
 1

An Integrated Approach For Stock Price Forecasting 

 
 
 

Gustavo Santos Raposo 

Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro 

 

Alvaro Veiga 

Department of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro 

 
 

October 17, 2004 
 
 
 

Draft Version 

 
 

Abstract 

 

This article faces the problem of stock price forecasting through an integrated approach in which 
the modeling of high frequency financial data (duration, volume and bid-ask spread) uses a 
contemporaneous ordered probit model. Here, the formulation introduced by Raposo and Veiga  
(2004) – EMACM – is used in order to capture the dynamic that high frequency variables present, 
and its forecasting function is taken as proxy to the contemporaneous information necessary to 
the price model. 
In that context, the main purpose of the article is to test the performance of the proposed model 
and compare it with the results obtained based on a NAIVE rule.  
 
 
Keywords: High frequency data, ordered probit model, EMACM, nonlinear time series. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 2

1 Introduction 
 

The challenge of understanding market price dynamics has been enforced by recent 
technological developments. Nowadays, with the existence of “high frequency” database, it’s 
possible to understand the microstructures dynamics and asset price behaviors. Here, the question 
is how the environment (negotiation systems and investors) could influence asset market price, 
bearing in mind that, in the real world, financial market imperfections exists and, in reality, are 
investigated and considered by the participants. 

 
Among the objectives of that paper, could be pointed: 
 

• Understand and model the dynamic of high frequency data, in particular: duration, 
volume and spread; 

•  Model the price-making process measuring the influence of the microstructures  – 
asset price changes distribution and understand the rationality behind buy and sell 
orders; 

• Analyze the evidences of forecasting capability regarding financial asset prices. 
 

That article is divided as follows. Section 2 presents the EMACM and Ordered Probit 
Model formulation. Section 3 brings an empirical example and, finally, Section 4 concludes. 

 
 

2 The Model 
 
 In order to model the dynamic behind the microstructures, that article uses the 
methodology introduced by Raposo and Veiga (2004) – EMACM. That formulation is 
appropriated due to the capability to deal with causality among variables and the forecasting 
function that can be directly used in the ordered probit formulation, providing price change 
estimation. 
 
 

2.1  EMACM: 
 

A set of high-frequency variables (duration – xi, volume – υi and bid-ask spread – si) 
follows an Exponential Multivariate Autoregressive Conditional High Frequency Data Model 
(EMACM), if: 

 

( )1exp...~. diix iiii εεψ →=        (2.1.1) 

( )1exp...~. diiiiii ηηφυ →=        (2.1.2) 

( )1exp...~. diis iiii ϖϖϕ →=        (2.1.3) 

 
Where, the conditional mean is as follows: 
 

( ) ( ) ( ) ( ) ( ) ( )
pipiiqiqii BBBAA −−−− +++++++= τττµµγµ lnlnlnlnlnln 11011 KK   (2.1.4) 

 

µi’ = (ψi φi ϕi), τi’ = (di υi si), γ is the vector of coefficients and A1, ..., Aq and B1, ..., Bp are 
coefficients matrices of each stochastic processes. 
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So, the general formulation of the complete model can be written as: 
 
� Observation equation: 
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Where, εi, υi e ωi ~ exp(1). 
 
 
� State equation: 
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2.2 Ordered Probit Model: 
 
In 1992 Hausman, Lo and MacKinlay proposed an alternative statistical model to capture 

market price changes, based on the techniques usually employed in empirical studies of naturally 
ordered enumerable dependent variables. 

 
Heuristically, the ordered probit model corresponds to a generalization of the linear 

regression model, in which the dependent variable is discrete. It is the only specification that 
captures, in a simple way, both the impact of the variables considered in the formulation and the 
irregular time interval between trades. 

 
Basic specification: 

 

Let a certain transaction price sequence as being: P(t0), P(t1), ..., P(tn) regarding time t0, t1, 
..., tn, and consider Y1, Y2, ..., Yn the observed price changes Yk = P(tk) - P(tk-1). Due to the 
discreteness of price, Yk could be represented as a multiple of the tick1. Taking Yk

* as being a 
certain non-observed continuous stochastic variable: 

 

kkk XY εβ += .'*
        (2.2.1) 

[ ] 0=kk XE ε          (2.2.2) 

( )2,0~ kk NINID σε         (2.2.3) 

                                                 
1 Tick: minimum amount in which the assets are quoted. 
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Where, the qx1 vector Xk = [X1k ... Xqk]’ corresponds to the variable set being considered (Yk

*’s 

conditional mean formulation) and “INID” indicates that the residual sequence (εk’s) is 
independently but non-identically distributed. This is one of the most important differences 
between ordered probit and the standard econometric formulations.  
 

The main characteristic of the ordered probit models is the assumption that the observed 
price changes (Yk) are related to the variable Yk

*, through the following probabilistic model: 
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Where, Aj’s are state space partitions S* of Yk
*, or, U

m

j jAS
1

*

=
=  and ∅=I ji AA  to ji ≠  

and sj’s are discrete values that comprehend the state space S of Yk. In order to simplify the 
subsequent procedures, the partitions of the space state S* could be taken as fixed intervals. 
 

( ]11 , α∞−≡A          (2.2.5) 

( ]212 , αα≡A          (2.2.6) 

M  
( ]iiiA αα ,1−≡

         (2.2.7) 

M  
( )∞≡ − ,1mmA α

        (2.2.8) 
 
Despite the fact that asset price changes could be any integer number, it’s assumed that 

“m” (2.2.4) is finite, limiting the parameters set that will be estimated. Such procedure does not 
introduce problems to the modeling, since that states could represent multiple values of the 
observed price changes. For example, let sk as being the price change of -5 ticks or less, and si as 
the price change of 6 ticks or more; in that way, the model does not distinguish between price 
changes of 6 or more and -5 or less.  

 
Regarding the number of states, the choice will depend on the type of analysis and it 

won’t be connected to model’s accuracy, when considering large sample. In the case of small 
samples, the addition of extra states could represent a problem, especially for the estimation 
process. 

 
In reality, the data will impose the limits to the number of states to be considered, once 

there won’t be any observation that lies into the “extreme states”, making its estimation 
impossible. 

 
 
 
 
 



 5

Conditional distribution of price changes: 

 

As mentioned before, the residuals εk’s (2.2.3) are not identically distributed, when 
conditioned to a certain state (Xk’s). The main reason for that assumption is the irregular and 
random form of time distance between successive trades. If, for example, the price changes 
(Yk

*’s) could be described by the Arithmetic Brownian Motion  (as proposed by Marsh e 

Rosenfeld - 1986) with variance proportional to ∆tk = tk – tk-1, so σk
2 would be a linear function of 

∆tk, which varies from transaction to transaction. 
 

In order to deal with heteroskedasticity, σk
2 will be taken as a linear function of a pre-

determined variables vector Wk = [W1k ... WLk]’, such that: 
 

[ ] ( )2,0,0, kkkkk NINIDWXE σεε =      (2.2.9) 

LkLkk WW .. 2

1

2

1

2

0

2 γγγσ +++= K       (2.2.10) 

 
Where, (2.2.9) and (2.2.10) substitute the hypothesis embedded in equations (2.2.1), (2.2.2) and 

(2.2.3), and the conditional volatility coefficients (γj) are squared, what guarantees the non-
negativity. In that generic formulation, the propose of Marsh e Rosenfeld (1986) could be easily 
considered, being necessary the following substitutions: 

 

kk tX ∆= ..' µβ         (2.2.11) 

kk t∆= .22 γσ          (2.2.12) 

 

In that case, Wk has just one variable (∆tk). The fact of the same variable has been 
considered in Xk e Wk does not causes perfect multicolinearity, because the first affects the 
conditional mean of Yk

*, and the other influences the conditional variance. 
 
The structure of dependency imposed in observed price changes process (Yk) is clearly 

connected to Yk* and the definition of Aj’s. 
 

( ) ( )ikjkikjk AYAYPsYsYP ∈∈=== −−
*

1

*

1      (2.2.13) 

 
As a consequence, if Xk and Wk are independent through time, the process Yk (observed) 

will be too. That assumption is less restrictive, and does not make any of the subsequent statistical 
inferences invalid. The only assumption that must be preserved is related to the conditional 

independency of residuals (εk’s). In that way, the dynamic (serial dependency) observed in the 

variable is captured by Xk and Wk. Consequently, the independence of εk’s does not necessarily 
imply that Yk

*’s are independently distributed, once none restriction about serial dependency of 
Xk’s e Wk’s is made. 

 
The observed price change (Yk) distribution, conditioned to Xk e Wk, could be determined 

considering the partitions boundaries and the probability distribution function of εk. In case of 
normally distributed residuals (Gaussian distribution), the conditional distribution will be: 

 

( ) ( )
kkikkkkik WXAXPWXsYP ,., ' ∈+== εβ               (2.2.14) 
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Where, 
 

σk(Wk) – conditional standard-deviation as function of Wk’s; 
 

Φ(.) – accumulated probability distribution function (standard Normal). 
 
It could be noticed that the probability associated with a specific price change is 

determined from the position of the conditional mean regarding the state space partitions 

boundaries. Besides that, given a certain value for the conditional mean Xk’β, any change in the 
position of the partitions, will affect the probability of each state. 

 
As mentioned before, the ordered probit model can be used with different probability 

distribution functions – residual term. 
 
In that way, given the partition’s boundaries, a big value for the conditional mean, would 

indicate a high probability of an “extreme state” being observed. But, the denomination of the 
state can be “occult” (choice of the number of partitions).  

 
Another advantage of the model presented here is related to the use of economic variables 

in vectors Xk and Wk, making possible the determination of the type and magnitude of their 
influence. 

 

As the estimation process of partition’s boundaries α, β coefficients and conditional 

variance σk
2 is based on the sample’s information (data-driven), then ordered probit model 

captures empirical relation between the non-observed continuous state space S* and the observed 
discrete state space S, as function of economic variables Xk e Wk. 
 
 
Estimation process (maximum likelihood method): 

 
Let Ik(i) as being an indicative variable, which assumes an unitary value, when the 

realization of k-th observation of Yk corresponds to the i-th state si, and zero otherwise. Thus, the 
conditional log-likelihood function L of the vector of price changes Y = [Y1  Y2  ...  Yn]’, 
conditioned on the explicative variables vector X = [X1  X2  ...  Xn]’ e W = [W1  W2  ...  Wn]’ will 
be: 
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Despite of the fact that σk
2 has been defined as a linear function of Wk, there are some 

restrictions that must be imposed to the parameters, making possible the identification of them. 
For example, the log-likelihood function value would remain the same, if a certain constant K 

multiplied the values of α’s, β’s and σk
2. A typical procedure is to define γ0 = 1. 

 
There are three basic steps to be followed before initialize the estimation process: 
 

• The determination of the number of states m; 
 

• The definition of the regressors being considered; 
 

• The specification of the conditional variance σk
2. 

 
As commented already, the definition of the number of states should be based on the 

observed price changes empirical distribution. Such procedure will avoid the adoption of a state 
with no observations. 

 
Regarding the regressors definition, it will depend on the type of analysis and objectives. 

If they are related to forecasting, in general, the use of lagged price changes and market indices 
contribute to good results. 

 
 

Price model (Ordered Probit Model): 
 
Let zi as the price changes of a specific asset expressed in tick units. Thus, based on 

equations (2.2.1) and (2.2.10), the proposed formulation is defined as follows: 
 

( )2,~ iii Nz σµ         (2.2.21) 

( ) ( )∑∑
=

−

=

−−− +++=
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1
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nin

k

kikkikkiki zdscbxa υµ     (2.2.22) 

110

2 .. −+= iii sx γγσ         (2.2.23) 
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Where, (a0, ..., a3, b0, ..., b3, c0, ..., c3, d1, ..., d3, γ0, γ1) are the parameters to be estimated, xi is the 

duration, νi is the volume and si the bid-ask spread of the i-th event. 
 
 

3 Empirical Analyses 
 

3.1 Data Base: 
 
The database used in the empirical analysis presented in this article was built by Joel 

Hasbrouck e NYSE – Trades, Orders Reports and Quotes (TORQ). The data reflect the trades of 
IBM stocks, occurred between November 1st, 1990 and November 16th, 1990. 

 
The database comprehends all the relevant information embedded in financial 

transactions – buys or sells (i.e., bid price, ask price, transaction price, time and volume) 
registered during regular financial market time – 9:30 AM - 4:00 PM (after-market is not 
considered). 

 
In order to get the basis for the development of the study, some changes were 

implemented in the original data. Such procedure was necessary, due to the nature of the existent 
information.  

 
Each one of the registers in the original database refers to a transaction that has 

effectively occurred. Since that study will focus on the modeling of tick-by-tick (price change) 
data and not in an event basis analysis, it was necessary to group the relevant information.  

 
- Duration: 
 

o If the price of transaction “i” is equal to the price of transaction “i-1”, so duration 
“i” is equal to the sum of durations “i” and “i-1”; 

 
o If a certain transaction (with price change) presents duration equal to zero, so that 

register is discarded. 
 

- Volume: 
 

o If the price of transaction “i” is equal to the price of transaction “i-1”, so volume 
“i” is equal to the mean of the volumes of transactions “i” and “i-1”. 

 
- Spread: 

 
o Spread “i” is equal to the difference between bid price “i” and ask price “i”; 

 
o If the price of transaction “i” is equal to the price of transaction “i-1”, so spread 

“i” is equal to the mean of the spreads of transactions “i” and “i-1” weighted by 
the volumes of such transactions (bid-ask spread may change according to the 
volume being traded through an specific market-maker). 

 
Relevant changes and considerations: 
 

o The tick-by-tick series has the unity value of the tick as reference (US$ 0.125); 
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o The transaction occurred during the first twenty minutes of trading day were not 

considered for estimation purposes (9:30 AM - 9:50 AM) – opening postponing 
problems and “first trades” effects; 

 
o For each day, the conditional mean of each one of the variables of the system 

(deseasonalized series) will be taken as the mean of the respective values 
observed between 9:50 AM e 10:00 AM (if there are no observations, the 
conditional mean is taken as one). 

 
3.2 Empirical tests: 

 
The empirical tests could be divided into different stages with distinct objectives. 
 

1) Five consecutives trading days are selected from the database (01/11/1990 – 08/11/1990) 
and EMACM (2,2) is estimated just considering the variables existent in the price model 
(duration, bid-ask spread and volume). Figures 1 – 5 present the results of the in-sample 
analysis. 

 
- ACF 
 

o Duration 
 

 
Figure 1 – ACF of duration (residuals x observations) 

 
 

o Volume 
 

 
Figure 2 – ACF of volume (residuals x observations) 
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o Spread 

 

 
Figure 3 – ACF of spread (residuals x observations) 

 
 

- Ljung-Box: 
 

 
Table 1 – Linear dependency analysis (Ljung-Box test) 

 
 

2) Ordered Probit Model as described in (2.2.21), (2.2.22) and (2.2.23) is estimated. 
Through the use of EMACM forecasting function, the one-step-ahead forecast is 
generated and its results are used as substitutes to the contemporaneous variables value in 
the Ordered Probit Model formula (price model’s forecasting function). The partitions 
selected by the price model’s forecasting function are then checked against the real data 
and the one selected by NAIVE rule2. In this part, the time period from 08/11/1990 until 
16/11/1990 is tested based on a five days period. The main objective is to present the out-
of-sample price model forecasting results (Appendix I brings the main results observed). 

 

 

• Unconstraint model: the econometric model estimates the partitions boundaries and 
coefficient matrices. Figure 4 present the results found. Here, the number of right choices 
(one-step-ahead price movements) of the proposed model is compared against NAIVE, as 
described before. 

 

                                                 
2 NAIVE rule: if a certain partition X is selected in a given event “i”, then, for the subsequent event, the 
partition will remain the same. 
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Figure 4 – Number of forecasted price movements (direction and magnitude) 

 

• Direction: the main objective of that procedure is to test the capability to forecast just the 
direction of the prices movements and not the magnitude of them. In that experiment the 
partition is fixed in zero and the only the equation’s parameters have to be estimated. 

 
 

 
Figure 5 – Number of forecasted price movements (direction) 

  
As can be notice the proposed method captures quite satisfactory the intra-day pattern 

and the dynamic embedded in price changes. Figure 6 summarizes the results. 
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Figure 6 – Total number of forecasted price movements 

 
 The results point to the existence of a intra-day pattern that is captured by the proposed 
model. Despite of the fact that trades, when analyzed together, do not present significant 
asymmetry (see results in Appendix I). When the chronological sequence of events is taken and 
modeled properly, intra-day behavior could conduct to some predictability when considering 
price movements (conditional distribution). 
  

 

4 Conclusion and Final Comments 
 

In this article, the challenge of stock price forecasting is faced through the use of an 
integrated approach in which the modeling of high frequency financial data (duration, volume and 
bid-ask spread) uses a contemporaneous ordered probit model in which price changes (measured 
in numbers of ticks) are the interest variable. Here, the formulation introduced by Raposo and 
Veiga  (2004) – EMACM – was used in order to capture the dynamic that high frequency 
variables present, and its forecasting function is taken as proxy to the contemporaneous 
information necessary to the proposed price model. 

 
Regarding high frequency data model, excellent results were obtained when considering 

the linear dependence observed in the original series. If compared with the results presented by 
the authors in the original article (one month sample), these could be considered better in terms of 
fitting. Another interesting point is that non-linear dependencies (excess of dispersion) weren’t so 
significant. 

 
When the method (high frequency data and ordered probit models) is tested against 

NAIVE rule, the results show that the use of high frequency variables in order to forecast intra-
day price changes is really effective. Both, the intra-day pattern and variables dynamics are 
satisfactory captured.  

 
In general lines, the main objective of the paper was achieved and the integrated 

approach proposed here shows itself robust when dealing with one of most exciting questions. 
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