observed in bid-ask spreads. 
 

 
Figure 9 – ACF of spread (residuals x observations) 
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o Volatility: in figure 10, we observe a strong linear dependence (first lag) in 
instantaneous volatility (squared of instantaneous return – y2), what is reduced 
but not completely captured by the model. 

 

  
Figure 10 – ACF of volatility (residuals x observations) 

 
 
 

- 5HDO�[�)RUHFDVWHG� figure 11 presents the trading variables plotted against the one-step-
ahead forecasts.�

 

 
Figure 11 – Real x forecasted analysis data – model complete 

 
 

• &RPSOHWH�[�YDULDWLRQ�IUHH�[�LQGLYLGXDO� table 1 presents the results of Ljung-Box test. 
The test is based on the autocorrelation plot. However, instead of testing randomness at 
each distinct lag, it tests the "overall" randomness based on a number of lags. The null 
hypothesis states that there are no linear dependence in data series. 
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Table 1 – Linear dependency analysis (complete, variation-free and individual) 

 
Based on the results obtained, it could be noticed that the proposed formulation deals 

quite satisfactory with the linear dependence observed in the original data. However, as seen in 
figure 11, there is an excessive dispersion in the residuals of all series being considered, it’ s 
probably due to the non-linearity existent in these data as observed by Engle and Russell (1998), 
Fernandes and Gramming (2001) and Zhang, Russell and Tsay (2001).  

 
The constraint formulation (variation-free) has obtained a better performance when 

considering in-sample tracking.  
 
In order to test the validity of constrains on the complete formulation, we use the 

likelihood ratio test. The null hypothesis regards the validity of the constraint formulation against 
the less restricted ones. Table 2 presents the results. 

 
- /LNHOLKRRG�5DWLR�7HVW��

 

 
Table 2 – Likelihood ratio test results 

 
Considering the results of table 2, the system seems to be variation-free, as proposed by 

Manganelli. That hypothesis is strongly accepted (p-value = 70,06%). The hypothesis tests that 
consider individual formulation strongly reject the validity of independent dynamics in trading 
variables.  

 



 16 

��&RQFOXVLRQ�DQG�)LQDO�&RPPHQWV�
 
 The EMACM is a framework to analyze high-frequency data, that allows expected 
duration, volume, bid-ask spread and volatility to vary according to a nonlinear function of their 
own lagged values. Here the exponential transformation is applied in order to guarantee the non-
negativity of the variables under study. The model is estimated through the maximization of the 
joint likelihood function (complete formulation), using a non-linear unconstraint optimization 
algorithm (Nelder-Mead).  
 
 The estimation process was tested through a Monte-Carlo experiment. The impulse-
response function based on estimated parameters was compared to the values obtained through 
the use of the original ones.  
 

Regarding the intra-day estimated pattern, some facts brought-up by microstructure 
theory could be observed: 

 
- Highest intensity (lower durations) were observed close to the opening and closing of 

trading days; 
- For lower duration values: bid-ask spread and instantaneous volatility increase; 
- Highest volumes are observed next to the opening of transaction days – what can be 

explained by the fact that new information accumulated after trading regular time 
wouldn’ t be included in asset prices.  

 
In relation to the adoption of constrains on the complete formulation (different 

structures), a Likelihood Ratio Test was carried-out. The results point to the acceptance of the 
variation-free formulation, as suggested by Manganelli. Here, the hypothesis of no causality 
among trading variables is strongly rejected. 

 
Generally, the new model was successful when dealing with the linear dependence in 

data. On the other hand, it was observed an excess of dispersion in data, probably due to the 
nonlinearities – first identified by Engle and Russel (1998), what was not captured. 
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• 7DEOH�,��PRGHO�FRPSOHWH���

  46587 5:9<;>= ;87 ?A@B58C DE; @B587GF 58H:I>; JLKMHONGF P8;8H:I>;<Q HO= ;87 RE58C SBT
a0 0,5655 0,0003 0,0345 Reject 

b0 0,6819 0,0007 0,0527 Reject 

c0 -0,1939 0,0011 0,0664 Reject 

d0 0,2174 0,0022 0,0926 Reject 

a1,1 0,4556 0,0005 0,0442 Reject 

a2,1 -0,1212 0,0028 0,1036 Reject 

a3,1 -0,0619 0,0005 0,0456 Reject 

a4,1 -0,2603 0,0002 0,0252 Reject 

b1,1 0,5368 0,0028 0,1032 Reject 

b2,1 -0,4027 0,0047 0,1345 Reject 

b3,1 -0,2179 0,0002 0,0305 Reject 

b4,1 0,0160 0,0006 0,0494 Accept 

c1,1 -0,0224 0,0002 0,0292 Accept 

c2,1 -0,0226 0,0005 0,0417 Accept 

c3,1 -0,2159 0,0026 0,1006 Reject 

c4,1 -0,0475 0,0018 0,0833 Accept 

d1,1 -0,0388 0,0002 0,0278 Reject 

d2,1 0,2113 0,0005 0,0449 Reject 

d3,1 -0,5421 0,0006 0,0460 Reject 

d4,1 -0,2894 0,0044 0,1294 Reject 

a1,2 0,0950 0,0031 0,1088 Accept 

a2,2 -0,1476 0,0022 0,0912 Reject 

a3,2 0,1206 0,0009 0,0583 Reject 

a4,2 -0,1085 0,0019 0,0849 Reject 

b1,2 0,0416 0,0025 0,0971 Accept 

b2,2 -0,0247 0,0009 0,0586 Accept 

b3,2 0,2977 0,0000 0,0108 Reject 

b4,2 -0,0385 0,0002 0,0284 Reject 

c1,2 0,1473 0,0013 0,0707 Reject 

c2,2 0,2955 0,0003 0,0364 Reject 

c3,2 0,0906 0,0009 0,0596 Reject 

c4,2 0,0606 0,0022 0,0926 Accept 

d1,2 -0,0003 0,0005 0,0437 Accept 

d2,2 -0,1765 0,0010 0,0619 Reject 

d3,2 -0,1012 0,0005 0,0427 Reject 

d4,2 0,4096 0,0020 0,0870 Reject 

b5 0,0614 0,0001 0,0231 Reject 

c5 -0,0599 0,0002 0,0256 Reject 

c6 0,0231 0,0002 0,0291 Accept 

d5 -0,0070 0,0001 0,0206 Accept 

d6 0,0168 0,0003 0,0323 Accept 

d7 -0,0810 0,0007 0,0529 Reject 
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  46587 5:9<;>= ;87 ?A@B58C DE; @B587GF 58H:I>; JLKMHONGF P8;8H:I>;<Q HO= ;87 RE58C SBT
a5,1 0,1075 0,0002 0,0259 Reject 

a6,1 0,2607 0,0004 0,0384 Reject 

a7,1 0,0289 0,0011 0,0645 Accept 

a8,1 -0,1543 0,0008 0,0560 Reject 

b6,1 0,0248 0,0002 0,0279 Accept 

b7,1 -0,0867 0,0003 0,0312 Reject 

b8,1 -0,0156 0,0002 0,0293 Accept 

b9,1 -0,0067 0,0001 0,0140 Accept 

c7,1 -0,0847 0,0003 0,0322 Reject 

c8,1 0,0192 0,0001 0,0221 Accept 

c9,1 0,1554 0,0003 0,0326 Reject 

c10,1 0,0578 0,0004 0,0381 Reject 

d8,1 -0,1160 0,0005 0,0432 Reject 

d9,1 0,0090 0,0002 0,0301 Accept 

d10,1 -0,0283 0,0006 0,0498 Accept 

d11,1 0,3570 0,0006 0,0486 Reject 

a5,2 0,0167 0,0003 0,0320 Accept 

a6,2 -0,1942 0,0001 0,0231 Reject 

a7,2 -0,1377 0,0001 0,0157 Reject 

a8,2 0,1841 0,0001 0,0165 Reject 

b6,2 -0,0450 0,0001 0,0186 Reject 

b7,2 -0,1424 0,0006 0,0487 Reject 

b8,2 -0,0661 0,0003 0,0324 Reject 

b9,2 0,0825 0,0004 0,0397 Reject 

c7,2 -0,0241 0,0001 0,0221 Reject 

c8,2 0,0225 0,0002 0,0282 Accept 

c9,2 0,0166 0,0002 0,0281 Accept 

c10,2 -0,0581 0,0012 0,0672 Accept 

d8,2 -0,1257 0,0002 0,0256 Reject 

d9,2 0,0727 0,0001 0,0236 Reject 

d10,2 0,0597 0,0005 0,0458 Reject 

d11,2 0,2001 0,0013 0,0708 Reject 
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• 7DEOH�,,��YDULDWLRQ�IUHH���

  46587 5:9<;>= ;87 ?A@B58C DE; @B587GF 58H:I>; JLKMHONGF P8;8H:I>;<Q HO= ;87 RE58C SBT
a0 0,2568 0,0003 0,0354 Reject 

b0 0,7288 0,0012 0,0690 Reject 

c0 0,0641 0,0013 0,0702 Accept 

d0 0,2561 0,0003 0,0342 Reject 

a1,1 0,3761 0,0019 0,0853 Reject 

b2,1 -0,2551 0,0009 0,0576 Reject 

c3,1 -0,2793 0,0026 0,0998 Reject 

d4,1 -0,4078 0,0012 0,0690 Reject 

a1,2 0,2401 0,0013 0,0716 Reject 

b2,2 0,2197 0,0028 0,1038 Reject 

c3,2 -0,5906 0,0021 0,0903 Reject 

d4,2 0,0764 0,0036 0,1170 Accept 

b5 0,0397 0,0002 0,0276 Reject 

c5 -0,0436 0,0002 0,0268 Reject 

c6 -0,0032 0,0002 0,0290 Accept 

d5 -0,0313 0,0004 0,0398 Accept 

d6 -0,0295 0,0004 0,0411 Accept 

d7 -0,1295 0,0006 0,0497 Reject 

a5,1 0,1206 0,0001 0,0212 Reject 

a6,1 0,1870 0,0001 0,0217 Reject 

a7,1 0,1260 0,0008 0,0565 Reject 

a8,1 -0,1188 0,0007 0,0507 Reject 

b6,1 0,0177 0,0002 0,0288 Accept 

b7,1 -0,1063 0,0002 0,0242 Reject 

b8,1 0,0429 0,0004 0,0387 Reject 

b9,1 -0,0073 0,0008 0,0548 Accept 

c7,1 -0,0289 0,0001 0,0235 Reject 

c8,1 -0,0188 0,0002 0,0242 Accept 

c9,1 0,1755 0,0006 0,0496 Reject 

c10,1 -0,1054 0,0007 0,0524 Reject 

d8,1 -0,0813 0,0003 0,0359 Reject 

d9,1 -0,0195 0,0006 0,0470 Accept 

d10,1 -0,1045 0,0007 0,0536 Reject 

d11,1 0,5287 0,0010 0,0614 Reject 
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  46587 5:9<;>= ;87 ?A@B58C DE; @B587GF 58H:I>; JLKMHONGF P8;8H:I>;<Q HO= ;87 RE58C SBT
a5,2 0,0583 0,0002 0,0273 Reject 

a6,2 -0,1367 0,0002 0,0280 Reject 

a7,2 -0,1792 0,0011 0,0649 Reject 

a8,2 0,0264 0,0011 0,0652 Accept 

b6,2 -0,0152 0,0002 0,0265 Accept 

b7,2 -0,0008 0,0002 0,0266 Accept 

b8,2 -0,1414 0,0009 0,0589 Reject 

b9,2 -0,1902 0,0010 0,0614 Reject 

c7,2 -0,0369 0,0001 0,0225 Reject 

c8,2 -0,0149 0,0002 0,0275 Accept 

c9,2 0,0695 0,0007 0,0514 Reject 

c10,2 -0,1009 0,0009 0,0581 Reject 

d8,2 -0,1249 0,0004 0,0367 Reject 

d9,2 0,0594 0,0004 0,0413 Reject 

d10,2 -0,0325 0,0012 0,0689 Accept 

d11,2 0,2708 0,0032 0,1113 Reject 

 
 

• 7DEOH�,,,��LQGLYLGXDO���

  46587 5:9<;>= ;87 ?A@B58C DE; @B587GF 58H:I>; JLKMHONGF P8;8H:I>;<Q HO= ;87 RE58C SBT
a0 0,2250 0,0017 0,0820 Reject 

b0 0,3067 0,0008 0,0552 Reject 

c0 0,1826 0,0009 0,0595 Reject 

d0 0,5954 0,0041 0,1260 Reject 

a1,1 0,0791 0,0035 0,1167 Accept 

b2,1 0,4615 0,0002 0,0281 Reject 

c3,1 0,0756 0,0045 0,1314 Accept 

d4,1 -0,8327 0,0074 0,1691 Reject 

a1,2 0,5833 0,0031 0,1085 Reject 

b2,2 0,1180 0,0010 0,0618 Reject 

c3,2 -0,2601 0,0016 0,0772 Reject 

d4,2 -0,6936 0,0010 0,0623 Reject 

a5,1 0,0901 0,0002 0,0277 Reject 

b7,1 -0,1003 0,0002 0,0300 Reject 

c9,1 0,3680 0,0015 0,0768 Reject 

d11,1 0,4433 0,0013 0,0711 Reject 

a5,2 0,1026 0,0003 0,0344 Reject 

b7,2 0,0808 0,0002 0,0272 Reject 

c9,2 -0,2262 0,0013 0,0703 Reject 

d11,2 0,4021 0,0020 0,0886 Reject 
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o Volatility 
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